$\Delta|P|^{\text {The Journal of }}$ Chemical Physics

Rotation-vibration spectra of icosahedral molecules. II. Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene

David E. Weeks and William G. Harter

Citation: The Journal of Chemical Physics 90, 4744 (1989); doi: 10.1063/1.456571
View online: http://dx.doi.org/10.1063/1.456571
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/90/9?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Rotation-vibration spectra of icosahedral molecules. III. Rotation energy level spectra for halfintegral angular momentum icosahedral molecules
J. Chem. Phys. 94, 5426 (1991); 10.1063/1.460701

Rotation-vibration spectra of icosahedral molecules. I. Icosahedral symmetry analysis and fine structure
J. Chem. Phys. 90, 4727 (1989); 10.1063/1.456659

Algebraic approach to molecular rotationvibration spectra. II. Triatomic molecules
J. Chem. Phys. 79, 2515 (1983); 10.1063/1.446164

Algebraic approach to molecular rotationvibration spectra. I. Diatomic molecules
J. Chem. Phys. 77, 3046 (1982); 10.1063/1.444228

Higher Order RotationVibration Energies of Polyatomic Molecules. II
J. Chem. Phys. 27, 838 (1957); 10.1063/1.1743862

Rotation-vibration spectra of icosahedral molecules. II. Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene

David E. Weeks and William G. Harter
Los Alamos National Laboratory T-12, Los Alamos New Mexico 87545 and Department of Physics,
J. William Fulbright College of Arts and Sciences, Unversity of Arkansas, Fayetteville Arkansas 72701

(Received 4 August 1988; accepted 14 December 1988)

Abstract

The icosahedral symmetry of molecules such as buckyball, $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{-2}$, and $\mathrm{C}_{20} \mathrm{H}_{20}$, is analyzed using subgroup chain defined projection operators. The icosahedral analysis is used to determine the eigenvalues and eigenvectors of a classical spring mass model of buckyball. A spectrum of Raman and dipole active modes is given using the spring constants of benzene. Corresponding dipole active and Raman active normal modes are displayed stereographically. Several choices for springs constants are discussed and a comparison with spring mass systems of reduced symmetry is made.

I. INTRODUCTION

In his famous treatise on group theory, Hamermesch makes the statement that the "icosahedral group has no physical interest and no examples of molecules with this symmetry are known. ${ }^{1 \text { " Today we know that this is not the }}$ case and that there are at least two molecular structures with icosahedral symmetry. These are the better known borohydride anion $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{-2}$ (Ref. 2) and the recently synthesized dodecahedrane $\mathrm{C}_{20} \mathrm{H}_{20} .{ }^{3}$ Both molecules have an icosahedrally symmetry framework that forms an empty cage with no central atom. ${ }^{4}$ For $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{-2}$ the boron atoms are positioned at the vertices of an icosahedron as in Fig. 1(a), while in dodecahedrane the carbon atoms define a dodecahedral framework dual to the icosahedron as in Fig. 1(b). In each case the icosahedral structure of the molecule has been verified using x-ray diffraction. ${ }^{5.6}$ The B-B separation ($1.77 \AA$) and the $\mathrm{C}-\mathrm{C}$ separation ($1.5 \AA$) were measured and with these values the diameter of the inner cavities of $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{-2}$ and $\mathrm{C}_{20} \mathrm{H}_{20}$ are found to be $3.4 \AA$ and $4.2 \AA$, respectively.

Several theoretical studies have considered the question of encapsulating small atoms or ions such as $\mathrm{H}, \mathrm{H}^{+}, \mathrm{Li}, \mathrm{Li}^{+}$, or He in the dodecahedral cavity of $\mathrm{C}_{20} \mathrm{H}_{20}{ }^{7-9}$ These chemically exciting prospects encourage the search for larger cage molecules. One possibility that dwarfs $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{-2}$ and $\mathrm{C}_{20} \mathrm{H}_{20}$ is the proposed icosahedrally symmetric buckminsterfullerene or buckyball structure of C_{60} shown in Fig. 1 (a). ${ }^{10}$ Theoretical calculations indicate an average buckyball $\mathrm{C}-\mathrm{C}$ bond length of $1.4 \AA$ (Ref. 11) and a cavity $7 \AA$ in diameter. At present there is already experimental evidence for the encapsulation of single $\mathrm{Ca}, \mathrm{Ba}, \mathrm{Sr}$, and La atoms. ${ }^{12}$

In order to better understand the encapsulation properties of C_{60} as well as other interesting behaviors, the determination of its specific structure is imperative. At present no known samples of C_{60} in crystalline from exist thereby ruling out x-ray diffraction. However, there remains the analysis and assignment of structurally dependent spectra. In previous works ${ }^{13,14}$ we have calculated the rotational fine and superfine spectral patterns expected for all molecules with icosahedral symmetry. Experimental observation of these patterns would verify the icosahedral structure of C_{60}. How-
ever, since extremely high resolution is required to observe the rotational superfine pattern, an easier experiment would be the observation of the infrared vibrational spectrum of C_{60}. The main purpose of this paper is to present a set of synthetic vibrational eigenvalue trajectories of buckyball to be used in the assignment of such an experimental infrared spectrum. ${ }^{15}$ The general computational procedure involves icosahedral symmetry projection methods coupled with numerical diagonalization of matrices of eight dimensions or less. Several test cases are examined and found to agree with independent analytic results. In addition to eigenvalue trajectories we also present three-dimensional stereo figures of corresponding symmetry labeled normal modes. Proper symmetry labeling of normal modes is very useful in the calculation of perturbations such as rotational coriolis effects and isotope effects. Because our procedure involves the diagonalization of at most an eight-dimensonal matrix it is possible to calculate eigensolutions and make stereo animated movies of the corresponding normal modes in just a few seconds on a MacIntosh 512 K personal computer.

Previously and independently, vibrational eigenvalues of buckyball have been reported by Wu, Jelski, and George. ${ }^{16}$ Their computational procedure involved the direct diagonalization of a 180 -dimensional matrix. The reported results included values for the same test cases for which analytic results are available. Serious discrepancies between the numerical results of Ref. 16 and the analytic eigenvalues for the test cases invalidate their prediction for buckyball eigenfrequencies. The derivation and comparison of the analytic results with the test cases is given in Appendix A. Using modified neglect of diatomic overlap (MNDO) structure calculations and subsequent diagonalization of a 180-dimensional Cartesian force constant matrix, Stanton and Newton have also calculated a vibrational spectrum of buckyball. ${ }^{17}$ Their results do not include calculation of the test cases, so analytic verification of their calculations has not been examined so far. However, differences between our results and theirs are probably due to the use of different force field models.

In addition to icosahedrally symmetric structures on the molecular level, there is a more pervasive existence of icosa-

FIG. 1. Stereoscopic views of (a) the borohydride anion, $\mathrm{B}_{12} \mathrm{H}_{12}^{-2}$, (b) dodecahedrane, $\mathrm{C}_{20} \mathrm{H}_{20}$ and (c) buckyball, C_{60}.
hedral symmetry in the capsids of many virons. These include the rinoviruses involved in the common cold as well as more dangerous viruses that are causative agents in diseases such as polio, rubella and possibly even AIDS. ${ }^{18-20}$

II. ICOSAHEDRAL SYMMETRY

The full symmetry of buckyball is that of the icosahedral point group I_{h} which is the largest finite symmetry point group allowed in three-dimensional Euclidean space. By taking advantage of this symmetry it is possible to greatly reduce the amount of work needed to calculate rovibronic eigenvalues and eigenvectors. In addition, symmetry analysis neatly classifies these eigenvalues and provides a method for organizing the degenerate eigenvectors. This permits the selection of an optimal choice of basis when considering perturbations.

The 12 pentagonal and 20 hexagonal faces of buckyball correspond to the 12 vertices and 20 faces of the icosahe-

FIG. 2. Stereoscopic view of buckyball. "Double bonds" lie along the thick lines and "single bonds" lie along the thin lines. Carbon atoms are located at the vertices. An icosahedron is superimposed on the figure of buckyball to illustrate its icosahedral symmetry. Generic two, three, and fivefold symmetry axes are drawn and labeled.
dron. Smalley and co-workers have proposed that one carbon atom is located at each of the 60 vertices of this truncated icosahedron. ${ }^{10}$ Each vertex lies in a symmetry plane of reflection but not along a symmetry axis of rotation. Thus, if any one of the 60 carbon atoms is isotopically different from the others the symmetry will be broken from I_{h} to simple bilateral reflection C_{v}. Carbon bonds are formed along the three edges that meet at each vertex. They are resonant bonds, and presumably those along the pentagonal edges are more like a single bond and those along an edge bordered by two hexagons are more like a double bond as illustrated in Fig. 2. In this fashion all valencies are satisfied while forming a highly aromatic and relatively stable spheroidal shell. ${ }^{21}$

The 120-element icosahedral point group of buckyball is the cross product of the 60 -element icosahedral rotation group I and the inversion group C_{I}. The inversion group contains only the unit operator and inversion operator, both of which commute with the 60 rotations in group I. Each of the lab-fixed icosahedral rotation operators rotates an icosahedron clockwise by an angle ω about a twofold, threefold, or fivefold symmetry axis. This rotation angle ω divides the icosahedral rotations into five classes. These clasess are labeled $C_{1}, C_{R}, C_{R^{2}}, C_{r}$, and C_{i} and contain, 1,12,12,20, and 15 operators, respectively. The class C_{1} contains only the unit operator with a rotation angle $\omega_{1}=0^{\circ}$. The classes C_{R} and $C_{R^{2}}$ contain all rotations about fivefold symmetry axes with rotation angles $\omega_{R}=72^{\circ}$ and $\omega_{R^{2}}=144^{\circ}$. The class C_{r} contains all threefold symmetric rotations with $\omega_{r}=120^{\circ}$, and the class C_{i} contains all twofold symmetry rotations with $\omega_{i}=180^{\circ}$. All group operators in each class, and their symmetry axes, are shown in Fig. 3.

The elements of the full icosahedral group I_{h} are generated by first operating on all the rotations of I with the unit operator of C_{I}, replicating the class structure of the group I. Then, all the rotations of the group I are multiplied with the inversion operator of C_{I}, creating 60 new improper rotations and five new classes. This yields a total of 120 operators and 10 classes in the full icosahedral group I_{h}. Group operators and class structure of I_{h} are given in Fig. 4, and an icosahedral group multiplication table for rotations only is given in

FIG. 3. Icosahedral rotation operators and symmetry axes of the classes (a) C_{R}, (b) C_{R}, (c) C_{r}, and (d) C_{i}.

Icosahedral (I) Class				Icosahedral $T_{\text {L }}$		
$\mathrm{C}_{1}=1$		Structure		$\mathrm{C}_{1}=I \quad$ Structure		
C_{R}	$\mathrm{C}_{\mathrm{R}^{2}}$	C_{r}	C_{i}			
$\omega=72$	$\omega=144$	$\omega=120$	$\omega=180$	C_{ρ} $\mathrm{C}^{2}{ }^{2}$	C_{η}	C_{σ}
R_{1}	R_{1}^{2}	r_{1}	i_{1}	$I \mathrm{R}_{1}=\rho_{1} \quad I \quad \mathrm{R}_{1}^{2}=\rho_{1}^{2}$	$I \mathrm{r}_{1}=\eta_{1}$	$I \mathrm{i}_{1}=\sigma_{1}$
R_{2}	R_{2}^{2}	r_{2}	i_{2}	$I \mathrm{R}_{2}=\rho_{2} \quad I \quad \mathrm{R}_{2}^{2}=\rho_{2}^{2}$	$I \mathrm{r}_{2}=\eta_{2}$	$I \mathrm{i}_{2}=\sigma_{2}$
R_{3}	R_{3}^{2}	r_{3}	i_{3}	$I \mathrm{R}_{3}=\rho_{3} \quad I \quad \mathrm{R}_{3}^{2}=\rho_{3}^{2}$	$I \mathrm{r}_{3}=\eta_{3}$	$I \mathrm{i}_{3}=\sigma_{3}$
R_{4}	R_{4}^{2}	r_{4}	i_{4}	$I \mathrm{R}_{4}=\rho_{4} \quad I \quad \mathrm{R}_{4}^{2}=\rho_{4}^{2}$	$I \mathrm{r}_{4}=\eta_{4}$	$I \mathrm{i}_{4}=\sigma_{4}$
R_{5}	R_{5}^{2}	r_{5}	i_{5}	$I \mathrm{R}_{5}=\rho_{5} \quad I \quad \mathrm{R}_{5}^{2}=\rho_{5}^{2}$	$I \mathrm{r}_{5}=\eta_{5}$	$I \mathrm{i}_{5}=\sigma_{5}$
R_{6}	R_{6}^{2}	r_{6}	i_{6}	$I \mathrm{R}_{6}=\rho_{6} \quad I \quad \mathrm{R}_{6}^{2}=\rho_{6}^{2}$	$I \mathrm{r}_{6}=\eta_{6}$	$I \mathrm{i}_{6}=\sigma_{6}$
R_{1}^{4}	R_{1}^{3}	r_{7}	i_{7}	$I \mathrm{R}_{1}^{4}=\rho_{1}^{4} \quad I \quad \mathrm{R}_{1}^{3}=\rho_{1}^{3}$	$I \mathrm{r}_{7}=\eta_{7}$	$I \mathrm{i}_{7}=\sigma_{7}$
R_{2}^{4}	$\mathrm{R}_{2}{ }^{3}$	r_{8}	i_{8}	$I \mathrm{R}_{2}^{4}=\rho_{2}^{4} \quad I \quad \mathrm{R}_{2}^{3}=\rho_{2}^{3}$	$I \mathrm{r}_{8}=\eta_{8}$	$I \mathrm{i}_{8}=\sigma_{8}$
R_{3}^{4}	R_{3}^{3}	r_{9}	i_{9}	$I \mathrm{R}_{3}^{4}=\rho_{3}^{4} \quad I \quad \mathrm{R}_{3}^{3}=\rho_{3}^{3}$	$I \mathrm{r}_{9}=\eta_{9}$	$I \mathrm{i}_{9}=\sigma_{9}$
R_{4}^{4}	R_{4}^{3}	r_{10}	i_{10}	$I \mathrm{R}_{4}^{4}=\rho_{4}^{4} \quad I \quad \mathrm{R}_{4}^{3}=\rho_{4}^{3}$	$I \mathrm{r}_{10}=\eta_{10}$	$I \mathrm{i}_{10}=\sigma_{10}$
R_{5}^{4}	R_{5}^{3}	r_{1}^{2}	i_{11}	$I \mathrm{R}_{5}^{4}=\rho_{5}^{4} \quad I \quad \mathrm{R}_{5}^{3}=\rho_{5}^{3}$	$I \mathrm{r}_{1}^{2}=\eta_{1}^{2}$	$I \mathrm{i}_{11}=\sigma_{11}$
R_{6}^{4}	$\mathrm{R}_{6}{ }^{3}$	r_{2}^{2}	i_{12}	$I \mathrm{R}_{6}^{4}=\rho_{6}^{4} \quad I \quad \mathrm{R}_{6}^{3}=\rho_{6}^{3}$	$I \mathrm{r}_{2}^{2}=\eta_{2}^{2}$	$I \mathrm{i}_{12}=\sigma_{12}$
		r_{3}^{2}	i_{13}	I_{h} Class Operators	$I \mathrm{r}_{3}^{2}=\eta_{3}^{2}$	$I \mathrm{i}_{13}=\sigma_{13}$
		r_{4}^{2}	i_{14}	$\mathrm{cR}=\sum^{6} \mathrm{R}_{\mathrm{n}}+\mathrm{R}^{4} \quad \mathrm{o}^{\mathrm{P}}=I \mathrm{cR}$	$I \mathrm{r}_{4}^{2}=\eta_{4}^{2}$	$I \mathrm{i}_{14}=\sigma_{14}$
		r_{5}^{2}	i_{15}	$\mathrm{cR}=\sum \mathrm{R}_{\mathrm{n}}+\mathrm{R}_{\mathrm{n}} \quad \rho^{\prime}=/ \mathrm{cR}$	$I \mathrm{r}_{5}^{2}=\eta_{5}^{2}$	$I \mathrm{i}_{15}=\sigma_{15}$
		r_{6}^{2}		$\mathrm{cR}{ }^{2}=\sum^{6} \mathrm{R}_{\mathrm{n}}^{2}+\mathrm{R}_{\mathrm{n}}^{3} \quad \mathrm{c} \rho^{2}=I \mathrm{cR} \mathrm{R}^{2}$	$I \mathrm{r}_{6}^{2}=\eta_{6}^{2}$	
		$\mathrm{r}_{7}{ }^{2}$		$L_{n=1}^{1}$	$I \mathrm{r}_{7}^{2}=\eta_{7}^{2}$	
		r_{8}^{2}		$\mathrm{cr}=\sum_{\mathrm{n}=1}^{10} \mathrm{r}_{\mathrm{n}}+\mathrm{r}_{\mathrm{n}}^{2} \quad \mathrm{c} \mathrm{\eta}=I \mathrm{cr}$	$I \mathrm{r}_{8}^{2}=\eta_{8}^{2}$	
		r_{9}^{2}		$\begin{aligned} & \mathrm{n}=1 \\ & 15 \end{aligned}$	$I \mathrm{r}_{9}^{2}=\eta_{9}^{2}$	
		r_{10}^{2}		$\mathrm{ci}=\sum_{\mathrm{n}=1} \mathrm{i}_{\mathrm{n}} \quad \quad \mathrm{c} \sigma_{=I} \mathrm{ci}$	$I \mathrm{r}_{10}^{2}=\eta_{10}^{2}$	

FIG. 4. Class structure of the full icosahedral group I_{h}. The relation between proper and improper rotations of I_{h} is given in the four right-hand columns. Class structure of the icosahedral rotation group I is shown in the highlighted box and corresponds to the rotational in Fig. 3. Class operators are sums over corresponding class elements.

Fig. 5. Products of the improper rotations of I_{h} may be evaluated by first expressing the operators in terms of icosahedral rotations and inversion using Fig. 4. Then, by using the commutivity of the inversion operator and icosahedral rotations, the resulting product of rotations may be evaluated using Fig. 5. For example,

$$
\rho_{3}^{2} \sigma_{4}=I R_{3}^{2} I i_{4}=I I R_{3}^{2} i_{4}=R_{6}^{4},
$$

where the inversion group product $I I=1$ was used. Characters and irreducible representations of the icosahedral group are given in Appendix B.

III. THE FORCE CONSTANT MATRIX

The vibrational eigenvalues and normal modes of buckyball are calculated by applying Newton's 2nd law to a classical spring-mass model. Icosahedral symmetry analysis is used to diagonalize the resulting force constant matrix. In the model, carbon bonds are treated in the harmonic limit as springs that obey Hookes' law, and carbon nuclei are treated as point masses. The position of each mass is determined by one of 60 symmetrically placed orthogonal coordinate triads whose origins are located at the vertices of the buckyball structure. This symmetrically defined coordinate system is

