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The Maxwell-Boltzmann distribution IS used to calculated,,,,, for the proposed icosahedrally symmetric structure of Cm called 
buckminsterfullerene. The results are used with calculated rotation-vibration scalar coupling [coefficients to make predictions 
for the dipole active rovibrational band shapes. Stereoscopic figures of the corresponding normal modes are shown in the body 
fired rotating frame. Rotational constants and spectral features of CH,, CF,, and SF6 are included for comparison. 

1. Introduction 

.4s interest in both the terrestrial and interstellar 
carbon chemistry of the recently proposed “fuller- 
enes” continues to increase it is becoming more im- 
perative than ever to clearly identify the truncated 
icosahedral structure of the seminal fullerene, C& [ l- 
31. The most direct determination of the structure 
of CGO, or buckyball, may be obtained from its spec- 
trum. Presently there are several theoretical predic- 
tions for the optical spectrum of buckyball [ 4-61. In 
addition, vibrational spectra of buckyball have been 
calculated [ 7-91, and predictions have been made 

for the fine and superfine rotational spectral struc- 
ture of buckyball [ 10,l 1 1. Recently, the infrared and 
ultraviolet absorption spectra of carbon clusters col- 
lected on a substrate have been measured and sup- 
port the proposed truncated icosahedral structure of 

Go L1.21. 
Using the T,, dipole active vibrational normal 

modes of buckyball calculated in refs. [ 7,8], rovi- 
brational scalar coupling c coefficients are deter- 
mined and used with the Maxwell-Boltzmann dis- 
tribution to predict the dipole active T,, rovibrational 

band shapes. The T,, i coefficients sum to the cor- 
rect value of - 1 [ 13 1. First-order approximations 
of the classical rovibrational normal modes in the 
rotating body fixed frame are shown in 3D stereo- 
scopic figures that permit a qualitative visual esti- 
mation of the C coefficients. Several well known ro- 
tational constants and observed spectral features of 
CH+ CF4, and SF6, are compared with calculated 
values of a possible spectra of buckyball. 

2. Spectral features 

Using the normalized Maxwell-Boltzmann distri- 
bution for spherical top molecules, 

P(J)=N(2J+1)2exp[(-To/T)J(Jtl)], (1) 

the relative population P(J), of molecules with ro- 
tational quantum number J, may be determined for 
a given temperature T. The normalization N is cho- 
sen so that 
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m 

.r P(J) dJ= 1 ) 

and is given by 

N=Jf!n ( To/T)‘/* exp( - Toj4T). 

The constant To is a function of molecular species 
and is roughly the temperature needed to populate 
the J= 1 rotational level. This “quantum tempera- 
ture” is defined as T,=hcB/K where h is Plan& 
constant, c is the speed of light, and Kis Boltzmann’s 
constant. The constant B is defined as 

h B=-= 
87&I 

2.7993~ 10-39gcm 
I 

where I is the equilibrium value of the moment of 
inertia of a spherical top molecule. 

By taking the derivative of eq. ( 1) with respect to 
J and setting the result to zero, the maximally pop- 
ulated value of J for a given temperature T, is cal- 
culated to be 

J max =-;tJTlro. 
Plots of the normalized P(J) given in eq. ( 1) are 
shown in fig. 1 for CF,, SF,, and buckyball. A tem- 
perature of 30 K is used as rough estimate of the con- 
ditions found in the Egg Nebula (CRL 2688 11 [ 141, 
a likely source of extraterrestrial Ceo [ 11. Immedi- 
ately apparent is the very broad distribution of ex- 
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Fig. I. Relative population of rotational energy levels for CF,, 
SF,, and buckyball as determined by the Maxwell-Boltzmann 
distribution at 30 K. The area under each curve is normalized to 
unity. 

cited rotational energy levels of buckyball and a value 
of J,,,,, that is over five times as large as J,,, of SF,. 
At 30 K appreciable populations of buckyball exist 
for J= 175 and even J=200. At room temperature 
appreciable populations of buckyball exist for J= 500 
and even J= 600. These high values of J will be very 
important when considering the rotational fine and 
superfine spectral structure of buckyball. A table of 
B values, calculated J,,,,, values, and observed Jmax 
values are given for CH,, CF4, SF6, and buckyball in 
the upper half of table 1. 

