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Rotation-vibration spectra of icosahedral molecules. II. Icosahedral 
symmetry, vibrational elgenfrequencles, and normal modes of 
buckminsterfullerene 

David E. Weeks and William G. Harter 
Los Alamos National Laboratory T-12, Los Alamos New Mexico 87545 and Department of Physics, 
J. William Fulbright College of Arts and Sciences. Unversity of Arkansas, Fayetteville Arkansas 72701 

(Received 4 August 1988; accepted 14 December 1988) 

The icosahedral symmetry of molecules such as buckyball, B12H12 -2, and C20H20, is analyzed 
using subgroup chain defined projection operators. The icosahedral analysis is used to 
determine the eigenvalues and eigenvectors of a classical spring mass model of buckyball. A 
spectrum of Raman and dipole active modes is given using the spring constants of benzene. 
Corresponding dipole active and Raman active normal modes are displayed stereographically. 
Several choices for springs constants are discussed and a comparison with spring mass systems 
of reduced symmetry is made. 

I. INTRODUCTION 

In his famous treatise on group theory, Hamermesch 
makes the statement that the "icosahedral group has no 
physical interest and no examples of molecules with this 
symmetry are known. 1" Today we know that this is not the 
case and that there are at least two molecular structures with 
icosahedral symmetry. These are the better known borohy­
dride anion BI2H12 -2 (Ref. 2) and the recently synthesized 
dodecahedrane C2oH20.3 Both molecules have an icosahe­
drally symmetry framework that forms an empty cage with 
no central atom.4 For BI2H12 -2 the boron atoms are posi­
tioned at the vertices of an icosahedron as in Fig. 1 (a), while 
in dodecahedrane the carbon atoms define a dodecahedral 
framework dual to the icosahedron as in Fig. 1 (b). In each 
case the icosahedral structure of the molecule has been veri­
fied using x-ray diffraction.5.6 The B-B separation (1.77 A) 
and the C-C separation (1.5 A) were measured and with 
these values the diameter of the inner cavities ofB 1zH 12 - 2 

and C20H20 are found to be 3.4 A and 4.2 A, respectively. 
Several theoretical studies have considered the question 

of encapsulating small atoms or ions such as H, H + , Li, Li + , 

or He in the dodecahedral cavity of CZOH20. 7-9 These chemi­
cally exciting prospects encourage the search for larger cage 
molecules. One possibility that dwarfs BI2HI2 -2 and C20H20 
is the proposed icosahedrally symmetric buckminsterfuller­
ene or buckyball structure of C60 shown in Fig. 1 (a) . 10 Theo­
retical calculations indicate an average buckyball C-C bond 
length of 1.4 A (Ref. 11) and a cavity 7 A in diameter. At 
present there is already experimental evidence for the encap­
sulation of single Ca, Ba, Sr, and La atoms. IZ 

In order to better understand the encapSUlation proper­
ties of C60 as well as other interesting behaviors, the deter­
mination of its specific structure is imperative. At present no 
known samples ofC60 in crystalline from exist thereby ruling 
out x-ray diffraction. However, there remains the analysis 
and assignment of structurally dependent spectra. In pre­
vious works13

•'4 we have calculated the rotational fine and 
superfine spectral patterns expected for all molecules with 
icosahedral symmetry. Experimental observation of these 
patterns would verify the icosahedral structure ofC60• How-

ever, since extremely high resolution is required to observe 
the rotational superfine pattern, an easier experiment would 
be the observation of the infrared vibrational spectrum of 
C60• The main purpose of this paper is to present a set of 
synthetic vibrational eigenvalue trajectories of buckyball to 
be used in the assignment of such an experimental infrared 
spectrum. 15 The general computational procedure involves 
icosahedral symmetry projection methods coupled with nu­
merical diagonalization of matrices of eight dimensions or 
less. Several test cases are examined and found to agree with 
independent analytic results. In addition to eigenvalue tra­
jectories we also present three-dimensional stereo figures of 
corresponding symmetry labeled normal modes. Proper 
symmetry labeling of normal modes is very useful in the 
calculation of perturbations such as rotational coriolis ef­
fects and isotope effects. Because our procedure involves the 
diagonalization of at most an eight-dimensonal matrix it is 
possible to calculate eigensolutions and make stereo animat­
ed movies of the corresponding normal modes in just a few 
seconds on a MacIntosh SI2K personal computer. 

Previously and independently, vibrational eigenvalues 
of buckyball have been reported by Wu, lelski, and 
George. 16 Their computational procedure involved the di­
rect diagonalization of a 18O-dimensional matrix. The re­
ported results included values for the same test cases for 
which analytic results are available. Serious discrepancies 
between the numerical results of Ref. 16 and the analytic 
eigenvalues for the test cases invalidate their prediction for 
buckyball eigenfrequencies. The derivation and comparison 
of the analytic results with the test cases is given in Appendix 
A. Using modified neglect of diatomic overlap (MNDO) 
structure calculations and subsequent diagonalization of a 
I80-dimensional Cartesian force constant matrix, Stanton 
and Newton have also calculated a vibrational spectrum of 
buckyball. 17 Their results do not include calculation of the 
test cases, so analytic verification of their calculations has 
not been examined so far. However, differences between our 
results and theirs are probably due to the use of different 
force field models. 

In addition to icosahedrally symmetric structures on the 
molecular level, there is a more pervasive existence of icosa-
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c) c) 

FIG. 1. Stereoscopic views of (a) the borohydride anion, B,zH12 -2, (b) 
dodecahedrane, C2oH20> and (c) buckyball, Coo. 

hedral symmetry in the capsids of many virons. These in­
clude the rinoviruses involved in the common cold as well as 
more dangerous viruses that are causative agents in diseases 
such as polio, rubella and possibly even AIDS, 18-20 

II. ICOSAHEDRAL SYMMETRY 

The full symmetry of buckyball is that of the icosahedral 
point group Ih which is the largest finite symmetry point 
group allowed in three-dimensional Euclidean space. By 
taking advantage of this symmetry it is possible to greatly 
reduce the amount of work needed to calculate rovibronic 
eigenvalues and eigenvectors. In addition, symmetry analy­
sis neatly classifies these eigenvalues and provides a method 
for organizing the degenerate eigenvectors. This permits the 
selection of an optimal choice of basis when considering per­
turbations. 

The 12 pentagonal and 20 hexagonal faces of buckyball 
correspond to the 12 vertices and 20 faces of the icosahe-

5 - FCU> AXIS 5 - FCU> AXIS 

FIG. 2. Stereoscopic view of buckyball. "Double bonds" lie along the thick 
lines and "single bonds" lie along the thin lines. Carbon atoms are located at 
the vertices. An icosahedron is superimposed on the figure of buckyball to 
illustrate its icosahedral symmetry. Generic two, three, and fivefold sym­
metry axes are drawn and labeled. 

dron. Smalley and co-workers have proposed that one car­
bon atom is located at each of the 60 vertices of this truncat­
ed icosahedron. 1O Each vertex lies in a symmetry plane of 
reflection but not along a symmetry axis of rotation. Thus, if 
anyone of the 60 carbon atoms is isotopically different from 
the others the symmetry will be broken from Ih to simple 
bilateral reflection Cv ' Carbon bonds are formed along the 
three edges that meet at each vertex. They are resonant 
bonds, and presumably those along the pentagonal edges are 
more like a single bond and those along an edge bordered by 
two hexagons are more like a double bond as illustrated in 
Fig. 2. In this fashion all valencies are satisfied while forming 
a highly aromatic and relatively stable spheroidal shell.21 

The 120-element icosahedral point group of buckyball is 
the cross product of the 6O-element icosahedral rotation 
group I and the inversion group C/. The inversion group 
contains only the unit operator and inversion operator, both 
of which commute with the 60 rotations in group I. Each of 
the lab-fixed icosahedral rotation operators rotates an icosa­
hedron clockwise by an angle cu about a twofold, threefold, or 
fivefold symmetry axis. This rotation angle cu divides the 
icosahedral rotations into five classes. These clasess are la­
beled CI,CR,CRl,Cr , and Ci and contain, 1, 12, 12,20, and 
15 operators, respectively. The class CI contains only the 
unit operator with a rotation angle CUI = 0·. The classes CR 

and C R 1 contain all rotations about fivefold symmetry axes 
with rotation angles CUR = 72° and CURl = 144·, The class Cr 

contains all threefold symmetric rotations with CUr = 120·, 
and the class Ci contains all twofold symmetry rotations 
with CUi = 180·. All group operators in each class, and their 
symmetry axes, are shown in Fig. 3. 

The elements of the full icosahedral group Ih are genera­
ted by first operating on all the rotations of I with the unit 
operator of C /, replicating the class structure of the group /. 
Then, all the rotations of the group I are multiplied with the 
inversion operator of C/, creating 60 new improper rotations 
and five new classes. This yields a total of 120 operators and 
10 classes in the full icosahedral group I h • Group operators 
and class structure of Ih are given in Fig. 4, and an icosahe­
dral group multiplication table for rotations only is given in 
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FIG. 3. Icosahedral rotation operators and symmetry axes of 
the classes (a) CR , (b) CR " (c) C" and (d) C;. 