	F_{1}	F_{2}	f_{3}	R_{4}	F_{5}	R_{6}		Ff							F_{5}	$\mathrm{R}_{4}^{2} \mathrm{R}_{\frac{2}{2}}$	$\mathrm{P}_{5}^{2} \mathrm{R}_{6}^{2}$	${ }^{2}$	$\mathrm{R}_{2} \mathrm{R}_{3}$	$\mathrm{R}_{3}^{3} \mathrm{P}_{4}^{3}$		R_{8}^{3}		${ }_{2} \mathrm{r}_{3}$		
R，	R_{1}^{2}	7	r_{6}^{2}	R_{3}	r_{1}^{2}	A_{5}	${ }^{1} 1$	A	F	r_{2}^{2}	R_{2}		R_{1}^{3}		1	${ }^{2}$	${ }_{4}{ }^{1}$	R_{4}^{6}	$\mathrm{r}_{8} \mathrm{r}$	${ }_{10}$			$\mathrm{R}_{4} \mathrm{R}_{8}$			
P_{2}	${ }^{2}$	F_{2}^{2}	${ }^{2}$	r_{8}^{2}	R，	F_{3}	R_{4}		F ${ }_{5}^{\text {¢ }}$	F_{6}^{6}	r_{5}^{2}	${ }_{4}$		F_{2}^{3}	i_{2}	$\mathrm{i}_{4} \mathrm{r}^{2}$	$\mathrm{r}_{1}^{2} \mathrm{r}_{10}^{2}$	20	$\mathrm{R}_{2}^{4} \mathrm{r}_{6}$	${ }_{6} \mathrm{r}_{6}$	。		${ }_{4}^{2} \mathrm{r}_{4}^{2}$	${ }_{6}^{2} R_{6}$	R_{5}	
B_{3}	r_{7}^{2}	r_{8}^{2}	F_{5}^{2}	r^{2}	r_{6}^{2}	${ }^{2}$	R_{6}	P_{5}		R，	R_{4}	R_{2}			R_{3}^{3}	$\mathrm{i}_{0} \mathrm{i}^{\circ}$	$\mathrm{i}_{6} \mathrm{i}_{10}$	$10 \cdot 3$	${ }_{5} \mathrm{~F}_{5}$	$\mathrm{F}_{3} \mathrm{r}_{2}^{2}$	${ }_{2}^{2} \mathrm{r} 1$	$\mathrm{r}_{4}^{2} \mathrm{r}$	$\mathrm{r}_{2} \mathrm{~F}_{\mathrm{E}}^{2}$	${ }^{2}$	${ }_{4} \mathrm{R}_{5}^{2}$	
P_{4}	R_{2}	I ${ }_{5}^{2}$	${ }^{\text {d }}$	${ }^{2} \mathrm{R}_{4}^{2}$	R_{3}	${ }^{2}$	${ }^{\text {r }}$	f_{8}	F_{1}		${ }_{1}$	${ }_{1} \mathrm{R}_{5}^{4}$			${ }_{3}$	$\mathrm{R}_{4}^{3} \mathrm{r}_{6}^{2}$	r_{6}^{2}	${ }_{5} \mathrm{i}_{3}$		${ }_{7}{ }_{4}{ }_{4}^{4}$	${ }_{4}{ }^{\text {i }}{ }^{\text {i }}$			${ }_{-1} \mathrm{P}_{6}^{2}$		
${ }^{\text {A }}$	r_{6}^{2}	R_{3}	${ }^{2}$	${ }_{0} \mathrm{~F}_{6}$	R_{3}^{2}	${ }_{4}$	${ }_{2}$	＇s	${ }_{4}$			R_{1}			i_{5}	$\mathrm{r}_{2} \mathrm{~F}_{5}^{2}$	P_{5}	${ }_{14}{ }^{\text {\％}}$		，	R_{5}^{4}	${ }_{3}^{2}$	$\mathrm{R}_{4} \mathrm{I}_{3}$	${ }_{3}{ }_{2}{ }_{2}$		
f_{6}	R_{3}	R_{4}	r_{8}^{2}	${ }^{2} \mathrm{r}_{2}$	r^{2}	R_{8}^{2}	r_{3}	${ }^{1} \cdot$	部	R_{5}	R_{4}^{4}	1	${ }^{2}$	${ }_{5}$	4	12	P_{8}^{3}	${ }^{3}$	－	－	：	R_{6}	R_{1}^{3}			
$\mathrm{R}_{1}^{\text {c }}$		F ${ }_{6}^{6}$	F_{4}	r_{1}	R_{8}	${ }_{2}$	R_{1}	＇3	${ }_{7}{ }^{\text {r }}$	F ${ }_{2}^{6}$		F_{5}^{4}	R，	－	${ }^{2}{ }_{8}^{2}$	i_{11}	${ }_{10}$,	， F_{1}^{2}	${ }^{1}$	$\mathrm{i}_{3} \mathrm{r}$	${ }_{5} \mathrm{i}^{1}$	9			P_{6}^{2}	
F	R_{5}	1	R_{6}	${ }^{1}$	${ }_{4}$	${ }^{3}$	${ }_{7}$	豤	－	${ }_{5}$	F_{3}^{4}	${ }_{4}{ }_{4}^{4}$		2	${ }_{\text {rge }}{ }^{2}$	${ }^{1}$		$13{ }^{1} 2$	${ }_{2}^{2}$				${ }_{1}^{2}$	P_{1}^{3}		
R ${ }_{3}^{4}$	R_{4}^{4}	${ }_{6}$	1	F_{5}^{4}	${ }_{2}^{6}$	F_{1}	${ }^{5}$	${ }^{7} 7$	F_{3}^{3}	${ }^{8}$	${ }^{10}$	${ }_{10}{ }^{\circ} \mathrm{P}$	r_{1}^{2}	${ }^{2} \mathrm{r}_{3}^{2}$	R_{3}	$\mathrm{r}_{5}^{2} \mathrm{r}^{2}$	$\mathrm{r}_{4} \mathrm{r}_{2}$	${ }_{2}{ }^{\text {i }}$	7	寿	＇ 10	＇ 9	${ }_{\text {尔 }}$	R_{1}		
P_{4}^{4}	${ }^{2}$	R，	f_{5}		r_{5}	R R_{2}	F_{2}^{4}	r_{8}	${ }^{1}$	R_{4}^{3}	R			2	${ }^{2} 2$	${ }^{2}{ }_{4}$	${ }^{1} 15{ }^{\text {r }}$	${ }^{3}{ }^{1}$	3	${ }_{4}^{2}$	${ }_{4}^{2}{ }_{4} r_{4}^{2}$		F	7	$7{ }_{7}{ }_{2}^{3}$	
$\mathrm{F}_{\text {fich }}$	R_{6}^{4}	r_{4}^{2}	F_{2}	r^{2}		A_{4}	，	A	r_{6}	${ }^{\text {rfic }}$	R_{5}^{3}		${ }_{10}{ }^{1}{ }_{2}^{2}$	${ }^{1}$	${ }^{2}{ }^{2}$	R	$\mathrm{P}_{5} \mathrm{r}_{5}^{2}$	${ }_{2}$	${ }_{3}$	$2{ }_{2}{ }_{8}$	F_{5}^{2}	is	R_{2}	${ }_{4}$	${ }_{2} \mathrm{R}_{8}$	
${ }_{6}^{4}$	${ }_{2}^{2}$	${ }^{2}$	A	F_{2}	R_{4}^{4}	1	R_{5}^{4}	${ }^{\text {P }}$		9	${ }_{4}^{2}$	${ }_{4}^{2}{ }_{6}^{3}$			r_{6}^{2}	${ }_{8}{ }^{8}$	$\mathrm{r}_{5} \mathrm{R}_{8}$	$\mathrm{R}_{8} \mathrm{r}$,	$\mathrm{i}_{7}{ }^{\text {i }}$			P_{6}^{2}	$\mathrm{r}_{5}^{2} \mathrm{R}_{4}$	$\mathrm{R}_{4} \mathrm{~F}_{4}$	f	
R_{1}^{2}	F_{1}^{3}	i_{2}		r_{6}^{2}		，	R_{1}	r_{2}^{2}	r_{3}^{2}		${ }^{2}$	？	F_{1}^{4}	R_{3}^{3}	R_{5}	$\mathrm{r}_{10}^{2} \mathrm{R}^{2}$	$\mathrm{R}_{4}^{2} \mathrm{r}_{5}$	5	T	$\mathrm{r}_{4}^{2} \mathrm{R}_{6}^{2}$		${ }_{2}$	$\mathrm{F}_{3} \mathrm{R}_{5}$	$\mathrm{P}_{3} \mathrm{P}_{4}^{4}$	4	
R_{2}^{2}		${ }^{\text {P2 }}$		i_{3}	r_{3}^{2}	2	r_{8}^{2}	F_{2}	，	${ }_{4}^{2}$			R_{6}^{2}	${ }_{\text {F }}^{2}$	R_{1}^{3}	$\mathrm{F}_{3}^{2} \mathrm{r}$	$\mathrm{r}_{2}^{2} \mathrm{r}_{6}^{2}$	${ }_{6}^{2}{ }_{6}^{2} \mathrm{r}_{9}^{2}$	${ }^{1} \mathrm{r}$	${ }_{1}{ }^{1} 10$	${ }_{4}^{3}$	R_{5}^{2}	R	$\mathrm{R}_{3}^{2} \mathrm{R}_{3}$	${ }_{3} \mathrm{R}_{1}$	
R_{3}^{2}	i_{3}	14	F_{5}^{3}	${ }^{5}$		－	r_{10}^{2}		P_{3}	${ }_{2}{ }_{7}^{2}$	${ }_{4}^{2}$	${ }_{9}^{2}$	R_{2}	${ }_{4}{ }_{4}^{3}$	${ }_{5}$	$\mathrm{R}_{5}^{3} \mathrm{R}$	$\mathrm{R}_{1}^{3} \mathrm{R}_{5}^{3}$	${ }_{5}^{3}$	${ }_{1}^{2}$			$\stackrel{2}{5}$	R_{8}^{2}			
R_{4}^{2}	\％${ }_{5}$			${ }_{4}^{3}$	r_{8}^{2}		is	r_{9}^{2}	${ }^{\prime}$	R_{4}			r_{4}^{2}	${ }^{2}$	${ }_{2}^{3}$	${ }_{4}$	R_{3}	${ }_{5}{ }^{3} \mathrm{P}_{6}^{3}$		${ }^{3}$	R_{1}^{2}	${ }_{5}$	r_{2}^{2}			
R_{5}^{2}		r^{2}		${ }^{4}$	R_{5}^{3}		${ }_{5}$	${ }^{\prime}$	， r_{1}^{2}	i_{6}	R_{5}	${ }_{5} \mathrm{r}_{6}^{2}$	${ }^{\text {c }}$	，	R_{6}^{2}	${ }^{3}$	$\mathrm{R}_{5}^{2} \mathrm{R}_{2}^{2}$	${ }_{2}^{2} \mathrm{r}_{8}$	$\mathrm{R}_{4}^{2} \mathrm{r}$	$\mathrm{r}_{2}^{2} \mathrm{R}_{1}^{3}$	${ }^{3}$	r_{7}^{2}	F_{2}	${ }_{\frac{2}{3} \mathrm{i}_{8}}$		
F_{6}^{2}	r_{8}^{2}	${ }^{\circ}$	$\mathrm{i}^{\text {，}}$		i_{5}	F_{8}	${ }^{5}$		$\mathrm{O}_{1}{ }^{\text {a }}$	r_{10}^{2}	${ }_{10}{ }^{1}{ }^{3}$	${ }_{3} \mathrm{P}_{6}$	r_{6}^{2}	${ }^{2} \mathrm{r}_{1}$	R_{4}^{3}	$\mathrm{F}_{1}^{2} \mathrm{R}_{3}$	$\mathrm{R}_{3}^{3} \mathrm{R}_{6}^{4}$	${ }^{4}{ }_{8}^{4}$	$\mathrm{R}_{5}^{3} \mathrm{~S}$	5	7		7			
R_{1}^{3}	P_{1}^{4}	r_{6}	r_{1}		${ }_{2}$	${ }_{12}$	${ }_{12} \mathrm{R}_{1}^{2}$			${ }^{5}$	i_{2}	${ }_{2} \mathrm{r}_{7}$			r_{5}^{2}	$\mathrm{R}_{5}^{2} \mathrm{r}$	$r_{9}^{2} \mathrm{R}_{4}^{3}$	$\mathrm{R}_{4}^{3} \mathrm{R}_{1}$	R_{8}^{3}	院	R_{3}^{2}	8	$\mathrm{r}_{6}^{2} \mathrm{ra}_{1}^{2}$	${ }_{1}^{2}$		
R_{2}	r_{4}	层	r_{3}	＇		1.	${ }^{1}$	号 ${ }_{2}^{2}$			${ }_{5}{ }^{1} 8$			${ }^{2} 1$	r_{2}	R	$\mathrm{R}_{6}^{3} \mathrm{R}_{1}^{2}$	$R_{1}^{2} \mathrm{R}_{3}^{2}$	$\mathrm{R}_{2} \mathrm{R}_{2}$	$\mathrm{R}_{4}^{2} \mathrm{R}_{5}^{3}$	${ }_{5}^{3}$	r_{1}^{2}	R_{3}^{2}			
R_{3}^{3}	r_{8}	\％	F ${ }_{6}^{6}$	F_{10}	${ }_{0}{ }^{\prime}$	r_{6}	${ }^{\text {i }}$	${ }^{\prime} 2$	R_{3}^{2}	3	5	5		2	1	$\mathrm{r}_{4}^{2} \mathrm{r}$	${ }^{2}$	$1{ }^{+}$	$\mathrm{R}_{1}^{2} \mathrm{R}_{3}$	$\mathrm{R}_{3} \mathrm{~F}_{2}^{2}$	${ }_{2}^{2} \mathrm{R}_{6}^{2}$	${ }_{4}^{2}$			${ }_{6} \mathrm{P}_{1}{ }^{\text {a }}$	
R_{4}^{3}		${ }^{2}$	${ }_{5}$	${ }_{5} \mathrm{R}_{4}^{4}$	i_{8}	8		${ }^{1} 4$		R_{4}^{2}	${ }_{2}^{2}$		${ }_{5}$	r_{6}^{2}	${ }^{1} 4$	${ }^{2}$	${ }_{2}{ }_{2}^{2} \mathrm{r}_{7}$	7	$\mathrm{R}_{5}^{2} \mathrm{R}^{2}$	${ }_{\text {R }}^{2} \mathrm{R}$	${ }_{4} \mathrm{r}^{2}{ }^{2}$	R_{1}^{3}	${ }_{\text {R }}^{6}$			
F_{5}^{3}	r，	，			R_{5}^{4}	${ }_{5}^{2}$		${ }^{1}$		6	R_{5}^{2}	${ }^{2}$		R_{6}^{2}	r_{3}^{2}	${ }^{\text {a }}$	r_{8}^{2}	${ }_{8}^{2} \mathrm{R}_{4}^{3}$	${ }_{2}$		R_{5}	R_{3}^{2}				
R_{6}^{3}			${ }_{2}^{2}$	2 ${ }^{2}{ }_{3}^{2}$	${ }_{9}$	R_{6}^{4}	${ }_{6}$						R_{4}^{2}	R_{1}^{3}	${ }^{1}$	$\mathrm{r}_{7}^{2} \mathrm{r}_{8}$	${ }^{\text {B }}$		$\mathrm{r}_{6} \mathrm{R}_{\text {R }}$		${ }_{\text {f }}$	f_{6}	F_{2}^{2}	${ }_{5}^{4}$		F_{5}
	R_{5}^{6}	R_{5}^{2}	${ }_{5}^{2}$	${ }^{3}$	R_{4}	R_{4}^{2}		${ }^{2}$	R_{1}^{3}	R_{1}^{6}	＇：	。	${ }_{6}^{6}$		${ }_{2}^{2}$	$\mathrm{r}_{5} \mathrm{~S}_{3}$	F_{3}	${ }^{2}$	R_{6}^{2}		${ }_{2}{ }_{2} r_{6}^{2}$	R_{5}^{3}	${ }_{4}$	${ }_{4}^{3}$		R_{6}
${ }_{2}$	R_{4}	${ }^{\prime}$	${ }_{4}^{2}$	Cl_{12}	r_{6}^{2}	is．		R_{8}^{2}	${ }^{5}$	R_{8}	$\mathrm{R}_{\text {d }}$	${ }_{1}^{1}$	F_{2}	${ }_{5}$	i_{8}	$\mathrm{r}_{1}^{2} \mathrm{R}_{5}^{2}$	$\mathrm{R}_{5}^{2} \mathrm{r}$ ，	$\overbrace{1}{ }^{2}$		$\mathrm{R}_{2}^{3} \mathrm{R}_{5}$	${ }_{5}$	有	P^{2} ！${ }^{\text {2 }}$	${ }^{\text {B }}$		
3	R_{6}	F_{1}	${ }_{2}$	R_{1}^{3}	R_{6}^{2}	i， 3		${ }_{1} 1$	R_{2}^{3}	4	${ }^{1}$	， F_{2}^{4}	F_{3}	R ${ }_{5}^{4}$	R_{4}^{2}	$\mathrm{i}_{6} \mathrm{i}_{5}$	$\mathrm{i}_{5} \mathrm{r}_{2}^{2}$	${ }_{2}^{2} \mathrm{r}_{1}^{2}$	${ }_{4}$	${ }_{5}^{2}$	${ }_{5}^{2} \mathrm{~F}_{3}^{3}$	R_{4}^{4}	${ }_{2}{ }_{1} \mathrm{R}_{1}^{2}$	3	${ }_{3}^{2} \mathrm{R}_{6}^{3}$	
	r_{102}^{20}	P_{8}	P_{8}^{2}	${ }^{\text {r }}$					$5{ }_{5}$	码	F_{2}		R_{5}^{2}	${ }_{4}$		R_{1}^{3}	${ }_{3}^{2}$	${ }_{3}^{2}$	${ }^{2}{ }_{5}^{2}$ R		F_{5}	F_{1}				R_{5}
${ }_{5}$	R_{5}^{2}	P_{5}		${ }^{\text {F }}$		R_{2}^{3}	r_{8}	${ }^{\text {i }}$	P_{4}^{3}	${ }^{11}$	R_{4}^{4}	r_{1}^{2}		R_{3}	R_{8}^{2}	$\mathrm{F}_{4} \mathrm{r}_{2}$	r_{4}^{2}	R_{3}^{3}			R_{6}^{6}	R_{1}^{2}	${ }_{4} \mathrm{r}$,			
6	P_{3}^{4}		F	R_{3}	R_{4}^{6}	${ }^{1}$		R_{1}^{3}	i_{2}	${ }_{7}$		${ }^{\text {P }}$	R_{4}	，	R_{2}	${ }_{15}{ }^{1}$	$\mathrm{P}_{8} \mathrm{R}_{4}^{2}$	$\mathrm{R}_{4} \mathrm{~F}_{1}^{2}$			${ }_{2}^{3}{ }_{2}^{2}$	${ }^{1}{ }^{\text {d }}$	${ }_{5}$			r_{3}
7	侲	有	R ${ }_{\text {c }}^{6}$	．	r_{3}	R_{1}^{3}		，	${ }^{1} 3$	F_{2}^{3}	${ }_{3}$		R_{5}	R_{6}^{6}	R_{4}	$\mathrm{P}_{5}^{3} \mathrm{R}$	号		${ }^{2}$			${ }_{4}{ }_{4}^{3}$				
	r_{5}	${ }_{4}^{6}$	F	${ }_{5}^{4}$	${ }_{2}$	＇，	P_{3}^{3}		is		＇		P_{5}^{2}	R，	R_{8}	辰	R_{1}	${ }_{1}^{3}$			${ }_{5}^{2}{ }_{5}{ }^{3}$					
${ }^{\text {r }}$	${ }_{4}^{3}$	r_{2}^{2}	F_{4}^{4}	R_{6}^{6}	${ }_{8}$	F_{3}	${ }^{5} 10$	R_{3}^{3}	i_{5}		P_{6}^{3}	${ }^{\prime}$		R_{1}^{2}	R_{5}	$\mathrm{F}_{2} \mathrm{R}_{2}$	$\mathrm{R}_{2}^{3} \mathrm{R}_{1}^{4}$	${ }_{1}^{4}{ }_{5}^{4}$	$\mathrm{i}_{2} \mathrm{r}^{2}$				${ }_{4}^{2}{ }_{4}$			
	18	R_{6}^{2}	F_{6}^{6}	r_{4}^{2}	R_{5}	F_{5}	${ }_{5} \mathrm{R}_{5}^{3}$	${ }^{6}$	i，	R_{3}^{3}		$10^{1} 5$	${ }_{4}^{3}$		R_{2}	版	$\mathrm{Fef}_{\frac{6}{2}} \mathrm{P}_{4}$	${ }_{4}$	R		${ }_{3} \mathrm{r}_{4}$	r_{9}^{2}				${ }^{1}$
	5	${ }^{2}$	P_{5}^{2}	F_{5}		${ }^{5}$	P_{4}^{6}	R_{4}^{3}	r_{2}^{2}		R_{1}		${ }^{2} \cdot$	R_{5}^{2}		$\mathrm{R}_{6} \mathrm{r}^{2}$	${ }_{5}^{2}{ }_{5}^{2} \mathrm{~F}_{2}^{3}$	${ }_{2}{ }^{\text {P }}$			F_{2}	i_{2}		㙖		R_{4}^{2}
		2	2	F_{1}	${ }_{4}$	R_{4}^{4}	R_{6}^{6}	${ }^{\prime}$	P	ig	${ }_{3}^{2}$				$\mathrm{R}_{\text {R }}$	B_{3}	R_{2}^{6}	$\mathrm{R}_{\text {f }} \mathrm{R}_{5}^{6}$	${ }_{5}{ }_{5}$		F_{2}^{2}	r_{3}	F_{2}			
${ }^{2}$	13	7	F_{1}	r_{7}^{2}	r_{2}^{2}	R_{1}	R_{2}	F ${ }_{6}^{4}$	${ }_{4}^{2}$	P_{6}^{2}	F_{2}^{2}		14	${ }^{1} 1$	6	$\mathrm{F}_{5}^{2} \mathrm{R}_{4}$	$R_{4}^{3} R_{5}$	$\mathrm{R}_{5} \mathrm{R}_{4}$	F_{5}	${ }_{5}$	${ }_{5} \mathrm{i}_{8}$	$\mathrm{r}_{4}{ }^{\text {r }}$	${ }_{8}^{2} \mathrm{R}_{5}$	B_{3}	${ }_{4}^{4}$	
r_{4}	R_{5}^{3}		${ }^{2}$	R_{2}^{2}	R_{6}^{6}	F_{2}	$\mathrm{F}_{2} \mathrm{r}_{5}^{2}$	${ }_{\text {F }}^{\text {F }}$	${ }_{5}$		${ }_{1} 15$			${ }^{1}$	R_{1}^{2}	$\mathrm{i}_{3} \mathrm{R}_{1}$	$\mathrm{R}_{4} \mathrm{~F}_{3}$	${ }_{3} \mathrm{R}_{4}^{2}$	$\mathrm{F}_{6} \mathrm{i}$	${ }_{6}{ }_{6} \mathrm{R}_{3}$	${ }_{3}^{3} \mathrm{r}_{5}$		${ }_{8} \mathrm{r}^{2}$	${ }_{4}$		${ }^{\text {F }}$
， r_{5}^{2}	2		F_{2}^{2}		F_{2}	r^{2}	${ }_{8}^{2} \mathrm{R}_{4}^{2}$	R_{4}	r	${ }_{5}$	＇11		${ }_{5}^{3}$	r_{4}	$i^{1} 7$	$\mathrm{r}_{8} \mathrm{R}^{\text {d }}$	$\mathrm{R}_{1} \mathrm{~F}_{5}^{2}$	${ }_{5}^{2}$	R_{6}		${ }_{3} \mathrm{r}_{1}^{2}$	i_{1} ， F	R_{4}^{3}		${ }_{9}^{2} \mathrm{R}_{3}$	
${ }^{2}$	i_{2}	R_{3}^{2}	i，			R_{5}^{2}	P_{5}	$r_{\text {t }}{ }^{2}$	F_{1}	P_{1}	B_{3}					F_{6}^{2} T	$\mathrm{I}_{4} i^{\prime \prime}$	${ }_{15}{ }^{\text {fa }}$	${ }_{4}^{3}$	㐌 ${ }^{\text {＇}}$	${ }_{13} \mathrm{~B}_{4}$	R_{2}^{2}	P_{8}			
r^{2}	，	3	2	R_{3}^{2}	R_{1}^{2}		F_{3}	R_{1}	F_{2}	r_{3}^{2}	${ }_{8}^{2}$	${ }_{8}^{2}$		${ }^{\text {r }}$	${ }^{\text {r }}$	$\mathrm{i}_{5} \mathrm{i}$	${ }_{12} 2_{5}^{2}$	${ }_{5}^{2} \mathrm{P}_{8}$	$\mathrm{R}_{4}^{4} \mathrm{~F}$	${ }_{5}^{6}$ R ${ }_{6}^{3}$	${ }_{6}{ }_{6}{ }^{2} R_{4}^{2}$		${ }^{2}$	${ }_{3}$		r^{2}
r^{2}	$\mathrm{R}_{2}^{\mathrm{f}}$		${ }^{1} 3$	14	r_{7}^{2}	F_{5}^{2}		R_{3}	R_{4}	F_{2}	R_{4}^{2}	${ }_{4}^{2} \mathrm{r}_{5}^{2}$		${ }_{4}{ }_{5}$	17	${ }_{9}{ }_{9}$	$\mathrm{P}_{1}^{2}{ }^{\text {i，}}$	$1 \mathrm{P}_{5}^{2}$	R_{5}	${ }_{6}^{6}$ F ${ }_{6}^{6}$		${ }^{2}{ }_{5}^{3}$	i，			
	${ }_{1}^{2}$	R_{2}^{2}		is	R_{3}^{2}	＇s	R_{6}^{2}		${ }_{6} \mathrm{~F}_{6}$	R_{3}	${ }_{2}$	${ }_{2} \mathrm{R}_{4}$	${ }_{4} \mathrm{~F}_{2}^{2}$		${ }_{8}$	r_{2}^{2}	r 10	10	$\mathrm{R}_{5}^{2} \mathrm{~F}_{4}$	$\mathrm{R}_{2}^{6} \mathrm{R}_{1}$	$\mathrm{R}_{1} \mathrm{R}_{1}^{3}$	R_{5}^{\prime}				
	R_{3}^{2}	${ }_{9}^{2}$	i_{5}	R_{6}^{2}	${ }^{1}$		${ }^{4}$	R_{5}^{2}	R_{5}	r_{6}^{2}	P_{8}	F_{3}	${ }^{\text {i }}$	R_{4}^{2}	＇	${ }^{1}, 3{ }^{\text {r }}$	r_{4}^{2}	${ }_{4}^{2}{ }_{4} \mathrm{P}_{2}^{2}$	${ }^{\text {in }}$	$\mathrm{P}_{4}^{4} \mathrm{R}_{1}^{2}$	$\mathrm{R}_{1}^{2} \mathrm{R}_{4}^{6}$	P_{2}	${ }^{1}$			
1.	P_{3}^{3}			1	${ }^{1} \mathrm{f}_{6}$	R_{5}^{3}	${ }_{5} \mathrm{R}_{5}^{2}$	i_{6}	${ }_{6}^{2}$	i_{2}		${ }_{60}{ }^{2}$		9	${ }_{\text {f }}$	${ }^{4}$	$\mathrm{R}_{4}^{6} \mathrm{r}_{5}^{2}$	${ }_{5}{ }_{5}{ }_{5}{ }^{\text {c }}$	A	$\mathrm{R}_{1} \mathrm{i}_{7}$	${ }_{7} \mathrm{R}_{6}$					
i_{2}	r_{7}	R_{5}^{3}	r_{6}	i，	R_{1}		2	R_{1}^{2}	${ }^{2}$	i，	R_{3}^{2}		F_{5}		菟	\％	$\mathrm{r}_{2}{ }^{\text {in }}$	${ }_{1} \mathrm{R}_{5}$	R	P_{2}	r_{8}^{2}		$\mathrm{r}_{10}^{2} \mathrm{~F}^{2}$			
	${ }_{2}^{3}$	${ }_{8}$	${ }^{1}$	R ${ }_{3}^{3}$		${ }^{1} 2$	R_{3}^{2}		${ }_{8}^{2}$	R_{2}^{2}	14			F_{4}^{4}	F_{1}^{4}		${ }_{13}{ }^{\text {i }}$	${ }_{6} \mathrm{r}_{10}^{2}$	R_{4}	$\mathrm{R}_{4} \mathrm{r}_{4}^{2}$						
	i_{8}	R_{4}^{3}	r_{8}	${ }^{\circ}$	3	R_{3}^{3}	${ }_{3}{ }^{5}$	码	${ }_{9}^{2}$	r_{8}^{2}	${ }^{\circ}$	${ }^{-1}{ }_{4}^{2}$		${ }_{5}{ }^{1}$	F	$\mathrm{Ef}_{6} \mathrm{i}$	${ }^{1}{ }^{2} \mathrm{r}_{6}$	6	$\mathrm{r}_{6}^{2} \mathrm{~F}$	$\mathrm{P}_{8} \mathrm{R}_{2}$	$\mathrm{P}_{2} \mathrm{i}_{13}$	r_{1}	R_{8}^{3}			
				F_{6}^{2}	P_{3}^{3}			${ }^{1}{ }^{1}$		R_{3}^{2}	R_{6}^{2}				${ }_{4}^{6}$	$r_{3}^{2} \cdot$	${ }^{7} 7{ }^{\text {r }}$	R ${ }_{\text {ch }}$	－	$\mathrm{F}_{5} \mathrm{r}_{7}^{2}$	${ }_{7}^{2} \mathrm{r}_{3}$	P_{4}			${ }^{6}$	
	${ }_{5}$		$\mathrm{R}_{\frac{3}{3}}$	R_{5}^{2}	\％，		${ }^{2}$		R_{1}^{2}	R_{4}	r_{6}^{2}				${ }_{5} \mathrm{r}_{4}^{2}$	${ }_{4}{ }^{\text {R }}$	$\mathrm{F}_{4} \mathrm{i}_{8}$	${ }_{8} \mathrm{~F}_{4}$			${ }_{3} \mathrm{~F}_{3}$		f_{5}			
i i，	${ }^{3}$	${ }^{1}$	R_{4}^{3}	12	13	$\mathrm{R}_{\text {i }}$	${ }_{4} \mathrm{r}^{2}$	${ }^{2}$	P_{2}^{2}	S_{14}	i_{3}	${ }_{3} \mathrm{R}_{2}^{3}$	${ }_{2}{ }_{8}$	R	1	$1+$	${ }^{1} \mathrm{~S}_{1} \mathrm{r}_{1}^{2}$	i_{1}^{2}	R	r_{5}^{2}		${ }_{5}$	${ }^{\text {F }}$	R，	2	
：		5	${ }^{\text {R }}$	${ }_{8}$	F2	${ }^{1} 3$	${ }_{3}{ }^{1}$	r_{8}^{2}	R_{4}^{2}	r_{5}^{2}	${ }_{5}{ }_{4}^{3}$			10 Fs	${ }_{3}$	$\mathrm{F}_{5} \mathrm{r}$	$\mathrm{r}_{3}^{2}{ }^{\text {＇}}$	2	$\mathrm{S}_{5} \mathrm{R}_{3}{ }^{\text {r }}$	r_{2} Fef	${ }_{2}$		${ }^{1}$	${ }_{3}^{3} \mathrm{~F}_{5}^{2}$	，	
	R_{4}^{2}		R_{4}^{3}	${ }_{2}^{2}$		${ }^{9}$	R_{6}^{3}		R_{8}^{2}	r^{2}	${ }^{1}$	${ }_{3}{ }^{\text {r }} 2$		i_{6}	r_{5}	R_{t}	$i_{3} \mathrm{R}_{5}^{4}$	${ }_{3}^{4}$			$3_{3}{ }^{\prime} 7$	R_{1}^{4}	r_{3}^{2}			
		R_{6}^{2}	F ${ }_{8}^{3}$	i_{14}		${ }^{2}$	${ }_{4}^{2}{ }_{4}{ }^{1}$	${ }_{15} \mathrm{~F}_{5}^{3}$	觡	i，					r_{2}^{2}	${ }_{7}$ F	$\mathrm{F}_{4} \mathrm{~F}_{2}$	${ }_{2}$			${ }_{2} \mathrm{~F}_{2}$	F_{3}	$\mathrm{P}_{2}^{3} \mathrm{R}_{2}^{2}$	${ }_{\text {R }}^{2} \mathrm{r}_{5}^{2}$	${ }_{5}^{\text {ef }}$	
	R_{5}^{3}	R_{5}^{2}	${ }^{1} 15$	${ }_{5}{ }^{\text {t }} 5$	${ }_{5}$	＇8	${ }_{4}^{3}$	F_{4}	${ }^{12}$	＇	${ }^{2}$					$\mathrm{P}_{2} \mathrm{P}_{2}$	$\mathrm{F}_{2} \mathrm{i}_{3}$	${ }_{3}{ }^{1} 8$	${ }^{2}$	$i_{13} \mathrm{R}_{1}$	$\mathrm{F}_{1} \mathrm{R}_{1}$	2	$\mathrm{R}_{4} \mathrm{I}_{8}$	．	${ }^{5} \mathrm{r}_{8}^{2}$	R_{4}
	$12 \cdot$	6	＂	P，	${ }_{4}$		${ }_{5} r_{2}^{2}$			F_{2}	R_{1}^{2}	${ }_{1} R_{1}^{3}$	${ }_{5}^{\text {fen }}$		，	${ }_{5}{ }_{3}$	$\mathrm{r}_{8}^{2} \mathrm{I}_{8}$	${ }_{8} \mathrm{P}_{5}$	$\mathrm{i}_{5}{ }^{1}$	f_{8}	${ }_{8} \mathrm{r}_{2}^{2}$	${ }_{7}$	${ }_{4}$	${ }_{4}{ }_{4}{ }_{5}$		
		${ }^{\text {P }}$					${ }_{2}^{2} \mathrm{r}_{3}^{2}$	${ }_{8}^{8}$		R_{8}^{2}	i，				${ }_{11}$	， r_{6}^{2}	${ }_{4}$	$\mathrm{F}_{1} \mathrm{~F}_{2}$				F ${ }_{\text {f }}$	$\mathrm{r}_{7}^{2} \mathrm{R}_{1}$	$\mathrm{R}_{1} \mathrm{~F}_{8}^{\text {f }}$		
	R_{6}^{2}	3	i^{13}	${ }^{3}{ }^{1}{ }^{\text {i }}$	R_{6}^{3}		${ }_{3}^{2}{ }^{2}$	${ }^{2}{ }^{2}$			${ }_{10}{ }^{\text {a }}$	${ }_{2}{ }^{2}$	${ }^{1}$	${ }^{\text {c }}$	i，${ }^{\text {i }}$	${ }_{2}{ }^{1} 2{ }^{\text {r }}$	${ }_{\mathrm{r}} \mathrm{S}^{\mathrm{R}}$	$\mathrm{a}_{1} \mathrm{r}_{6}^{2}$	${ }_{\text {R }}$		${ }^{1} \cdot{ }_{8}$	F_{5}	${ }^{3}{ }_{3}{ }^{\text {r }}$	${ }_{7}^{2} \mathrm{~F}_{2}$	${ }_{2} \mathrm{~F}_{8}^{6}$	
				2		R_{2}^{2}	${ }_{2}^{2} \mathrm{i}_{8}$				＇s				${ }_{13}$	${ }_{13} \mathrm{r}_{7} \mathrm{~F}$	${ }_{6} \mathrm{~F}_{6}^{6} \mathrm{r}_{7}^{2}$	${ }_{2}{ }^{1}$	B_{4}			T ${ }_{6}^{2}$	$\mathrm{r}_{8} \mathrm{I}_{3}$			