Scalar coupling between the vibration and rota- 
tion of spherical molecules is given by the third term 
in the rovibrational Hamiltonian, 

H rov,b=Hv,htHro,tHv,r=H,,btB~-2B~j.~. (2) 

Expectation values of eq. (2) are, 

(Hrov,b) = V,ib t BJ(Jt 1) -2Bi~j.f) 

= v,,,,, t BJ( J+ 1 ) 

-B[[J(JtI)-R(Rtl)+1(1+1)], (3) 

where J is the total angular momentum, R is the ro- 
tational angular momentum, I is the vibrational an- 
gular momentum, and 2J.I=J2- (J-1)2 tI’=J*- 
R * t I’. The dipole active modes of buckyball have 
T,, type icosahedral symmetry and contribute I= I 
quanta of vibrational angular momentum in eq. (3 ). 
Possible couplings between R and I= 1 are J=R t 1, 
J=R, and J=R - I. This coupling results in a mod- 
ification of the spherical top rotational energy level 
spacing, 

(Hrovib ) = u,ib t BJ( Jt 1) - 2Bi- 2B5J 

forR=J- 1; 

(HroYi,, > = vv,b +BJ(J+ 1) - W 

forR=J; 

forR=Jt 1, (4) 

where the Jth energy level is split into three levels by 
an amount proportional to Bc. For negative [, the 
lowest of the three levels occurs when the vibrational 
and rotational angular momentum are anti-aligned 
(R=J+ 1) and the highest occurs when the vibra- 
tional and rotational angular momentum are aligned 
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(R=b- 1). Only transitions that conserve R are al- 
lowed resulting in P, Q, and R branches that are split 
by more (or less) than 2B of a rigid spherical top 
when c is negative (or positive). Calculated 5 coef- 
ficients of buckyball are given in table 1 and are all 
negative because buckyball is hollow and lacks a cen- 
tral atom. Buckyball [coefficients may be compared 
with observed c coefficients of CH4, CF4, and SF6 
which are also listed in table 1. 

3. [ calculation 

The [ coefficients of any molecule may be calcu- 
lated using a number of different methods. Each of 
these equivalent methods may be derived from the 
general definition of the zeta operator, 

where a, /?, and 1’ are the spatial coordinates x, y, and 
z of a body fixed coordinate system, and i labels the 
1) 2, . . . . n nuclei. The bra-kets I /Ii) correspond to the 
displacement of the ith nuclei in the p direction. By 
representing [” in a basis spanned by the normal co- 
ordinates Ii), the general definition of the [ coeffi- 
cient is obtained, 

where the Qp,,, are coefficients of the Ith normal mode 
expressed as displacements of the ith nuclei in the 
/Ith direction of the body fixed coordinate system. 
Using standing waves as defined in ref. [ 81, the Q8,,, 
are pure real and eq. (5 ) is identical to the usual def- 
initions of the (coefficients [ 13,151. 

In the absence of rotation, the T1, dipole active 
modes of buckyball consist of four sets of threefold 
degenerate genuine vibrations and a threefold de- 
generate set of zero frequency translations. The 
threefold degenerate standing waves of a given ei- 
genfrequency form a set of three partners each of 
which has an induced dipole moment orthogonal to 
the other two. These induced dipole moments are 
used to define a right-hand body fixed coordinate 

system. Rotation about the z axis of this coordinate 
system causes a Coriolis mixing of the x and y 
partners, 

z-2, x+x+iy, y+x-iy (6) 

forming complex moving normal modes defined in 
ref. [ 8 1. The coupling between the rotational and re- 
sulting vibrational momentum then splits the three- 
fold vibrational degeneracy. The [’ coefficient cal- 
culated from the 1=x and k=y partners in eq. (5) 
is equal to the c” coefficient calculated from the I=y 
and li=z partners, and the i” coefficient calculated 
from the i=z and k=y partners. Thus the super- 
script CI of [ in eq. (5) may be suppressed. For 
standing waves, the sign of the [ coefficient is de- 
fined by the order of partners l=cu and k= ,L? used in 
eq. (5) where 

6 olD = 1 for cyclic permutations of cyJ3,y; 

= 0 for any two indices equal; 

= - 1 for any two indices switched. 

