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Rotation-vibration spectra of icosahedral molecules. t Icosahedral 
symmetry and fine structure 

William G, Harter and David E. Weeks 
Los Alamos National Laboratory T-12, Los Alamos, New Mexico 87545 
and Department of Physics, J. William Fulbright College of Arts and Sciences, University of Arkansas, 
Fayetteville, Arkansas 72701 . 

(Received 4 August 1988; accepted 14 December 1988) 

Icosahedral symmetry analysis is developed for analyzing eigensolutions of rovibrational 
tensor Hamiltonians for molecules such as B12HI2 -2, C2oH20, and C60• Simplified asymptotic 
formulas and procedures are developed for obtaining rotational spectral fine structure for high 
angular momentum. J = 100 eigenlevels for sixth- and tenth-tank icosahedral tensors are 
discussed using different approximations and visualization schemes. 

I. INTRODUCTION 

Icosahedral symmetries I and III = 1 X Ci have become 
relevant for a number of physical, chemical and biological 
studies, Molecular structures known to have Ih symmetry 
include the borohydride anion 1.2 CB12Hi21) and the recently 
synthesized dodecahedrane3 (C2oH zo )' MoreTccently an 1,,-
symmetric structure has been proposed by Kroto et al.4 for 
C60 carbon clusters. This structure has been named "Buck-
minster-FuHerene" or "Buckyball" after the inventor of the 
geodesic dome. Related but more complex I-symmetric 
structures have been established for meningitis. polio, and 
cold viruses. 5 -7 Also, local icosahedra! symmetry has been 
found in quasicrystaUine solids.8 

The icosahedral rotational symmetry group I or the full 
icosahedral rotation-reflection group 1 h = I X Ci represent 
the symmetry of either the icosahedron or the dodecahedron 
which are two of the five platonic solids. The other platonic 
solids are the tetrahedron which has crystal point symmetry 
Td and the hexahedron (cube) and octahedron which have 
octahedral crystal point symmetry Oh = 0 X Ci , The I(1h) 
groups have 60( 120) symmetry operations while Td or Oh 
have only 24 or 48 operations, respectively. It can be shown 9 

that icosahedral symmetry is the largest or highest finite 
symmetry in Euclidean 3-space. In this sense it is closest to 
spherical or R3 symmetry. (Here we exclude the relatively 
trivial uniaxial or polygonal symmetries such as en groups 
which approximate cylindrical or R2 symmetry as n -> 00,) 

The intent of this work will be to extend certain symme-
try analysis methods to the study of spectral properties of 
icosahedrally symmetric molecules. The present paper will 
describe general aspects of icosahedral symmetry analysis 
and its application to rotational dynamics and spectral fine 
structure. We discuss spectral features which might be ob-
served in any molecule or ion having I of Ih symmetry. Sub-
sequent papers will use the icosahedral analysis to predict 
vibrational dynamics and spectral properties which depend 
upon the detailed structure of specific molecules. The har-
monic rovibrational modes of a model for C60 will be dis-
cussed in the following paper, and the rovibrational modes of 
C2oH20 and BuH;] 2 will be treated in later works. 

We shall assume that some of the spectroscopic pheno-
menologylO-J8 of tetrahedral or octahedral "spherical top" 

molecules can be generalized to the higher icosahedral sym-
metry !lpecies. At present there have been relatively few spec-
troscopic studies2 ofB n H 12 2 and no studies ofCzoHzo or Cw' 
For C60 one really needs spectroscopic evidence to establish 
the assumed icosahedral structure. Some predictions of 
fraredand raman spectral patterns based upon an icosahe-
dral model 19 will be given here and in the following pa-
per. It is hoped that laser spectroscopic techniques which are 
successful in studies of octahedral molecules such as SF 6 or 
CgRs can be applied as well to icosahedral molecules. 

In particular. the rotational fine structure of infrared 
spectra of the octahedral molecules contains patterns which 
stand out very clearly even in the complicated bands of cu-
bane20 (CsHs). The theory of these fine-structure patterns 
as well as their underlying superfine structure has been de-
veloped for octahedral molecules. 16•18 Here we will extend 
this theory to icosahedral molecules in hopes that it may 
serve as a guide for high-resolution studies of these struc-
tures. 

Fine-structure patterns may be useful for more than just 
"fingerprinting" the molecular spectra. As explained in Sec. 
III (and in previous works) the patterns are indicators of 
certaintypes of adiabatic rotational dynamics. They provide 
detailed information about the location and precessional dy-
namicsof rotational momentum of the molecule as viewed in 
its rotating frame. IS Rotational energy (RE) surfaces17,18 

will be used to map out the angular momentum phase por-
trait and to discuss the quantum mechanics and spectral 
properties of the molecular models. This will be important if 
any ofihe icosahedral molecules are to be used as "cages" to 
trap atoms or smaller molecules. Already, Smalley et al.4 has 
shown evidence of trapped lanthanum (La) atoms in C60" 

One may begin to speculate about the effects of a tiny "quan-
tum lathe" around an excited atom or molecule in a vacuum 
or electromagnetic environment. 

Also, the detailed rotational behavior is related to the 
vibrational dynamics through the coriolis interactions. The 
centrifugal distortion and anisotropic coriolis Hamiltonian 
of the molecule may be described in terms of tensor multi-
pole expansions,IO,I3.16 In the fonowing sections (Sees. II 
and III) we shall discuss the icosahedral tensor Hamilto-
nians and show ways to understand their eigensolutions 
which are associated with the rotational spectral fine struc-
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4728 W. G. Harter and D. E. Weeks: Spectra of icosahedral molecules. I 

{ure. 19 This will provide a context in which to introduce 
mathematical properties of the icosahedral symmetry repre-
sentations which will be relevant for vibrational or electronic 
spectroscopy of these structures as well. 

II. Icosahedral tensors 
The correlation between angular momentum represen-

tations or J levels and the icosahedral irreducible representa-
tions Orreps) is given in Table I. As explained in Appendix 
A the icosahedral group I has five irreps labeled by a = A, 
T I , T" G and H of dimension I a = 1, 3, 3, 4, and 5, respec-
tively. The numbers la give the degeneracy of the orbitals or 
"icosaharmonics" that would result in a quasi-crystal-field 
splitting of ordinary J orbitals or spherical harmonics 
belonging to a J level of degeneracy 2 J + 1. The integer 
the J th row and ath column of Table I is the number of I a_ 

lets in any icosahedral splitting of a (2 J + 1) mUltiplet. 
One should note that J = 0, 1, and 2 levels are not split 

at all; they are merely "renamed" A, T I , and H, respectively. 
The lowest J level to suffer icosahedral splitting is the 
(J = 3) septet which splits into a triplet (T3 ) and quartet 
(G). (Note that we use the notation T3 instead of T2 for the 
second icosahedral triplet to indicate its J = 3 character. In 
comparison, note that an octahedral field splits Tz and E 
from J = 2.) The first few rows of the correiation table pro-
vide some idea of the multipole character ofthe I irreps: A is 
scalar, T J is vector, or dipoleIike, H is tensor or quadrupole-
like, while T3 and G are octupolelike. 