00, ~ 180" 
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Icosahedral {I} Class Icosahedral {Ih } Class 
CI = 1 Structure 

Structure CR CR2 C r Cj c[ =1 
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RI R2 
I r l 11 I R I= PI I R2= p2 

I I Ir l =111 I 11=0'1 

R2 R2 
2 r 2 12 I R 2= P2 I R2= p2 

2 2 I r 2= 112 I 12= 0'2 

R3 R2 
3 r3 13 I R3= P3 

I R2= p2 
3 3 I r 3 = 113 I 13= 0'3 

R4 R2 
4 r 4 14 I R4= P4 

I R2= p2 4 4 I r 4 = 114 I 14= 0'4 

R5 R2 
5 r5 15 I R5= P5 I R2= p2 

5 5 I r 5= 115 I 15=0'5 

R6 R2 
6 r6 16 I R6= P6 I R2= p2 

6 6 I r 6= 116 I 16= 0'6 

R4 
I 

R3 
1 r7 17 I R4= p4 

I I I R3= p3 
I I I r 7=117 I 1 0'7 

R4 
2 

R3 
2 r8 18 I R4= p4 

2 2 I R3= p3 
2 2 I r 8= 118 I 18= 0'8 

R4 
3 R3 

3 r9 19 I R4= p4 
3 3 I R3= p3 

3 3 I r 9= 119 I 19= 0'9 

R4 
4 

R3 
4 riO 110 I R4= p4 

4 4 I R3= p3 
4 4 I ruF11lO I ilO= 0'10 

R4 
5 

R3 
5 

r2 
I 111 I R4= p4 

5 5 I R3= p3 
5 5 I r

2
=11

2 
I I I ill= 0'11 

R4 
6 

R3 
6 

r2 
2 112 I R4= p4 

6 6 I R3= p3 
6 6 I r i= 11i I i12= 0'12 

r2 
3 113 I h Class Operators I r 2= 112 3 3 I i13= 0'13 

r2 114 6 4 I r 2= 112 I i14= 0'14 4 cR=LRn+Rn rP=! cR 4 4 
r2 115 n=1 I r 2= 112 I ils= 0'15 5 5 5 
r2 2 6 2 3 2 2 I r ~= 11~ 6 cR =LRn+Rn cP =! cR 
r2 n=1 I r 2= 112 7 7 7 
r2 

10 2 
r i= 11i cr= Lr n+r n ell=! cr I 8 

r2 
n=l 

I r;= 11; 9 15 
2 ci= Lin c(J=! ci 

I r~<F11~o rIO n=1 

FIG. 4. Class structure ofthe full icosahedral group Ih • The relation between proper and improper rotations of Ih is given in the four right-hand columns. 
Class structure of the icosahedral rotation group I is shown in the highlighted box and corresponds to the rotational in Fig. 3. Class operators are sums over 
corresponding class elements. 

Fig. 5. Products of the improper rotations of Ih may be eval­
uated by first expressing the operators in terms of icosahe­
dral rotations and inversion using Fig. 4. Then, by using the 
commutivity of the inversion operator and icosahedral rota­
tions, the resulting product of rotations may be evaluated 
using Fig. 5. For example, 

where the inversion group product II = 1 was used. Char­
acters and irreducible representations of the icosahedral 
group are given in Appendix B. 

III. THE FORCE CONSTANT MATRIX 

The vibrational eigenvalues and normal modes of buc­
kyball are calculated by applying Newton's 2nd law to a 
classical spring-mass model. Icosahedral symmetry analysis 
is used to diagonalize the resulting force constant matrix. In 
the model, carbon bonds are treated in the harmonic limit as 
springs that obey Hookes' law, and carbon nuclei are treated 
as point masses. The position of each mass is determined by 
one of 60 symmetrically placed orthogonal coordinate triads 
whose origins are located at the vertices of the buckyball 
structure. This symmetrically defined coordinate system is 
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~(~~~:::::::~~s::~~~-;5f.i 12 FIG. 6. Icosahedral vertex labels and the 

-x 

generated by selecting a set of body-fixed coordinate axes 
whose origin is located at the center of the buckyball model. 
Icosahedral rotation operators represented in this basis from 
an icosahedral Tl vector irreducible representation (irrep). 
Using the icosahedral Tl vector irreps as rotation matrices in 
R 3, a radial lab-fixed vector, 

A=IA, 
chosen to pass through a buckyball vertex, may be rotated to 
another vertex, 

(3.1 ) 

where D T, (g) is the 3 X 3 Tl irrep. Each new radial vector 
gA is labeled with the icosahedral group operator g that gen­
erated it. By using the 60 proper rotations of the icosahedral 
group a labeled radial vector may be sent to each of the 60 
buckyball vertices. The group operator g also labels the ver­
tex through which the vector gA passes. The improper rota­
tions of the icosahedral group will only interchange the radi­
al vectors and will not generate anything new. Thus, the 60 
radial vectors gA are all that can be made from· TA using 

flO body-fixed X, y, and z axes. 

-x 

icosahedral operations, and together they form a radial orbit 
labeledA. Icosahedral vertex labels and body-fixed axes used 
to make the radial A orbit are shown in Fig. 6. 

A second orbit of 120 tangential vectors is generated 
using the same technique "Y.illt the full icosahedral group !.A; 
This time an initial vector 1 B is chosen perpendicular to 1 A 
and 45° away from the 0'5 reflection plane as shown in Fig. 7. 
Upon 0'5 reflection a new vector asB is generated from the 
initial vector ill, 45° on the other side of the as reflection 
plane. This completes the right-handed orthogonal coordi­
nate triad located at the vertex labeled by the unit operator. 
The remaining Ih operators are used to complete the tangen­
tial orbit labeled B. The z and x axes of each coordinate 
system belong to orbits A and B, respectively, and are labeled 
by the proper icosahedral rotation of the corresponding ver­
tex. The y axes belong to the B orbit and are labeled with 
improper icosahedral rotations. The label of any y axis is 
obtained by computing the group product between the ver­
tex label of the y axis, and as. Together, the 60-element radial 
orbit A, generated by the icosahedral rotation group I, and 
the l20-element tangential orbit B, generated by the full-

FIG. 7. Orientation and labeling of the 
symmetrically defined coordinate axes lo­
cated at the unit vertex. The Us reflection 
plane used to reflect IB into UsB is illus­
trated. 
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FIG. 8. The 60 symmetrically defined orthogonal coordinate traids of buck­
yball. The unit cell used to calculate force matrix elements is highlighted. 

icosahedral group I h , are shown in Fig. 8, and form a set of 
180 coordinate vectors that corresponds to the 3 X 60 de­
grees of freedom of the 60 carbon atoms. 

The vectors of the orbits A and B correspond to state 

vectors generated by group operators, 

D T'{g} 0 = gO ~ glO) = IgO) , 

where 0 is the orbit label A or B. The state IgO) represents 
the displacement from equilibrium, of a single mass located 
at the vertex labeled by g, in the direction go. These 180 state 
vectors form a complete set, within which any distortion of 
the buckyball spring-mass model can be expressed as a linear 
combination. In order to determine the expansion coeffi­
cients of the IgO) that yield normal modes, Newton's 2nd 
law is expressed in the IgO) basis, 

:t22 11/1) = - M- 1KI1/1) , 

d
2

2
(gOl1/1) = - L (gOIM-1Klg'O') (g'O' 1 1/1) (3.2) 

dt g,O' 

=~ L (gOIKlg'O') (g'O'I1/1) . 
me g,O' 

The mass operator M, in the IgO) basis, is diagonal with all 
elements equal to the mass of the carbon atom me' The force 
constant operator K couples the state vectors IgO) for a total 
of 180 coupled differential equations. Columns of the trans­
formation matrix that diagonalize the force contant matrix, 
contain the expansion coefficients of the normal modes of 
vibration in terms of the IgO) basis. Corresponding elements 
of the diagonalized force matrix are the vibrational eigenfre­
quencies squared. 

Prior to diagonalization, the force matrix elements 
(gOIKlg'O') are force constants that determine the force on 
the mass at the gth vertex in the go dir~on when the mass 
at the g'th vertex is displaced in the g'O' direction. These 
constants depend on the geometry of buckyball, and the 
springs used to model the covalent bonds. Two springs, with 
spring constants p and h, are used to model the stretching of 
the single and double bonds along the pentagonal and hexag­
onal edges. Two additional springs with spring constants 11' 

and 'TJ, are used to model the bending of the single and double 
bonds. The spring constants p, h, 11', and 'TJ are the only pa­
rameters of the model that can be adjusted. By setting certain 
spring constants to zero it is possible to check special test 
cases of reduced symmetry for which analytic results are 

FIG. 9. The springs of the unit cell high­
lighted in Fig. 8. Single-bond parameters 
are p and 1T'. Double-bond parameters are 
hand T/. 
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available. These test cases are examined in Sec. VI. A unit 
cell illustrating the relative position of the different springs is 
shown in Fig. 9. The stretching springs couple nearest neigh­
bors, and the bending springs couple nearest and next-near­
est neighbors for a total of 10 masses and 30 coordinates in 
the unit cell. Each coordinate is labeledgA, gB, or gu5B, and 
corresp0!l~o t~placement of the mass at the gth vertex 
in the gA, gB, or gu5B directions. The potential energy of the 
unit cell is determined as a function of these coordinates and 
the elements of the force matrix are the second-order deriva­
tives of this potential. 