FIG．5．Multiplication table of the icosahedral rotation group 1 ．

		，${ }^{\text {a }}$	${ }^{4} \mathrm{P}$	${ }^{\circ}$	－			－	，												－					
	${ }^{3}$	${ }^{4}$	${ }^{-1}$	${ }_{8}{ }^{2}{ }^{2}$	$1_{12}{ }^{1}$	，	${ }_{7}{ }^{2}$	${ }_{2}^{2} \mathrm{r}_{8}^{2}$	${ }_{8}^{2}$		${ }_{2} \mathrm{~F}_{5}$	${ }_{3} \mathrm{r}_{10}^{2}$		屈		P_{3}			＇	${ }_{7}{ }^{1}{ }^{1}$	F_{8}^{2}	${ }_{8}^{2}$		${ }_{2} \mathrm{r}_{3}$	3	
r_{1}	${ }^{6}$	¢	5	${ }_{10}{ }^{2}$	r_{2}^{2}	F_{8}^{3}		${ }_{15}{ }^{18}$	${ }^{1} \mathrm{~F}_{4}^{2}$		${ }_{3}$	${ }_{3} \mathrm{~F}_{5}$			F_{1}	r	F_{5}			$\mathrm{r}_{3} \mathrm{r}_{8}$	$\mathrm{r}_{8} \mathrm{i}_{5}$	${ }_{5}^{2}$		$\mathrm{F}_{8}^{\text {e }}$	年	
F_{1}^{4}		${ }_{4}$	${ }_{4}{ }_{8}^{6}$	${ }_{8}{ }_{8}{ }^{\text {F }}$	${ }_{4} \mathrm{~F}_{4}^{2}$	$\mathrm{r}_{3}^{2} \mathrm{R}^{2}$	$\mathrm{F}_{2}^{2} \mathrm{r}_{5}^{2}$	${ }_{5}^{2}{ }^{2}$	$\mathrm{F}_{4} \mathrm{i}_{2}$		T	i		r_{8}	${ }_{7}{ }_{7}$	${ }_{8}$	r．	${ }^{10}$	R_{1}^{3}	$\mathrm{F}_{2}^{3}{ }_{4}^{2}$	$\mathrm{P}_{4}^{8} \mathrm{P}_{6}^{2}$	${ }_{6}{ }^{2}$				
R_{9}^{3}	I_{3}	F_{2}	${ }_{2}$	\％	R_{1}	$\mathrm{P}_{6}{ }^{\text {？}}$	${ }_{4}^{2}{ }_{4}^{8}$	䫆	${ }_{11}{ }^{1}{ }^{2}$				R_{5}^{2}		17	${ }_{2}$	${ }^{1}$	F_{3}			$\mathrm{r}_{5} \mathrm{r}_{1}$	．		$2{ }_{8}$	${ }^{2}$	
F	${ }^{5}{ }_{8}$	${ }_{4}$	${ }_{4}{ }^{\text {a }}$	${ }_{2}^{2}$		R_{4}^{2}		$\mathrm{P}_{2} \mathrm{R}_{4}$	${ }_{4}$		${ }_{3} \mathrm{r}^{2}$	${ }_{8}^{2}{ }_{8}^{2}$			R		1．	㞓	＇	$\mathrm{i}_{3} \mathrm{R}_{4}$	${ }_{4}^{2} \mathrm{~F}_{1}$			，	R_{2}^{2}	
r	${ }_{2}{ }_{2}^{3}$	${ }_{2}^{2}$	${ }_{4}$	${ }_{4}{ }^{\text {d }}$	r^{2}	$\mathrm{R}_{1} \mathrm{R}_{2}$	$\mathrm{R}_{2} \mathrm{~F}_{5}$	矿			${ }_{4}^{2}$	${ }^{2}$ i。		F_{3}			${ }_{4}$			$\mathrm{F}_{2} \mathrm{i}$	$\mathrm{i}_{4} \mathrm{r}^{2}$	2		${ }^{2}$	2	
		2	${ }^{\text {che }}$	${ }_{8} \mathrm{R}_{5}$	R_{3}	$\mathrm{R}_{4}^{\prime} \mathrm{P}$	${ }_{6}{ }_{6}{ }_{6}$	${ }_{10}{ }^{\text {F }}$	${ }_{5}{ }^{\text {R }}$	${ }_{3}{ }_{2}$	$\mathrm{z}_{2} \mathrm{r}_{5}^{2}$	${ }_{5}^{2}{ }_{5}^{2}$		${ }^{2}$	r_{7}^{2}	R_{2}	i_{8}	i_{4}	r_{8}^{2}	${ }^{2}{ }^{2}$	$\mathrm{i}_{15} \mathrm{~F}_{4}^{2}$	4		${ }^{2}$	${ }_{2}^{2}$	
F_{5}^{3}	${ }_{3}$	3	${ }_{4}^{3}$	4	${ }^{\text {F }}$	$\mathrm{r}_{1}^{2} \mathrm{~A}$	$\mathrm{R}_{1} \mathrm{f}_{8}^{2}$	F_{8}^{6}	$\mathrm{F}_{5} \mathrm{r}_{1}^{2}$		${ }_{3} \mathrm{R}_{4}$	${ }_{4} \mathrm{r}_{2}$	F		R	r_{8}^{2}	4			$\mathrm{r}^{2}+{ }^{2}$	${ }^{3}$			${ }_{\text {R }}^{\text {R }}$	${ }_{7}^{2}$	
i			$3{ }^{1} 1$	${ }^{4} \mathrm{i}_{5}$	${ }_{3}$	${ }_{4}{ }_{4}{ }^{\text {a }}$		$\mathrm{F}_{8}^{8} \mathrm{t}_{4}^{2}$	${ }_{4}{ }_{4} \mathrm{~F}_{3}$	${ }_{3} \mathrm{R}_{1}$	${ }_{1} \mathrm{~F}_{2}$	${ }_{2} \mathrm{~F}_{4}$	R_{8}		r_{6}^{2}	r_{7}^{2}	r_{8}^{2}	：${ }_{0}^{2}$	层	$\mathrm{R}_{4} \mathrm{~F}_{2}$	$\mathrm{R}_{2}^{2} \mathrm{R}_{4}^{2}$	$\mathrm{F}_{1} \mathrm{~F}_{8}^{2}$				
	${ }_{3}$	${ }^{2}$	4	，艮	${ }^{3}{ }_{11}{ }^{1}$	${ }_{12}{ }^{2}$		$\mathrm{r}_{3}^{2} \mathrm{~F}_{2}$	F_{2}		R_{3}	${ }_{3} \mathrm{R}_{8}$			，	F_{5}^{2}	r ${ }^{2}$	${ }^{2}$		${ }^{2}$	${ }_{8}^{2}{ }_{8}^{2} \mathrm{r}_{2}$	2		R_{1}	，	
	T	${ }_{1}{ }^{1}$	${ }_{7} \mathrm{~F}_{3}^{3}$	${ }_{3}^{3}{ }^{1}$	${ }_{4}$	r_{8}	P_{8}^{3} i	${ }_{10}{ }^{1}{ }^{1}$			年	${ }_{2}^{2}{ }_{2}^{2} r_{8}^{2}$			P_{1}^{2}	i 7		寿		$\mathrm{i}_{13} \mathrm{~F}_{2}$	${ }_{2}$	${ }_{4} \mathrm{r}_{10}^{2}$		2	， R_{8}^{2}	
良	${ }^{3}{ }^{\text {r }}$	F_{3}	${ }_{5}{ }_{5}$	5	${ }_{4}^{3}$	${ }^{-1}$			${ }^{2}$	${ }_{1}^{2}{ }^{\text {R }}$	，	${ }_{7}^{2}{ }^{2}$	${ }_{5}$			i_{2}	F_{3}^{2}			R_{1}^{3}	${ }_{3}$	${ }_{5}^{2} \mathrm{~T}_{4}$		${ }^{\text {R }}$		
F_{2}	${ }_{6}^{6}$	${ }_{6}{ }_{8}^{8}$	${ }_{8}^{8}$	${ }_{16} 8_{2}{ }_{2}$	－	${ }^{5}$	i_{3}	$\mathrm{i}_{3} \mathrm{R}_{5}^{2}$	${ }_{3}^{2}$						F				${ }_{4}$	${ }_{5}^{6}$	$\mathrm{i}_{5} \mathrm{r}_{4}$	${ }^{1}{ }^{1}$	${ }^{1} \mathrm{r}_{8}^{2}$	$\mathrm{R}_{8} \mathrm{~F}_{\text {f }}$	F_{2}^{4}	
R_{4}^{2}	R_{4}	${ }_{4} \mathrm{~F}_{5}$	${ }_{5}{ }_{5}{ }_{5}^{3}$	${ }_{5}$	${ }_{8}$			$\mathrm{r}_{5} \mathrm{r}_{8}$	${ }^{\text {P }}$		${ }^{1}$	${ }_{7} \mathrm{i}_{2}$			${ }_{2}$	R_{1}^{4}	${ }^{6}$	i_{8}		$\mathrm{F}_{8} \mathrm{R}_{\text {f }}$	F	${ }_{1}^{2}$	${ }_{1}^{2}$	${ }_{1}^{2}$	$\mathrm{F}_{10} \mathrm{~F}_{3}$	R_{4}^{6}
R_{8}	R_{3}	$\mathrm{S}_{5} \mathrm{~F}_{1}$	$\mathrm{F}_{1} \mathrm{~F}_{2}$	${ }_{2} \mathrm{R}_{4}$	i，	R_{2}^{2}		$\mathrm{R}_{4}^{2} \mathrm{~S}_{2}$			\％	．		${ }_{\text {A }}^{4}$	F_{2}	F_{2}	f_{6}	${ }^{\text {Ffs }}$		－	${ }_{4}^{2}$	${ }_{4}^{2}$	${ }^{\text {i }}$			
	${ }_{8}^{\text {F }}$	${ }_{8}{ }_{8}{ }^{\text {P }}$	8	＋	${ }_{2}$	$\mathrm{P}_{5}^{\text {f }}$	i_{0}	${ }_{8}{ }_{8} \mathrm{P}_{1}^{2}$	${ }_{1}^{2}$		${ }_{15}{ }^{\text {r }}$	${ }_{5} \mathrm{P}_{8}$		i，		$4{ }^{4}$	F_{2}^{6}	${ }^{1}$	${ }_{3}^{2}$		${ }^{R_{3}}$ F ${ }_{5}^{6}$	${ }_{5}$	A_{1}	唇		
R_{4}	${ }_{1}{ }^{3}$	$\stackrel{1}{4}$	${ }_{12} \mathrm{~F}_{1}^{2}$	$\mathrm{F}_{1} \mathrm{R}_{1}$	${ }^{1}$	12	$\mathrm{F}_{5}^{2} \mathrm{R}_{3}$	$\mathrm{R}_{3} \mathrm{~F}_{8}$	P_{8}		R_{8}^{2}	${ }_{8}^{2}$		${ }_{6}$	\％			${ }^{2}$	${ }^{2}$		，	F_{2}	${ }_{2}{ }_{5}$	$\mathrm{r}_{7} \mathrm{I}_{3}$	${ }_{3} \mathrm{r}_{8}^{2}$	F_{4}
R_{2}^{3}	${ }^{2} /{ }^{2} / 5$	R	${ }_{5}{ }_{5}{ }_{5}$	$\overbrace{5} \mathrm{~F}_{2}$		F_{3}	$R_{4} A_{i}$	$\mathrm{F}_{4}^{6} \mathrm{~F}_{4}$	${ }_{\text {a }}$		12	${ }_{12} \mathrm{r}_{2}^{2}$		r_{8}	i_{8}	1.	r_{1}^{2}	${ }_{4}$	3		${ }_{8} \mathrm{P}_{1}$	$\mathrm{R}_{1} \mathrm{~F}_{5}$		${ }_{7}^{2} \mathrm{~F}_{7}$	$\mathrm{P}_{2} \mathrm{~F}_{5}^{6}$	
			1.4	${ }_{2}{ }_{2}{ }^{1}$	${ }_{88}$	${ }_{\text {F }}$	$\mathrm{F}_{5}^{\text {f }} \mathrm{F}_{5}$	${ }_{5}{ }_{3}^{3}$	${ }_{4}$	${ }_{4}{ }^{\text {ef }}$	${ }_{5}^{\text {che }}$	解	${ }^{2}$		r_{2}	${ }^{1}{ }_{4}^{2}$		i_{8}	F_{3}	$\mathrm{F}_{6}^{\mathrm{i}}$	${ }_{10}{ }^{1}$	5		${ }_{3} R_{4}^{6}$	${ }_{4}$	
		${ }_{8}^{2} \mathrm{t}_{5}^{2}$	${ }_{5}^{2}$	${ }_{11}{ }^{1}$	${ }_{4}{ }^{1} 10$	${ }^{\text {f }}$	$\mathrm{R}_{5} \mathrm{R}_{4}$	${ }_{4}^{4} \mathrm{~F}_{4}$	$\mathrm{P}_{3}{ }^{\text {R }}$		${ }_{8}{ }_{6}$	\％			${ }^{2}$	R_{4}	1		${ }^{\prime}$	$\mathrm{R}_{3} \mathrm{R}_{6}$	$\mathrm{F}_{5} \mathrm{i}_{6}$			${ }_{8}^{2}$	$\mathrm{r}_{8}^{2} \mathrm{R}_{1}$	
		${ }_{7}^{2}$	${ }_{7}^{2}$	r_{8}^{2}	F_{2}^{3}	i	R_{4}^{3} ；	${ }_{8}^{\text {fab }}$	${ }_{6}^{\text {F }}$		${ }_{4}$	${ }_{\text {c }}$	${ }_{6}$	P_{8}	f_{5}	\square_{1}	R_{2}	${ }_{2}$		$\mathrm{r}_{1}^{2} \mathrm{r}_{5}^{2}$	${ }^{2}{ }_{3}^{2} \mathrm{r}_{5}^{2}$	${ }_{5}^{2}$				
${ }_{8}^{8}$	5	${ }_{5} \mathrm{r}_{4}^{2}$	${ }_{9}^{2} \mathrm{C}_{2}$	$2^{1}{ }^{13}$	${ }_{13}{ }^{2} \mathrm{r}_{5}^{2}$		${ }_{\text {R }}$	$\mathrm{R}_{7}^{2} \mathrm{~F}_{1}$	F_{1}		R_{3}	${ }_{3}$	${ }_{2}{ }_{2}$				R_{8}	${ }^{1}$	${ }^{1}{ }_{4}^{2}$	${ }_{3}$	$\mathrm{R}_{3} \mathrm{R}_{1}$	¢	f_{2}	${ }_{5} \mathrm{~F}_{5} \mathrm{P}_{6}$	$\mathrm{I}_{6} \mathrm{i}_{2}$	
		R_{1}^{3}	${ }_{1}^{3}{ }_{1}$	${ }_{2} \mathrm{r}_{8}^{2}$	${ }^{\text {F }}$	${ }_{5}^{3}$		${ }_{10}^{2}{ }_{10} \mathrm{C}_{4}$	－	－		${ }_{2}$	${ }_{2}^{2} \mathrm{~F}_{2}$	F_{7}	${ }^{2}$			${ }^{2}$	F_{4}^{4}	${ }^{1}$	$\mathrm{r}_{3} \mathrm{I}_{3}$	${ }_{3} \mathrm{R}_{3}$	${ }_{3} \mathrm{~F}_{2}$	${ }_{8}$	${ }_{4}{ }_{4}{ }^{\text {r }}$	F_{6}
	R_{3}^{3}	${ }_{3}^{3}{ }^{1}$	1	2	${ }_{4}$	$\mathrm{r}_{8}^{2} \mathrm{r}$	r_{3}	r_{3}	${ }_{7}{ }^{\text {R }}$		${ }_{1}^{2}$	$\mathrm{R}_{1} \mathrm{R}_{1}$	R_{4}^{2}				r_{6}^{2}	R_{5}		${ }^{2}$	$\mathrm{i}_{2} \mathrm{R}_{3}$	$3_{3} F_{2}$	2	$\mathrm{r}_{8}^{2} \mathrm{~A}_{4}$	$\mathrm{a}_{4} \mathrm{~F}_{4}^{6}$	
R_{i}^{2}		${ }_{13}{ }^{1}$	3	${ }_{7} \mathrm{H}_{2}$	$2{ }^{2}$	F_{3}		F_{5}^{2}	F_{5}^{2} F F_{2}								F_{2}^{3}		R_{1}	$\mathrm{R}_{8}^{3} \mathrm{C}$	$\mathrm{r}_{4} \mathrm{r}_{8}$	F_{3}^{2}	${ }_{3}^{2} \mathrm{~F}_{5}$	F_{4}		
	${ }^{2} 14$	${ }^{4}$	$4{ }^{\text {c }}$	年	f_{3}	F	${ }_{\text {ffic }}{ }^{\text {f }}$	${ }^{1} \mathrm{~B}_{8}$				${ }_{4}^{3}$		i_{3}	F_{2}^{2}		${ }_{5} \mathrm{r}_{5}$	${ }^{3}$	${ }^{\text {r }}$	$\mathrm{r}_{4}^{2} \mathrm{R}_{4}^{2}$	$\mathrm{R}_{5}^{2} \mathrm{~F}_{4}^{4}$	${ }_{3}$	${ }_{5}$	$\mathrm{R}_{1} \mathrm{~F}_{8}^{6}$	${ }_{6}^{6}$	
	F_{2}^{2}	年	${ }_{15}{ }^{\text {r }}{ }_{5}$	${ }_{5}{ }^{5} \mathrm{r}$	r_{10}^{2}	R_{5}		${ }_{5}{ }_{5} \mathrm{r}_{6}$	${ }_{6}{ }_{6}{ }^{2}$		${ }_{4}{ }^{2} 1$	$1{ }^{1}$	${ }^{12} \mathrm{I}_{1}$	${ }^{1} 4$			${ }^{\text {in }}$	${ }_{4}^{3}$	R_{3}^{2}	$\mathrm{F}_{2} \mathrm{~F}_{2}$	${ }^{\text {F }}$	＇	8	${ }_{6}^{2}$ R R_{1}	$\mathrm{R}_{1}{ }_{6}$	${ }^{\circ}$
				${ }_{1}^{2}{ }_{4}^{4}$	，	${ }_{1}^{2}$	F_{3}		${ }_{4}$		2	2	P_{8}^{2}			R_{4}^{2}		${ }_{2}^{2}$	${ }_{5}$	$\mathrm{r}^{2} \mathrm{r}$	$\mathrm{r}_{1} \mathrm{P}_{1}^{2}$	¢	${ }_{6}$	${ }_{7}^{2}$	${ }_{7}^{2} / \mathrm{R}_{2}$	
		F_{4}^{2}	${ }_{4}^{2}$		Fs_{5}	i	${ }_{8}^{2} \mathrm{~F}_{6}$	F_{1}			R_{8}	${ }_{8}$		${ }_{8}^{8}$		${ }^{2}$	＇ 2			$\mathrm{R}_{5} \mathrm{R}^{2}$	$\mathrm{A}_{4} \mathrm{R}_{1}{ }^{3}$	R_{1}^{3}		${ }_{5}$		F_{2}
r_{6}^{2}	F_{1}^{2}	${ }_{1}^{2} \mathrm{i}_{2}$	2	${ }_{3} \mathrm{R}_{5}^{2}$	${ }^{\text {fef }}$	${ }_{8}$	i_{5}	$i_{5}{ }^{\text {i }}$	${ }_{10} 1$	${ }_{6}$	$\mathrm{r}_{6} \mathrm{r}_{4}^{2}$	${ }_{4}^{2}$	R_{4}	R_{3}	R_{1}	${ }^{2}$	R_{2}^{2}	${ }_{8}^{2}$	R_{5}	$\mathrm{r}_{2}^{2}{ }^{\text {i }}$	${ }_{1914}{ }^{1}$	$\stackrel{2}{9}$	$\stackrel{2}{9}$	${ }_{5} \mathrm{~S}_{5}{ }^{3}$	${ }_{4}{ }^{1}$	R_{8}^{2}
R_{3}^{2}	$\mathrm{r}_{\frac{2}{2}}^{7}$	${ }_{7}^{2}{ }^{2}$	${ }_{2}{ }^{2}$	2	${ }_{4}{ }^{4}$	$\mathrm{r}_{5}{ }^{\text {P }}$	$\mathrm{R}_{4} \mathrm{f}$	${ }^{2}$		${ }_{5}$	码	\％	r_{2}	${ }^{2}$	F_{3}	R_{2}	r_{5}^{2}	${ }_{4}^{2}$	r_{10}^{2}	$\mathrm{B}_{1} \mathrm{r}_{2}$	${ }^{2}$			${ }_{5}^{R_{5}^{2}} \mathrm{r}_{1}^{2}$	2	R_{6}^{3}