TheA column ofthe correlation table shows which mul-
tipole tensors can be icosahedral invariants and become part 
of icosahedral Hamiltonian. Besides the spherical scalar 
(J = 0) there are no nontrivial icosahedral tensors of rank 
less than six (J = 6). The two lowest rank tensors of rank six 
and ten will be discussed in this work? I The invariant sixth-
rank tensor has the foml 

T[6] = .J1l T" + .j7 (T 6 _ T6 ) 5 0 5 5 -5 , 

while the tenth-rank invariani has the form 

TABLE I. Correlations between R3 angular momentum J states (J< 10) 
and icosahedral symmetry species. (See Fig. 3 for more complete correla-
tion and level splitting information. ) 

J 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

A T, G 

I 
1 
I 
2 
1 

H 

I 
I 
1 
1 
2 
1 
2 

T[IO] = .J3· 13·19 TIO _ ,,,IT-:t9 TIO Till 
75 0 25 ( 5 - - s ) 

r···--+ ,,3'11'17 (TIO -'-TIO ) (2.2) 75 10' 10 , 

where the irreducible lih-rank tensors T' transform under q 

R3 rotations R(a/3y) according to the standard Wigner D r 

functions: 

t(a/3y) = I T;D;q (a[3r)· (2.3) 
p 

A matrix element of an irreducible tenser in an angular 
momentum Ii> basis is a product of a standard Clebsch-
Gordan (CG) coefficient C and a reduced matrix ele-
ment (J IlrlIJ) according to the Wigner Eckart theorem: 

= (2.4) 
A reduced matrix element is independent of the components 
q or K which label z components, but it may be a function of 
the total angular J quanta and the rank r. The reduced ma-
trix factor depends upon the detailed physical definition of 
the states Ii) and the tensor operator while the many 
CG factors depend only on the geometry or angular aniso-
tropy of the tensor operator. This factorization may anow 
one to study the possible forms of the spectral patterns with-
out having detailed knowledge of the Hamiltonian and the 
molecular constants. In other words, similar patterns of en-
ergy levels can appear in pure rotational manifolds or in 
excited rovibronic manifolds. In fact the same patterns may 
appear in the spectra, as well, when selection rules aHow 
transitions only between corresponding levels of each pat-
tern, 17 

Rovibrational base states can have approximate vi-
bronk (or vibrational) momentum I, pure (nuclear) rotor 
momentum N (this is often labeled R) and total angular 
momentum J = 1+ N. Dipole-active vibronic excited states 
have 1= 1 while initial states generally have 1=0. Wave 
functions of definite I, N, and J can be constructed by cou-
pling products of I and N wave functions: 

= I 
Am 

(lVJ=;{+m) 

(2.5a) 

Here (vib) is an angular vibrcnic (or vibrational) func-
tion defined in the laboratory fixed coordinates {xyz} and 

(rot) is a rotor wave function 

(2.5b) 

where [Ni = 2N + 1, andD ;;'n is a Wigner D function. The 
quantum numbers m and n are components of N along lab-
fixed axis z and body-fixed axis Z, respectively. 

To compute molecular Hamiltonians it is convenient to 
reexpress (Eqs. 2.5) in terms of vibronic functions ( vib) 
defined in molecuie or body-fxed coordinates { xyi}: 

(vib) = I (vib)D t\ (aPr)· (2.6a) 
"-

By placing the inverse relation 
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W. G. Harter and D. E. Weeks: Spectra of icosahedral molecules. I 4729 

(vib) = L ( (aPr) * (2.6b) 
A 

into Eq. (2.Sa) and using standard Clebsch-Gordan rela-
tions,16,18.22 we find 

= L C:.t:d [N ]I[J]) 1!2¢;, ( vib )rk"K 
A,I< 

(K-A=n) 

= ( - 1) N - J L c ( - 1 )'\¢I._ A ( vib) 
A,K 

(A+K=n) 

=(_l)N-J "" CIJN-t,*IC-'--b) J k.. AKn'f'A VI rMK , 
A.K 

(2.7) 

This coupling "subs tracts" ! from J to give Nand the result-
ing state without the phase ( - 1) N- J will be written as 
foUows22; 

<![lJl;;(m» = L vib)rlfK • (2.8) 
A.K 

The molecular Hamiltonian will be composed of scalar 
and tensor parts: 

C2.9a) 
The scalar part 

Hscalar = VYib + BJ 2 + DJ 4 + ., . - 2B J.1. (2.9b) 
contains the vibronic or vibrational energy VYib ' the rigid 
spherical rotor energy BJ 2, isotropic distortion energies such 
as DJ 4 , and the first-order isotropic Coriolis interaction in-
teraction - 2B J.1. The latter splits the excited state levels 
belonging to different N = J - 1,1, and J + 1 for each J, but 
scalar operators cannot split the (2N + 1 )-fold degeneracy 
of the angular momentum levels. 

The tensor part of the Hamiltonian which is responsible 
for rotational level fine-structure splitting has the form 

Htenwr = 2: t"r,r, T[r.,l['j,Yz] 

(2.9c) 

where Hecht'slO notation tpqr is used for the molecular tensor 
constants, and T[6] or T[lO) denote icosahedral tensors of 
the form (2.1) or (2,2), respectively with each replaced 
by a tensor product: 

qlq2 
('I, + q, = q) 

Here T ;', ( vib) is a rank-r I tensor which acts on the internal 
vibronic or vibrational wave function vib), and 

(rot) is a rank-'2 tensor which affects the J and internal 
K quanta ofthe rotor wave function in Eq, (2.8). [Lab-
defined operators which affect the external M quanta are 
more easily evaluated using the original form (2.5a) of the 
basis. !6] 

The scalar matrix elements are easily evaluated since 
they are diagonal in the I [IJ ] (M» basis 
([I'r];;;' (M') IH.calar I [lJ] ;;'(M) 

,== {j1'IIY'J8N 'N8n,,,OM'M 

X{(vvn,) +BJ(J+ 1) +D [J(J+ of 
+ ... -Bt[J(J+ 1) -N(N+ 1) +1(1+ I)]}, 

(2.10a) 
where 

N = J + 1,J + 1- 1,· .. ,IJ -II. (2. lOb) 

For vibronicaHy unexcited levels one has I = 0 and J = N, 
and there is no contribution from the Coriolis term. 

The tensor matrix elements are evaluated using the 
Wigner Eckart theorem as before for each component 
(2.9d) of (2.9c): 

([l 'J'];;:'I [T"( vib) X T'2( rot)]; i [lJ ];;') 
== (2.11a) 

The ft'.duced matrix element is then evaluated using Racah 
recoupling algebra into a product of vibronic and rotational 
reduced matrix elements: 

([[' J' IN'II (r1'2] 'II [lJ]N) 

{

I' 
= ([N'HrHN])1/2 J' J 

N' N 
X (1'lIrdll)vib (J'lhIlJ)rot· (2.11b) 

The vibronic reduced matrix element can be treated as a 
constant since it is independent of J of N. The rotational 
reduced matrix can be evaluated using Racah algebra 16.23 

while asuming a convenient form for Tr( rot): 

(J'lIrl!J) TOt 

={jJ'J[(2J+r+ l)!/(2J-r)!(2J+ 1)p/2/2'. 
(2.12) 

The form has been chosen so that (JI/1lln =.,fJfJ + 1) and 
(JllrIP') -ras J- 00. 

The Racah formulas show that the fine-structure tensor 
splitting patterns vary as some high power of j or N. In the 
vibronically unexcited states (I = 0, N = J) the splitting 
pattern width due to T[6] and T[lO] would be proportional 
to t066J6 and to 10 10 J 10, respectively, while for a dipole active 
excited state (l = 1, N = J ± I,J) the splitting would vary 
according to a c.ombination of J 2,r" ... , andJ iO depending on 
the values of tensor constants tp'Ir ' By comparison the Corio-
lis splittings vary according to the Lande interval rule and 
are linear in J. However, one should expect the Coriolis con-
stant Bt to be much larger than the tensor constants. In SF 6' 

for example, 2EO - t4) = 6.6X 109 Hz is the splitting 
between neighboring P and R lines while the V 4 tensor con-
stants t044 = 5.7 Hz and t224 = - 6.4 X 105 Hz yield a 
J = 88 fine-structure pattern which is about 3.7 X 109 Hz 
wide. (See, for example, Figs. 1,3, and 7 of Ref. 17). 