Once the sign has been defined, the only label needed 
for the [ coefficients is one that distinguishes be- 
tween the four sets of threefold degenerate partners 
which is precisely the label used for the correspond- 
ing eigenvalues. Following ref. [ 81 these labels are 
the icosahedral irreducible representation label T,, 
and column label c= 1, 2, 3, 4. A list of buckyball 
dipole active [ coefficients using spring constants 
given in ref. [ 81, is given in table 2. 

Using subgroup chain defined icosahedral irre- 
ducible representations (irreps), T,, vibrational 

Table 2 
[ coefticients of the four T,, dipole active modes of buckyball. 
(p=h=7.6, 71=~7=0.7.) Mode labels (l)-(4) correspond to 
modes (a)-(d) In fig. 2. Spring constants are the same as those 
in refs. [ 7,8] 

<:” = - 0.076 13 
$“= -0.31933 
CT” = - 0.49757 
{:‘“=-0.10698 

i, i:‘u = - 1 

[T” = I (translation) 
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p = 7.6 h = 7.6 
II= .7 n = .I 

p = 7.6 h = 7.6 
x= .7 Tl = .7 

a 

4ode: TlDSMU 1 Partner# 2 Mode: TlD5MU 1 Partner# 2 
"Eg: 1874 Mass: 1.992 Freq: 1874 Mass: 1.992 

p = 7.6 h 7.6 = 
x. = .7 9 = .7 

Jade: TlDSMU 2 Partner# 2 Mode: TlD5MC 2 Partnerf 2 
Treq: 1468 Mass: 1.992 Freq: 1468 Mass: 1.992 

Fig. 2. The I, D,, C5 defined normal modes of buckyball. The 1, D5, C2 defined coordinate system IS shown with the z axis pointing out 
of the page and is collinear with the axis of rotation, The direction the nuclei are moving is indicated by the variable dot size along the 
nuclear trajectories. The slight difference between frequencies at the bottom of the figures and those reported in refs. [7,8] is due to the 
use of 1.992~ IO-a3g instead of 2x 1O-23 g for the mass of the carbon nuclei. Modes (a)-(d) correspond to rovibrational band shapes 
shown in fig. 3. 

normal mode X, y, and z partners are automatically 
defined along with the corresponding body fixed co- 
ordinate system. Standing waves defined by the 
I,D5,Cz subgroup chain are shown in ref. [8]. The 
transformation in eq. (6) from standing to moving 
waves is precisely the transformation from the 
I,D& subgroup chain defined T,, icosahedral irreps 
to the equivalent set of T,, I,D,,C5 irreps. The com- 

plex normal modes defined by the I,D5,C5 T,, irreps 
may be used individual/y to calculate diagonal ele- 
ments of the [ operator, where the Q,, correspond 
to the position and scaled momentum of the ith nu- 
clei. These complex normal modes are the first-order 
approximation of the rovibrational eigenfunctions 
of a rotating molecule of buckyball, and are shown 
in the body fixed coordinate system defined by the 
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r 

'.... ;,: 
Mode: TlD5MU 3 Partner# 2 Mode: TlDSMU 3 Partner# 2 
Freq: 620 Mass: 1.992 Freq: 620 Mass: 1.992 

p = 7.6 h = 7.6 p = 7.6 h = 7.6 d 

i 
gode: TlDSMU 4 Partner# 2 Mode: 'IlDSMU 4 Partner# 2 
:req: 419 Mass: 1.992 Freq: 479 Mass: 1.992 

Fig. 2. Continued. 