The potential energy may be split into a stretching com­
ponent and a bending component, 

Vs = {!h(1 - lel)2 + w[ (1 - lal)2 + (1 - Ibl )2]), 
(3.2a) 

Vb = (!n{[8 - 8(1) f + [8 - 8(R)]2 

+ [8-8(Rt)]2}+!1]{[<1>-¢(1)]2 

+ [<I>_¢(R)]2+ [<I>-r(Rt)]2 

+ [<I> - r(1)]2 + [<I> - ¢(i7)]2 + [<I> - r(i7)]2}), 
(3.3b) 

V= Vs + Vb' (3.3c) 

To determine the functional form of the potential, arbitrary 
displacement vectors d(g) are represented in the body-fixed 
axes. The vectors d("g) are displacements from equilibrium 
of the masses of the unit cell labeled with group operators g, 
and are illustrated in Fig. 10. Edge vectors a, b, ... ,o are deter­
mined by the vector sum of the corresponding equilibrium 
edge vector i, 6, ... ,0, minus the displacement vector Ci"(g') 
from which the edge vector originates, plus the displacement 
vector at which the edge vector terminates. For example, the 
edge vector a is given by 

a = i - d(i) + d(Rt) . 
The equilibrium edge vectors i, 6, ... ,0 correspond to the edge 
vectors a,b, ... ,o when the displacements d(g) are zero, and 
are defined to be of unit length. Deviations from unit length 
of an edge determine how much a stretching spring along the 
edge has been compressed or extended. This change in 

length is squared and multiplied by one-half the correspond­
ing spring constant, and determines the contribution of the 
particular stretching spring to the potential. For example, 
the hexagonal stretching spring, with spring constant h, 
along edge c in Figs. 9 and 10, will contribute the first term in 
Eq. (3.3a), 

Vc = !h{lcl - lelF 

= !h{1 - lelF . 

The pentagonal stretching springs along the edges a and b 
contribute the remainder of the stretching potential. 

The edge vectors a, b, ... ,o are also used to calculate the 
angles 8(g),¢(g), and reg) shown in Fig. 10. When the dis­
placement vectors d(g) are all zero, the angles 8(g), ¢(g), 
and reg) have equilibrium values 8 = 108·, <I> = 120·, and 
<I> = 120·, respectively. Upon distortion of the unit cell, 
these angles will change, compressing or expanding the 
bending springs shown in Fig. 9. The values of the angles 
8(g),¢(g), and reg) are calculated from the arcosine of the 
normalized scalar product between selected edge vectors. 
For example, the value of 8( 1) is given by 

{ 
aob } 8 (1) = arcos 1ifibT . 

The differences between the equilibrium angles 8 and <1>, 
and the distorted angles 8(g),¢(g), and reg) are squared 
and multiplied by one-half the corresponding spring con­
stant, to obtain the bending potential energy. For example, 
the first term in Eqs. (3.3b) is the potential energy of the 
pentgonal bending spring 1T that spans the angle 8( 1 ), and is 
given by 

VO(l) = !1T[8 - 8( 1)]2, 

where the radius of curvature of the spring is included in the 
spring constant. The remaining bending springs contribute 
the rest of the bending potential. 

The edge vectors a, b, ... ,o are functions of the displace­
ment vectors d (g). Each of the 10 d (g) are represented in 
terms of the x, y, and z axes of the body-fixed coordinate 
system, and have 30 corresponding componentsx(g),y(g), 
andz(g). The potential energy is Eq. (3.3) will be a function 

FIG. 10. Stereoscopic view of an arbitrar­
ily distorted unit cell. Vectors and angles 
used to calculate the potential are labeled. 
An undistorted unit cell is shown for refer­
ence. Group operator defined coordinate 
systems of the unit cell are included. 
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TABLE I. Nonzero elements of the (lA I and (IB I rows of the initial force matrix as a function of spring constants p. h. 1T". and 71. 

(lA IKIIA) (0.081426)p + (0.040713)h + (0.462764)17"+ (1.46566)71 (lA IKlry4) = (O)p + (O)h + (0)17" + (0.122138)71 
(IA IK\lB) - (0.157533)p + (0.13974l)h (0.895307)17"+ (1.09754)71 (lA IKlr,B) = (O)p + (O)h + (0)17" + (0.085289)71 
(lA IKlusB) - (0.157533)p + (0.13974I)h (0.895307) 1T" + (1.09754) 71 (IA IKlp!B) = (O)p + (O)h + (0)17" + (0.316143)71 
(IA IKli7A) (O)p + (0.040713)h + (0)17" - (0.977107)71 (tA IKlriA) = (O)p + (O)h + (0)17" + (0.122138)71 
(lA IKli7B) (O)p + (0.139741)h + (0)1T" - (0.294679)71 (IA IKlriB) = (O)p + (O)h + (0)17" - (0.248647)71 
(IA IKluIlB) (O)p + (0.139741)h + (0)17" - (0.294679)71 (tAIK~B = (O)p + (O)h + (0)1T" + (0.213062)71 
(IAIKIRtA) (0.040713 )p + (O)h (0.308510)17"- (0.488553)71 (IA IKIR;A) = (O)p + (O)h + (0.077127)17" + (0)71 

(IA IKIRtB) (0.036660)p + (O)h + (0.827726)17" - (1.16149)71 (IAIKIR;B) = (O)p + (O)h - (0.264645)17" + (0)71 
(lA IKlu4B) - (0. 194194)p + (O)h + (0.366017)17" - (0.007219)71 (lA IKluaB) = (O)p + (O)h - (0.033791)17" + (0)11 
(lA IKIRIA) (0.040713)p + (O)h (0.308510)17" - (0.488553)71 (IA IKIRiA) = (O)p + (O)h + (0.077127)1T" + (0)11 
(IA IKIR1B) - (0.194194)p + (O)h + (0.366017)1T" - (0.007219)71 (lA IKIRiB) = (O)p + (O)h - (0.33791)17" + (0)71 

(lA IKlumB) (0.036660)p + (O)h + (0.827726)17" - (1.16149)71 (lA IKlu,sB) = (O)p + (O)h - (0.264645)17" + (0)71 
(lA IKIr,A ) (O)p + (O)h + (0)17" + (0.122138)71 (IA IKlr7A) = (O)p + (O)h + (0)17" + (0.122138)71 
(IA IKlr,B) (O)p + (O)h + (0)17" + (0.316143)11 (IA IKlr7B) = (O)p + (O)h + (0)1T" + (0.213062)71 
(IA IKlp;B) = (O)p + (O)h + (0)17" + (0.085289)11 (IA IKIP!B) = (O)p + (O)h + (0)17" - (0.248647)71 

(lBIKIIA) - (0.157533)p + (0.139741)h (0.895307)17" + (1.09754)71 (lBIKlry4 ) = (O)p + (O)h + (0)17" - (0.248646)71 
(IB IK\lB) (0.959287)p + (0.479644)h + (2.07763)17" + (4.26717)71 (IBIKlr,B) = (O)p + (O)h + (0)17" - (0.173629)71 
(IBIKlusB) - (0.349730)p + (0.479644)h + 0.38665)17" - (1.84158)71 (IB IKlp!B) = (O)p + (O)h + (0)17" - (0.643597)71 
(IBIKli7A) (O)p + (0.13974I)h + (0)17" - (0.294679)71 (IBIKlriA) = (O)p + (O)h + (0)17" + (0.085289)71 
(1BIKli7B) (O)p + (0.479644)h + (0)17" + (2.72462)11 (lBIKlriB) = (O)p + (O)h + (0)17" - (0.173629)71 
(IB IKluIlB) (O)p + (0.479644)h + (0)17" - (2.511145)11 (lBIKI~B) = (O)p + (O)h + (0)17" + (0.148780)11 
(lBIKIRtA) - (0.194194)p + (O)h + (0.366017)17" - (0.007219)71 (lB IKIR;A) = (O)p + (O)h - (0.033791)17" + (0)71 
(lBIKIR~B) - (0.174865)p + (O)h (1.15476)17" + (0.053294)71 (lB IKIR;B) = (O)p + (O)h + (0.115945)17" + (0)71 
(IBIKlu4B) (0.926276)p + (O)h (0.261498)17" + (0.228144)71 (lB IKlusB) = (O)p + (O)h + (0.014804)17" + (0)71 
(lBIKIR1A) (0.036660)p + (O)h + (0.827726)17" - (1.16149)71 (IB IKIR iA) = (O)p + (O)h - (0.264645)17" + (0)11 
(lBIKIR1B) - (0.174865)p + (O)h (1.15476)17" + (0.053294)11 (lBIKIRiB) = (O)p + (O)h + (0.115945)17" + (0)11 
(IBIKlu,~) (0.033011)p +O)h (2.04803)17" - (2.73959)11 (IB IKlu,sB) = (O)p + (O)h + (0.908068)17" + (0)11 
(lBIKIr,A) (O)p + (O)h + (0)17" + (0.213062)71 (IBIKlr,A ) = (O)p + (O)h + (0)17" + (0.316143)11 
(lBIKIr,B) (O)p + (O)h + (0)17" + (0.551490)71 (lBIKlr7B) = (O)p + (O)h + (0)17" + (0.551490)11 
(IBIKlp;B) (O)p + (O)h + (0)17" + (0.148780)71 (lB IKlp~B) = (O)p + (O)h + (0)17" - (0.643597)71 

of the x(g), y(g), and z(g), which form an initial set of 30 
generalized coordinates. These initial generalized coordi­
nates are functions of the more useful set of group operator 
defined generalized coordinates gA, gB, andgusB. The trans­
formation between x(g), y(g), z(g), and gA, gB, gUsB, is 
given by the icosahedral T\ vector irreps D T'(g). Once ex­
panded in terms of the group operator variables gA, gB, and 
gUsB, the potential energy may be used to obtain force ma­
trix elements. These elements will be the second-order par­
tial derivatives of the potential energy, with respect to the 
generalized coordinates gA, gB, and gUsB, 

permitthe rapid calculation of the (lA' and (lB I rows of the 
force matrix, for any choice of spring constants. By con­
struction, the force matrix commutes with all the group op­
erators of lit and therefore has icosahedral symmetry. Thus, 
it is possible to block the diagonalize the force matrix using 
icosahedral symmetry projection, which requires only the 
two force matrix rows < lA I and (lB ,. 

(gOIKIg'O') = I a 2, ,V(gA,gB,gusB) I 
agOag 0 equilibrium 

(3.4) 

A four-point central difference method was used to numeri­
cally calculate the second-order derivatives in Eq. (3.4) be­
cause the algebra of an analytic approach was prohibitive. 