We shall discuss the icosahedral tensor fine-structure 
patterns which result when we can ignore mixing between 
different Coriolis components N = J + I, ... , IJ - II with the 

J. Chem. Phys., Vol. 90, NO.9, 1 May 1989 
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4730 W. G. Harter and D. E. Weeks: Spectra of icosahedral molecules. I 

same J. Mixing effects are complicated and have been stud-
ied so far only in (l = 1) models of certain octahedral ten-
sors. 18,22 Without knowing the icosahedral molecular con-
stants B; and tpqr one cannot be sure that ignoring 
off-diagonal (N #N) components is a useful approximation. 
Nevertheless, it does seem likely that the icosahedral tvq' 
constants are even smaller than they are in SF6 due to the 
high symmetry, while scalar CodoEs constants B{; are prob-
ably about the same as SF6 values. It is even possible that tpqr 

are practically zero and that all icosahedral molecules are 
really spherical tops. However, the icosahedral molecules 
are all cage molecules and they have greater inertia and high-
er J values. Therefore one should expect the anisotropic dis-
tortion effects to eventually show up in spectral fine struc-
ture. 

III. ICOSAHEDRAL TENSOR 
EIGENSOLUTIONS 

We consider now the structure of eigensolutions of ico-
sahedral tensor Hamiltonians and ways to understand their 
structure. The simplest possible tensor Hamiltonian involv-
ing a rigid spherical rotor term and the sixth-rank tensor 
(2.1) will be discussed first: 

(3.1 ) 
An example of eigenvalues and their corresponding levels 
for J = 100 is shown in Fig. 1. These values are plotted for 
the Hamiltonian (3. I) with B = 0 and the tensor constant 
and reduced matrix element set to unity (t066 = 1.0, 
(10011611100) = 1.0). 

The matrix which was diagonalized to give Fig, 1 is a 
20 I-dimensional representation of the sixth-rank tensor T 16 J 
in Eq. (2.1) as given by the Wigner Eckart theorem (2.4). 
Exact numerical diagonalization of this matrix may be sim-
plified by icosahedral symmetry projection methods so that 
extremely high Jvalues of, say, 500 or 1000 could be handled 
on a microcomputer such as a MacIntosh 5i2K. (These pro-
cedures are described in Appendix B.) Since the B value for 
C60 is about 30 times greater than for SF 6 one expects to 
observe J values of several hundred quanta for C60 at room 
temperature. However, for this discussion we shaH consider 
"low" Jvalues (J;;;; 120) which can be solved with high accu-
racy relatively easily without the aid of symmetry projection 
on a mainframe computer such as a CDC-7 600 or eRA Y-1. 
The objective of the following discussion is to develop quick 
asymptotic high-J approximations which simplify computa-
tion and analysis of eigensolutions and provide physical in-
terpretations of them. 

Icosahedral symmetry representations A, T], T3, G, and 
H are used to label the levels in Fig. 1 of degeneracy 1, 3, 3,4, 
and 5, respectively. However, most of the levels are crowded 
into quasi degenerate clusters of these species. The top ten or 
so clusters have a quasidegeneracy of 12, while the two or 
three lowest clusters each contain 20 levels. The degree of 
quasidegeneracy varies over many orders of magnitude. For 
example, the top cluster contains four species A, Tu Hand 
1; whose energies are equal to nearly 12 significant figures. 
In contrast, the 11 th highest cluster contains an identical set 

of species whose energies differ already in the second or third 
significant figures. 

The splitting within clusters is called superfine structure 
while the splitting between clusters is called fine-structure 
splitting. Each kind of splitting can be associated with a sep-
arate mechanism or dynamics. 14-18 One should note that the 
superfine splitting decreases quasiexponentiaUy as the ener-
gy ranges above or below the neighborhood of - 0.2 in Fig. 
1. (This neighborhood is labeled the separatrix region in the 
figure for reasons that will be explained shortly.) Note also 
that the fine-structure splitting increases noticeably while 
going away from the separatrix region. 

A convenient picture of a tensor eigenvalue spectrum 
can be obtained using the rotational energy (RE) surface 
shown in Fig. 2. The RE surface function of a tensor Hamil-
tonian is obtained by replacing each tensor component T 
by a Wigner D-function expression which depends on the 
direction of the angular momentum vector J in the molecu-
lar frame: 

(3.2b) 

where 
IJ I = [J(J + 1) Jl/2 (3.2c) 

is the quantum magnitude of J and Y (B,¢,) is a standard 
spherical harmonic. The direction of J is classically defined 
in the molecular body frame { xyz} by a polar angle ( - (3) 
and an azimuthal angle ( - r): 

J" = IJ Isin( - fl)cos( - y), 
Jv = \J Isin( - /3) sin ( - y), 
Jz = IJlcos( -/3). (3.3 ) 

Since J is lab-fixed for a free rotor one may let it define the 
lab z axis. Then the angles fl and yare the second and third 
Euler angles. (The first Euler angle a is ignorable since lab-
defined z-component (Jz > = M is a constant of the motion.) 
The RE surface determines allowed classical trajectories in 
f3 and y coordinates as explained below. 

The surface in Fig. 2 is given by the following radial 
function for the sixth-rank Hamiltonian (3.1) and (2. 1 ) : 

RE {3 \ B IJ 12 { ifl 6 /1 {7 ( ,1', = + t066 -S-Do,o(-, ,1') +-5-

X [Dg. 5 (',/3,1') + Dt-s (-,{J,y)} }IJ\6 

'2 .fi1 6 = B IJ I + t066 --(231 cos /1 
80 

- 315 cos4 fl + 105 cos2 .8 - 5) 

+ 42 cos f:J sinS /1 cos 

x1'(l6 cos4 r - 20 cos2 r + 5) IJI6, 

(3.4a) 

(3.4b) 
The surface represents a radial plot of the rotational energy 
as a function of the direction (/3,y) of the angular momen-
tum vector J in the molecular frame for fixed magnitUde I J!. 
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FIG.!. Eigenvalue spectrum with J = 100 for sixth-rank icosahedral tensor Hamiltonian T''''. (After Ref. 19) Superfine-structure splittings are indicated 
numerically by displaying the significant digits which differ for different species in a cluster. The graphical displays of the level splittings are greatly exagger-
ated. 
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FIG. 2. Rotational energy (RE) surface for the sixth-rank icosahedral ten-
sor Hamiltonian. (After Ref. 19) Trajectories or contours on the 12 fivefold 
symmetric hills correspond to clusters of 12 levels in Fig. 1, and the con-
tours on the 20 threefold symmetry valleys correspond to the clusters of 20 
levels. Angles between key symmmetry axes can be used to compute the 
energy and number of each type oflevel pattern. 

The surface in Fig. 2 is drawn for IJ I = 1, and constants 
B = 1.0 and t066 = 0.2 were chosen arbitrarily. Different 
choices for Band t066 do not affect the eigenvectors of the 
Hamiltonian (3.1). They only affect the overall scaling for 
the eigenvalues while the form of the splitting patterns is 
unchanged. 