I,D,,C, subgroup chain in the 3D stereoscopic fig- 
ures 2a-2d. The rotational angular momentum vec- 
tor is collinear with the z axis which is also an axis 
of fivefold rotational symmetry. With the observa- 
tion that the nuclei travel along elliptical paths that 
encompass an area proportional to the vibrational 
angular momentum of each nuclei: and that this an- 
gular momentum is perpendicular to the plane con- 
taining the ellipse with a direction determined by the 
motion of the nuclei, it is possible to make a qual- 
itative visual estimation of the [ coefficients of dif- 

ferent modes. For example, in fig. la the nuclei near 
the .z axis are moving in a counterclockwise direction 
with large open orbits while those a IMe farther away 
are moving in a clockwise direction with slightly 
smaller orbits. The vibrational angular momentum 
of the nuclei moving in the clockwise direction al- 
most cancel the vibrational angular momentum of 
the nuclei moving in the counterclockwise direction 
resulting in the smallest T,, 5 coefftcient. In fig. lc 
it is clear that there are an overwhelming number of 
nuclei moving in large open counterclockwise tra- 
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jectories resulting in the largest T,, [ coefficient. 
Modes defined by the I,D& subgroup chain have 
been used to calculate an identical set of i coeffl- 
cients for rotations of buckyball around an axis of 
threefold symmetry. 

4. Rovibrational band shapes 

Predictions of the rovibrational band shapes of the 
T1, dipole active modes of buckyball are given in fig. 
3 and are based on the assumption that a large num- 
ber of buckyball molecules are in the A,, symmetric 
ground vibrational state at a temperature of 30 K. 
Initial studies using a vibrational partition function 
in the harmonic limit [ 161, with frequencies and de- 
generacies from refs. [ i,8] indicate that at 30 K over 
99% of the buckyball molecules will be in the ground 
vibrational state. At 150 K about l/3 will be in the 
ground state, and at room temperature (T= 293 K) 
only l/5000 will be in the ground state. Also as- 
sumed are equal transition probabilities from the ro- 
tational levels of the A,, ground vibrational state to 
the rotational levels of the T,, excited vibrational 
states. The energy spacing between adjacent values 
of J is calculated from the difference between the 
J=l,R=l andJ=O,R=l levelsibeq. (4), 

d=2B( 1 -i) . 

Buckyball T = 30K 

-3 -2 -1 0 1 2 3 
Av (cm-‘) 

Fig. 3. Rovibrational band shapes of the four T,. dipole active 
modes ofbuckyball at 30 K plotted as a function of the frequency 
shift Av from the centers ofeach band. Values of the band centers 
are given in table 1. The maximum intensities of each band are 
unknown and arbitrarily set equal to each other. 

The relative amplitude of the bands as a function of 
J is given by the vibrational ground state population 
P(J). The Q branches in fig. 3 are artificial and in- 
cluded only for reference. Values of d and N,,,,, for 
buckyball are given in table 1. Peak to peak differ- 
ences between the P and R branches of buckyball 
provide a measure of the rovibrational band width 
and are also included in table 1, For the purpose of 
comparison, calculated and observed values of d, 
AJ,,,, and P-R branch differences are given for CH4, 
CF4, and SF6 in table 1 as well. The peak to peak dif- 
ferences between the P and R branches of buckyball 
given in table 1 and shown in fig. 3 indicate that the 
rovibrational lines of buckyball will be relatively 
narrow and comparable with the u3 bandwidth of SF6. 

The predictions of the P and R branch splittings 
of buckyball include coupling between degenerate T1, 
dipole active modes only. By “Jahn’s rule” [ 171 any 
two modes will couple if the cross product of their 
symmetry species includes the rotational symmetry 
species. The strength of the coupling depends on the 
difference in vibrational frequency. For the icosa- 
hedral group, the rotational species is labeled T,, and 
the following additional couplings between T1, modes 
and other modes of buckyball will be allowed, 

Tl,@A, =T,g > 

T,,@T,,=A,OT,,OHg , 

T1,@H, =TI,OT,,OG,OH,. 

5. Conclusion 

The Maxwell-Boltzmann distribution is used with 
calculated [ coefficients to determine the T,, dipole 
active rovibrational band shapes expected in a spec- 
trum of buckyball. The large value of J,,,,,=SS at 
T= 30 K is moderated by the small value of 
B= 0.0028 cm- ’ resulting in relatively narrow rovi- 
brational bands that are about 1 to 1.5 cm- ’ across. 
Stereoscopic figures of the corresponding moving di- 
pole active T,, modes are shown which permit the 
visualization of the < coefficients. A computer pro- 
gram for the Macintosh that generates 3D animated 
movies of the normal modes of buckyball is available. 
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