The force matrix elements in Eq. (3.4) are linear func­
tions of the spring constants p, h, 'IT, and 11. The proportional­
ity factors between spring constants and force matrix ele­
ments are determined by setting three of the four spring 
constants to 0 and the remaining constant to 1. A list of these 
porportionality factors between spring constants p, h, 'IT, and 
11, and force matrix elements that couple < lA I and (IB I to 
the IgO> of the unit cell, are given in Table I. These values 

IV. ICOSAHEDRAL SYMMETRY PROJECTION 

In Sec. III, matrix elements of the force constant opera­
tor K were calculated in the 180-dimensional, group opera­
tor defined representation IgO). The operator K commutes 
with all group operators of the full icosahedral group lit, 

g-IKg= K; {geIH}' 

and therefore may be reduced using icosahedral symmetry 
projection. This reduction requires the first two rows of the 
initial force matrix and is affected by icosahedral symmetry 
projection operators P if defined by 

P~=.!:...LD~.(g)g. (4.1) 
IJ 06 geG lJ 

In Eq. (4.1), a is the irrep label, °6 is the order of the group. 
r is the dimension oftheathirrep, andD ~a)(g) is thei,fth 
element of the ath irrep of g. Since Eq. (4.1) is a sum over 
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Ag 

T 1g 

T3g 
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Au 

T iu 

T3u 
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Hu 
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1 0 

1 2 

1 2 

2 2 FIG. II. The Ih :J Cv correlation table. 

3 2 

0 1 

2 1 

2 1 

2 2 

2 3 

group operators, projection operators formally belong to the 
theory of rings. 22 

Operation on an initial state vector 110) with projection 
operators defined by Eq. (4.1) will yield the group irreduci­
ble representation 10ij), 

{ 
la }1!2 

PijIIO)/~Na = 10ij) = - L Dij*Cg)lgO) , 
°G geG 

(4.2) 

where Na = la/oG is required for normalization. In the 
10if) basis, group operators will be block diagonal with 
group irreps forming the block diagonal elements. Operators 
that commute with all group operators will also be block 
diagonalized in this basis. Properties of the projection opera­
tors Pij, and the irreducible basis vectors 10ij) are given in 
AppendixC. 

The form of the block diagonalized force matrix in the 
10ij) representation is determined by the local s~metry of 
the coordinate axes shown in Fig. 7. The vector lA is invar­
iant under the operation of the + type projection operator 
P + of the local symmetry group C y = {l,as}, 

This means that the frequency fa. + with which the icosahe­
dral irrep a will occur in the IA if) representation of an icosa­
hedral group operator is given by the + column of the 
Ih ::> C y correlation table shown in Fig. 11. This is schemati­
cally expressed as 

A(g) DAg(g) ffj D T1g(g) ffjD T,g(g) ffj 2D Gg(g) ffj 3D Hg(g) 

ffj 2D TI"(g) ffj 2D T'"(g) ffj 2D GU(g) ffj 3D Hu(g) . 
(4.3) 

The local symmetry of the vector I B is described by the 
trivial group C1 = {n. The first column of the Ih character 
table given in Appendix B determines the frequency 

fa.l = I a of the ath irrep in the IB ij) representation, 

B(g) = DAg(g) ffj 3D Tlg(g) ffj 3D T,g(g) 

ffj 4D Gg(g) ffj 5D Hg(g) 

ffj D Au(g) ffj 3D TI"(g) ffj 3D T,u(g) 

ffj4D GU(g) ffj 5D HuCg) . (4.4) 

Together, Eqs. (4.3) and (4.4) determine the frequencies of 
the Ih irreps in the 180-dimensional buckyball space defined 
by orbits A and B. 

A(g) ffjBCg) 2D Ag(g) ffj4D TlgCg) ffj4D T'8(g) 

ffj 6D GgCg ) ffj 8D HgCg ) 

ffj D AuCg ) ffj 5D TI"(g) ffj 5D T'"Cg) 

(4.5) 

The block diagonal form of the force constant operator K in 
the I Oij) representation is obtained from Eq. (4.5) by inter­
chaning the frequency of occurrencefa of the ath irrep, with 
the dimension I a of the ath irrep, 

A(K) ffjB(K) = KAgffj3KT,gffj3KT,gffj4KGgffj 5K Hg 

ffjKAu ffj 3K Tlu ffj 3K T,u ffj 4KGu ffj 5K Hu. 

(4.6) 

The Ka in Eq. (4.6) are force matrix blocks with a dimen­
sion da given by the sum of Ih ::>Cv correlation elements 
fa. + and irrep dimension r, 

da =fa.+ + fa. 

For example, there will be five identical 8 X 8 block diagonal 
elements in the icosahedrally projected force matrix labeled 
by the Ih irrep a Hg- The dimension dHg = 8 ofthe K H

• 
blocks is the number of distinct Hg -type eigenvalues, and the 
frequency I Hg = 5 of the K Hg blocks is the degeneracy of the 
distinct Hg eigenvalues. A list of Ih irrep labels with t.he 
number of distinct eigenvalues per label, and degeneracles 
per eigenvalue is given in Table II. The form of the force 
matrix blocks are given in Fig. 12. 

TABLE II. The number of distinct vibrational eigenvalues and degener­
acies of buckyball determined by icosahedral irrep labels. 

Ih group Number of 
label eigenvalues Degeneracy 

Ag 2 I 
T'g 3 3 Even 

T,g 4 3 parity 

Gg 6 4 
Hg 8 5 

Au 
Tlu 4 3 Odd 

T3" 
5 3 parity 

Gu 6 4 

Hu 7 5 
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V.RESULTS 
Numerical diagonalization of the force matrix blocks 

shown in Fig. 12 will yield the vibrational eigenvalues of the 
spring mass model of buckyball. Diagonal elements 
K f; = K f of the force matrix are effective spring constants 
of harmonic oscillators in normal coordinates with corre­
sponding eigenfrequencies, 

of = {K"!-/m }1/2. 
I I C 

The [a force matrix blocks Ka are identical so it is redundant 
to diagonalize more than one to obtain the [a -fold degener­
ate i = 1, ... ,da eigenfrequencies mf. As a result, the diagona­
lization of the original 180-dimensional force matrix is re­
duced by icosahedral symmetry projection, to the 
diagonalization of one 2 X 2, one 7 X 7, one 8 X 8, matrix, and 
two 4 X 4, two 5 X 5 and two 6 X 6 matrices. This greatly 
reduces the numerical labor required to calculate eigenfre­
quencies and permits the entire problem to be solved for any 

Force Matrix Blocks . 
Even Parity ¢:::>g 

IAAg) IBAg) KGg = 

KAg <AA~ KAg KA~ a=Ag 
= 1,1 1. 

da =2 

<BA~ KAg 
2,1 KA! 2, 

la= 1 -
IA:Ig) IBTIg) IB:I&) IB:Ig) 1,1 1.1 .. 2 ,.3 

(A~fgl KTlg 1,1 
KTlg 

1,2 
KTlg 

1.3 
KTlg 

1,4 

( a =TI'J (B:l'l KTlg KTlg 
KTlg = 1,1 2,1 2.2 da =4 

(B~Jgl KTlg KTlg 
3,1 3,3 

~ la=3 

(B~jgl 
T . _ a 

KTlg K Ig 1 - 1, .. ,1 
4,1 4,4 

IA
T

3g) IB:3g) IB:3g) IB:3g) 1.1 1,1 1,2 1.3 
KHg = 

(A~fgl KT3g 1.1 
KT3g 

1.2 
K T3g 

1,3 K T3g 
1,4 

(B~fgl KT3g KT3g ( a=T3'J KT3g 2,1 2.2 da =4 = 

(B:3gl KT3g K T3g 
1,2 3,1 3,3 

~ la=3 
(a~gl K T3g i = I, .. ,la KT3g 

4.1 4,4 

choice of spring constants in a few seconds on a small person­
al computer. 

The functional dependence of the buckyball vibrational 
eigenfrequencies mf on the spring constants p, h, 1T, and 71 is 
displayed in the form of eigenvalue trajectories shown in Fig. 
13. To make the trajectories, both stretching spring con­
stants p and h are set equal to 1 in arbitrary units. Then the 
bending spring 1T and 71 are set equal to each other and varied 
simultaneously from 0 to 1. For each value of 1T = 71, force 
matrix elements in the initial group operator defined basis 
IgA ), 19B), and IgusB ), are calculated using Table I. The 
force matrix blocks in Fig. 12 are formed from these initial 
matrix elements using icosahedral symmetry projection, and 
numerically diagonalized using a Householder diagonaliza­
tion routine. The resulting eigenfrequencies are then plotted 
to form the trajectories. 

A line drawn parallel to the frequency axis in Fig. 13, 
and positioned along the 1T = 1] axis will intersect a total of 
46 trajectories. The points of intersection correspond to the 

IA?s) IA?s) IB?g) IB?g) IB?s) IB?g) ~ ~ ~ ~ ~ ~ 

(A~11 KGg 
1.1 

KG! I. 
KGg 

1.3 
KGg 

1.4 
KGg 

1.5 
KGg 

1.6 

(A~21 KGg K~j 2.1 

(B~11 KGg G Cd) 3,1 K3J da =6 

(B~21 KGg 
4,1 

KGg 
4,4 

(B~31 KGg KGJ ~ ja=4 j 5,1 5, 
i = 1, .. ,la 

(B~41 KGg KGg 
6.1 6,6 

IA~) IA~) IA~? IB~) IB~) IB~) IB~) IB~) 
(A~gl 1,1 

KHg 
1,1 KH! I, KHJ I, 

KHg 
1,4 K~j KHg 

1,6 K
H

• I, KHI I, 

(A~21 KHf 2, KH~ 2, 

(A~31 KHs KHg 
3.1 3,3 G1) (B~11 KHg KHg da =8 
4,1 4,4 

(B~21 KHf 5, KH~ 
5. 