The form of the fine-structure splitting patterns in Fig. 1 
is found by inspecting the RE surface in Fig. 2, The clusters 
oflevels in Fig. 1 can be related to certain classical trajectory 
paths in Fig. 2. Allowed classical paths of the J vector are 
simply level curves or topography lines of constant energy 
which are drawn in Fig. 2. Most ofthe lines surround penta-
gonal or Cs symmetric peaks on the surface. It is this type of 
trajectory, appropriately quantized, that is associated with 
each of the 12-fold quasidegenerate clusters which account 
for most of the levels in Fig. 1. There is a 12-fold degeneracy 
for each of these clusters because there are 12 equivalent Cs-
symmetric peaks. The 20-fold quasidegenerate clusters in 
the lower portion of Fig. 1 are each associated with 20 equiv-
alent triangular or Crsymmetric trajectories at an energy 
level in the valleys of the RE surface, 

The division between the different C3 and Cs symmetry 
regions is marked by separatrix curves or separatrices which 
are intersecting great circles. Their intersections occur at 30 
different C2-symmetric axes which are unstable saddle 
points on the RE surface. One of the saddle points occurs at 
(J2 = - /32 = 31.720 and fJ2 = - Y2 = 180°. Substitution 
into Eq. (3.4b) gives the separatrix energy of 

(3.5 ) 

The value - i6"n = - 0.207 is labeled "separatrix" in Fig. 
1. This is where the levels are least clustered. By contrast the 
clusters are very tight near the Cs axis at 8s = 0 and </15 = 0 
and the C3 axis at 83 = - /33 = 37.38° and </13 = O. These 
points give the upper and lower bounds, respectively, to the 
energy spectrum in Fig. 1: 

RE(.Bs,Ys) = B IJ 12 + 1
6

, 

RE(,83'Y3) = B IJ [2 - lli. 
The values 

(3.6a) 

(3.6b) 

- = 0.663: - 0.207: - 0.369 
(3,6c) 

determi.ne the ratio of classical (maximum:separatrix:mini-
mum) energies in units of to661J 16 relative to the J-multiplet 
center of gravity. As J becomes much larger the highest Cs 
cluster eigenvalues will approach 0.66 (for J = 100 it is onlY 
0.59), and the lowest C3 cluster will approach - 0.36 (for 
J = 100 it is - 0.33). 

The intracluster or superfine-structure splitting de-
creases rapidly for energies that are farther from the separa-
trix. The splitting is proportional to the rate of a tunneling 
process which involves evanescent waves extending across 
the saddle points. Numerical evaluation of these tunneling 
rates by saddle path integration gives good approximations 
to superfine splittings in octahedral RE surface mo-
dels. 14(e).18 A discussion of icosahedral cluster splitting will 
be given in Sec, IV. 

The intercluster or fine-structure splitting in Fig. 1 is 
approximately proportional to the rate of motion of the J 
vector around the level curve trajectory paths in Fig. 
2. 14«).18 One can visualize this motion as a precession of the 
rotation axis or a "rotation of rotation." One expects the 
precessional motion to be much slower than the rotational 
motion but (usually) much faster than tunneling. Pure rota-
tional angular frequency is given by {1l = 2B iJ i which is also 
the splitting between different pure rotational J levels. The 
precessional frequency, on the other hand, is proportional to 
the splitting between different K levels within each J mani-
fold, that is, to the fine-structure splitting between neighbor-
ing clusters. This, in turn, is much greater than the super-
fine-structure splitting if a separatrix is not nearby. 
Superfine-structure splitting is proportional to a tunneling 
rate. In the separatrix region tunneling and precessional mo-
tions appear to be indistinguishable and dusters are badly 
split up. 

One of the keys to understanding cluster structure and 
dynamics involves the assignment of K-quantum values to 
each cluster and to their corresponding semiclassical trajec-
tories on the RE surface. Generally, K is taken to be the 
projection of J on a body z axis. The difference here is that 
one may use several z axes; one for each hill and valley of an 
RE surface. In Fig. 2 we imagine 12 equivalent 'is axes, 20 
equivalent Z3 axes. Prototypical Z3 and 'is axes are indicated 
by lines with 3 and 5 dots, respectively, in Fig. 2. In this way 
we obtain an overcomplete set of bases. However. only a few 
of the largest K states are actually used. For example, Fig. 1 
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shows that only the K = 100, 99, and 98 clusters appear be-
low the separatrix. Each of these three clusters belongs to a 
path surrounding one of20 Z3 axes and together they account 
for 60 of the 20 l1evels for J = 100. Another 132 levels above 
the separatrix belong to 11 clusters labeled by K = 100,99, 
.,., 89, and 90, respectively, which are each associated with 
12 Zs axes. The remaining nine levels belong to the G and H 
species just above the separatrix which are not obviously 
part of any duster. 

A. Semiclassical approximations 
There are simple procedures for predicting the approxi-

mate energies and lengths of each K sequence of clusters 
using the RE surface geometry. These are based upon the use 
of simple angular momentum cones which characterize the 
fundamental angular uncertainty relations. The quantum 
angular momentum eignevalues 

= [J(J+ 

(3.7a) 

(3.7b) 

suggest that the "quantum locus" of the J vector for each l'i) 
state is a cone. The altitude of the cone represents the z pro-
jection of J which is K by Eq. (3. 7a), while the slant height 
represents the quantum magnitude (3.2c) which is 
IJ 1::= (J(J + 1) p/2_J + byEq. (3.7b). Theapexhalf-an-
gle e 'i of the cone is a measure ofthe angular uncertainty of 
the l'i) state, where 

cos e'f = K I[J(J + 1)] 1!2::=K IIJ I. (3.8) 
The states with the highest possible K values, namely, 

K = J, J - 1, ... are the ones with the narrowest cones and so 
they have minimum uncertainty. These are the ones that 
appear nearest to the extreme values [Eq. (3.6c)] of the 
classical RE surface. Furthermore, one may approximate 
the highest energy eigenvalues by substituting the apex angle 
e'i = - f3 from Eq. (3.8) into the RE surface expression 
(3.4b). For example, substituting cos e:gg = 0.9950 into 
Eq. (3.4b) yields an energy of 0.596 which agrees well with 
the highest eigenvalue 0.5975 given in Fig. 1. This approxi-
mation shows that the extreme energy levels correspond to 
semiclassical trajectories which lie on or very near to angular 
momentum cone intersections with the Re surface. The dif-
ference between the classical limiting value (0.663) in Eq. 
(3.6c) and the highest eignevalue (0.596) might well be 
called the "angular zero-point" energy. 

The cone approximation is consistent with an asympto-
tic relation24 between Legendre harmonic functions and the 
diagonal CG coefficients in the K = K' matrix elements of 
tensor operators T given by the Wigner Eckart theorem 
(2.4 ). The approximation is given in the second line below 

<i I l'i) = c (J IlrilJ) 
(forJ>1), (3.9) 

where 

=Pr(cos8) 
is a Wigner-Legendre polynomial and cone angle (j i is giv-
en by Eq. (3.8). 

These approximations are less accurate for K values 

whose energies approach the separatrix region. However, 
they can often be used to estimate the K cutoff values which 
mark t.he end of a given K series of clusters. These are the 
values for which the e i cones reach the separatrix. Accord-
ing to Fig. 2 the separatrices subtend an angle = 1O.S" 
and = 26.6' with threefold and fivefold axes, respec-
tively. Therefore the K-cutoff values are 

K = ,ff(j + 1 Yeos 10.8· = 98.7 (for J = lOO), 

K = ..jJ(J +-T)cos 26.6" = 89,8. (3.10) 

These give approximately the lowest K values observed in 
Fig. 1. 

The paths farthest from a separatrix and closest to a 
maximum or minimum point on the RE surface are the ones 
with the most nearly circular shape. They most nearly con-
serve the projection (Jz) = K of angular momentum onto 
their local z axis of quantization. Their corresponding quan-
tum energies are given most accurately by the di.agonal ten-
sor components T of a Hamiltonian which is represented in 
a basis that has this z axis. As the energy approaches a separ-
atrix the off-diagonal components r; (qi=O) begin to take 
effect. They reduce the classical RE surface path symmetry 
from circular to a Cq-symmetric star, and they perturbative-
ly mix quantum states of definite K with ones that have 
K'=K±q, 

A semiclassical path integral calculation !4(e),i8 of ener-
gies redefines K. There K is an integer that results from pick-
ing the energy that quantizes the angular path action integral 
around the Cq-symmetric path: 

K,= C(1T Jz dr)lh. (3.11) 

This gives reasonably accurate energy values (and exactly 
integral K values). In a sense, the K nonconservation gets 
averaged out. Path integrals and wavepacket propagation 
methods25•26 on general RE surfaces will be discussed in fu-
ture works. 