	F_{3}^{2}	${ }_{3}^{2} \mathrm{r}_{8}^{2}$	${ }_{8}^{2} \mathrm{P}_{4}^{2}$	4			${ }_{2}^{2}$	$\mathrm{r}_{2}^{2} \mathrm{~F}_{6}^{6}$	F\％	4		F_{4}^{4}	${ }^{1} \mathrm{r}_{3}$	R		${ }_{3}$	R_{4}	${ }^{2}$	in	$\mathrm{r}_{8}^{2} \mathrm{R}_{2}$	${ }_{2}$	，		${ }_{8}{ }^{3}$	${ }_{1}^{2}$	
		${ }^{\text {P2}}$	${ }^{\frac{2}{3}}$	${ }_{9}{ }^{\text {R }}$	${ }_{8}{ }_{8} 5_{5}$	R_{4}^{2}		r_{3}^{2}	$\mathrm{r}_{3}^{2} \mathrm{r}_{3}$		R_{1}	R_{1}	F		${ }^{2}$		R_{3}	A_{8}		${ }^{2}$	${ }^{1}{ }^{2}{ }_{7} R_{4}$	$\mathrm{R}_{4} \mathrm{r}_{3}$	${ }_{3}{ }^{\text {F }}$	${ }^{2}{ }_{3}{ }^{2} \mathrm{P}_{1}$	${ }_{1} \mathrm{P}_{\text {R }}$	
艮年		2	$2{ }^{2}$	${ }_{5}{ }_{5}{ }^{2}$	${ }^{1}$	${ }_{4}{ }^{\text {i }}$	R	年保	${ }_{4}^{6}$	4	${ }_{3}^{2}$	${ }_{3}^{2}{ }_{2}$	${ }_{2}$	${ }_{5}$		F_{1}	${ }_{7}^{2}$	B_{3}	r_{3}	12	${ }^{1} 7{ }_{7} \mathrm{r}_{8}^{2}$	${ }_{8}^{2}{ }_{8}^{2} \mathrm{P}_{6}$	${ }_{6} \mathrm{~F}_{2}$	${ }_{4}^{2}$	$\mathrm{R}_{4}^{2} \mathrm{r}_{2}$	
居	${ }^{1}$	－	${ }^{2}{ }^{\text {i }}$	2	${ }_{3}^{\frac{2}{3}}$	R_{1}	$\mathrm{i}_{2} \mathrm{ra}^{2}$	${ }^{2}{ }_{7}^{2} \mathrm{P}_{3}$	$\mathrm{F}_{3} \mathrm{~F}_{5}^{3}$	${ }_{3}$	${ }_{10}^{2}$	${ }_{10}^{2}$		${ }_{4}^{2}$		${ }_{10}{ }^{1} 5$	R_{6}^{2}			$\mathrm{F}_{5} \mathrm{r}^{2}$	$\mathrm{ra}_{4}^{2} \mathrm{r}_{3}$	${ }_{\text {R }}^{2}$	${ }^{2}{ }_{2}^{2}$	，	${ }_{7}{ }^{\text {i }}{ }_{3}$	
			管	年	A_{4}	r_{2}	R_{1}^{3}	${ }_{7}^{2}$	${ }_{7}^{2}{ }_{7}$			${ }_{6}^{2}{ }_{6}{ }_{3}$			F_{5}^{3}	B，			？	$\mathrm{r}_{6} \mathrm{~F}_{3}$	$\mathrm{F}_{3}^{2} \mathrm{R}_{8}$	$\mathrm{R}_{8} \mathrm{P}_{2}^{3}$	${ }_{2}^{3} \mathrm{r}_{8}^{2}$	${ }_{4} \mathrm{~F}_{4} \mathrm{P}_{1}^{6}$	${ }_{1}^{6}$	
	F ${ }_{5}^{6}$	b	$100^{1} 10$	${ }_{10} \mathrm{i}_{15}$	${ }_{\text {is }}{ }^{\text {i }}$	R_{6}^{2}	${ }^{3}$	${ }_{2}{ }_{2}{ }^{\text {i }}$	${ }_{3}{ }^{1}$			${ }^{2}$	${ }_{6}^{2} \mathrm{r}_{1}^{2}$		\％	${ }^{1} 8$		洎	R_{4}^{2}	F	R_{3}		5	$\mathrm{r}_{9}^{2} \mathrm{~F}_{8}$	$\mathrm{F}_{8} \mathrm{~F}_{2}$	
		1	\square^{1}	R_{5}^{2}	${ }_{5}$	i_{5}	R_{6}^{2}	${ }_{2}{ }_{2}^{2}$	${ }_{2}{ }_{2}^{2}$			${ }_{7} \mathrm{r}_{7}^{2}$	R_{1}			${ }_{1}^{3}$		${ }_{6}^{2}$	${ }^{1}$	$\mathrm{r}_{2}{ }^{\text {r }}$	${ }_{7} \mathrm{~F}_{5}^{2}$	$\mathrm{R}_{3}^{2} \mathrm{R}_{5}$	${ }_{5}$		${ }^{2}$	
	${ }^{2}$	$2{ }_{2}$	${ }_{1}{ }_{1}{ }^{\text {r }}$	${ }^{6}$	${ }_{6}{ }^{\text {f }}$				r			疮	${ }_{3} \mathrm{r}_{7}^{2}$			r_{3}	${ }^{1}$	i_{2}	r_{2}^{2}	$\mathrm{R}_{6}^{2} \mathrm{R}$	$\mathrm{F}_{2} \mathrm{R}_{3}^{3}$	$\mathrm{R}_{3}^{3} \mathrm{r}_{6}^{2}$	${ }_{6}^{2}$	$\mathrm{r}_{2} \mathrm{i}_{5}$		
		${ }_{4} \mathrm{r}_{2}$	${ }_{2}^{2}{ }_{2} \mathrm{r}_{3}^{2}$	${ }_{3}^{2}{ }_{2}$	${ }_{2} \mathrm{R}_{1}^{3}$	i，	$\mathrm{i}_{3} \mathrm{r}^{2}$	$\mathrm{r}_{8}^{2} \mathrm{r}_{5} \mathrm{r}_{8}$	${ }_{8}^{2} \mathrm{t}_{8}$			${ }_{5}{ }^{1} 10$	$10 .{ }_{8}^{3}$	${ }_{\text {ef }}^{\text {f }}$	F_{6}^{6}		F_{6}^{3}		${ }^{\text {a }}$	${ }_{8}$	igis	${ }^{2}$	${ }_{5}^{2}$	$\mathrm{r}_{3} \mathrm{R}_{2}$	$\mathrm{F}_{2} \mathrm{~S}_{5}$	
R_{4}	${ }_{4} 1$		$\mathrm{R}_{6}^{6} \mathrm{r}_{4}^{2}$	${ }_{4}^{2} \mathrm{r}_{5}^{2}$	${ }_{5}^{2}$		${ }_{2}$	$\mathrm{I}_{8} \mathrm{i}_{4}$	${ }_{4}{ }^{1}$	，	${ }_{7} \mathrm{~F}_{4}^{3}$	${ }_{3}^{3}$			${ }_{\text {P }}^{4}$	${ }_{4} \mathrm{~F}_{6}^{6}$		${ }_{5}$	I_{2}	陦；	\％			勧	${ }_{4}{ }^{\text {r }}$	
	R_{6}	${ }_{6}$		\％	${ }_{2}^{2}$	${ }^{2}$		${ }_{4}^{3}$	${ }_{4}^{2}$		${ }_{2}^{3} \cdot{ }^{\text {d }}$	${ }^{8}$		${ }_{2} \mathrm{~F}_{1}^{3}$	${ }^{3}$	${ }_{3}{ }^{\text {F }}$	${ }^{\text {F }}$	${ }^{1}$		${ }_{4}{ }^{4}$	$\mathrm{F}_{4}^{4} \mathrm{r}$	P 10	6	${ }^{2}$		
		f_{5}	R_{5}	R_{4}^{4}	${ }_{4}^{4}{ }^{2}$	R_{2}	r_{5}^{2}	r_{1}			${ }_{4}{ }_{4}^{3}$	${ }_{4}^{3}{ }^{3} \mathrm{r}$ ，	${ }^{-1} \mathrm{P}_{5}$	r，	${ }_{2}$			${ }_{3}$	17		$\mathrm{r}_{1}^{2} \mathrm{R}_{8}^{6}$	$\mathrm{R}_{8}^{6} \mathrm{r}_{6}$	${ }_{6} \mathrm{~F}_{1}^{2}$	${ }_{3}^{2}$	$\mathrm{r}_{4}^{2} \mathrm{~F}_{4}{ }^{2}$	
	${ }^{2}$	${ }_{5} \mathrm{r}_{1}^{2}$	${ }_{1}^{2}{ }_{1}$	${ }_{1}$	i_{2}	${ }^{2}$		$\mathrm{F}_{4} \mathrm{r}_{2}$	${ }_{2}{ }_{2}{ }^{3}$	${ }_{3}^{3} \mathrm{i}_{4}$		${ }^{-}$		${ }^{\text {F }}$				F_{6}				${ }_{3}^{2} \mathrm{~F}_{5}^{4}$	${ }_{5}^{4}{ }_{1}{ }_{1}^{3}$	$i_{7}{ }^{2}$	$\mathrm{R}_{2}^{2} \mathrm{r}_{5}^{2}$	
	$\mathrm{a}_{5} \mathrm{r}_{1}^{2}$	${ }_{1}^{2} \mathrm{R}_{4}^{2}$	$\mathrm{R}_{\frac{2}{2}} \mathrm{r}_{7}^{2}$	${ }_{7}^{2} \mathrm{P}_{3} \mathrm{P}_{3}$	$3_{3} \mathrm{r}_{2}$	${ }^{1}$	r	${ }^{\text {r }}$	$\mathrm{F}_{6}^{2} \mathrm{~F}_{5}$	码；	${ }_{8} \mathrm{R}_{8}$	$\mathrm{R}_{8}^{3} \mathrm{r}_{4}^{2}$	＋	${ }^{1}$	${ }_{4}^{4}$	${ }_{4}{ }^{+}{ }_{2}^{2}$	${ }^{2}{ }^{2}$	B_{2}	P6	${ }_{4}^{3}$		$\mathrm{F}_{2}^{2} \mathrm{R}_{4}$	$\mathrm{P}_{4} \mathrm{r}_{3}$	${ }_{2}{ }_{2}^{3}$	8	r_{2}
	F_{1}	$\mathrm{R}_{1} \mathrm{r}_{3}^{2}$	$r_{3}^{2} ⿻_{2}^{2}$	${ }_{2}^{2} \mathrm{~F}_{8}^{2}$	${ }_{8}^{2} \mathrm{r}_{3}$	F_{2}^{3}		5	${ }_{5}{ }_{5} \mathrm{R}_{1}^{6}$		S	${ }^{3}$	${ }_{5}^{3}$	R_{4}		F_{6}^{6}			R_{6}	${ }_{4}^{4}$	${ }_{\text {R }}{ }_{6}^{1}$	R_{4}^{2}	${ }_{4}^{2} \mathrm{R}_{8}^{2}$	$\mathrm{r}_{4} \mathrm{r}_{5}$	5	
		${ }_{3} \mathrm{R}_{2}$	$\mathrm{R}_{2} \mathrm{r}_{5}^{2}$	${ }_{5}^{2}{ }_{5}^{2} \mathrm{P}_{4}^{2}$	${ }_{4}^{2}$		R^{2}	$\mathrm{P}_{6} \mathrm{~S}_{5}$	$\mathrm{C}_{1} \mathrm{r}_{3}$		${ }_{2}{ }^{\text {a }}$	${ }_{6}{ }_{6} \mathrm{r}_{6}$	6	${ }_{1}$	f_{s}		R_{5}^{6}	${ }^{1}$	${ }^{\text {F }}$	F_{5}	$\mathrm{Pa}_{6} \mathrm{~F}_{5}^{3}$	${ }_{5}^{3}$				
			$\mathrm{f}_{3} \mathrm{~F}_{4}$	${ }_{4}$	${ }_{2}{ }^{\text {P2}}$	i_{5}^{2}		${ }^{2}$	2	5	${ }_{5} \mathrm{~F}_{4}^{4}$	${ }_{4}^{4}{ }_{4}^{6}$		${ }^{1}$		R_{5}		\％		R_{5}^{2}	$\mathrm{A}_{1} \mathrm{~F}_{5}$	$\mathrm{F}_{5}^{4} \mathrm{~F}_{1}^{6}$	${ }_{1} \mathrm{r}_{3}^{2}$		，	
	${ }_{5}$	$\mathrm{R}_{5}^{2} \mathrm{~S}_{5}^{2}$	${ }_{6}^{2} \mathrm{~F}_{3}$	$\mathrm{R}_{3} \mathrm{R}_{6}$	$\mathrm{B}_{6} \mathrm{i}_{3}$	${ }_{8}$	$\mathrm{R}_{4}^{2} \mathrm{r}$	$\mathrm{r}_{2}{ }^{\text {l }}$	${ }_{1}^{13}{ }^{\text {r }}$	${ }_{\square} \mathrm{P}_{4}$	${ }_{4}{ }^{1} \mathrm{r}_{2}^{2}$	$\mathrm{r}_{2}^{2} \mathrm{~F}_{6}^{6}$	${ }_{6} \mathrm{P}_{5}^{6}$	R ${ }_{2}$	I_{5}	T	R_{1}		${ }_{2}{ }_{2}^{3}$	R	$\mathrm{R}_{4} \mathrm{R}_{2}$	$\mathrm{R}_{2} \mathrm{R}_{4}^{4}$	$\mathrm{C}_{1} \mathrm{i}_{1}$	貯	$\mathrm{r}_{5}^{2} \mathrm{t}$	
	$\frac{2}{2}$	${ }_{2}{ }^{1} 13$	${ }_{1}$	$7_{7} \mathrm{r}_{7}^{2}$	${ }_{7}^{2}{ }_{7}$	r_{7}	${ }^{2}$	${ }^{2}$	䅔	${ }_{\text {che }} \mathrm{t}_{1}$	，			F_{2}	0	${ }_{6} \mathrm{R}_{6}^{3}$		P_{2}^{2}		${ }^{1}$	$\mathrm{R}_{6}^{2} \mathrm{R}_{2}^{2}$	$\mathrm{F}_{2}^{2} \mathrm{~T}_{5}^{2}$	${ }_{8}^{2} \mathrm{R}_{8}$	寿		
		${ }_{2}{ }^{2} \mathrm{r}_{4}^{2}$	${ }_{4}^{2}$		号	${ }_{4}$	$\mathrm{F}_{2}^{4} \mathrm{r}$	$\mathrm{r}_{8} \mathrm{~F}_{5}$	${ }_{3}^{3} \mathrm{~F}_{2}$	${ }_{2} \mathrm{R}_{1}^{6}$	$\mathrm{P}_{1} \mathrm{I}_{1}{ }^{\text {r }}$	6		R_{4}^{2}			${ }_{5}{ }^{3}$				$\mathrm{r}_{10} \mathrm{P}^{\text {R }}$	$\mathrm{R}_{5}^{2} \mathrm{R}_{4}^{3}$	${ }_{8}^{3}{ }^{\text {is }}$	$\mathrm{r}_{10}^{2} \mathrm{R}_{5}$	$\mathrm{R}_{5} \mathrm{~F}_{4}$	
		${ }_{8}^{2}{ }^{2} \mathrm{~F}_{4}$	${ }_{4}$		${ }_{4}^{2}$	F_{5}^{3}	$\mathrm{R}_{5}^{2} \mathrm{r}$	$\mathrm{r}^{2} \mathrm{R}_{2}$	${ }_{4}^{4}$			尔				${ }_{6}^{2} \mathrm{R}_{6}$	R_{1}^{6}	R_{1}	$\mathrm{R}_{6}{ }^{3}$	r_{10}^{2}	${ }^{1} 1{ }^{1}$	F_{1}^{2}	$\mathrm{R}_{1}^{2} \mathrm{P}_{6}^{6}$	，		\bar{r}_{1}
				${ }_{8}$	${ }^{2}$	R_{4}	F	$\mathrm{R}_{1}^{3} \mathrm{R}_{1}^{2}$	8			${ }_{1}^{2}$	＊	R_{2}		R_{5}^{2}	${ }_{5} \mathrm{R}_{5}$	左	F_{2}^{2}	$\mathrm{P}_{5}^{3} \mathrm{r}$	r_{6}^{2}	${ }^{1}$	${ }_{7}{ }^{2}$	F_{2}	Rf	
		${ }^{6}$	${ }_{5}{ }^{1}{ }^{1}{ }^{6}$	${ }_{6} \mathrm{C}_{6} \mathrm{R}_{5}$	$\mathrm{R}_{5} \mathrm{~F}_{5}^{3}$	R_{3}^{2}		$\mathrm{R}_{8} \mathrm{r}_{3}$	${ }_{3}$	9 i。	${ }^{-1}$	${ }_{13}{ }^{\text {r }}$ 2	${ }_{3}^{2}{ }_{6}$	${ }_{4}^{6}$	${ }_{4}^{3}$		R_{1}^{2}	R_{1}	${ }^{1}$	$\mathrm{R}_{4}^{2} \mathrm{R}$	$\mathrm{R}_{1}^{3} \mathrm{r}_{7}^{2}$	${ }^{2}$	$1{ }^{1} \mathrm{~T}$	${ }^{3}$	${ }_{8}^{2}{ }_{8}{ }^{\text {a }}$	
		${ }_{2}$	$\mathrm{r}_{2} \mathrm{~F}^{9}$	$\mathrm{R}^{\text {a }}$	F_{5}	－		$\mathrm{r}_{6}^{2} \mathrm{R}_{8}$	A			${ }_{4}{ }^{\text {P2}}$	3		R_{8}^{3}		${ }_{6} \mathrm{r}_{3}$		${ }_{6}$	i_{5}	$\mathrm{R}_{8} \mathrm{r}_{7}$	${ }^{2}$	${ }_{7}^{2}$		${ }^{3}$	
	R_{6}	${ }_{8}{ }^{3} \mathrm{P}_{8}^{2}$	$\mathrm{F}_{8}^{2} \mathrm{I}_{3}$	3	R_{4}	R_{4}^{6}	1	$\mathrm{i}_{2} \mathrm{r}_{6}^{2}$	${ }^{r_{6}^{2}}{ }^{2} r_{5}^{2}$	${ }_{5}^{2} R_{5}^{3}$	$\mathrm{S}_{5}^{3} \mathrm{R}_{5}^{2}$	R_{5}^{2}							F_{2}	${ }^{1} 1$	$\mathrm{r}^{2} \mathrm{id}_{6} \mathrm{~F}_{2}^{4}$	$\mathrm{F}_{2} \mathrm{C}_{3}$	${ }_{3} \mathrm{P}_{3}$		${ }_{5}$	R ${ }_{5}^{2}$
				${ }_{4}{ }^{\text {F }}$	${ }_{2}{ }^{2}$	R_{6}	$\mathrm{F}_{\mathrm{t}} \mathrm{r}$	${ }_{7}{ }_{7}{ }^{\text {¢ }}$	$i_{2} \mathrm{R}_{4}$	${ }_{4}^{2}$ r，	，	${ }_{6}{ }^{5} \mathrm{r}_{1}^{2}$	${ }_{4}^{3}$	${ }^{1}$		${ }_{5}^{2}{ }_{5}^{2}$	${ }_{5} R_{5}^{2}$	${ }^{5}$		${ }_{5}^{\text {Reg }}$		$\mathrm{R}_{5} \mathrm{I}_{8}$	${ }_{8}{ }^{\text {F }}$	${ }_{3}$	$1{ }^{1}$	
		${ }^{\text {R }}$	$\mathrm{F}_{5}^{2} \mathrm{~F}_{5}^{2}$	$\mathrm{R}_{5}^{2}{ }^{\text {r }}$	${ }_{5} \mathrm{I}_{5}$			$\mathrm{F}_{2} \mathrm{r}$ ，	${ }^{\text {r }}$			$\mathrm{R}_{4}^{3} \mathrm{R}_{1}^{2}$								R_{4}	${ }_{6}{ }^{\text {r }}{ }_{6}$	${ }_{4}^{4}$	$\mathrm{R}_{4}^{4} \mathrm{R}_{5}^{3}$	B_{3}	R_{3}	
		$\mathrm{R}_{4}^{2} \mathrm{P}$ ，	＇， i_{6}																							