(B~31 KHg KHg 
6.1 

la=5 j 6,6 

(B~41 KHg 
i = l, .. ,la 

KH~ 7,1 7, 

(B~51 KHS 
8.1 

KHS 
8.8 

FIG. 12. Block diagonal elements of the force matrix obtained by icosahedral symmetry projection. 
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Odd Parity <=>U 

-a=Au 
KAu = (BA~ K IBA~ da = 1 

la= 1 -
IA~i' IA: I , IB: I , IB: I , IB: I , 1,2 1,1 ,,2 1,3 KGu 

(A~11 KTlu 
1,1 KTlu 

1,2 KTlu 
1,3 KTlu 

1,4 KTlu 
1,5 

(A~i' KTlu KTlu 
( a=Tl) 2,1 2,2 

KTlu 
da =5 

= (B~11 KTlu KTlu 
3,1 3,3 

(B:11 KTlu KTlu 
1,2 4,1 ~ la=3 ~ 4,4 

i = l .... la 

(B:11 KTlu KTlu 
1,3 5,1 5..5 

IA:3, IA:3, IB
T
3, IB:3, IB

T
3, "I 1,2 "I 1,2 ,,3 

( A
T
3' 1,1 

K T3u 
1,1 

KT3u 
1,2 

KT3u 
1,3 

KT3u 
1,4 

KT3u 
1,5 

KHu 
(A:

3
1 

KT3u KT3u 
1,2 2,1 2,2 ( «=T3) 

KT3u = 
(B:

3
1 KT3u KT3u 

da =5 
1.1 3,1 3.3 

( B
T

31 KT3u 
la=3 j KT3u 

1,2 4.1 4.4 

(B~Ji KT3u 
i = 1, ... l a 

K T3u 
5,1 5.5 

FIG. 12 (continued). 

vibrational eigenvalues of buckyball for any particular 
choice of 1T = 'T/. Only 14 of the 46 distinct eigenvalues will be 
observable with dipole or Raman spectroscopy. Four of 
these 14 eigenfrequencies correspond to the three-fold de­
generate first-order dipole active T I u modes. The fifth of the 
dT,u = 5 T\u modes corresponds to zero frequency transla­
tion in three orthogonal directions. The remaining 10 ob­
servable eigenfrequencies correspond to first-order Raman 
active modes. Eight of these are the dH = 8 fivefold degen-

g 

erate Hg modes, and two are the d A. = 2 nondegenerate Ag 
modes. 

The lower bound of any set of buckyball vibrational ei­
genfrequencies for p = h = 1 and 0.,;;; 1T = 'T/> 1, is deter­
mined by the lowest Hg trajectory. The upper bound is very 
nearly determined by the highest Hg trajectory. The two Ag 
trajectories are parallel to the 1T = 'T/ axis and are therefore 
independent of the bending spring constants. This will be 
useful in the comparison of experimental and theoretical 
spectra because the two stretching spring constants p and h 
can be determined from the two A g eigenfrequencies. 

IA~) IA~' IB~' IB~) IB~) IB~) 
(A~d KGu 

1,1 
KGu 

1,2 
KGu 

1,3 
KGu 

1,4 
KGu 

1..5 
KGu 

1,6 

(A~2i KGu KGu 
2,1 2,2 

~ , 
da =6 

(a~d KGu KGu 
= 3,1 3,3 

(B~2' KGu 
4,1 

KGu 
4,4 

(B~3i KGu ~ la=4 ~ KGu 
5,1 

i = l .... la 5..5 

(B~4i KGu 
6,1 

KGu 
6,6 

IA~t) IA~2u) .IB~t) IB~;) IB~u) IB~:) IB~5u) 
(A~d KHu 

1,1 
KHu 

1,2 
KHu 

1,3 
KHu 

1,4 
KHu 

1..5 
KHu 

1,6 
KHu 

1,7 

(A~2i KHu 
2,1 

KHu 
2,2 

(B~d KHu KHu G2J 3,1 3,3 
da =7 

= (B~2i KHu KHu 
4,1 4,4 

(B~3i KHu KHu 
5,1 5,5 

~ la=5 

(B~4i KHu i = l .... la KHu 
6,1 6,6 

(B~ul 1,5 
KHu 

7,1 
KHu 

7,7 

By plotting eigenvalue trajectories, a set of physically 
relevant spring constants is most likely to be used. A reason­
able choice of spring constants may be obtained from ben­
zene which is similar to hexagonal fragment of buckyball, 23 

h = 7.6X 105 dyn/cm = p, 

'T/ = 0.7x 105 dyn/cm = 1T. (5.1) 

The spring constant p has been set equal to h because any 
actual difference between the two is probably beyond the 
accuracy of this initial choice. For the same reason 1T is set 
equal to 'T/. Using these spring constants, a reasonable predic­
tion of the vibrational buckyball spectrum lies at about 
1T = 'T/ = 0.1 in Fig. 13. Nearby at 1T = 'T/ = 0.17 there is a 
nearly degenerate avoided crossing between the two lowest 
dipole active T lu trajectories. As a result the lowest two di­
pole active eigenfrequencies will be closely spaced. A syn­
thetic spectrum of the dipole and Raman active modes using 
spring constants given in Eq. (5.1) is shown in Fig. 14. A list 
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4 

F 

e 
q 
u 
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n 
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T3g 

11g __ ._.~ .. ___ . 

Ag 

Hu 

Gu 

T3u 

Tlu 

Au 

Trajectory Key 

Buckyball Vibrational Eigenvalues 

p = h = 1 Variable 1t = 1] 

=~- __ a----=--·-""""-""'·""""· ~ .-. ~ ~ .-. .- . . . -:- ~. . . . . . . . . . . . . . . . . . 
1t=l] 

1.0 

FIG. 13. Buckyball vibrational eigenvalue trajectories. Note the near degenerate avoided crossing of the lowest two T,u trajectories at 11' = 7f = 0.17. 

of all 46 distinct buckyball vibrational eigenfrequencies us­
ing the same spring constants is given in Table III. 

The fa identical force matrix blocks Ka in Fig. 12 are 
diagonalized by fa identical transformation matrices T a . 
The T a mix the projection operator bases I Oij) to form ei­
genvectors labc), 

(5.2) 

In Eq. (5.2) the index b runs from 1 to r and labels the r 
degenerate partners that correspond to the fa identical force 
matrix blocks Ka. The index c runs from 1 to da and labels 
the column of the b th force matrix block to which the eigen­
vector belongs. The index i of the transformation T a runs 
from 1 to da , and the corresponding index i of the lOb,;) 
effectively runs from 1 to da when both orbit labels A and B 
are used. Eigenvalues that correspond to the labC ) are la­
beled UJ~. The initial force matrix was block diagonalized by 
the transformation Q given by Eq. (4.2). The elements of Q 
are the overlaps between the original group operator defined 
basis IgA ), 19B), Igu5B ), and the projection operator basis 
lOr). Multiplication of Q and Tyields the matrix R that 
directly diagonalizes the initial force matrix. Elements of the 
matrix R are overlaps between the original group operator 
defined basis and the eigenvectors of the force matrix, 

do da 

L Q':o.b;T':c =R':o,bc = L (gOIOb;) (Ob; labc ) 
;=1 i=1 

These overlaps are coefficients of the eigenvectors of the 
force matrix in an expansion of the initial group operator 
defined basis vectors. In general these coefficients may be 
complex. At time t = 0 the real parts Re{ (gA labC )}' 

Re{ (gB labc )}, and Re{ (gu5B I abc)} determine the dis­
placement of each of the 60 masses of buckyball located at 
the vertices labeled g, in the gA, gJt, and gu5B directions. 
The imaginary parts Im{(gA labe)}' Im{(gB labe )}, and 
Im{ (gusB labe ) } determine the momentum of each of the 60 
masses in the corresponding directions. 

The real and imaginary parts of the coefficient (gOlabe) 
are also the coordinates of the gOth phasor in the two-di­
mensional gOth phase space where the real axis corresponds 
to the displacement of the gth mass in the go direction, and 
the imaginary axis corresponds to the scaled momentum P / 
mUJ of the gth mass. The phase of the gOth phasor is given by 

f3 t { 
Im( (gOlabC ) ) } 

gO = arc an , 
Re( (gOlabc » 
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2.0 

g) Hg 

======== Tlu c) 
h) Hg 

1 .5 
a) Ag 

i) Hg 

V 
-------- Tlu d) 

j) Hg 

1 .0 

k) Hg 

0.5 Tlu e) 
1) Hg 

b) Ag 
Tlu f) 

m) Hg 

n) Hg 

0.0 
FIG. 14. Synthetic spectrum of the Raman and dipole active modes of buck­
ybal1. Spring constants are those of benzene given in Eq. (5.1). The scale is 
in units of 1185 cm - I. Lines a-n correspond to teh A., Tlu ' and H. modes in 
Figs. 15(a)-15(n). 

and evolves in time with an angular frequency m~. When the 
coefficients in Eq. (5.3) are complex, the /3gO phasors will be 
out of phase and the displaced gth mass will never pass 
through its equilibrium position. In general, the trajectory of 
the gth mass will be elliptical and will have some associated 
vibrational angular momentum. This will couple with any 
existing rotational angular momentum and split the fa de­
generacies. These complex normal modes are referred to as 
moving waves because at no time do any of the masses have 
pure displacement and no momentum. When the coeffi­
cients in Eq. (5.3) are pure real, the /3 gO phasors will be in 
phase or out of phase by 180·. This means that at t = 0 all 

I 

TABLE III. Symmetry labeled eigenfrequencies of buckybal1 for spring 
constants of benzene given in Eq. (5.1). 