B. Semiquantum approximations 
Another approximation which is usually more accurate, 

and in this case more convenient, involves a perturbation 
expansion in the local Cq axial basis. For the Cs cluster ener-
gie,'l one obtains 

HW(K) =H,(K) +H2 (K) 

=H1(K) + IVs( _K)12 
H](K) - Hi(K + 5) 

+ , 
HiCk) -HI(K - 5) 

(3.12a) 

where the first-order approximation involves only diagonal 
matrix elements 

H ..fIT (J T6IJ) I (K) = -- t006 K 10K 
5 

J11 C 6JJ 
=--t066 OKK' 

5 
(3.12b) 

and the second-order corrections involve matrix elements 
that are five steps off the diagonal: 
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K tf (J IT6 II) It C 6JI ( ) = 5 t066 K - 5 .. 5 K = 5 tOb6 - SKK- 5 • 

The reduced matrix element (J 11611J) -IJ 16 has been set to unity above. The CG coefficients can be expressed as polynomials 
- 20(J+ 3: - 2) + 84K2(5J 4 + lOP - 25J + 14) - 420K4(3J 2 + 3J -7) + 924K b 

C = (21 + 1) 1/2 ___ '::-_"':-__ -":'--'-__ _ 
(2J + 7: - 5)1/2 

(3.13a) 

+ 5 = - e2K + 5) (111(21 + 1 HJ -+ K + 5: 1 HJ - M + 0: - 4) )111 = K _ K s. 
5! (25+7:-5) 

(3.13b) 

The expressions with colons represent partiai factorials 
(X + n:m) = (X + It)(X + n - 1)( ... )(X + m) 

= (X + n)!/(X + m - 1)1 (3.13c) 
A comparison is given between the various approxima-

tions to J = 100 eigenvalues for c., clusters in Table II. One 
should note that the errors of the second-order approxima-
tions are often less than the amount of superfine splitting. 
This amounts to nine or ten significant figures for K = 100 
and about five figures for K = 95. (The exact values used in 
Table II are the level averages or cluster centers of gravity for 
K levels quoted in Fig. 1.) The first-order approximations 
are quicker but not quite as accurate. H] gives five-figure 
accuracy for K = 100 and three-figure accuracy for K = 95. 
The cone approximation is accurate to about two significant 
figures throughout the C5 manifold. 

The same methods can be applied to any Cq system of 
clusters. It is only necessary that the tensor operator be ex-
pressed in a basis which includes the local Cq symmetry axis 
as the z axis of quantization. The cone and first-order ap-
proximations depend only on the coefficients involving the 
diagonal matrix elements and not on the off-diagonal 
perturbations of Tr+ q' and so forth. For the C3 system of 
clusters one can quickly determine the diagonal operator to 
be - fromEq. (3.6). ThismeanstheC3 cluster 
approximations for K = 100,98, and 99, are approximately 
the corresponding Cs approximations multiplied by a factor 
of - 5/9. 

C. Superfine structure 
None ofthe approximations given so far begin to explain 

the rich symmetry structure contained within each K cluster 
in Fig. L It is important to know which icosahedral symme-
try species A through H contribute to each quasidegenerate 
cluster of 12 or 20 levels in Fig. 1 or in 30 or more levels 
which show up in more complex tensor spectra. Also, the 
relative ordering and spacing ofleve1s in a cluster is indica-
tive of long time dynamics and may be of interest for high-
resolution spectroscopy. 17.18.26 

The key to cluster symmetry involves correlations be-
tween local Cq symmetry of the RE surface topography and 
global icosahedral symmetry of the entire surface. The cor-
relation tables between local subgroups C2, C1, and Cs of I 
are given in Table III. 

The rows of these tables list the Cq species that would 
split from each icosahedral species under a Cq-symmetric 
perturbation such as a Zeeman splitting. For example, Tj 

splits into three levels 13 , 03, and 2J = - 13 under a C, per-
turbation. This corresponds to an ordinary external or "ap-
plied" symmetry breaking in which the Hamiltonian is arti-
ficially reduced in symmetry. Then the levels belonging to 
global symmetry species split into levels belonging to local 
symmetry species. 

The columns of these tables list the I species which are 
contained in clusters such as the ones found in Fig. 1. For 
example, the first column of the Cs table lists the first cluster 
(A TI T3H) seen at the top of Fig. 1. This corresponds to an 

TABLE II. Comparison of exact cluster level center of gravity and approximations for C, clusters in J = 100 
eigenvalues of Fig. 1. 

K Exact values Cone values" First order' Second order" 

100 0.597509 4494 0.595892 0.597 508 961 164 0.597 509449335 
99 0.472 0352216 0.470622 0.472 032 079 319 0.472 035 220753 
98 0.359 177 8095 0.357945 0.359 165 939 371 0.359177802957 
97 0.258 1806662 0.257100 0.258 146253 917 0.258 180 630 023 
96 0.1683227319 0.167351 0.168237832860 0.168 322 579 103 
95 0.088 922 7345 0.087993 0.088 733 929 942 0.088921014675 
94 0.0193388172 0.Gl8348 0.018955569610 0.019337711 681 
93 - 0.041 008007. - 0.042 236 - 0.041 748957791 - 0.041 009456076 
92 - 0.092 620 22 .. - 0.094 383 - 0.094 004 998 626 - o.on 622 350440 
91 -0.135843 .... - 0.138 692 0.134 llS 967 94 0.135 868735094 
90 -- 0.169 435 .... - 0.175 736 - O. I 75 543 735 626 - 0.170 848 179 938 

a Semiclassical cone values are obtained using approximations (3.4) and (3.8) with .8'" fJ and r = O. 
h Semiquantum approximate values are obtained using Eg. (3.12). The first-order (H,) results are given. 
C Semiquantum approximate values life obtained using Eq. (3.12). The second-order (H2 ) results are given. 
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TABLE III. Correlations between local cyclic rotational subgroup representations and global icosahedral symmetry representations. Cyclic species notation 
Pq is read as p mod q. 

C2 O2 12 C, 0, 1, 23 = - I, C, 05 15 25 35 = - 2, 45 = - I, 

A 1 A 1 
T, 1 2 T, 1 1 
T, 1 2 T, 1 1 
G 2 2 G 2 I 
1I 3 2 lJ 1 2 

internal or "spontaneous" symmetry breaking in which the 
wave functions become isolated into separate but equivalent 
local symmetry domains. Then the levels belonging to global 
symmetry species cluster or "unspIit" as a result of smalI 
tunneling between the domains which contain copies of a 
given local symmetry wave function. 

The first column in the Cs table is labeled Os which 
means that it belongs to a representation with zero quanta 
modulo five (0 mod 5). The clusters labeled by integers 
K = 100,95, and 90, i.e., K = O-mod-5, all contain the same 
species that appear in an induced representation 

05rI=A + T J + T, +H. 
The next induced representation in Table III is 

15 f 1= T\ + G + H 
and it labels the clusters with K = 96 and 91 in Fig. 1. They 
have the same structure as the - 1., = 45 dusters with 
K = 99 and 94. Finally the induced representations 

2s i1 = T3 + G + H = - 2siI=3siI 
label the remaining K = 98, 97, 93, and 92 dusters in Fig. 1. 

The threefold or C3-symmetric paths in Fig. 2 are la-
beled by Crinduced representations of icosahedral symme-
try given in Table HI. The most complicated cluster is the 
K = 99 = 0 3 cluster belonging to the induced representation 

03 r / = A + TJ + T j + 2G + H. 
The ± 13 i I clusters belong to K = 100 and 98 have the same 
number (20) of base states but one fewer species: 

13r1 = TI + T3 + G + 2H. 
TheK = 98 clusteris below thecutoffK3 value in (3.10) and 
is badly split in Fig. l. 