FIG． 5 （continued）．

FIG. 6. Icosahedral vertex labels and the body-fixed x, y, and z axes.
generated by selecting a set of body-fixed coordinate axes whose origin is located at the center of the buckyball model. Icosahedral rotation operators represented in this basis from an icosahedral T_{1} vector irreducible representation (irrep). Using the icosahedral T_{1} vector irreps as rotation matrices in R^{3}, a radial lab-fixed vector,

$$
\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{A}}
$$

chosen to pass through a buckyball vertex, may be rotated to another vertex,

$$
\begin{equation*}
D^{T_{1}}\{g\} \overrightarrow{\mathrm{A}}=D^{T_{i}\{g\}} \overline{1 \mathrm{~A}}=\overline{\mathrm{g} 1 \mathrm{~A}}=\overline{\mathrm{gA}} \tag{3.1}
\end{equation*}
$$

where $D^{T_{1}}(g)$ is the $3 \times 3 T_{1}$ irrep. Each new radial vector $\overline{g A}$ is labeled with the icosahedral group operator g that generated it. By using the 60 proper rotations of the icosahedral group a labeled radial vector may be sent to each of the 60 buckyball vertices. The group operator g also labels the vertex through which the vector $\overline{g A}$ passes. The improper rotations of the icosahedral group will only interchange the radial vectors and will not generate anything new. Thus, the 60 radial vectors $\overline{g A}$ are all that can be made from $\overline{\mathbb{A}}$ using
icosahedral operations, and together they form a radial orbit labeled A. Icosahedral vertex labels and body-fixed axes used to make the radial A orbit are shown in Fig. 6.

A second orbit of 120 tangential vectors is generated using the same technique with the full icosahedral group I_{h}. This time an initial vector $\overline{1 B}$ is chosen perpendicular to $\overline{1 A}$ and 45° away from the σ_{5} reflection plane as shown in Fig. 7. Upon σ_{5} reflection a new vector $\overline{\sigma_{5} B}$ is generated from the initial vector $\overrightarrow{1 \mathrm{~B}}, 45^{\circ}$ on the other side of the σ_{5} reflection plane. This completes the right-handed orthogonal coordinate triad located at the vertex labeled by the unit operator. The remaining I_{h} operators are used to complete the tangential orbit labeled B. The z and x axes of each coordinate system belong to orbits A and B, respectively, and are labeled by the proper icosahedral rotation of the corresponding vertex. The y axes belong to the B orbit and are labeled with improper icosahedral rotations. The label of any y axis is obtained by computing the group product between the vertex label of the y axis, and σ_{5}. Together, the 60 -element radial orbit A, generated by the icosahedral rotation group I, and the 120 -element tangential orbit B, generated by the full-

FIG. 7. Orientation and labeling of the symmetrically defined coordinate axes located at the unit vertex. The σ_{5} reflection plane used to reflect $1 B$ into $\sigma_{5} B$ is illustrated.

FIG. 8. The 60 symmetrically defined orthogonal coordinate traids of buckyball. The unit cell used to calculate force matrix elements is highlighted.
icosahedral group I_{h}, are shown in Fig. 8, and form a set of 180 coordinate vectors that corresponds to the 3×60 degrees of freedom of the 60 carbon atoms.

The vectors of the orbits A and B correspond to state
vectors generated by group operators,

$$
D^{T_{1}}\{g\} \quad \overrightarrow{\mathrm{O}}=\mathrm{gO} \leftrightarrow g|\mathrm{O}\rangle=|g \mathrm{O}\rangle,
$$

where O is the orbit label A or B. The state $|g O\rangle$ represents the displacement from equilibrium, of a single mass located at the vertex labeled by g, in the direction $\overline{\mathrm{gO}}$. These 180 state vectors form a complete set, within which any distortion of the buckyball spring-mass model can be expressed as a linear combination. In order to determine the expansion coefficients of the $|g O\rangle$ that yield normal modes, Newton's 2nd law is expressed in the $|g O\rangle$ basis,

$$
\begin{align*}
\frac{d^{2}}{d t^{2}}|\psi\rangle= & -\mathbf{M}^{-1} \mathbf{K}|\psi\rangle \\
\frac{d^{2}}{d t^{2}}\langle g \mathrm{O} \mid \psi\rangle & =-\sum_{g^{\prime}, \mathbf{O}^{\prime}}\langle g \mathrm{O}| \mathbf{M}^{-1} \mathbf{K}\left|g^{\prime} \mathbf{O}^{\prime}\right\rangle\left\langle g^{\prime} \mathbf{O}^{\prime} \mid \psi\right\rangle \tag{3.2}\\
& =\frac{-1}{m_{c}} \sum_{g^{\prime}, \mathbf{O}^{\prime}}\langle g \mathrm{O}| \mathbf{K}\left|g^{\prime} \mathbf{O}^{\prime}\right\rangle\left\langle g^{\prime} \mathbf{O}^{\prime} \mid \psi\right\rangle
\end{align*}
$$

The mass operator M, in the $|g \mathrm{O}\rangle$ basis, is diagonal with all elements equal to the mass of the carbon atom m_{c}. The force constant operator K couples the state vectors $|g O\rangle$ for a total of 180 coupled differential equations. Columns of the transformation matrix that diagonalize the force contant matrix, contain the expansion coefficients of the normal modes of vibration in terms of the $|\mathrm{gO}\rangle$ basis. Corresponding elements of the diagonalized force matrix are the vibrational eigenfrequencies squared.

Prior to diagonalization, the force matrix elements $\langle g O| \mathbf{K}\left|g^{\prime} \mathrm{O}^{\prime}\right\rangle$ are force constants that determine the force on the mass at the gth vertex in the $\overline{\mathrm{gO}}$ direction when the mass at the g^{\prime} th vertex is displaced in the $\overline{g^{\prime} \mathrm{O}^{\prime}}$ direction. These constants depend on the geometry of buckyball, and the springs used to model the covalent bonds. Two springs, with spring constants p and h, are used to model the stretching of the single and double bonds along the pentagonal and hexagonal edges. Two additional springs with spring constants π and η, are used to model the bending of the single and double bonds. The spring constants p, h, π, and η are the only parameters of the model that can be adjusted. By setting certain spring constants to zero it is possible to check special test cases of reduced symmetry for which analytic results are

FIG. 9. The springs of the unit cell highlighted in Fig. 8. Single-bond parameters are p and π. Double-bond parameters are h and η.
available. These test cases are examined in Sec. VI. A unit cell illustrating the relative position of the different springs is shown in Fig. 9. The stretching springs couple nearest neighbors, and the bending springs couple nearest and next-nearest neighbors for a total of 10 masses and 30 coordinates in the unit cell. Each coordinate is labeled $g A, g B$, or $g \sigma_{5} B$, and corresponds to the displacement of the mass at the g th vertex in the $\overrightarrow{\mathrm{gA}}, \overrightarrow{\mathrm{gB}}$, or $\overrightarrow{\mathrm{g} \sigma_{5} \overrightarrow{\mathrm{~B}}}$ directions. The potential energy of the unit cell is determined as a function of these coordinates and the elements of the force matrix are the second-order derivatives of this potential.

The potential energy may be split into a stretching component and a bending component,

$$
\begin{align*}
V_{s}= & \left\{\frac{1}{2} h(1-|\overrightarrow{\mathbf{c}}|)^{2}+\frac{1}{2} p\left[(1-|\overrightarrow{\mathbf{a}}|)^{2}+(1-|\overrightarrow{\mathbf{b}}|)^{2}\right]\right\}, \tag{3.2a}\\
V_{b}= & \left(\frac { 1 } { 2 } \pi \left\{[\Theta-\theta(1)]^{2}+\left[\Theta-\theta\left(R_{1}\right)\right]^{2}\right.\right. \\
& \left.+\left[\Theta-\theta\left(R_{1}^{4}\right)\right]^{2}\right\}+\frac{1}{2} \eta\left\{[\Phi-\phi(1)]^{2}\right. \\
& +\left[\Phi-\phi\left(R_{1}\right)\right]^{2}+\left[\Phi-\gamma\left(R_{1}^{4}\right)\right]^{2} \\
& \left.\left.+[\Phi-\gamma(1)]^{2}+\left[\Phi-\phi\left(i_{7}\right)\right]^{2}+\left[\Phi-\gamma\left(i_{7}\right)\right]^{2}\right\}\right), \tag{3.3b}
\end{align*}
$$

$V=V_{s}+V_{b}$.
To determine the functional form of the potential, arbitrary displacement vectors $\overline{d(g)}$ are represented in the body-fixed axes. The vectors $\overline{\mathrm{d}(\mathrm{g})}$ are displacements from equilibrium of the masses of the unit cell labeled with group operators g, and are illustrated in Fig. 10. Edge vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \ldots, \overrightarrow{\mathbf{n}}$ are determined by the vector sum of the corresponding equilibrium edge vector $\hat{\mathbf{a}}, \hat{\mathbf{b}}, \ldots, \hat{\mathbf{n}}$, minus the displacement vector $\overline{\mathrm{d}(\mathrm{g})}$ from which the edge vector originates, plus the displacement vector at which the edge vector terminates. For example, the edge vector \vec{a} is given by

$$
\vec{a}=\hat{a}-\overline{d(1)}+\overline{d\left(R_{1}^{4}\right)}
$$

The equilibrium edge vectors $\hat{\mathbf{a}}, \hat{\mathbf{b}}, \ldots, \hat{\mathrm{n}}$ correspond to the edge vectors $\vec{a}, \vec{b}, \ldots, \overrightarrow{\mathbf{n}}$ when the displacements $d(g)$ are zero, and are defined to be of unit length. Deviations from unit length of an edge determine how much a stretching spring along the edge has been compressed or extended. This change in
length is squared and multiplied by one-half the corresponding spring constant, and determines the contribution of the particular stretching spring to the potential. For example, the hexagonal stretching spring, with spring constant h, along edge c in Figs. 9 and 10, will contribute the first term in Eq. (3.3a),

$$
\begin{aligned}
V_{c} & =\frac{1}{2} h\{|\hat{\mathbf{c}}|-|\overrightarrow{\mathbf{e}}|\}^{2} \\
& =\frac{1}{2} h\{1-|\overrightarrow{\mathbf{c}}|\}^{2} .
\end{aligned}
$$

The pentagonal stretching springs along the edges a and b contribute the remainder of the stretching potential.

The edge vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \ldots, \overrightarrow{\mathbf{n}}$ are also used to calculate the angles $\theta(g), \phi(g)$, and $\gamma(g)$ shown in Fig. 10. When the displacement vectors $\overline{\mathrm{d}(\mathrm{g})}$ are all zero, the angles $\theta(g), \phi(g)$, and $\gamma(g)$ have equilibrium values $\Theta=108^{\circ}, \Phi=120^{\circ}$, and $\Phi=120^{\circ}$, respectively. Upon distortion of the unit cell, these angles will change, compressing or expanding the bending springs shown in Fig. 9. The values of the angles $\theta(g), \phi(g)$, and $\gamma(g)$ are calculated from the arcosine of the normalized scalar product between selected edge vectors. For example, the value of $\theta(1)$ is given by

$$
\theta(1)=\operatorname{arcos}\left\{\frac{\vec{a} \cdot \overrightarrow{\mathbf{b}}}{|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}|}\right\}
$$

The differences between the equilibrium angles Θ and Φ, and the distorted angles $\theta(g), \phi(g)$, and $\gamma(g)$ are squared and multiplied by one-half the corresponding spring constant, to obtain the bending potential energy. For example, the first term in Eqs. (3.3b) is the potential energy of the pentgonal bending spring π that spans the angle $\theta(1)$, and is given by

$$
V_{\theta(1)}=\frac{1}{2} \pi[\theta-\theta(1)]^{2}
$$

where the radius of curvature of the spring is included in the spring constant. The remaining bending springs contribute the rest of the bending potential.

The edge vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \ldots, \overrightarrow{\mathbf{n}}$ are functions of the displacement vectors $\overline{d(g)}$. Each of the $10 \overline{d(g)}$ are represented in terms of the x, y, and z axes of the body-fixed coordinate system, and have 30 corresponding components $x(g), y(g)$, and $z(g)$. The potential energy is Eq. (3.3) will be a function

FIG. 10. Stereoscopic view of an arbitrarily distorted unit cell. Vectors and angles used to calculate the potential are labeled. An undistorted unit cell is shown for reference. Group operator defined coordinate systems of the unit cell are included.

TABLE I. Nonzero elements of the $\langle 1 A|$ and $\langle 1 B|$ rows of the initial force matrix as a function of spring constants p, h, π, and η.

| (1A\|K|1A ${ }^{\text {d }}$ | $=(0.081426) p$ | $+(0.040713) h$ | + (0.4 | 764) $\pi+(1.46566) \eta$ | ($\left.1 A\|\mathrm{~K}\| r_{3} A\right\rangle$ | $=(0) p+(0) h+(0) \pi$ | $+(0.122138) \eta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ($1 A\|\mathrm{~K}\| 1 B\rangle$ | $=-(0.157533) p$ | $+(0.139741) h$ | - (0.89 | 307) $\pi+(1.09754) \eta$ | $\left(1 A\|\mathrm{~K}\| r_{3} B\right)$ | $=(0) p+(0) h+(0) \pi$ | $+(0.085289) \eta$ |
| ($\left.1 A\|\mathbf{K}\| \sigma_{5} B\right\rangle$ | $=-(0.157533) p$ | $+(0.139741) h$ | -10.89 | 5307) $\pi+(1.09754) \eta$ | $\langle 1 A\| \mathbf{K}\left\|\rho_{r}^{3} B\right\rangle$ | $=(0) p+(0) h+(0) \pi$ | $+(0.316143) \eta$ |
| $\langle 1 A\| \mathbf{K}\left\|i_{7} A\right\rangle$ | $=(0) p$ | $+(0.040713)$ | $+(0) \pi$ | $-(0.977107) \eta$ | ($\left.1 A\|\mathbf{K}\| r_{3}^{2} A\right\rangle$ | $=(0) p+(0) h+(0) \pi$ | $+(0.122138) \eta$ |
| $\langle 1 A\| \mathbf{K}\left\|i_{7} B\right\rangle$ | $=(0) p$ | $+(0.139741) h$ | $+(0) \pi$ | $-(0.294679) \eta$ | $\langle 1 A\| \mathbf{K}\left\|r_{3}^{2} B\right\rangle$ | $=(0) p+(0) h+(0) \pi$ | $-(0.248647) \eta$ |
| $\left(1 A\|\mathbf{K}\| \sigma_{11} B\right\rangle$ | $=(0) p$ | $+(0.139741)$ | $+(0) \pi$ | $-(0.294679) \eta$ | $\left(1 A\|\mathbf{K}\| \rho_{5}^{2} B\right.$ | $=(0) p+(0) h+(0) \pi$ | $+(0.213062) \eta$ |
| $\langle 1 A\| \mathrm{K}\left\|R^{4} A\right\rangle$ | $=(0.040713) p$ | $+(0) h$ | - (0.3085 | 10) $\pi-(0.488553) \eta$ | $\langle 1 A\| \mathbf{K}\left\|R_{1}{ }_{1} A\right\rangle$ | $=(0) p+(0) h+(0.077$ | (0) η |
| $\langle 1 A\| \mathbf{K}\left\|R^{4}{ }^{4} B\right\rangle$ | $=(0.036660) p$ | $+(0) h$ | + (0.827 | 7726) $\pi-(1.16149) \eta$ | $\langle 1 A\| \mathbf{K}\left\|R_{1}^{3} B\right\rangle$ | $=(0) p+(0) h-(0.26$ | $+(0) \eta$ |
| $\left\langle{ }^{1} A\right\| \mathbf{X}\left\|\sigma_{4} B\right\rangle$ | $=-(0.194194) p$ | $+(0) h$ | + (0.366 | 6017) $\pi-(0.007219) \eta$ | $\langle 1 A\| \mathbf{K}\left\|\sigma_{8} B\right\rangle$ | $=(0) p+(0) h-(0.03$ | $+(0) \eta$ |
| $\langle 1 A\| \mathbf{K}\left\|R_{1} A\right\rangle$ | $=(0.040713) p$ | $+(0) h$ | - 0.308 | 8510) $\pi-(0.488553) \eta$ | ($\left.1 A\|\mathbf{K}\| R_{1}^{2} A\right\rangle$ | $=(0) p+(0) h+(0.07$ | $+(0) \eta$ |
| $\langle 1 A\| \mathbf{K}\left\|R_{1} B\right\rangle$ | $=-(0.194194) p$ | $+(0) h$ | $+(0.366$ | 6017) $\pi-(0.007219) \eta$ | ($\left.1 A\|\mathbf{K}\| R_{1}^{2} B\right\rangle$ | $=(0) p+(0) h-(0.33$ | $+(0) \eta$ |
| $\langle 1 A\| \mathrm{K}\left\|\sigma_{10} B\right\rangle$ | $=(0.036660) p$ | +(0) h | $+(0.827$ | 7726) $\pi-(1.16149) \eta$ | $\left\langle{ }^{(1 A\|K\| ~} \sigma_{15} B\right\rangle$ | $=(0) p+(0) h-(0.264$ | $+(0) \eta$ |
| $\langle 1 A\| \mathbf{K}\left\|r_{7}^{2} A\right\rangle$ | $=(0) p$ | $+(0) h$ | $+(0) \pi$ | $+(0.122138) \eta$ | ($\left.1 A\|\mathbf{K}\| r_{7} A\right\rangle$ | $=(0) p+(0) h+(0) \pi$ | $+(0.122138) \eta$ |
| $\left.\langle 1 A\| \mathrm{K} \mid r_{7}^{2} B\right)$ | $=(0) p$ | +(0) h | $+(0) \pi$ | $+(0.316143) \eta$ | $\left(1 A\|K\| r_{7} B\right\rangle$ | $=(0) p+(0) h+(0) \pi$ | $+(0.213062) \eta$ |
| $\langle 1 A\| \mathbf{K}\left\|\rho_{5}^{3} B\right\rangle$ | $=(0) p$ | + (0) h | $+(0) \pi$ | $+(0.085289) \eta$ | $\langle 1 A\| \mathrm{K}\left\|\rho_{4}^{2} B\right\rangle$ | $=(0) p+(0) h+(0) \pi$ | $-(0.248647) \eta$ |