Even parity 

Ih group 
label 

G. 

H. 

Frequency 
(I/cm) 

1830 

510 

1662 
1045 
513 

1900 

951 
724 
615 

2006 
1813 

1327 
657 
593 
433 

2085 
1910 
1575 
1292 
828 
526 
413 
274 

Odd parity 

Ih group 
label 

Frequency 
(I/cm) 

1243 

T lu 1868 
1462 
618 
478 

1954 
1543 
1122 
526 
358 

2004 

1845 
1086 
876 
663 
360 

2086 
1797 
1464 
849 
569 
470 
405 

masses are maximally displaced, at t = 1T/2m all masses pass 
through their equilibrium positions, and at t = 1T/m all 
masses reach maximal displacement in the opposite direc­
tion. Normal modes that display this degenerate elliptical 
motion, where the trajectories of all 60 masses are straight 
lines, are refered to as standing waves. 

Stereographic figures of the four dipole and ten Raman 
active normal modes of buckyball are shown in Fig. 15 and 
correspond to the 14 spectral lines in Fig. 14. These figures 
are single snapshots at time t = 0 of computer generated 
three-dimensional (3D) movies of normal mode standing 
waves that were generated by a MacIntosh 512K personal 
computer. The modes are labeled by icosahedral irreps a, 
icosahedral subgroup chains, parity, force matrix column 
number, and partner number. For example, a typical dipole 
label is given by 

Tl D5S U PARTNER No.1 

I I I I 
Icosahedral Icosahedral Parity Force Partner 

irrep subgroup matrix 

label chain column 
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a) p == 1 h:: 1 
1t -.1 11 =: .1 

MODE: AD5SG ~ PARTNER' 1 
"REO: 1.772 

b) 

MODE: AD5SG 2 PARTNER. 1 
IrREO: .4934 

c) p == 1 h = 1 
1t ;;;:.1 11 = .1 

MODE: T105S0 1 PARTNER' 1 
"REO: 1.812 
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a) p = ~ h = 1 
1t =-.1 11 = .1 

MODE: AD5SG 1 PARTNER' 1 
"REO: 1.772 

b) p = 1 h = 1 
'It .1. l'l - .1 

MODE: ADSSG 2 PARTNER' 1 
"REO: .4934 

c) p =; 1 h = 1 
1t =.1 11 = .1 

MODE: T10SSU 1 PARTNER' 1 
FREO: 1.812 
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FIG. 15. Stereoscopic views of the (a)­
(b) Ag, (c)-(f) T 1u ' and (g)-(n) Hg 
modes of buckyball. Stretching and bend­
ing spring constants given at the top of 
each figure have approximately the same 
ratio as those of benzene given in Eq. 
(5.1). Mode labels and frequencies in 
units of IOIOcm -I are given at the bottom 
of the figures. Modes (a)-(n) correspond 
to spectral lines a-n in Fig. 14. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

216.165.95.79 On: Sat, 06 Dec 2014 22:29:36



4760 

d) p 
n 

1 h = 1 
.1 1] = .1 

MODE: r1D5S0 2 PARrNER' 1 
I'REO: 1.423 

e) p 
n 

1 h = 1 
.1 1] = .1 

o o 
o o 

MODE: T1DSSU 3 PARTNER' 1 
FREO: .S989 

f) p 
n 

1 h = 1 
.1 1] = .1 

MODE: rlD5SU 4 PARTNER' 1 
FREO: .4812 
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d) p = 1 h = 1 
1t = .1 11 = .1 

MODE: r1D5S0 2 PARrNER' 
FREO: 1.423 

e) p =: 1 h =- 1 
It =:.1 11 =- .1 

o 0 o 
o o 0 

MODE: T1DSSU 3 PARTNER' 1 
FREO: .5989 

f) p == 1 h = 1 
1t =- .1 11 =- .1 

MODE: '1"1D58U 
FREO: .4812 

PARTNER' 1 
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p = 1 h - 1 
1t =.1 11 - .1 g) 

NODE: H05SG 1 PARTNER' 1 
FREQ: 2.046 

h) p = 1 h = 1 
1(. =.1 1\ = .1 

MODE: H05SG 2 PARTNER' 1 
rREQ: 1.86 

) p 
n 

1 h = 1 
.1 1\ & .1 

NODE: H05SG 3 PARTNER' 1 
r!tEQ: 1. 53 
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g) p 
n 

1 h = 1 
.1 1) = .1 

MODE: H05SG 1 PARTNER' 1 
FREQ: 2.046 

h) p 
n 

1 h = 1 
.1 1\ = .1 

NODE: H05SG 2 PARTNER' 1 
FREQ: 1. 86 

) P 1 h = 1 
tt =.1 1\ = .1 

NODE: H05SG 3 PARTNER' 1 
F!tEO: 1.53 
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j ) P 
1t 

1 h = 1 
.1 T} == .1 

KODE: HD5SG 4 PARTNER' 1 
rREQ: 1.263 

k) p == 1 h 1 
1t :0=: .1 T} = .1 

MODE: HD5SG 5 PARTNER' 1 
FREQ: .8052 

p == 1. h:: 1 
1t ==.1 1) = .1 
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J 
p 
n 

MODE: HD5SG 4 PARTNER# 1 
FREQ: 1.263 

k) P 
1t 

1 h = 1 
. 1 ~ = .1 

MODE: HDSSG 5 PARTNER' 
FREQ: .8052 

1 ) p = 1 h = 1 
It ,l 11 =- .1 

MODE: HD5SG PARTNER, 1 MODE: HD5SG PARTNER' I 
~F~R~E~Q~:~.~5~3~ _______________________________ L~F~R:~E~Q~:~.~5~3~ _________________________ ~ 
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m) p 
n 

1 h = 1 
.1 ~ = .1 m) p 1 h = 1 

. 1 ~ = .1 

MODE: HD5SG 7 PARTNER' 1 
!'REQ: .4134 

MODE: HD5SG 7 PARTNER' 1 
FREQ: .4134 

FIG. 15 (continued). 

1 h = 1 
. 1 ~ = .1 

p 1 h = 1 
. 1 ~ = .1 n) p n) 

o o 0 o 

MODE: H05SG B PARTNER# 1 
FREQ: .2726 

MODE: H05SG B PARTNER' 1 
FREQ: .2726 

The icosahedral subgroup chain label D SS identifies which 
particular set of equivalent icosahedral irreps were used in 
Eqs. (4.2) and (S.3) to calculate the normal mode. The 
partner number distinguishes between the r degenerate 
modes. 

Only the first partner of the two Ag , four T 1 u' and eight 
Hg modes are shown in Fig. IS. The two nondegenerate Ag 
modes consist of a higher frequency "pentagonal pinch" 
mode and a lower frequency "breathing" mode. In both Ag 
modes only the edge lengths change while the vertex angles 
O(g), ¢;(g), and y(g) remain constant and equal to their 
equilibrium values 8(g) = 108°, cf>(g) = 120·, and 
cI>(g) = 120·. This is expected because the Ag irrep label in­
dicates that the Ag modes are icosahedrally invariant which 
is violated if the angles change. This agrees with the earlier 
conclusion that the Ag eigenvalues are independent of the 
bending spring constants. 

The dipole nature of the T 1 u modes can be seen in Figs. 
lS(a)-IS(d). In the three highest frequency modes the top 
pentagon is constricted while the bottom pentagon is dis­
tended. This distortion of the nuclei, as they alternately 
crowd toward the top and then bottom pentagon, shifts 
charge symmetrically along an axis that passes through the 
center of the pentagons and defines the dipole axis of the 
mode. The lowest frequency mode has top and bottom pen­
tagons that remain the same size and move up and down in 
concert while the remaining nuclei move in the opposite di­
rection in order to satisfy the translational Eckart condi­
tion.24 This also has the effect of creating a dipole moment 
along the axis passing through both pentagons. The remain­
ing two degenerate partners of the four T I u modes generate 
dipole moments in orthogonal directions. 

In the absence of a central atom and strong radial bonds, 
the higher frequency normal modes of buckyball correspond 
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to primarily tangential motion of the carbon atoms. This 
motion distorts the stretching and bending springs to a 
greater degree than radial motion. This is why the tangential 
"pentagonal pinch" Ag mode is higher in frequency than the 
radial "breathing" Ag mode. A progression from tangential 
to radial motion can also be observed in the T lu and Hg 
modes as a function of the frequency of the mode. For exam­
ple, the highest frequency Hg mode is almost purely tangen­
tial while the lowest frequency Hg mode is almost an entirely 
radial distortion of buckyball into an ellipsoid. 

.6 .7 .8 .9 1.0 

VI. SPECIAL CASES 

In Sec. V the behavior of the buckyball spring-mass 
model was studied with all four spring constants p, h, fT, and 
11 assigned nonzero values. With appropriate choices of 
spring constants set to zero, it is possible to study systems 
with reduced symmetry for which independent analytic re­
sults are available. Comparisons between the analytic re­
sults, and those obtained by icosahedral symmetry projec­
tion and subsequent numerical diagonalizations, provide a 
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A A B B I 2 I A A E E I 2 2 

I 000 1 0 0 0 
g 0 I I 1 0 1 1 0 
g 0 1 I 1 0 1 0 1 

g 1 1 1 1 g 0 0 1 1 

g 2 1 1 1 g 1 0 t 1 

u 0 0 0 1 u 0 1 0 0 

u 1 1 1 0 u t 0 1 0 
u 1 1 1 0 u 1 0 0 1 

u 1 I 1 1 u 0 0 1 1 

u 1 1 1 2 u 0 1 1 1 

FIG. 17. The Ih :::>CZh and Ih :::>C," subgroup correlation tables. 

check on the validity of the general computational proce­
,dure. 