A theory of the ordering and relative spacing between 
species in clusters will be discussed in Sec. IV. It is interest-
ing to note that the ordering of species without regard to 
spacing is uniformly the same throughout the entire mani-
fold of J = 100 in Fig. 1, and indeed, for any value of J. This 
makes it possible to replace the R3 -:)1 correlation Table I 
with a more elegant and informative level cluster wheel de-
vice which is shown in Fig. 3. The wheel gives the order and 
qualitative cluster form [in conjunction with cutoff formu-
las (3.10) J of all species in a r[6) spectrum for arbitrary 
integral J values. It is only necessary to calculate 
(J)mod( 10) and (J)mod(6) and locate these numbers on 
the outside and inside arrows, respectively, of the wheel. The 
outside arrow indicates the beginning of the sequence start-
ing from the highest level and points to which Cs cluster that 

1 
1 
! 
2 

A 
T, 
T, 
G 
H 

level belongs. The inside arrow does the same beginning with 
the lowest species in a CJ level cluster. One needs to know the 
K-cutoffvalues [Eq. (3.10) 1 in order to predict where one 
kind of cluster "melts" into another, but the species ordering 
will be maintained throughout any J manifold for the spec-
trum ofa sixth-rank T[6] tensor. 

A complete rotation of the wheel occurs for J = 30 and 
greater. The resulting set of J = 30 specie.,> constitutes 60 
levels plus a single A. The 60 levels are equivalent to the 
regular representation of 1 which is perhaps the grandest 
cluster of an. The regular representation is equivalent to the 
induced representation 

D1(ofCj)f1 =A + 3Tl + 3T3 + 40 + SH. 
In Sec. V an RE surface and Hamiltonian involving mixed 
sixth- a.nd tenth-rank tensors will be shown which gives this 
giant C1 cluster. Related Hamiltonians which give the 30-
fold degenerate C2 clusters listed in Table III are shown 
there, too. These giant dusters also appear in the discussion 
of local vibrational modes. 

Note that the wheel in Fig. 3 gives the correct ordering 
and clustering only for the eigenvalues of the sixth-rank ten-
sor (2.1). For the mixed-rank tensor spectrum the fine 

J":i mod iO 
05,15, 

J" 3modiO =3,13, 

= 8,i8, .. 

FIG. 3. Sequencing ring for icosahedral symmetry species in sixth-rank ten-
sor spectrum for arbitrary angular momentum J. Ordering and clustering of 
species are indicated by segments of the ring a.<; explained in the text. Note 
that the ordering or even J is opposite to that for odd J. 
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structure may have a completely different form as we will see 
in Sec. V .. However, the same number of each species must 
appear regardless of the tensor rank. 

IV. SUPERFINE STRUCTURE: QUANTITATIVE THEORY 
The quantitative form of icosahedral superfine duster 

splitting patterns can be determined in parametric form with 
the use of induced representation theory. The patterns which 
arise in the tensor splitting of dusters belonging to twofold, 
threefold, and fivefold local symmetries will be shown. 

The analysis of a q-fold symmetry cluster begins with 
the development of an initial basis within which matrix ele-
ments of an effective Hamiltonian or tunneling operator may 
be deduced. This is accomplished with the construction of 
the left cosets of the local symmetry subgroup CqEl. Each 
coset is formed by multiplication of all hECq on the left-hand 
side by an arbitrarily chosen global symmetry operator gEl. 
The process is repeated for each coset using a new g' E1 where 
g' must not be an element of a coset previously formed. In 
this fashion all of the unique disjoint left cosets of CqEl are 
obtained. 

There is an isomorphism between each of the cosets of 
Cq and the initial basis vectors within which the tunneling 
operator may be expressed. The dimension d of this coset 
space is given by Lagrange's theorem whered = oJ /oCq • For 
q = 5 one has d = 60/5 = 12, and this corresponds to the 
fivefold clusters which contain 12 eigenvalues each. For 
q = 3 on has d = 60/3 = 20 which yields 20 eigenvalues in 
each C3 cluster. Finally, q = 2 gives d = 60/2 = 30 for a to-
tal of 30 eigenvalues per twofold cluster. 

The isomorphism between cosets and coset space basis 
vectors provides a convenient labeling scheme. Each basis 
vector is labeled by a representative group operator from 
each coset. By construction, the number of elements in each 
coset is the same as the number of elements in the subgroup 
Cq • This gives a choice of q labels for each basis vector. 

A judicious choice of labeling operators I simplifies the 
calculation of the tunneling operator matrix elements. A 
representative operator or coset leader I is selected as a label 
if it maintains zero phase difference between adjacent por-
tions of two q-fold symmetric wave functions where one is 
rotated from the other by the operator in question. Once the 
labeling operators are chosen the basis states are labeled by 
each operation on an initial basis vector 11 ,nq). Each of the 
coset leaders gives 

1 /1,n q ) = II,nq ), 

where nq is the Cq irrep la.bel that determines the specific 
type of Cq local symmetry of 11,n q ), 

The 12 fivefold coset leaders are in one-to-one corre-
spondence with the 12 fivefold symmetric hills on the r 6 RE 
surface. Similarly, the 20 threefold coset leaders correspond 
to the 20 valleys, and the 30 twofold coset leaders correspond 
to the 30 saddle points, With the establishment of this corre-
spondence between coset leaders and RE surface topo-
graphy it becomes possible to determine which coset leaders 
are nearest neighbors, next nearest neighbors, and so on. 
Matrix elements of the tunneling operator are given parame-
trically in this basis with H as the diagonal element, S as the 

nearest-neighbor tunneling amplitude, Tas the next-nearest-
neighbor tunneling amplitUde and so on. By construction the 
resulting qXq matrix has icosahedral symmetry and is re-
ducible to block diagonal form through symmetry analysis, 

The key to implementing the symmetry analysis is the 
icosahedral projection operator 

Pij= 2: Dij*(g)g, (4.1) 
g 

where a is an icosahedral irrep label, I a is the dimension of 
the ath irrep and the Dij(g) are the (iJ)th elements of the 
ath irreducible representation (irrep) of gEl. The indices i 
and j run from 1 to I a. This means that the total number of 
projection operators is given by 

60 = (la)2 + (l T,)2 + (l r,)2 + (lG)2 + (lH)2. 

In fivefold clusters, for example, a new basis is formed 
by the projection of an initial state \ l,ns> with the icosahe-
dral projectors. The local symmetry of the state: 1,ns) is 
given by the Cs irrep labels!l5 = Os, 15,25,35 or 45 , The local 
state is affected by Cs projection as follows: 

pm'll,!l5> = pm,p n'i l)/(Nn,) li2 = Il,n5 h5n,m,. 
Here the pm" are the Cs projectors 

± [Dm'(h)*]nhn [Dm'(h) =e2ffim/5 ] 
5 n=O 

and N n, is a normalization factor. Note that indices i and j 
present in Eq. (4.1) are suppressed because the Cs group is 
Abelian and I a = 1 for all a. 

The projection of II,ns> by the icosahedral projectors 
will yield a set of basis states 

( 
la )112 

P'!,j, Il,ns)/(N) li2 = 12 + D ;;:, (I) II,ns)8j ,n, 

= ( 4.2) 
where the labels is andj5 of the icosahedral projector are Cs 
irrep labels chosen in accord with the ath row of the Cs 
correlation table (Table HI) and the summation is over Cs 
coset leaders I. The delta function in Eq. (4.2) allows only 
the expected number (12) of icosahedral projectors to yield 
a nonzero result. The Cs irrep labeled columns of the Cs 
correlation table indicate which of these projectors will work 
on the initial basis vector i l,ns) with ns-type Cs local sym-
metry, The basis {11,ns)·· ·II,ns)···} spans what is caned 
the (ns) induced representation (D "'11). The vectors (4,2) 
span a reduced induced representation. 