$\langle 1 B\| \mathbf{K}\|1 A\rangle$	$=-(0.157533)_{p}$	+(0.139741	$-(0.895307) \pi+(1.09754) \eta$	$\left(1 B\|\mathbf{K}\| r_{3} A\right\rangle$	$=(0) p+(0) h+(0) \pi$	$-(0.248646) \eta$	
$\langle 1 B\| \mathbf{K}\|1 B\rangle$	$=(0.959287) p$	$+(0.479644)$	$+(2.07763) \pi+(4.26717) \eta$	$\langle 1 B\| \mathbf{K}\left\|r_{3} B\right\rangle$	$=(0) p+(0) h+(0) \pi$	$-(0.173629) \eta$	
(1B\|K	$\sigma_{5} B$)	$=-(0.349730) p$	+ (0.479644	$+(1.38665) \pi-(1.84158) \eta$	$\left(1 B\|\mathbf{K}\| \rho_{4}^{3} B\right)$	$=(0) p+(0) h+(0) \pi$	$-(0.643597) \eta$
$\langle 1 B\| \mathbf{K}\left\|i_{7} A\right\rangle$	$=(0) p$	$+(0.139741)$	$+(0) \pi \quad-(0.294679) \eta$	$\langle 1 B\| \mathbf{K}\left\|r_{3}^{2} A\right\rangle$	$=(0) p+(0) h+(0) \pi$	$+(0.085289) \eta$	
$\left(1 B\|\mathbf{K}\| i_{7} B\right)$	$=(0) p$	$+(0.479644)$	$+(0) \pi \quad+(2.72462) \eta$	$\left(1 B\|\mathbf{K}\| r_{3}^{2} B\right\rangle$	$=(0) p+(0) h+(0) \pi$	$-(0.173629) \eta$	
$\langle 1 B\| \mathbf{K}\left\|\sigma_{11} B\right\rangle$	$=(0) p$	$+(0.479644$	$+(0) \pi \quad-(2.511145) \eta$	($\left.1 B\|\mathbf{K}\| \rho_{s}^{2} B\right\rangle$	$=(0) p+(0) h+(0) \pi$	$+(0.148780) \eta$	
$\langle 1 B\| \mathbf{K}\left\|R_{1}^{4} A\right\rangle$	$=-(0.194194)$	$+(0) h$	$+(0.366017) \pi-(0.007219) \eta$	$\langle 1 B\| \mathbf{K}\left\|R^{3} A\right\rangle$	$=(0) p+(0) h-(0.03$	$+(0) \eta$	
$\langle 1 B\| \mathbf{K}\left\|R_{1}^{4} B\right\rangle$	$=-(0.174865) p$	$+(0) h$	$-(1.15476) \pi+(0.053294) \eta$	($\left.1 B\|\mathrm{~K}\| R_{1}^{3} B\right\rangle$	$=(0) p+(0) h+(0.1$	$+(0) \eta$	
$\langle 1 B\| \mathbf{K}\left\|\sigma_{4} B\right\rangle$	$=(0.926276) p$	$+(0) h$	$-(0.261498) \pi+(0.228144) \eta$	$\langle 1 B\| \mathbf{K}\left\|\sigma_{8} B\right\rangle$	$=(0) p+(0) h+(0.01$	$+(0) \eta$	
$\langle 1 B\| \mathbf{K}\left\|R_{1} A\right\rangle$	$=(0.036660) p$	$+(0) h$	$+(0.827726) \pi-(1.16149) \eta$	$\left(1 B\|\mathbf{K}\| R_{1}^{2} A\right\rangle$	$=(0) p+(0) h-(0.26$	+ (0) η	
(1B\|K	$\left.\mathrm{R}_{1} B\right\rangle$	$=-(0.174865) p$	$+(0) h$	$-(1.15476) \pi+(0.053294) \eta$	$\left.{ }_{(1 B\|K\| R \mid R}^{1}{ }_{1} B\right\rangle$	$=(0) p+(0) h+(0.11$	$+(0) \eta$
$\langle 1 B\| \mathbf{K}\left\|\sigma_{10} B\right\rangle$	$=(0.033011) p$	+0) h	$-(2.04803) \pi-(2.73959) \eta$	${ }^{\left(1 B\|\mathrm{~K}\| \sigma_{15} B\right\rangle}$	$=(0) p+(0) h+(0.908$	$+(0) \eta$	
$\langle 1 B\| \mathbf{K}\left\|r_{7}^{2} A\right\rangle$	$=(0) p$	+(0)h	$+(0) \pi \quad+(0.213062) \eta$	$\left\langle{ }^{\left(1 B\|E\| K\left\|r_{7} A\right\rangle\right.}\right.$	$=(0) p+(0) h+(0) \pi$	$+(0.316143) \eta$	
$\langle 1 B\| \mathbf{K}\left\|r_{7}^{2} B\right\rangle$	$=(0) p$	$+(0) h$	$+(0) \pi \quad+(0.551490) \eta$	$\left(1 B\|\mathbf{K}\| r_{7} B\right.$)	$=(0) p+(0) h+(0) \pi$	$+(0.551490) \eta$	
$\langle 1 B\| \mathbf{K}\left\|\rho_{5}^{3} B\right\rangle$	$=(0) p$	$+(0) h$	$+(0) \pi \quad+(0.148780) \eta$	$\langle 1 B\| \mathbf{K}\left\|\rho_{4}^{2} B\right\rangle$	$=(0) p+(0) h+(0) \pi$	$-(0.643597) \eta$	

of the $x(g), y(g)$, and $z(g)$, which form an initial set of 30 generalized coordinates. These initial generalized coordinates are functions of the more useful set of group operator defined generalized coordinates $g A, g B$, and $g \sigma_{s} B$. The transformation between $x(g), y(g), z(g)$, and $g A, g B, g \sigma_{5} B$, is given by the icosahedral T_{1} vector irreps $D^{T_{1}}(g)$. Once expanded in terms of the group operator variables $g A, g B$, and $g \sigma_{s} B$, the potential energy may be used to obtain force matrix elements. These elements will be the second-order partial derivatives of the potential energy, with respect to the generalized coordinates $g A, g B$, and $g \sigma_{5} B$,

$$
\begin{equation*}
\langle g \mathrm{O}| \mathbf{K}\left|g^{\prime} \mathrm{O}^{\prime}\right\rangle=\left|\frac{\partial^{2}}{\partial g \mathrm{O} \partial g^{\prime} \mathrm{O}^{\prime}} V\left(g A, g B, g \sigma_{5} B\right)\right|_{\text {equilibrium }} \tag{3.4}
\end{equation*}
$$

A four-point central difference method was used to numerically calculate the second-order derivatives in Eq. (3.4) because the algebra of an analytic approach was prohibitive.

The force matrix elements in Eq. (3.4) are linear functions of the spring constants p, h, π, and η. The proportionality factors between spring constants and force matrix elements are determined by setting three of the four spring constants to 0 and the remaining constant to 1 . A list of these porportionality factors between spring constants p, h, π, and η, and force matrix elements that couple $\langle 1 A|$ and $\langle 1 B|$ to the $|g O\rangle$ of the unit cell, are given in Table I. These values
permit the rapid calculation of the $\langle 1 A|$ and $\langle 1 B|$ rows of the force matrix, for any choice of spring constants. By construction, the force matrix commutes with all the group operators of I_{h} and therefore has icosahedral symmetry. Thus, it is possible to block the diagonalize the force matrix using icosahedral symmetry projection, which requires only the two force matrix rows $\langle 1 A|$ and $\langle 1 B|$.

IV. ICOSAHEDRAL SYMMETRY PROJECTION

In Sec. III, matrix elements of the force constant operator K were calculated in the 180 -dimensional, group operator defined representation $|g \mathrm{O}\rangle$. The operator K commutes with all group operators of the full icosahedral group I_{h},

$$
g^{-1} \mathbf{K} g=\mathbf{K} ;\left\{g \in I_{H}\right\}
$$

and therefore may be reduced using icosahedral symmetry projection. This reduction requires the first two rows of the initial force matrix and is affected by icosahedral symmetry projection operators $P_{i j}^{\alpha}$ defined by

$$
\begin{equation*}
P_{i j}^{\alpha}=\frac{l^{\alpha}}{{ }^{\circ} G} \sum_{g \in G} D_{i j}^{\alpha *}(g) g \tag{4.1}
\end{equation*}
$$

In Eq. (4.1), α is the irrep label, ${ }^{\circ} G$ is the order of the group, l^{α} is the dimension of the α th irrep, and $D_{i j}^{(\alpha)}(g)$ is the i, j th element of the α th irrep of g. Since Eq. (4.1) is a sum over

FIG. 11. The $I_{h} \supset C_{v}$ correlation table.
group operators, projection operators formally belong to the theory of rings. ${ }^{22}$

Operation on an initial state vector $|10\rangle$ with projection operators defined by Eq. (4.1) will yield the group irreducible representation $\left|\mathrm{O}_{i j}^{\alpha}\right\rangle$,

$$
\begin{equation*}
P_{i j}^{\alpha}|1 \mathrm{O}\rangle / \sqrt{N^{\alpha}}=\left|\mathrm{O}_{i j}^{\alpha}\right\rangle=\left\{\frac{l^{\alpha}}{{ }^{\circ} G}\right\}^{1 / 2} \sum_{g \in G} D_{i j}^{\alpha *}(g)|g \mathrm{O}\rangle, \tag{4.2}
\end{equation*}
$$

where $N^{\alpha}=I^{\alpha} /{ }^{\circ} G$ is required for normalization. In the $\left|O_{i j}^{\alpha}\right\rangle$ basis, group operators will be block diagonal with group irreps forming the block diagonal elements. Operators that commute with all group operators will also be block diagonalized in this basis. Properties of the projection operators $P_{i j}^{\alpha}$, and the irreducible basis vectors $\left|\mathrm{O}_{i j}^{\alpha}\right\rangle$ are given in Appendix C.

The form of the block diagonalized force matrix in the $\left|O_{i j}^{\alpha}\right\rangle$ representation is determined by the local symmetry of the coordinate axes shown in Fig. 7. The vector $\overline{1 A}$ is invariant under the operation of the + type projection operator P^{+}of the local symmetry group $C_{V}=\left\{1, \sigma_{5}\right\}$,

$$
P+\overline{1 \mathbf{A}}=\frac{1}{2}\left\{1+\sigma_{5}\right\} \overline{\mathbf{1 A}}=\overline{1 \mathbf{A}} .
$$

This means that the frequency $f^{\alpha,+}$ with which the icosahedral irrep α will occur in the $\left|A_{i j}^{\alpha}\right\rangle$ representation of an icosahedral group operator is given by the + column of the $I_{h} \supset C_{V}$ correlation table shown in Fig. 11. This is schematically expressed as

$$
\begin{align*}
A(g)= & D^{A_{g}}(g) \oplus D^{T_{1 g}}(g) \oplus D^{T_{3 g}}(g) \oplus 2 D^{G_{8}}(g) \oplus 3 D^{H_{g}}(g) \\
& \oplus 2 D^{T_{1 u}}(g) \oplus 2 D^{T_{3 u}}(g) \oplus 2 D^{G_{u}}(g) \oplus 3 D^{H_{u}}(g) . \tag{4.3}
\end{align*}
$$

The local symmetry of the vector 1 B is described by the trivial group $C_{i}=\{1\}$. The first column of the I_{h} character table given in Appendix B determines the frequency
$f^{\alpha, 1}=l^{\alpha}$ of the α th irrep in the $\left|B_{i j}^{\alpha}\right\rangle$ representation,

$$
\begin{align*}
B(g)= & D^{A_{g}}(g) \oplus 3 D^{T_{1 g}}(g) \oplus 3 D^{T_{3 g}}(g) \\
& \oplus 4 D^{G_{8}}(g) \oplus 5 D^{H_{g}}(g) \\
& \oplus D^{A_{u}}(g) \oplus 3 D^{T_{1 u}}(g) \oplus 3 D^{T_{3 u}}(g) \\
& \oplus 4 D^{G_{u}}(g) \oplus 5 D^{H_{u}}(g) . \tag{4.4}
\end{align*}
$$

Together, Eqs. (4.3) and (4.4) determine the frequencies of the I_{h} irreps in the 180-dimensional buckyball space defined by orbits A and B.

$$
\begin{align*}
A(g) \oplus B(g)= & 2 D^{A_{g}}(g) \oplus 4 D^{T_{1 g}}(g) \oplus 4 D^{T_{3 s}}(g) \\
& \oplus 6 D^{G_{g}}(g) \oplus 8 D^{H_{g}}(g) \\
& \oplus D^{A_{u}}(g) \oplus 5 D^{T_{1 u}}(g) \oplus 5 D^{T_{3 u}}(g) \\
& \oplus 6 D^{G_{u}}(g) \oplus 7 D^{H_{u}}(g) . \tag{4.5}
\end{align*}
$$

The block diagonal form of the force constant operator K in the $\left\langle\mathrm{O}_{i j}^{\alpha}\right\rangle$ representation is obtained from Eq. (4.5) by interchaning the frequency of occurrence f^{α} of the α th irrep, with the dimension l^{α} of the α th irrep,

$$
\begin{align*}
A(\mathbf{K}) \oplus B(\mathbf{K})= & K^{A_{8}} \oplus 3 K^{T_{18}} \oplus 3 K^{T_{3_{g}}} \oplus 4 K^{G_{8}} \oplus 5 K^{H_{g}} \\
& \oplus K^{A_{u}} \oplus 3 K^{T_{1 u}} \oplus 3 K^{T_{3 u}} \oplus 4 K^{G_{u}} \oplus 5 K^{H_{u}} . \tag{4.6}
\end{align*}
$$

The K^{α} in Eq. (4.6) are force matrix blocks with a dimension d_{α} given by the sum of $I_{h} \supset C_{V}$ correlation elements $f^{\alpha,+}$ and irrep dimension l^{α},

$$
d_{\alpha}=f^{\alpha,+}+l^{\alpha}
$$

For example, there will be five identical 8×8 block diagonal elements in the icosahedrally projected force matrix labeled by the I_{h} irrep $\alpha=H_{g}$. The dimension $d_{H_{g}}=8$ of the $K^{H_{g}}$ blocks is the number of distinct H_{g}-type eigenvalues, and the frequency $l^{H_{g}}=5$ of the $K^{H_{8}}$ blocks is the degeneracy of the distinct H_{g} eigenvalues. A list of I_{h} irrep labels with the number of distinct eigenvalues per label, and degeneracies per eigenvalue is given in Table II. The form of the force matrix blocks are given in Fig. 12.

TABLE II. The number of distinct vibrational eigenvalues and degeneracies of buckyball determined by icosahedral irrep labels.

I_{h} group label	Number of eigenvalues	Degeneracy	
A_{g}	2	1	
$T_{1 g}$	3	3	Even
$T_{3 g}$	4	3	parity
G_{g}	6	4	
H_{g}	8	5	
A_{u}	1	1	
$T_{1 u}$	4	3	Odd
$T_{3 u}$	5	3	parity
G_{u}	6	4	
H_{u}	7	5	

V. RESULTS

Numerical diagonalization of the force matrix blocks shown in Fig. 12 will yield the vibrational eigenvalues of the spring mass model of buckyball. Diagonal elements $K_{i i}^{\alpha}=K_{i}^{\alpha}$ of the force matrix are effective spring constants of harmonic oscillators in normal coordinates with corresponding eigenfrequencies,

$$
\omega_{i}^{\alpha}=\left\{K_{i}^{\alpha} / m_{c}\right\}^{1 / 2}
$$

The l^{α} force matrix blocks K^{α} are identical so it is redundant to diagonalize more than one to obtain the l^{α}-fold degenerate $i=1, \ldots, d_{\alpha}$ eigenfrequencies ω_{i}^{α}. As a result, the diagonalization of the original 180 -dimensional force matrix is reduced by icosahedral symmetry projection, to the diagonalization of one 2×2, one 7×7, one 8×8, matrix, and two 4×4, two 5×5 and two 6×6 matrices. This greatly reduces the numerical labor required to calculate eigenfrequencies and permits the entire problem to be solved for any
choice of spring constants in a few seconds on a small personal computer.

The functional dependence of the buckyball vibrational eigenfrequencies ω_{i}^{α} on the spring constants p, h, π, and η is displayed in the form of eigenvalue trajectories shown in Fig. 13. To make the trajectories, both stretching spring constants p and h are set equal to 1 in arbitrary units. Then the bending spring π and η are set equal to each other and varied simultaneously from 0 to 1 . For each value of $\pi=\eta$, force matrix elements in the initial group operator defined basis $|g A\rangle,|g B\rangle$, and $\left|g \sigma_{5} B\right\rangle$, are calculated using Table I. The force matrix blocks in Fig. 12 are formed from these initial matrix elements using icosahedral symmetry projection, and numerically diagonalized using a Householder diagonalization routine. The resulting eigenfrequencies are then plotted to form the trajectories.

A line drawn parallel to the frequency axis in Fig. 13, and positioned along the $\pi=\eta$ axis will intersect a total of 46 trajectories. The points of intersection correspond to the

FIG. 12. Block diagonal elements of the force matrix obtained by icosahedral symmetry projection.

FIG. 12 (continued).
vibrational eigenvalues of buckyball for any particular choice of $\pi=\eta$. Only 14 of the 46 distinct eigenvalues will be observable with dipole or Raman spectroscopy. Four of these 14 eigenfrequencies correspond to the three-fold degenerate first-order dipole active $T_{1 u}$ modes. The fifth of the $d_{T_{1 u}}=5 \quad T_{1 u}$ modes corresponds to zero frequency translation in three orthogonal directions. The remaining 10 observable eigenfrequencies correspond to first-order Raman active modes. Eight of these are the $d_{H_{g}}=8$ fivefold degenerate H_{g} modes, and two are the $d_{A_{g}}=2$ nondegenerate A_{g} modes.

The lower bound of any set of buckyball vibrational eigenfrequencies for $p=h=1$ and $0 \leqslant \pi=\eta \geqslant 1$, is determined by the lowest H_{g} trajectory. The upper bound is very nearly determined by the highest H_{g} trajectory. The two A_{g} trajectories are parallel to the $\pi=\eta$ axis and are therefore independent of the bending spring constants. This will be useful in the comparison of experimental and theoretical spectra because the two stretching spring constants p and h can be determined from the two A_{g} eigenfrequencies.

By plotting eigenvalue trajectories, a set of physically relevant spring constants is most likely to be used. A reasonable choice of spring constants may be obtained from benzene which is similar to hexagonal fragment of buckyball, ${ }^{23}$

$$
\begin{align*}
& h=7.6 \times 10^{5} \mathrm{dyn} / \mathrm{cm}=p \\
& \eta=0.7 \times 10^{5} \mathrm{dyn} / \mathrm{cm}=\pi \tag{5.1}
\end{align*}
$$

The spring constant p has been set equal to h because any actual difference between the two is probably beyond the accuracy of this initial choice. For the same reason π is set equal to η. Using these spring constants, a reasonable prediction of the vibrational buckyball spectrum lies at about $\pi=\eta=0.1$ in Fig. 13. Nearby at $\pi=\eta=0.17$ there is a nearly degenerate avoided crossing between the two lowest dipole active $T_{1 u}$ trajectories. As a result the lowest two dipole active eigenfrequencies will be closely spaced. A synthetic spectrum of the dipole and Raman active modes using spring constants given in Eq. (5.1) is shown in Fig. 14. A list

FIG. 13. Buckyball vibrational eigenvalue trajectories. Note the near degenerate avoided crossing of the lowest two $T_{1 u}$ trajectories at $\pi=\eta=0.17$.
of all 46 distinct buckyball vibrational eigenfrequencies using the same spring constants is given in Table III.

The l^{α} identical force matrix blocks K^{α} in Fig. 12 are diagonalized by l^{α} identical transformation matrices T^{α}. The T^{α} mix the projection operator bases $\left|O_{i j}^{\alpha}\right\rangle$ to form eigenvectors $\left|\alpha_{b c}\right\rangle$,

$$
\begin{equation*}
\left|\alpha_{b, c}\right\rangle=\sum_{i} T_{i, c}^{\alpha}\left|\mathbf{O}_{b, i}^{\alpha}\right\rangle \tag{5.2}
\end{equation*}
$$

In Eq. (5.2) the index b runs from 1 to l^{α} and labels the l^{α} degenerate partners that correspond to the l^{α} identical force matrix blocks K^{α}. The index c runs from 1 to d_{α} and labels the column of the b th force matrix block to which the eigenvector belongs. The index i of the transformation T^{α} runs from 1 to d_{α}, and the corresponding index i of the $\left|O_{b, i}^{\alpha}\right\rangle$ effectively runs from 1 to d_{α} when both orbit labels A and B are used. Eigenvalues that correspond to the $\left|\alpha_{b c}\right\rangle$ are labeled ω_{c}^{α}. The initial force matrix was block diagonalized by the transformation Q given by Eq. (4.2). The elements of Q are the overlaps between the original group operator defined basis $|g A\rangle,|g B\rangle,\left|g \sigma_{5} B\right\rangle$, and the projection operator basis $\left|\mathrm{O}_{i, j}^{\alpha}\right\rangle$. Multiplication of Q and T yields the matrix R that directly diagonalizes the initial force matrix. Elements of the matrix R are overlaps between the original group operator defined basis and the eigenvectors of the force matrix,

$$
\begin{align*}
\sum_{i=1}^{d_{\alpha}} Q_{g \mathrm{O}, b i}^{\alpha} T_{i c}^{\alpha}=R_{g \mathrm{O}, b c}^{\alpha} & =\sum_{i=1}^{d_{\alpha}}\left\langle g \mathrm{O} \mid \mathrm{O}_{b i}^{\alpha}\right\rangle\left\langle\mathrm{O}_{b i}^{\alpha} \mid \alpha_{b c}\right\rangle \\
& =\left\langle g \mathrm{O} \mid \alpha_{b c}\right\rangle \tag{5.3}
\end{align*}
$$

These overlaps are coefficients of the eigenvectors of the force matrix in an expansion of the initial group operator defined basis vectors. In general these coefficients may be complex. At time $t=0$ the real parts $\operatorname{Re}\left\{\left\langle g A \mid \alpha_{b c}\right\rangle\right\}$, $\operatorname{Re}\left\{\left\langle g B \mid \alpha_{b c}\right\rangle\right\}$, and $\operatorname{Re}\left\{\left\langle g \sigma_{5} B \mid a_{b c}\right\rangle\right\}$ determine the displacement of each of the 60 masses of buckyball located at the vertices labeled g, in the $\overline{\mathrm{gA}}, \overline{\mathrm{gB}}$, and $\overline{\mathrm{g} \sigma_{5} \mathrm{~B}}$ directions. The imaginary parts $\operatorname{Im}\left\{\left\langle g A \mid \alpha_{b c}\right\rangle\right\}, \operatorname{Im}\left\{\left\langle g B \mid \alpha_{b c}\right\rangle\right\}$, and $\operatorname{Im}\left\{\left\langle g \sigma_{5} B \mid a_{b c}\right\rangle\right\}$ determine the momentum of each of the 60 masses in the corresponding directions.