The five choices of spring constants are as follows. 
(i) rIO, h #0, 1T#0, 1]#0. When all four spring con­

stants are nonzero, six of the 3 X 60 = 180 eigenvectors cor­
respond to zero frequency motion. Three of these motions 
are the IT,. = 3, fifth column, T lu translation, and three are 
the I T'g = 3, fourth column, T Ig rotations. The Ih irrep label 
T 1 u is odd and corresponds to the polar nature of transla­
tion, while the irrep label T Ig is even and corresponds to the 
axial nature of rotation. 

(ii) p#O, h #0, 1T = 1] = O. By setting the bending 
spring constants 1T and 1] to zero, 90 of the 3 X 60 = 180 
eigenvectors of the force matrix will correspond to zero fre­
quency motion. Six of these motions are the T 1 u translations 
and T Ig rotations. The remaining 84 zero frequency motions 
correspond to first-order distortions of buckyball that 
change the vertex angles B(g), <p(g), and reg) without 
stretching the edges. A set of eigenvalue trajectories for 
1T = 1] = 0 is given in Fig. 16 where the stretching spring 
constants p and h are varied as a function of the parameter X, 

p=p(X) = I-X, 

h=h(X) =X, O<:X<:I. (6.1 ) 

(iii) p = 1T = 1] = 0, h = 1. When X = I in Eq. (6.1) 
the pentagonal stretching spring is 0 and the hexagonal 
stretching spring is 1. This choice of spring constants isolates 
30 pairs of masses each aligned with one of the 30 icosahe­
dral edges indicated by the thick lines in Fig. 2. The masses in 
each pair are coupled by a single hexagonal spring, forming 
30 independent C 2h symmetric vibrational systems. The 
only nonzero frequency normal mode of these systems is the 
symmetric stretch labeled by the C 2h irrep A I' The A I col­
umn of the Ih -:;C2h correlation table given in Fig. 17(a) 
determines which buckyball normal modes will simulta­
neously yield the symmetric stretch motion for each of the 30 
vibrational systems. Eigenvalue trajectories in Fig. 16 corre­
sponding to these modes converge to the single C 2h symmet­
ric stretch eigenfrequency as X -;. I. The analytic solution of 

the symmetric stretch eigenfrequency is found quite easily to 
be 

where for h = m = 1, wA
, = Ii. This is the frequency ob­

tained using icosahedral symmetry projection which verifies 
the general calculational procedure. In particular it tests the 
geometry used to determine the potential dependence on the 
hexagonal spring constant h in Eq. (3.3a). 

(iv) h = 1T = 1] = O,p = 1. When X = OinEq. (6.1) the 
pentagonal stretching spring constant becomes one and hex­
agonal spring constant becomes zero. This choice of spring 
constants isolates 12 sets of five masses. Each mass is located 
at the vertex of a pentagon and is connected to the other 
masses of the pentagon with a pentagonal stretching spring. 
This forms 12 independent C 5v symmetric vibrational sys­
tems indicated by the thin lines in Fig. 2. Out of ten possible 
C 5v vibrations, one is a zero frequency A2 rotation, two are 
zero frequency EI translations, and two are E2 bending mo­
tions with zero frequency when 1T = O. The five remaining 
C Sv normal modes consist of an A] breathing mode, two de­
generate E] modes, and two degenerate E2 modes. The 
A1,E1, and E2 columns of the Ih -:;Csv correlation table in 
Fig. 17 (b) determine which normal modes of buckyball will 
yield A I' E I , and E2 type Csv motions in each of the 12 isolat­
ed pentagons. Eigenvalue trajectories in Fig. 16 correspond­
ing to these buckyball normal modes converge to the three 
AI' E I, and E2 type C sv eigenfrequencies as X ..... O. These 
agree with analytic solutions in the independent calculation 
of the A I' E I, and E2 eigenfrequencies using C 5v projection 
methods given in Appendix A. For p = m = 1 these are, 

wA, = {~(5 - J5)}lf2 = 1.715570505 ... , 

WE, = {I + cos( ;)} 1/2 = 1.344 997 024 ... , 

WE, = {~}1/2 = 1.581 13883 .... 

This provides a further test of the general computational 
procedure and indicates that the potential dependence on 
the pentagonal springs p is treated correctly. 

(v) p = h = 1] = 0, 1T = 1. The C5v symmetry described 
in (iv) is unchanged with this choice of spring constants. 
There are two nonzero Csv eigenvalues that correspond to 
doubly degenerate EI modes and doubly degenerate E2 
bending modes. The A I breathing mode is independent of 
bending and is a zero frequency distortion in the absence of 
the pentagonal stretching spring. Analytic values calculated 
in Appendix A for 1T = m = I are, 

WEI = {~P/2 = 1.581 13883 ... , 

WE2 = J5 {5 + J5}1/2 = 3.007 504 78 .... 
2 

These values are also obtained using the general computa­
tional procedure and verify that the more complicated po-
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tential dependance on the pentagonal spring constant 11", in 
Eq. (3.3b), is correct. 

A direct test of the hexagonal bending spring", is diffi­
cult because this spring couples all 60 masses in the bucky­
ball model. However, the symmetric nature of the force ma­
trix blocks in Fig. 12, the independence of vibrational 
eigenvalues with respect to the choice of equivalent sets of 
icosahedral irreps used in Eq. (4.2), and the observed bend­
ing spring independence of the Ag modes, all serve as indi­
rect evidence that the potential dependance on the hexagon­
al spring", is also correct. 

The buckyball eigenvectors determined by the A 1 col­
umn ofthelh ::J CZh correlation table span the 30-dimension­
al Czh-induced-to-Ih repesentation. In this basis a force ma­
trix is diagonal when p = 11" = ", = 0 and h = 1. With this 
choice of spring constants all 30 diagonal elements are equal 
to the CZh symmetric stretch eigenfrequency. By weakly 
coupling the 30 CZh symmetric vibrational systems with the 
pentagonal stretching spring, the 30-fold degeneracy is split 
into eight cluster~d levels shown in the upper right-hand side 
of Fig. 16. This splitting is the classical analogue of the Oz 
type Cz-induced-to-I rotational superfine cluster also shown 
in the upper right-hand side of Fig. 16.13.14 Calculation of the 

CSv = (I 
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cluster splittings in both cases involves the construction of a 
coset space and the definition of an appropriate initial state 
vector IlA ). In the case of the rotational superfine splitting 
this initial state vector represents a wave packet with Oz-type 
C2 local symmetry localized on one of the 30 icosahedral 
edges, and is the probability amplitude for finding the angu­
lar momentum vector in a set of body-fixed coordinates. The 
C2 coset space is spanned by state vectors generated from the 
initial state vector using C2 coset leaders. In this basis the 
rotational Hamiltonian couples the state vectors with a pa­
rameter S that determines the nearest-neighbor tunneling 
rate between twofold symmetric minima of the icosahedral 
rotational energy surface. The rotational superfine splitting 
is obtained by diagonalizing the rotational Hamiltonian us­
ing icosahedral symmetry projection. In the classical ana­
logue, the initial state vector is a pair of CZh symmetrically 
stretched masses located along one of the 30 edges of the 
icosahedron. This state is spread to the other icosahedral 
edges with the coset leaders of CZh in I h • In this basis a force 
constant operator couples nearest-neighbor states. The cou­
pling is parametrized by the pentagonal stretching spring 
constant p which is analogous to the rotational tunneling 
parameter S. Diagonalization of the force matrix yields very 

ag 

1 1 1 1 1 

-1 -1 -1 -1 -1 CSv 

1 0 e /3 'Y t 'Y-'t e -/3 
0-1 /3 - e 't-"{ -'t-"{ -/3 -e 
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a= exp {21t,Ys} 

5 = exp (41t,Ys) 
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'{= cos I 41tL \ = -O+/. 
\ /5/ /2 

O±= 1±,J5 
2 

1 

't = sin/41tL \ = f\ 3_0+\/2 
\ /5/ 4 

FIG. 18. Two equivalent sets of C 5v irreps. Real irreps are given in the first four rows and complex irreps are given in the last four rows. 
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FIG. 19. (a) A C Sv symmetric spring-mass model with stretching and bend­
ing springs. (b) The unit cell of C Sv symmetric spring-mass model. Dis­
placement vectors d(i), edge vectors, ii, b, ... ,1, and angles 8(g) used in the 
calculation ofthe potential are labeled. 

nearly the same splittings as those in the superfine rotational 
pattern. Note how long the C2h vibrational cluster pattern is 
maintained as X decreases. More or less the same pattern 
persists as X varies from 1 to 0.43 where the cluster forms 
again to the right of the eightfold trajectory crossing. On the 
other side of this crossing the pattern quickly disintegrates. 
A similar comparison is made between theA I-type Csv vibra­
tional splittings and the Os-type Cs rotational superfine split­
tings in the upper left of Fig. 16. In this case the hexagonal 
stretching spring constant h is analogous to the rotational 
tunneling parameter S, and weakly couples the Csv symmet­
ric pentagonal vibrational systems described in (iv). The Csv 
clusters centered around WE, and WE, correspond to E) and 
Ertype Csv-induced-to-Ih representations of the force con­
stant operator. 