The representation of Hamiltonian in this basis (4.2) 
will be in block diagonal form with I a identical blocks corre-
sponding to each irrep a of I which appears in D n, t l. 

For any Cs coset space this form is completely diagonal 
since there are no repeated irreps in any column of the Cs 
correlation table (3.2). 

From (4.2) the eigenvalues of the tunneling Hamilto-
nian matrix follow. 

( 4.3) 
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Only the first row of the initial tunneling matrix is required. 
The eigenvalues that result from the Cs f I analysis are shown 
in Fig. 4(a). Here the cluster center-of-gravity energy has 
been set to zero and superfine splitting has been expressed in 
terms of nearest-neighbor tunneling amplitude, S, only. The 
magnitude of the nearest-neighbor tunneling factor may, in 
principle, be calculated by a path integral along a single path 
on the RE surface that connects nearest-neighbor trajector-
ies. It remains to be seen if one may determine next-nearest-
or next-next-nearest-neighbor tunneling factors Tor U, re-
spectively, in the same fashion. The C" duster splitting for-
mulas in terms of these additional parameters are given in 
Table IV. 

a} C5 Clusters __ --_ 

b) C3 Clusters 

25 
G 

G 0 

H .s 

\"'2l."5S 
·3S 

The C3 and Cz clusters are analyzed in the same fashion 
as the Cs clusters. However, as the C3 correlation table indi-
cates there are two icosahedral a = G irreps in the 03 column 
and two a = H irreps in the 13 and 23 columns. Hence, the 
tunneling matrix :in the 03 , 13, and 23 i I induced representa-
tions will contain a-labeled block diagonal elements with a 
dimension equal to the repeat frequency given in the correla-
tion table. For the O2 and 12 induced representations there 
wiU be one three-dimensional and several two-dimensional 
blocks. The C3 and Cz duster patterns are shown in Figs. 
4(b) and 4(c) where, again, only nearest-neighbor tunnel-
ing is considered. 

The results of the induced representation analysis may 

c) C2 Clusters ..-.--, ___ 

FIG. 4. Detailed form of superfine structure fOT clusters associated with 
three types of local symmetry. Level spIittings for each of the symmetry 
species are given relative to the duster center of gravity in terms of its near-
est-neighbor tunneling amplitUde S. Ordering is appropriate for even-J clus-
ters, whil·e the sign of Sand the ordering is inverted for odd-J clusters: Ca) 
Cs, (b) C" (el C1. 
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TABLE IV. Eigenvalue formulas for C, cluster superfine structure. 

0, cluster eigenvalues Is and 4, cluster eigenvalues 2, and 35 cluster eigenvalues 

E A =H+5S-+-ST+ U 
ETI = H + $.<;;- - ,[51' - u 
E T3 =H-$S' -. U 
EH=H--S- 1'+ U 

E Tl = H - (2 + G +)S - (2 + G - ) T 
EG=ll+,fSS -{ST 

E"=.H-(2+G )S-(2+G+)1' 
E" = H -.JSS -+- {5T 

EH""o H + (1 + G -)S -+ (1 + G 1 
) T Elf = H + (l -+ G + (l + G ) T 

be checked with those ofan accurate numerical diagonaliza-
tioD of TI61 in a full (2./ + i)-dimensional basis. One very 
sensitive test is a comparison of the ratio of differences 
between adjacent superfine levels. The 13 and 23 symmetries 
of the C3 cluster family are particularly interesting since 
their nearest-neighbor tunneling formulas in Fig. 4(b) con-
tain rather extraordinary expressions involving the radical 
{f3. According to these formulas the ratio of adjacent differ-
ences are as follows: 

H - T3 = - 4 + ,,[5 + -JTI = 0.666 304, 
T3 - G 5 -.J5 
T3 - G = 5 -,j5 ---'--- = 1.060 785. 
G-H 

The exact values for the same ratios in a K3 = 205 
cluster of J = 205 agree to within five or six significant fig-
ures: 

T j 
- H = 1.428364 

H- T3 ' 

H - T3 = 0.666 302, 
T3- G 

T3 - G = 1.060 778. 
G-H 

A comparison of 12 and 23 (C3 ) cluster splitting ratios, 
predicted by induced representation theory and accurate nu-
merical diagonalization for J = 50, 100, and 151, is given in 
Table V. The comparison improves steadily with increasing 
J. 

V. MIXED AND TENTHmRANK ICOSAHEDRAL 
EIGENSOlUTIONS 

The RE surface geometry will now be used to predict 
and analyze the eigensolutions of a mixed-tensor operator: 

TABLE V. C, cluster superfine splitting ratios. 

Accurate numerical values 
Induced 

representation J= 50 J= 100 J= 151 

1'l-H = 1.428 371 1.678 ... 1.4401.. 1.428002 
H- T3 
H- T3 = 0.666304 0.905 ... 0.6666 .. 0.666275 
T,-G 
T,-G = 1.060785 0.987 ... 1.0782 .. 1.060257 
G-H 

H( v) = B IJ 12 + (cos v) T[oJ + (sin V)T[IO!. (5.1) 
Here the angle v is used to artificially vary the coefficient 
(cos v) of the sixth-rank tensor T[bJ [Eq. (2.1)] and the 
coefficient (sin v) of the tenth-rank tensor T[IOJ [Eq. (2.2)] 
while maintaining unit normalization overall. In a "real" 
Hamiltonian these coefficients would vary according to dif-
ferent powers or polynomials of the angular momentum J as 
explained in Sec. II. An example of tetrahedral fourth- and 
sixth-rank tensor admixtures have been studied and used in a 
qualitative comparison of some methane (CH4 ) fine strue-
ture.27 

The addition of even relatively small amounts of the 
tenth-rank tensor radically alters the form of the RE surface 
as shown in the computer graphics of Fig. 5. Each figure is 
labeled by v in units of 1716. One can visualize tensor mix-
tures with different v values according to hours on an imagi-
nary clock; 12 o'clock or v = 0 is pure sixth-rank tensor 
TloJ, 1:30 o'clock or v = 1.5 (17/6) is equal to amounts of 
T [6J and T [!OJ, 3 o'clock or v = 3 (11"/6) is pure tenth-rank 
tensor T[IOI , and 6 o'clock or v = 11 is pure negative sixth-
rank tensor - TL61• The values of v included in Fig. 5 are 
(a) v = 0.0, (b) v = 0.311"/6, (c) v = 1.0,,16, (d) v = 2.0171 
6, (e) v = 3.011"16, (0 v = 4.011"/6, (g) v = 4. i rr16, and (h) 
v = 5.011"/6. All contour paths are drawn as 21 equally 
spaced levels and are therefore not precisely quantizing tra-
jectories for any particular value of J. The density of paths is 
roughly that of J = 150. 

Each tensor mixture and its corresponding RE surface 
in Fig. 5 describes a different set of eigensolutions for a given 
J. The J = 100 eigenvalues are plotted as a function of v in 
Fig. 6. The eigenvalue plot is marked with letters (a) to (h) 
at the v values which are represented by RE surfaces in Fig. 
5(a)-5(h), respectively. Point (a) corresponds to the v = 0 
surface in Fig. 5(a) which is a copy of Fig. 2. The levels 
above point (a) on the extreme left-hand side of Fig. 6 are 
proportional to the ones shown in Fig. 1. 