The real and imaginary parts of the coefficient $\left\langle g \mathrm{O} \mid \alpha_{b c}\right\rangle$ are also the coordinates of the gOth phasor in the two-dimensional gOth phase space where the real axis corresponds to the displacement of the g th mass in the $\overrightarrow{g O}$ direction, and the imaginary axis corresponds to the scaled momentum P / $m \omega$ of the g th mass. The phase of the $g O t h$ phasor is given by

$$
\beta_{g \mathrm{O}}=\arctan \left\{\frac{\operatorname{Im}\left(\left\langle g \mathrm{O} \mid \alpha_{b c}\right\rangle\right)}{\operatorname{Re}\left(\left\langle g \mathrm{O} \mid \alpha_{b c}\right\rangle\right)}\right\}
$$

FIG. 14. Synthetic spectrum of the Raman and dipole active modes of buckyball. Spring constants are those of benzene given in Eq. (5.1). The scale is in units of $1185 \mathrm{~cm}^{-1}$. Lines a-n correspond to teh $A_{g}, T_{1 u}$, and H_{g} modes in Figs. 15(a)-15(n).
and evolves in time with an angular frequency ω_{c}^{α}. When the coefficients in Eq. (5.3) are complex, the β_{80} phasors will be out of phase and the displaced gth mass will never pass through its equilibrium position. In general, the trajectory of the gth mass will be elliptical and will have some associated vibrational angular momentum. This will couple with any existing rotational angular momentum and split the l^{α} degeneracies. These complex normal modes are referred to as moving waves because at no time do any of the masses have pure displacement and no momentum. When the coefficients in Eq. (5.3) are pure real, the β_{80} phasors will be in phase or out of phase by 180°. This means that at $t=0$ all

TABLE III. Symmetry labeled eigenfrequencies of buckyball for spring constants of benzene given in Eq. (5.1).

Even parity		Odd parity	
$I_{h} \text { group }$ label	Frequency ($1 / \mathrm{cm}$)	$I_{n} \text { group }$ label	Frequency (1/cm)
A_{8}	$\begin{array}{r} 1830 \\ 510 \end{array}$	A_{u}	1243
T_{18}		T_{14}	1868
	1662		1462
	1045		618
	513		478
T_{38}	1900	$T_{3 u}$	1954
	951		1543
	724		1122
	615		526
			358
G_{g}	2006		
	1813	$\boldsymbol{G}_{\text {u }}$	2004
	1327		1845
	657		1086
	593		876
	433		663
			360
H_{g}	2085		
	1910	H_{u}	2086
	1575		1797
	1292		1464
	828		849
	526		569
	413		470
	274		405

masses are maximally displaced, at $t=\pi / 2 \omega$ all masses pass through their equilibrium positions, and at $t=\pi / \omega$ all masses reach maximal displacement in the opposite direction. Normal modes that display this degenerate elliptical motion, where the trajectories of all 60 masses are straight lines, are refered to as standing waves.

Stereographic figures of the four dipole and ten Raman active normal modes of buckyball are shown in Fig. 15 and correspond to the 14 spectral lines in Fig. 14. These figures are single snapshots at time $t=0$ of computer generated three-dimensional (3D) movies of normal mode standing waves that were generated by a MacIntosh 512 K personal computer. The modes are labeled by icosahedral irreps α, icosahedral subgroup chains, parity, force matrix column number, and partner number. For example, a typical dipole label is given by

$T 1$	$D 5 S$	U	1	PARTNER No. 1
\mid	\mid	\mid	\mid	\mid
Icosahedral	Icosahedral	Parity	Force	Partner
irrep	subgroup		matrix	
label	chain		column	

J. Chem. Phys., Vol. 90, No. 9, \uparrow May 1989

FIG. 15. Stereoscopic views of the (a)(b) A_{g} (c)-(f) $T_{i u}$, and (g)-(n) H_{g} modes of buckyball. Stretching and bending spring constants given at the top of each figure have approximately the same ratio as those of benzene given in Eq. (5.1). Mode labels and frequencies in units of $1010 \mathrm{~cm}^{-1}$ are given at the bottom of the figures. Modes (a)-(n) correspond to spectral lines $a-n$ in Fig. 14.

FIG. 15 (continued).

h) $\underset{\pi=1}{p=1} \quad \bar{n}=2.1$

MODE: HD5SG 2 PARTMERA 1
FREQ: 1.86

FIG. 15 (continued).

J. Chem. Phys., Vol. 90, No. 9, 1 May 1989

FIG. 15 (continued).

J. Chem. Phys., Vol. 90, No. 9, 1 May 1989

FIG. 15 (continued).

The icosahedral subgroup chain label $D 5 S$ identifies which particular set of equivalent icosahedral irreps were used in Eqs. (4.2) and (5.3) to calculate the normal mode. The partner number distinguishes between the l^{α} degenerate modes.

Only the first partner of the two A_{g}, four $T_{1 u}$, and eight H_{g} modes are shown in Fig. 15. The two nondegenerate A_{g} modes consist of a higher frequency "pentagonal pinch" mode and a lower frequency "breathing" mode. In both A_{g} modes only the edge lengths change while the vertex angles $\theta(g), \phi(g)$, and $\gamma(g)$ remain constant and equal to their equilibrium values $\Theta(g)=108^{\circ}, \quad \Phi(g)=120^{\circ}$, and $\Phi(g)=120^{\circ}$. This is expected because the A_{g} irrep label indicates that the A_{g} modes are icosahedrally invariant which is violated if the angles change. This agrees with the earlier conclusion that the A_{g} eigenvalues are independent of the bending spring constants.

The dipole nature of the $T_{1 u}$ modes can be seen in Figs. 15(a)-15(d). In the three highest frequency modes the top pentagon is constricted while the bottom pentagon is distended. This distortion of the nuclei, as they alternately crowd toward the top and then bottom pentagon, shifts charge symmetrically along an axis that passes through the center of the pentagons and defines the dipole axis of the mode. The lowest frequency mode has top and bottom pentagons that remain the same size and move up and down in concert while the remaining nuclei move in the opposite direction in order to satisfy the translational Eckart condition. ${ }^{24}$ This also has the effect of creating a dipole moment along the axis passing through both pentagons. The remaining two degenerate partners of the four $T_{1 u}$ modes generate dipole moments in orthogonal directions.

In the absence of a central atom and strong radial bonds, the higher frequency normal modes of buckyball correspond

to primarily tangential motion of the carbon atoms. This motion distorts the stretching and bending springs to a greater degree than radial motion. This is why the tangential "pentagonal pinch" A_{g} mode is higher in frequency than the radial "breathing" A_{g} mode. A progression from tangential to radial motion can also be observed in the $T_{1 u}$ and H_{g} modes as a function of the frequency of the mode. For example, the highest frequency H_{g} mode is almost purely tangential while the lowest frequency H_{g} mode is almost an entirely radial distortion of buckyball into an ellipsoid.

VI. SPECIAL CASES

In Sec. V the behavior of the buckyball spring-mass model was studied with all four spring constants p, h, π, and η assigned nonzero values. With appropriate choices of spring constants set to zero, it is possible to study systems with reduced symmetry for which independent analytic results are available. Comparisons between the analytic results, and those obtained by icosahedral symmetry projection and subsequent numerical diagonalizations, provide a
a) $\mathrm{I}_{\mathrm{h}} \uparrow \mathrm{C}_{2 \mathrm{~h}}$

$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~B}_{1} \mathrm{~B}_{2}$				
A_{g}	1	0	0	0
T_{18}	0	1	1	1
$\mathrm{T}_{3 \mathrm{~B}}$	0	1	1	1
G_{g}	1	1	1	1
H_{g}	2	1	1	1
$\mathrm{A}_{\mathbf{u}}$	0	0	0	1
$\mathrm{T}_{1 \mathrm{u}}$	1	1	1	0
$\mathrm{T}_{3 \mathrm{u}}$	1	1	1	0
$\mathrm{G}_{\mathbf{u}}$	1	1	1	1
H_{u}	1	1	1	2

FIG. 17. The $I_{h} \supset C_{2 h}$ and $I_{h} \supset C_{5 v}$ subgroup correlation tables.
check on the validity of the general computational procedure.

The five choices of spring constants are as follows.
(i) $p \neq 0, h \neq 0, \pi \neq 0, \eta \neq 0$. When all four spring constants are nonzero, six of the $3 \times 60=180$ eigenvectors correspond to zero frequency motion. Three of these motions are the $l^{T_{1 u}}=3$, fifth column, $T_{1 u}$ translation, and three are the $l^{T_{18}}=3$, fourth column, $T_{1 g}$ rotations. The I_{h} irrep label $T_{1 u}$ is odd and corresponds to the polar nature of translation, while the irrep label $T_{1 g}$ is even and corresponds to the axial nature of rotation.
(ii) $p \neq 0, h \neq 0, \pi=\eta=0$. By setting the bending spring constants π and η to zero, 90 of the $3 \times 60=180$ eigenvectors of the force matrix will correspond to zero frequency motion. Six of these motions are the $T_{1 u}$ translations and $T_{1 g}$ rotations. The remaining 84 zero frequency motions correspond to first-order distortions of buckyball that change the vertex angles $\theta(g), \phi(g)$, and $\gamma(g)$ without stretching the edges. A set of eigenvalue trajectories for $\pi=\eta=0$ is given in Fig. 16 where the stretching spring constants p and h are varied as a function of the parameter X,

$$
\begin{align*}
& p \equiv p(X)=1-X \\
& h \equiv h(X)=X, \quad 0 \leqslant X \leqslant 1 . \tag{6.1}
\end{align*}
$$

(iii) $p=\pi=\eta=0, h=1$. When $X=1$ in Eq. (6.1) the pentagonal stretching spring is 0 and the hexagonal stretching spring is 1 . This choice of spring constants isolates 30 pairs of masses each aligned with one of the 30 icosahedral edges indicated by the thick lines in Fig. 2. The masses in each pair are coupled by a single hexagonal spring, forming 30 independent $C_{2 h}$ symmetric vibrational systems. The only nonzero frequency normal mode of these systems is the symmetric stretch labeled by the $C_{2 h}$ irrep A_{1}. The A_{1} column of the $I_{h} \supset C_{2 h}$ correlation table given in Fig. 17(a) determines which buckyball normal modes will simultaneously yield the symmetric stretch motion for each of the 30 vibrational systems. Eigenvalue trajectories in Fig. 16 corresponding to these modes converge to the single $C_{2 h}$ symmetric stretch eigenfrequency as $X \rightarrow 1$. The analytic solution of
the symmetric stretch eigenfrequency is found quite easily to be

$$
\omega^{A!}=\sqrt{2 h / m}
$$

where for $h=m=1, \omega^{A_{1}}=\sqrt{2}$. This is the frequency obtained using icosahedral symmetry projection which verifies the general calculational procedure. In particular it tests the geometry used to determine the potential dependence on the hexagonal spring constant h in Eq. (3.3a).
(iv) $h=\pi=\eta=0, p=1$. When $X=0$ in Eq. (6.1) the pentagonal stretching spring constant becomes one and hexagonal spring constant becomes zero. This choice of spring constants isolates 12 sets of five masses. Each mass is located at the vertex of a pentagon and is connected to the other masses of the pentagon with a pentagonal stretching spring. This forms 12 independent $C_{5 v}$ symmetric vibrational systems indicated by the thin lines in Fig. 2. Out of ten possible $C_{5 v}$ vibrations, one is a zero frequency A_{2} rotation, two are zero frequency E_{1} translations, and two are E_{2} bending motions with zero frequency when $\pi=0$. The five remaining $C_{5 v}$ normal modes consist of an A_{1} breathing mode, two degenerate E_{1} modes, and two degenerate E_{2} modes. The A_{1}, E_{1}, and E_{2} columns of the $I_{h} \supset C_{5 v}$ correlation table in Fig. 17(b) determine which normal modes of buckyball will yield A_{1}, E_{1}, and E_{2} type $C_{5 v}$ motions in each of the 12 isolated pentagons. Eigenvalue trajectories in Fig. 16 corresponding to these buckyball normal modes converge to the three A_{1}, E_{1}, and E_{2} type $C_{5 v}$ eigenfrequencies as $X \rightarrow 0$. These agree with analytic solutions in the independent calculation of the A_{1}, E_{1}, and E_{2} eigenfrequencies using $C_{S_{v}}$ projection methods given in Appendix A. For $p=m=1$ these are,

$$
\begin{aligned}
& \omega^{A_{1}}=\left\{\frac{1}{2}(5-\sqrt{5})\right\}^{1 / 2}=1.715570505 \ldots, \\
& \omega^{E_{1}}=\left\{1+\cos \left(\frac{\pi}{5}\right)\right\}^{1 / 2}=1.344997024 \ldots, \\
& \omega^{E_{2}}=\left\{\frac{5}{2}\right\}^{1 / 2}=1.58113883 \ldots
\end{aligned}
$$

This provides a further test of the general computational procedure and indicates that the potential dependence on the pentagonal springs p is treated correctly.
(v) $p=h=\eta=0, \pi=1$. The $C_{5 v}$ symmetry described in (iv) is unchanged with this choice of spring constants. There are two nonzero $C_{5 v}$ eigenvalues that correspond to doubly degenerate E_{1} modes and doubly degenerate E_{2} bending modes. The A_{1} breathing mode is independent of bending and is a zero frequency distortion in the absence of the pentagonal stretching spring. Analytic values calculated in Appendix A for $\pi=m=1$ are,

$$
\begin{aligned}
& \omega^{E 1}=\left\{\frac{5}{2}\right\}^{1 / 2}=1.58113883 \ldots \\
& \omega^{E 2}=\frac{\sqrt{5}}{2}\{5+\sqrt{5}\}^{1 / 2}=3.00750478 \ldots
\end{aligned}
$$

These values are also obtained using the general computational procedure and verify that the more complicated po-
tential dependance on the pentagonal spring constant π, in Eq. (3.3b), is correct.

A direct test of the hexagonal bending spring η is difficult because this spring couples all 60 masses in the buckyball model. However, the symmetric nature of the force matrix blocks in Fig. 12, the independence of vibrational eigenvalues with respect to the choice of equivalent sets of icosahedral irreps used in Eq. (4.2), and the observed bending spring independence of the A_{g} modes, all serve as indirect evidence that the potential dependance on the hexagonal spring η is also correct.

The buckyball eigenvectors determined by the A_{1} column of the $I_{h} \supset C_{2 h}$ correlation table span the 30 -dimensional $C_{2 h}$-induced-to- I_{h} repesentation. In this basis a force matrix is diagonal when $p=\pi=\eta=0$ and $h=1$. With this choice of spring constants all 30 diagonal elements are equal to the $C_{2 h}$ symmetric stretch eigenfrequency. By weakly coupling the $30 C_{2 h}$ symmetric vibrational systems with the pentagonal stretching spring, the 30 -fold degeneracy is split into eight clustered levels shown in the upper right-hand side of Fig. 16. This splitting is the classical analogue of the O_{2} type C_{2}-induced-to-I rotational superfine cluster also shown in the upper right-hand side of Fig. 16. ${ }^{13,14}$ Calculation of the
cluster splittings in both cases involves the construction of a coset space and the definition of an appropriate initial state vector $|1 A\rangle$. In the case of the rotational superfine splitting this initial state vector represents a wave packet with O_{2}-type C_{2} local symmetry localized on one of the 30 icosahedral edges, and is the probability amplitude for finding the angular momentum vector in a set of body-fixed coordinates. The C_{2} coset space is spanned by state vectors generated from the initial state vector using C_{2} coset leaders. In this basis the rotational Hamiltonian couples the state vectors with a parameter S that determines the nearest-neighbor tunneling rate between twofold symmetric minima of the icosahedral rotational energy surface. The rotational superfine splitting is obtained by diagonalizing the rotational Hamiltonian using icosahedral symmetry projection. In the classical analogue, the initial state vector is a pair of $C_{2 h}$ symmetrically stretched masses located along one of the 30 edges of the icosahedron. This state is spread to the other icosahedral edges with the coset leaders of $C_{2 h}$ in I_{h}. In this basis a force constant operator couples nearest-neighbor states. The coupling is parametrized by the pentagonal stretching spring constant p which is analogous to the rotational tunneling parameter S. Diagonalization of the force matrix yields very

FIG. 18. Two equivalent sets of $C_{5 v}$ irreps. Real irreps are given in the first four rows and complex irreps are given in the last four rows.

FIG. 19. (a) A $C_{5 v}$ symmetric spring-mass model with stretching and bending springs. (b) The unit cell of $C_{5 v}$ symmetric spring-mass model. Displacement vectors $\overline{d(g)}$, edge vectors, $\vec{a}, \vec{b}, \ldots, \vec{l}$, and angles $\theta(g)$ used in the calculation of the potential are labeled.
nearly the same splittings as those in the superfine rotational pattern. Note how long the $C_{2 h}$ vibrational cluster pattern is maintained as X decreases. More or less the same pattern persists as X varies from 1 to 0.43 where the cluster forms again to the right of the eightfold trajectory crossing. On the other side of this crossing the pattern quickly disintegrates. A similar comparison is made between the A_{1}-type $C_{5 v}$ vibrational splittings and the 0_{5}-type C_{5} rotational superfine splittings in the upper left of Fig. 16. In this case the hexagonal stretching spring constant h is analogous to the rotational tunneling parameter S, and weakly couples the $C_{5 v}$ symmetric pentagonal vibrational systems described in (iv). The $C_{5 v}$ clusters centered around $\omega^{E_{1}}$ and $\omega^{E_{2}}$ correspond to E_{1} and E_{2}-type $C_{5 v}$-induced-to- I_{h} representations of the force constant operator.

TABLE IV. (a) Displacement vectors $d(g)$ used in the calculation of the edge vectors. (b) Edge vectors used to calculate angles.

$$
\begin{array}{ll}
\overrightarrow{\mathbf{a}}=\hat{\mathbf{a}}-\mathrm{d}(1)+\mathrm{d}\left(\mathbf{R}_{1}\right) & \overrightarrow{\mathbf{f}}=\hat{\mathbf{f}}-\mathrm{d}\left(\mathbf{R}_{1}^{3}\right)+\mathrm{d}\left(\mathbf{R}_{\mathbf{4}}^{4}\right) \\
\overrightarrow{\mathbf{b}}=\hat{\mathbf{b}}-\mathrm{d}\left(\mathbf{R}_{1}\right)+\mathrm{d}(1) & \overrightarrow{\mathbf{g}}=\hat{\mathbf{g}}-\mathrm{d}\left(\mathbf{R}_{1}^{4}\right)+\mathrm{d}\left(\mathbf{R}_{1}^{3}\right) \\
\overrightarrow{\mathbf{c}}=\hat{\mathbf{c}}-\mathrm{d}\left(\mathbf{R}_{\mathbf{1}}\right)+\mathrm{d}\left(\mathbf{R}_{1}^{2}\right) & \overrightarrow{\mathbf{h}}=\hat{\mathbf{h}}-\mathrm{d}\left(\mathbf{R}_{1}^{4}\right)+\mathrm{d}(1) \\
\overrightarrow{\mathbf{e}}=\hat{\mathbf{e}}-\mathrm{d}\left(\mathbf{R}_{1}^{2}\right)+\mathrm{d}\left(\mathbf{R}_{1}\right) & \overrightarrow{\mathbf{i}}=\mathrm{d}(1)+\mathrm{d}\left(\mathbf{R}_{1}^{4}\right)
\end{array}
$$

(b)
$\theta(1)=\operatorname{arcos}\left\{\frac{\overrightarrow{\mathbf{a}} \mathbf{\vec { \mathbf { i } }}|\overrightarrow{\mathbf{a}}||\mathbf{i}|}{\}}\right.$
$\theta\left(R_{1}\right)=\operatorname{arcos}\left\{\frac{\vec{b} \cdot \vec{c}}{|\vec{b}||\vec{c}|}\right\}$
$\theta\left(R_{1}^{4}\right)=\operatorname{arcos}\left\{\frac{\overrightarrow{\mathrm{g}} \cdot \overrightarrow{\mathrm{h}}}{|\overrightarrow{\mathrm{g}}||\overrightarrow{\mathbf{h}}|}\right\}$

VII. CONCLUSION

Icosahedral symmetry projection methods applied to the spring-mass model of buckyball provide rapid, testable calculation of rovibronic eigenvalues and eigenvectors. These calculations can be done quickly on a small personal computer such as a MacIntosh 512 K . In a few seconds of run time stereographic computer animated movies of vibrational eigenvectors can be generated for any choice of force constants. These eigenvectors are classified by subgroup chain and provide an optimal basis set when considering perturbations such as isotopic variation and corriolis coupling be-

TABLE V. $C_{s v}$ force matrix elements as a function of stretching and bending. Results of numerical and analytical calculations are given where $\theta=81^{\circ}$ and $\phi=9^{\circ}$.

Force matrix elements	$\frac{\text { Numerical results }}{\text { stretching + bending }}$	$\frac{\text { Analytic results }}{\text { stretching + bending }}$
$\langle 1 A\| F\|1 A\rangle=1.0000000 p+2.3090170 \pi=p+(2-G-/ 2) \pi$		
$\langle 1 A\| F\left\|R_{1} A\right\rangle=-0.1545085 p-1.3090170 \pi=p G^{-/ 4}+\left(G^{-/ 2-1)} \pi\right.$		
$\langle 1 A\| F\left\|R_{1}^{2} A\right\rangle=0.0000000 p+0.1545085 \pi=0 p-\pi G^{-/ 4}$		
$\langle 1 A\| F\left\|R{ }_{1}^{3} A\right\rangle=0.0000000 p+0.1545085 \pi=0 p-\pi G^{-/ 4}$		
$\begin{aligned} & \langle 1 A\| F\left\|R_{1}^{4} A\right\rangle=-0.1545085 p-1.3090170 \pi=p G^{-/ 4}+\left(G^{-} /\right. \\ & 2-1) \pi \end{aligned}$		
$\langle 1 A\| F\left\|\sigma_{5} A\right\rangle=-0.3090170 p+1.61803440 \pi=p G^{-/ 2}+\pi G^{+}$		
$\langle 1 A\| F\left\|\sigma_{10} A\right\rangle=0.0244717 p-2.2600735 \pi=p \cos ^{2} \theta+\left(\sqrt{2} \cos \phi / G^{-}\right) \pi$		
$\langle 1 A\| F\left\|\sigma_{15} A\right\rangle=0.0000000 p+0.9755283 \pi=0 p+\pi \cos ^{2} \phi$		
$\langle 1 A\| F\left\|\sigma_{8} A\right\rangle=0.0000000 p+0.0244717 \pi=0 p+\pi \cos ^{2} \theta$		
$\langle 1 \mathrm{~A}\| \mathrm{F}\left\|\sigma_{4} \mathrm{~A}\right\rangle$	$755283 p-0.3579604$	$\cos ^{2} \phi+\left(\sqrt{2} \cos \theta / G^{-}\right.$

tween rotations and vibrations. This will be useful in the high resolution spectroscopy of buckyball, and will be discussed in future works.