TABLE IV. (a) Displacement vectors d(g) used in the calculation of the 
edge vectors. (b) Edge vectors used to calculate angles. 

il=a-d(1) +d(R1) 

b=b-d(R,) +d(l) 
C = c - d(R,) + d(Ri) 
e=e-d(RD +d(R1) 

(b) 

{ 
il·l } 

8(1) = arcos lillill 

8(R I) = arcos{Ji..} 
Ibllel 

8(R i) = arcos{ I~'~I } 

VII. CONCLUSION 

(a) 

f= f - d(Rl) + d(Rj) 
g g d(Ri) +d(RI) 
ii h d(Ri) +d(1) 
1 = i d(1) + d(Ri ) 

Icosahedral symmetry projection methods applied to 
the spring-mass model of buckyball provide rapid, testable 
calculation of rovibronic eigenvalues and eigenvectors. 
These calculations can be done quickly on a small personal 
computer such as a MacIntosh S12K. In a few seconds of run 
time stereographic computer animated movies of vibrational 
eigenvectors can be generated for any choice of force con­
stants. These eigenvectors are classified by subgroup chain 
and provide an optimal basis set when considering perturba­
tions such as isotopic variation and corriolis coupling be-

TABLE V. Csv force matrix elements as a function of stretching and bend­
ing. Results of numerical and analytical calculations are given where 
8= 81·and~=9°. 

Force 
matrix 

elements 

Numerical results 

stretching + bending 

Analytic results 

stretching + bending 

(lA IF\1A) = 1.000OOOOp + 2.309 017011'= P + (2 - G-/2)1T 

(IA JFIR,A) = 0.1545085p 1.309 01701T=pG -/4 + (G- /2 -1)11' 

(lA IF IR ~ A) 0.000 OOOOp + 0.154 508511' = Op - 1TG -/4 

(IA IF IR i A ) 0.000 OOOOp + 0.154 508511' = Op - 1TG - /4 

(lA IFIR iA ) = 0.1545085p 1.309 017011' = pG - /4 + (G - / 
2 - l)lT 

(IA IFIO'sA ) = 0.309 0170p + 1.6180344011' = pG -!2 + lTG + 

(lA IF 10',0-4 ) 0.024 4717p - 2.260 073511' = P cos2 (;I + (v1. cos ~/G -)11' 

(lA 1FI00IsA) = O.(xx)OOOOp + 0.975528311'= Op + 1TCOS
2 ~ 

(lA IFlugA) = O.OOOOOOOp + 0.024471711'= Op + 1TCOS
2 8 

(lAIFlu4A) = 0.975 5283p - 0.357 96041T pCOS2~ + (v1.cos 8/G-)1T 
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MODE:A1 p 1 

FREQ: 1.176 1t o 

MODE:E1S 1 p 1 

FREQ: 1.345 1t o 

tween rotations and vibrations. This will be useful in the high 
resolution spectroscopy of buckyball, and will be discussed 
in future works. 

Buckyball animation software for the Macintosh Plus 
SE, and II that features menus, windows, and button con­
trols is now available. For more information contact D. E. 
Weeks at the University of Arkansas. 
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of two nonzero frequency vector E, modes, and (c) One of two nonzero 
frequency E2 modes. 
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APPENDIX A: C5 " EIGENVALUES AND NORMAL MODES 

The icosahedral subgroup Csv contains ten elements 
consisting of the unit operator, four rotations, and five re­
flections, 

Csv = {1,R 1,R i,R ~,R t '0"4'O"S'O"S'0"1O,0"15}. 

A set of Csv irreps is given in Fig. 18. 
A spring mass model with Csv symmetry is shown in 

Fig. 19(a) and is identical to anyone of the 12 isolated pen­
tagons described in (iv) and (v) of Sec. VI. The pentagonal 
stretching and bending spring constants are labeled p and 1T, 
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FIG. 21. Icosahedral generator irreps. Rational root form of the irrep elements is given in the irrep key. Irreps of ill are symmetric because the Wi = 180" 
rotations are their own inverses. Rows of the vector irrep To correspond to the Z,X, and y body fixed axes shown in Fig. 6. 

respectively. All ten springs are contained in the pentagonal 
plane which permits the problem to be solved using two­
dimensional orthogonal coordinate systems located at each 
mass. These coordinate systems are generated with the 
IE, = 2 dimensional Csv vector irreps D E, (g), and an initial 
vector IT rotated 45° away from a radial vector passing 
through an arbitrary mass. Using the D E, (g) as rotations in 
R 2 the initial vector is passed from vertex to vertex generat­
ing ten vectors gA that form an orbit labeled A, 

CI CRCrlCr Ci q Cp GfC1\ Ca 

g 1 A 
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2 

FIG. 22. Characters of the full icosahedral group I h • Characters of the rota­
tion group I are given in the highlighted box. 

D E'(g)lA = gA. 
The Csv group operator labeled vectors SA and of the A orbit 
are shown in Fig 19(a). 

A force constant operator K is represented in the basis 
defined by the state vectors IgA) that correspond to the gAo 
Matrix elements of K in this basis are the second-order de­
rivatives of the potential energy of the unit cell shown in Fig. 
19(b). This potential is given by 

V$ = .f.{(1 -litl>2 + (1 - fij)2} , 
2 

Vb = ([Oo - 0(1) 12 + [00 - 0(R I )]2 

+ [00 - OCR i) ] 2} , 

v= Vs + Vb' 
... ... 

(Al) 

where 00 = 108°. The vectors it, b, c, ... ,i, are determined by 
the displacement vectoisd(g) shown in Fig. 19(b), and are 
listed in (a) of Table IV. Expressions for the angles O(g) are 
given in (b) of Table IV. 

The potential in Eq. (AI) is a function of the ten gener­
alized coordinates x(g) and y(g). These are components of 
the Ci(g) in a two-dimensional lab-fixed coordinate system. 
The transformation from x(g), y(g) to the Csv group opera­
tor defined set of generalized coordinates gA is made with 
the Csv E, vector irreps. Elements of the force matrix are 
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the second-order derivatives of the potential with respect to 
the group operator defined coordinates, 

(g' A IKlg"A ) = I a2,V(g~) I . 
ag Aag A equilibrium 

A four-point central difference method was used to numeri­
cally calculate the second-order derivatives. The force ma­
trix elements may also be determined analytically using the 
geometry of the Csv vibrational system. Stretching spring 
contributions to matrix elements are determined by the pro­
jection of displacements and resulting forces along the pen­
tagonal edges, while bending spring contributions are deter­
mined by projecting perpendicular to the edges. Numerical 
and analytic results are given in Table V and agree for all 
matrix elements. This verifies the numerical differentiation 
routine. 

The Csv irreps in Fig. 18 and the first row of the force 
matrix in Table V are used in Eq. (C7) to calculate the block 
diagonal elements of the force matrix in the Csv irreducible 
representation. The largest block is 2 X 2 and is analytically 
diagonalized using the quadratic formula. The resulting Csv 
eigenvalues are 

(A2) 

These results agree with the icosahedral projection results 
given in Sec. VI. The results given in Ref. 16 for Csv eigenval­
ues are in serious disagreement with the analytic results in 
Eq. (A2) which invalidates their predictions for buckyball 
eigenfrequencies. Normal modes of the Csv spring-mass 

model are shown in Fig. 20. 

APPENDIX B: ICOSAHEDRAL IRREPS 

The a = A, TI , T3, G, and H irreps of the icosahedral 
rotation group generators r I and ill are given in Fig. 21. The 
remaining irreps of I are generated using the icosahedral 
multiplication table in Fig. 5. Irreps of the full icosahedral 
group h may be obtained from those of the rotation group I 
using 

Ih irreps Iirreps Ih irreps Iirreps 

D ag(g) = D a(g) D ag(lg) = D a(g) , 

Da.(g) = Da(g) DU.(lg) = _ Da(g) . 

Icosahedral characters are given in Fig. 22. 

APPENDIX C: PROJECTION OPERATORS 

Projection operators defined in Eq. (4.1) obey simple 
mUltiplication rules, 

P apP _ pa/jaP/j 
ij kl - II jk' (CO 

When i projection operators are idempotent and herme-
tian. For i#jprojection operators are nilpotent, 

P~P~ =P~, 

PijPij=O, 

Pij = {Pfi}t. (C2) 

In Eq. (4.1) the indices i andj run from 1 to la, resulting in 
(F)2 projection operators Pij for each irrep a. This means 
that there are as many projection operators as there are 
group operators. 

a a 

where Xc, is the ath character of the class C I . Thus, it is 
possible to invert Eq. (4.1) and expand group operators in 
terms of projection operators, 

I U 

g= 2: 2: Dij(g)Pij. (C3) 
a i,j= I 

Normalization of the irreducible representation IA ij) is 
determined by Eqs. (Cl), (C2), and (4.2), 

(A ijlA ~I) = (A IPfiP~/IA )/(NUN/3) 1/2 

= {(A IPfilA )INu }{ja/3/jik 

= (_I U_) " Dfi*(g)(A IgA )/ja/3/jik 
Na °G f;;a 

= (_l_a_)/jap/jik/jjl = /jaP/jik/jji 
NaoG 

·Na=~. 
°G 

(C4) 

Irreducible representation matrix elements of group opera­
tors, projection operators, and operators with the symmetry 
of the group are derived in Eqs. (C5), (C6), and (C7): 

/" 11' 

=2: 2: 2: D;;'n(g)(AIPfiP;;'nP~IIA)1 
ym=ln=1 

(NUN/3) 1/2 

=D~(g){(A IPfil A )INa}{ja/3 

=D~(g)(N~aOG)k Dfi*(g')(A Ig'A )/ja/3 

= D ~ (g)/jaP/jjl , (C5) 

(AijIP;;'nIA~/) = (A IPfiP;;'nP~/IA )/(NaN/3) 1/2 

= {(A IPfilA )INa}{ja/30aY/jimOnk 

(C6) 
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(AijIK!Aft) = (A IPfiKPftlA )/(NaNfJ) 1/2 

{(A IKPfilA )INa}8afJ8ik 

X (gK = Kg; gEG) 

= L Dfi*(g) (A IKlgA )8afJ8ik . (C7) 
geG 
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