Buckyball animation software for the Macintosh Plus SE, and II that features menus, windows, and button controls is now available. For more information contact D. E. Weeks at the University of Arkansas.

ACKNOWLEDGMENTS

We would like to thank T-12 division at Los Alamos National Laboratory for the use of their facilities. In addition one of us (D. E. W.) would like to thank W. G. Harter for his extensive help without which this work would have been impossible. This research was supported in part by Na-

MODE:E2S $1 \quad p=1$

FREQ: 1.581
$\pi=0$

FIG. 20. Normal modes of the $C_{s v}$ symmetric spring-mass model defined by the C_{50}, C_{v} subgroup chain. Each mode varies as $\cos (\omega t)$ and is plotted at time $t=0, t=\pi / 2 \omega$, and $t=\pi / \omega$. (a) The A_{1} "breathing" mode, (b) One of two nonzero frequency vector E_{1} modes, and (c) One of two nonzero frequency E_{2} modes.
tional Science Foundation Grant No. PHY-8696052 in theoretical physics and in part by the Department of the Army.

APPENDIX A: $C_{5 v}$ EIGENVALUES AND NORMAL MODES

The icosahedral subgroup $C_{5 v}$ contains ten elements consisting of the unit operator, four rotations, and five reflections,

$$
C_{5 v}=\left\{1, R_{1}, R_{1}^{2}, R_{1}^{3}, R_{1}^{4}, \sigma_{4}, \sigma_{5}, \sigma_{8}, \sigma_{10}, \sigma_{15}\right\} .
$$

A set of $C_{S_{v}}$ irreps is given in Fig. 18.
A spring mass model with $C_{5 v}$ symmetry is shown in Fig. 19(a) and is identical to any one of the 12 isolated pentagons described in (iv) and (v) of Sec. VI. The pentagonal stretching and bending spring constants are labeled p and π,

Icosahedral Generator Irreps

$A=\left(\frac{7-4 G^{+}}{10}\right)$	$\mathrm{I}=\left(\frac{\mathrm{G}}{2}\right)$	$\mathrm{Q}=\left(\frac{1+3 \mathrm{G}^{\dagger}}{10}\right)$	$\mathbf{Y}=\left(\frac{2+\mathrm{G}}{5}\right)^{\frac{1}{2}}$
$\mathrm{B}=\left(\frac{7-4 \mathrm{G}^{+}}{100}\right)^{\frac{1}{2}}$	$\mathrm{J}=\left(\frac{-3+4 \mathrm{G}^{+}}{10}\right)$	$\mathrm{R}=\left(\frac{\mathrm{GG}}{} \mathrm{S}^{\frac{1}{5}}\right)^{\frac{1}{2}}$	$z=\left(\frac{3+4 G^{+}}{10}\right)$
$\mathrm{C}=\left(\frac{-4+3 \mathrm{G}^{+}}{10}\right)$	$\mathrm{K}=\left(\frac{-3 \mathrm{G}}{5 \sqrt{5}}\right)^{\frac{1}{2}}$	$s=\left\|\frac{3}{2 \sqrt{5}}\right\|$	$\Omega=\frac{1}{\sqrt{5}} \quad \Delta=\frac{1}{5}$
$\mathrm{D}=\left(\frac{7-4 \mathrm{G}^{+}}{20}\right)^{\frac{1}{2}}$	$\mathrm{L}=\left(\frac{2+\mathrm{G}}{}{ }^{20}\right)^{\frac{1}{2}}$	$\left.\mathrm{T}=\left(\frac{3+4 \mathrm{G}}{}\right)^{20}\right)^{\frac{1}{2}}$	$\Psi=\frac{2}{\sqrt{5}} \quad \Sigma=\frac{1}{2}$
$\mathbf{E}=\left(\frac{-\sqrt{3} \mathrm{G}}{5}\right)$	$M=\left(\frac{-4 G}{5 \sqrt{5}}\right)^{\frac{1}{2}}$	$\mathrm{U}=\left\|\frac{\sqrt{12}}{5}\right\|$	$\Gamma=\frac{2}{5} \quad \Lambda=\frac{3}{5}$
$F=\left(\frac{3-G^{+}}{20}\right)^{\frac{1}{2}}$	$N=\left(\frac{3-G}{5}\right)^{\frac{1}{2}}$	$\mathrm{v}=\left(\frac{2+\mathrm{G}^{+}}{5}\right)$	$\mathrm{G}^{ \pm}=\frac{1 \pm \sqrt{5}}{2}$
$G=\left(\frac{3-G^{+}}{5}\right)$	$\mathrm{O}=\left(\frac{-1+4 \mathrm{G}^{+}}{10}\right)$	$w=\left(\frac{4 G^{+}}{5 \sqrt{5}}\right)^{\frac{1}{2}}$	Irr
$\mathrm{H}=\left(\frac{3+4 \mathrm{G}^{+}}{100}\right)^{\frac{1}{2}}$	$P=\left(\frac{\sqrt{12} G^{\prime}}{10}\right)$	$\mathrm{x}=\left(\frac{\mathrm{G}^{+}}{2}\right)$	

FIG. 21. Icosahedral generator irreps. Rational root form of the irrep elements is given in the irrep key. Irreps of i_{11} are symmetric because the $\omega_{i}=180^{\circ}$ rotations are their own inverses. Rows of the vector irrep T_{1} correspond to the z, x, and y body fixed axes shown in Fig. 6.
respectively. All ten springs are contained in the pentagonal plane which permits the problem to be solved using twodimensional orthogonal coordinate systems located at each mass. These coordinate systems are generated with the $l^{E_{1}}=2$ dimensional $C_{5 v}$ vector irreps $D^{E_{1}}(g)$, and an initial vector $\overline{1 \mathrm{~A}}$ rotated 45° away from a radial vector passing through an arbitrary mass. Using the $D^{E_{1}}(g)$ as rotations in R^{2} the initial vector is passed from vertex to vertex generating ten vectors $\overline{\mathrm{gA}}$ that form an orbit labeled A,

$$
\begin{aligned}
& \mathrm{C}_{1} \mathrm{C}_{\mathrm{R}} \mathrm{C}_{\mathrm{R}}{ }^{2} \mathrm{C}_{\mathrm{r}} \mathrm{C}_{\mathrm{i}} \mathrm{G} \mathrm{C} \rho \mathrm{C}_{\rho^{2}} \mathrm{C}_{\eta} \mathrm{Co} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{A}_{8} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{T}_{1 \mathrm{~g}} & 3 & \mathrm{G}^{+} & \mathrm{G}^{-} & 0 & -1 & -1 & \mathrm{G}^{+} & \mathrm{G}^{-} & 0 & -1 \\
\hline
\end{array} \\
& \mathrm{~T}_{3 \mathrm{~g}} \begin{array}{l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & \mathrm{G}^{-} & \mathrm{G}^{+} & 0 & -1 & 3 & \mathrm{G}^{-} & \mathrm{a}^{+} & 0 & -1 \\
\hline
\end{array} \\
& \mathrm{G}_{8} \begin{array}{l|l|l|l|l|l|l|l|l|l|}
\hline & 4 & -1 & -1 & 1 & 0 & 4 & -1 & -1 & 1 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l|l|}
\mathrm{A}_{4} & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c|c|c|c|c|c|c|c|c|c|c|}
T_{34} & 3 & G^{-} & G^{+} & 0 & -1 & -3 & G_{-} & G^{+} & 0 & 1 \\
\mathrm{G}_{4} & 4 & -1 & -1 & 1 & 0 & -4 & 1 & 1 & -1 & 0 \\
\hline \mathrm{H}_{4} & 5 & 0 & 0 & -1 & 1 & -5 & 0 & 0 & 1 & -1 \\
\hline
\end{array}
\end{aligned}
$$

$$
D^{E_{1}}(g) \overline{1 \mathrm{~A}}=\overline{\mathrm{gA}}
$$

The $C_{5 v}$ group operator labeled vectors $\overrightarrow{\mathrm{gA}}$ and of the A orbit are shown in Fig 19(a).

A force constant operator K is represented in the basis defined by the state vectors $|\mathrm{gA}\rangle$ that correspond to the $\overline{\mathrm{gA}}$. Matrix elements of K in this basis are the second-order derivatives of the potential energy of the unit cell shown in Fig. $19(\mathrm{~b})$. This potential is given by

$$
\begin{align*}
V_{s}= & \frac{p}{2}\left\{(1-|\vec{a}|)^{2}+(1-|\overrightarrow{\mathbf{i}}|)^{2}\right\}, \\
V_{b}= & \left\{\left[\theta_{0}-\theta(1)\right]^{2}+\left[\theta_{0}-\theta\left(R_{1}\right)\right]^{2}\right. \\
& \left.+\left[\theta_{0}-\theta\left(R_{1}^{4}\right)\right]^{2}\right\}, \tag{A1}\\
V= & V_{s}+V_{b},
\end{align*}
$$

where $\theta_{0}=108^{\circ}$. The vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}, \ldots, \overrightarrow{\mathbf{i}}$, are determined by the displacement vectors $\mathrm{d}(\mathrm{g})$ shown in Fig. 19(b), and are listed in (a) of Table IV. Expressions for the angles $\theta(g)$ are given in (b) of Table IV.

The potential in Eq. (A1) is a function of the ten generalized coordinates $x(g)$ and $y(g)$. These are components of the $\overline{\mathbf{d}(\mathrm{g})}$ in a two-dimensional lab-fixed coordinate system. The transformation from $x(g), y(g)$ to the $C_{5 v}$ group operator defined set of generalized coordinates gA is made with the $C_{5 v} E_{1}$ vector irreps. Elements of the force matrix are

FIG. 22. Characters of the full icosahedral group I_{h}. Characters of the rotation group I are given in the highlighted box.
the second-order derivatives of the potential with respect to the group operator defined coordinates,

$$
\left\langle g^{\prime} A\right| \mathbf{K}\left|g^{\prime \prime} A\right\rangle=\left|\frac{\partial^{2} V(g A)}{\partial g^{\prime} A \partial g^{\prime \prime} A}\right|_{\text {equilibrium }}
$$

A four-point central difference method was used to numerically calculate the second-order derivatives. The force matrix elements may also be determined analytically using the geometry of the $C_{5 v}$ vibrational system. Stretching spring contributions to matrix elements are determined by the projection of displacements and resulting forces along the pentagonal edges, while bending spring contributions are determined by projecting perpendicular to the edges. Numerical and analytic results are given in Table V and agree for all matrix elements. This verifies the numerical differentiation routine.

The $C_{5 v}$ irreps in Fig. 18 and the first row of the force matrix in Table V are used in Eq. (C7) to calculate the block diagonal elements of the force matrix in the $C_{s v}$ irreducible representation. The largest block is 2×2 and is analytically diagonalized using the quadratic formula. The resulting $C_{s v}$ eigenvalues are

$$
\begin{align*}
& \omega^{A_{1}}=\left\{\left(\frac{5-\sqrt{5}}{2}\right) p\right\}^{1 / 2}, \\
& \omega^{E_{1}}=\left\{\left(1+\cos 36^{\circ}\right) p+\left(\frac{5}{2}\right) \pi\right\}^{1 / 2}, \tag{A2}\\
& \omega^{E_{2}}=\left\{\left(\frac{5}{2}\right) p+\frac{\sqrt{5}}{2}(5+\sqrt{5}) \pi\right\}^{1 / 2} .
\end{align*}
$$

These results agree with the icosahedral projection results given in Sec. VI. The results given in Ref. 16 for $C_{5 v}$ eigenvalues are in serious disagreement with the analytic results in Eq. (A2) which invalidates their predictions for buckyball eigenfrequencies. Normal modes of the $C_{5 v}$ spring-mass model are shown in Fig. 20.

APPENDIX B: ICOSAHEDRAL IRREPS

The $\alpha=A, T_{1}, T_{3}, G$, and H irreps of the icosahedral rotation group generators r_{1} and i_{11} are given in Fig. 21. The remaining irreps of I are generated using the icosahedral multiplication table in Fig. 5. Irreps of the full icosahedral group I_{h} may be obtained from those of the rotation group I using

$$
\begin{array}{ll}
I_{h} \text { irreps } \quad I \text { irreps } & I_{h} \text { irreps } \quad I \text { irreps } \\
D^{\alpha_{g}}(g)=D^{\alpha}(g) & D^{\alpha_{g}}(I g)=D^{\alpha}(g) \\
D^{\alpha_{u}}(g)=D^{\alpha}(g) & D^{\alpha_{u}}(I g)=-D^{\alpha}(g) .
\end{array}
$$

Icosahedral characters are given in Fig. 22.

APPENDIX C: PROJECTION OPERATORS

Projection operators defined in Eq. (4.1) obey simple multiplication rules,

$$
\begin{equation*}
P_{i j}^{\alpha} P_{k l}^{\beta}=P_{i l}^{\alpha} \delta^{\alpha \beta} \delta_{j k} \tag{C1}
\end{equation*}
$$

When $i=j$ projection operators are idempotent and hermetian. For $i \neq j$ projection operators are nilpotent,

$$
\begin{align*}
& P_{i i}^{\alpha} P_{i i}^{\alpha}=P_{i i}^{\alpha}, \\
& P_{i j}^{\alpha} P_{i j}^{\alpha}=0, \\
& P_{i j}^{\alpha}=\left\{P_{j i}^{\alpha}\right\}^{\dagger} . \tag{C2}
\end{align*}
$$

In Eq. (4.1) the indices i and j run from 1 to l^{α}, resulting in $\left(l^{\alpha}\right)^{2}$ projection operators $P_{i j}^{\alpha}$ for each irrep α. This means that there are as many projection operators as there are group operators.

$$
{ }^{o} G=\sum_{a}\left(X_{C_{1}}^{\alpha}\right)^{2}=\sum_{\alpha}\left(l^{\alpha}\right)^{2}
$$

where $X_{C_{4}}^{\alpha}$ is the α th character of the class C_{1}. Thus, it is possible to invert Eq. (4.1) and expand group operators in terms of projection operators,

$$
\begin{equation*}
g=\sum_{\alpha} \sum_{i, j=1}^{l^{\alpha}} D_{i j}^{\alpha}(g) P_{i j}^{\alpha} \tag{C3}
\end{equation*}
$$

Normalization of the irreducible representation $\left|A_{i j}^{\alpha}\right\rangle$ is determined by Eqs. (C1), (C2), and (4.2),

$$
\begin{align*}
\left\langle A_{i j}^{\alpha} \mid A_{k l}^{\beta}\right\rangle & =\langle A| P_{j i}^{\alpha} P_{k!}^{\beta}|A\rangle /\left(N^{\alpha} N^{\beta}\right)^{1 / 2} \\
& =\left\{\langle A| P_{j l}^{\alpha}|A\rangle / N^{\alpha}\right\} \delta^{\alpha \beta} \delta_{i k} \\
& =\left(\frac{l^{\alpha}}{N^{\alpha}{ }^{o} G}\right) \sum_{g \in G} D_{j l}^{\alpha *}(g)\langle A \mid g A\rangle \delta^{\alpha \beta} \delta_{i k} \\
& =\left(\frac{l^{\alpha}}{N^{\alpha}{ }^{\alpha} G}\right) \delta^{\alpha \beta} \delta_{i k} \delta_{j l}=\delta^{\alpha \beta} \delta_{i k} \delta_{j l} \\
& \therefore N^{\alpha}=\frac{l^{\alpha}}{{ }^{o} G} \tag{C4}
\end{align*}
$$

Irreducible representation matrix elements of group operators, projection operators, and operators with the symmetry of the group are derived in Eqs. (C5), (C6), and (C7):

$$
\begin{align*}
\left\langle A_{i j}^{\alpha}\right| g\left|A_{k l}^{\beta}\right\rangle= & \langle A| P_{j i}^{\alpha} g P_{k l}^{\beta}|A\rangle /\left(N^{\alpha} N^{\beta}\right)^{1 / 2} \\
= & \sum_{\gamma} \sum_{m=1}^{i^{\gamma}} \sum_{n=1}^{\gamma} D_{m n}^{\gamma}(g)\langle A| P_{j i}^{\alpha} P_{m n}^{\gamma} P_{k l}^{\beta}|A\rangle / \\
& \left(N^{\alpha} N^{\beta}\right)^{1 / 2} \\
= & D_{i k}^{\alpha}(g)\left\{\langle A| P_{j l}^{\alpha}|A\rangle / N^{\alpha}\right\} \delta^{\alpha \beta} \\
= & D_{i k}^{\alpha}(g)\left(\frac{l^{\alpha}}{N^{\alpha o} G}\right) \sum_{\delta \in G} D_{j i}^{\alpha *}\left(g^{\prime}\right)\left\langle A \mid g^{\prime} A\right\rangle \delta^{\alpha \beta} \\
= & D_{i k}^{\alpha}(g) \delta^{\alpha \beta} \delta_{j l}, \tag{C5}
\end{align*}
$$

$$
\begin{align*}
\left\langle A_{i j}^{\alpha}\right| P_{m n}^{\gamma}\left|A_{k l}^{\beta}\right\rangle & =\langle A| P_{j i}^{\alpha} P_{m n}^{\gamma} P_{k l}^{\beta}|A\rangle /\left(N^{\alpha} N^{\beta}\right)^{1 / 2} \\
& =\left\{\left(A\left|P_{j l}^{\alpha}\right| A\right\rangle / N^{\alpha}\right\} \delta^{\alpha \beta} \delta^{\alpha \gamma} \delta_{i m} \delta_{n k} \\
& =\delta^{\alpha \beta} \delta^{\alpha \gamma} \delta_{i m} \delta_{n k} \delta_{j l}, \tag{C6}
\end{align*}
$$

$$
\begin{align*}
\left\langle A_{i j}^{\alpha}\right| \mathbf{K}\left|A_{k l}^{\beta}\right\rangle= & \langle A| P_{j i}^{\alpha} \mathbf{K} P_{k l}^{\beta}|A\rangle /\left(N^{\alpha} N^{\beta}\right)^{1 / 2} \\
= & \left\{\langle A| \mathbf{K} P_{j l}^{\alpha}|A\rangle / N^{\alpha}\right\} \delta^{\alpha \beta} \delta_{i k} \\
& \times(g \mathbf{K}=\mathbf{K} g ; g \in G) \\
= & \sum_{g \in G} D_{j l}^{\alpha *}(g)\langle A| \mathbf{K}|g A\rangle \delta^{\alpha \beta} \delta_{i k} . \tag{C7}
\end{align*}
$$

${ }^{1}$ M. Hammermesh, Group Theory and its Application to Physical Problems (Addison Wesley, Reading, MA, 1972), p. 51.
${ }^{2}$ E. L. Muetterties, R. E. Merrifield, H. C. Miller, W. H. Knoth, and J. R. Downing, J. Am. Chem. Soc. 84, 2506 (1962).
${ }^{3}$ L. A. Paquette, R. J. Ternansky, D. W. Balough, and G. Kentgen, J. Am. Chem. Soc. 105, 5446 (1983).
${ }^{4}$ A. S. Pine, A. G. Maki, A. G. Robiette, B. J. Krohn, J. K. G. Watson, and Th. Urbanek, J. Am. Chem. Soc. 106, 891 (1984).
${ }^{5}$ G. G. Christof, P. Engel, R. Usha, D. W. Balough, and L. A. Paquette, J. Am. Chem. Soc. 104, 784 (1982).
${ }^{6}$ J. A. Wunderlich and W. N. Lipscomb, J. Am. Chem. Soc. 82, 4427 (1960).
${ }^{7}$ J. M. Schulman and R. L. Disch, J. Am. Chem. Soc. 100, 5677 (1978).
${ }^{8}$ R. L. Disch and J. M. Schulman, J. Am. Chem. Soc. 103, 3297 (1981).
${ }^{9}$ D. A. Dixon, D. Deerfield, and G. W. Graham, Chem. Phys. Lett. 78, 161 (1981).
${ }^{10}$ H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).
"T. Shibuya and M. Yoshitani, Chem. Phys. Lett. 137, 13 (1987).
${ }^{12}$ Q. L. Zhang, S. C. O'Brien, J. R. Heath, Y. Liu, R. F.Curl, H. W. Kroto, and R. E. Smalley, J. Phys. Chem. 90, 525 (1986); F. D. Weiss, J. L. Elkind, S. C. O'Brien, R. F. Curl, and R. E. Smalley, J. Am. Chem. Soc. 110, 4464 (1988).
${ }^{13}$ W. G. Harter and D. E. Weeks, Chem. Phys. Lett. 132, 387 (1986).
${ }^{14}$ W. G. Harter and D. E. Weeks, J. Chem. Phys. 90, 4727 (1989).
${ }^{15}$ D. E. Weeks and W. G. Harter, Chem. Phys. Lett. 144, 366 (1988).
${ }^{16}$ Z. C. Wu, D. A. Jelski, and T. F. George, Chem. Phys. Lett. 137, 291 (1987).
${ }^{17}$ R. E. Stanton and M. D. Newton, J. Phys. Chem. 92, 2141 (1988).
${ }^{18}$ M. Luo, G. Vriend, G. Kamer, I. Minor, E. Arnold, M. G. Rossmann, V. Boege, D. G. Scraba, G. M. Duke, and A. C. Palmenberg, Science 255, 182 (1987).
${ }^{19}$ J. Hogle, M. Chow, and D. Filman, Sci. Am. 256, 42 (1987).
${ }^{20}$ F. Doane and N. Anderson, Electron Microscopy in Diagnostic Virology (Cambrige University Press, Cambrdige, England, 1987), p. 51.
${ }^{21}$ D. J. Klein, T. G. Schmalz, G. E. Hite, and W. A. Seitz, J. Am. Chem. Soc. 108, 1301 (1986).
${ }^{22}$ M. Hall, The Theory of Groups (Macmillan, New York, 1963), p. 1.
${ }^{23}$ B. L. Crawford and F. A. Miller, J. Chem. Phys. 17, 249 (1949).
${ }^{24}$ D. Papousek and M. R. Aliev, Molecular Vibrational-Rotational Spectra (Elsevier, New York, 1982), p. 30.