At point (b) in Fig. 6 a remarkable rearrangement of 
levels occurs in the lower portion of the spectrum. This cor-
responds to the v = O.3( 17/6) RE surface in Fig. 5(b) in 
which the C3 paths of the previous figure (a) have vanished 
and been replaced by more Cs paths. This is consitent with 
the (b) spectrum in Fig. 6 which is composed almost entirely 
oflevels belonging to Cs clusters. The undecided (GH) pair 
near the separatrix in Fig. 1 picks up a T J level from the 
C, (K3 = 98) cluster just below it to make a 
(GHTd - (Ks = 89) Cs cluster at the (b) point in Fig. 6. 
The rest of the C3 (K3 = 98) cluster forms two 

(Ks = 88, 87) clusters with some help from the 
(K3 = 99) cluster. The remaining levels form a disorganized 
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a) 1) == 0.0 

c) u == 1.0n16 

e) u == 3.0n16 

g) u = 4.1n:/S 
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b) u = O.31t/6 

d) '1j == 2.0n/6 

f) u = 4,On/6 

h) u == 5,On/6 
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FIG. 5. Rotational energy sur-
faces and level curves for vary-
ing mixtures of sixth- and 
tenth-rank icosahedral tensor 
Hamiltonians. T(6) cos v 
+ 1" :0) sin v: (a) v = 0.011'/ 

6; (b) v = 0.311'/6; (c) 
1'= 1.017/6; (d) v= 2.011'/6; 
(e) V=3.017/6; (f) v=4.011'/ 
6; (g) v = 4.11T/6; 
(h)t' = 5.011'/6. 
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;; a b , j I 
'" 9 00 1.0 

r .1 
20 3.0 4.0 

V in unils of nl6 
50 6.0 

FIG. 6. J = 100 eigenvalues for varying mixtures of sixth- and tenth-rank 
icosahedral tensor Hamiltonians. Points corresponding to RE surfaces in 
Figs. S(a)-5(h) are indicated. 

combination of (GHT!) and (A TIHT3 ) clusters with a G 
and an H level hidden at the bottom. 

By the next step (c) (v = 11'/6) a completely new type of 
cluster has been established. The two lowest dusters oflevels 
for points (c), (d), and (e) contain 30 levels each. The each 
correspond to a set of 30 equivalent C2 symmetric quantizing 
paths on the RE surface in Figs. 5 (c), 5 (d), or 5 (e), respec-
tively. Recall that the level paths in Fig. 5 are drawn accord-
ing to an arbitrary but equal spacing between maximum and 
minimum RE values. Since they are not quantized paths 
they cannot be identified one-to-one with C2 clusters. 

Each of the 30-state Cz clusters in Fig. 5 contain J spe-
cies predicted by Table HI and Fig. 4. The lowest 
(K2 = 100) cluster belongs to the even induced 
tion 

(5.2) 

while the next (Kz = 99) cluster belongs to the odd induced 
representation 

(5.3) 

The "remains" of another even cluster [Eq. (5.2) J is visible 
in Fig. 6 above the two lowest clusters between v = l.OC 1T/6) 
and v = 4.0ClT/6). The eight species oflevels are clearly visi-
ble in this configuration at various points as the levels cross 
and uncross. 

Similar crossing and uncrossing is occurring inside the 
lower two C2 clusters. At the resolution of Fig. 6 this is only 
barely visible in parts of the second (K2 = 99) duster, but a 
10- or 20-fold increase in resolution would reveal the same 
phenomena in the lowest (K2 = 100) duster, as welL This 
crossing is a manifestation of competition between effective 
tunneling paths which connect the Cz domains in Figs. 
5(c)-5(f). There are certain ranges of v values where the 
splitting pattern due to nearest-neighbor-only tunneling is 
well approximated. These patterns were shown in Fig. 4 and 

the K2 = 98 pattern around v = 1.5 (11'/6) is approximated 
by the O2 pattern in Fig. 4. A detailed analysis of tunneling 
and wave dynamics such as is being undertaken by Little-
john et al.,26 and Huber et al. 25 will be needed to further 
clarify this phenomenon. Also, it would be interesting to 
study the eigensolutions in the neighborhoods of the "acci-
dental" or "Fermi resonant" crossings between C3 clusters 
and Cs clusters which occur between v = 1.0( 17'/6) and 
v = 4.0( rr/6) in Fig. 6. Here there is tunneling between non-
equivalent trajectories on hills of different symmetry in Figs. 
5(c)-5(f). 

Finally, there is a remarkable Cz to C1 symmetry break-
ing around v = 4.0( 1T16). As seen in Figs. 5(f) and S(g) the 
C2-symmetric trajectories get squeezed into "bow-tie" 
shapes which each break into two separate CI-symmetric 
valleys. This yields a giant 60-dimensional cluster at the low 
end of the v = 4.1( 1T/6) spectrum in Fig. 6. The giant is 
formed out of two 30-dimensional clusters, and it belongs to 
the regular CI-induced representation mentioned at the end 
of Sec. III. The potential or the two-level system is a 
paradigm of quantum theory of spontaneous symmetry 
breaking. At v = 4.1 (17'/6) one has the icosahedral version 
of the two-well problem. At much higher J with the same 
resolution as Fig. 6 one will only see two levels merging into 
one at this point. 

The difference between Fig. 5 (b) where Cs paths domi-
nate and Fig. 5 (g) where C3 paths dominate is worth noting. 
The latter has a more complicated separatrix geometry in the 
valleys which yields the giant C1 dusters, while the valleys 
are "smoother" in the former. 

VI. CONCLUSiON 
Semiclassical and graphical methods have been de-

scribed for approximating and visualizing rotational and ro-
vibrational eigensolutions for molecules having icosahedral 
symmetry. These methods provide simple ways to analyze 
the eigenvectors as well as the eigenvalues of a variety of 
complicated tensor Hamiltonians having icosahedral sym-
metry. These methods allow one to predict the forms and 
patterns of fine structure that might arise in laser spectra of 
molecules described by icosahedral tensor Hamiltonians. 
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APPENDIX A 
The icosahedral point group I[ I" = I X (i)] contains 

60 {no} symmetry operations. These may be classified by 
the rotation angle ill of each operator around its symmetry 
axis. There are 20 threefold symmetric rotations with 
ill = 120°, 15 twofold symmetric rotations with OJ = 180°, 
and 24 fivefold symmetric rotations, 12 with OJ = 72° and 12 
with ill = 144°. 
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These disjoint sets of operators form the class structure 
of the icosahedral group I. The unit operator with @ = 0 is 
the only element in the class Ct. The 12 fivefold symmetric 
rotations with ill = n° form the class CR' The 12 fivefold 
symmetric rotations with ill = 1440 form the class CR ,. The 
20 threefold symmetric rotations form the class C j • Elements 
in a class may be transformed into one another by a similar-
ity transformation by at least one element of the group 1. 

The classes of liz are obtained from those of lby operat-
ing on the elements of the classes of I with the elements of the 
inversion group CIN = {l,lN} where IN is the inversion op-
erator. Multiplication with the unit operator duplicates the 
classes of I while multiplication with IN creates five new 
classes for a total of ten Ih classes, 

ICI = C t , INC! + CIl , 

leR = CR , INCR = CIR , 

ICR , = CR." INCR , = CIR " 

! Cr = Cr , INC,. = Clr , 

IC; = C;, INC j = CliO 
The Ih character table is given in (a) of Table VI. The 

columns are labeled by class and the rows are labeled by III 
irrep labels a. Each entry in a given row a is the trace of the 
Ih irrep D fg) of any operator g in the class that labels the 
column of the selected entry 

Xfg) = IDf;(g). 
; 

Since the trace of a unitary matrix is independent of a simi-
larity transformation and by definition elements in the same 
class may be transformed into one another one wouid expect 
that all of the irreps or the elements in the same class have the 
same trace. The sUbscript g and a stand for the German 
words gerade and ungerade, meaning even and odd, 
tively. These label the parity oftlle eigenfunctions associated 
with a-labeled eigenvlues. 

The characters of In are obtained from those of /by the 
cross product of the characters of I and the characters of 
CIN • The characters of 1 are in the upper left-hand corner of 
Table VI. The characters of CIN are given in (b) of Table VI. 
The cross product of I with C IN multiplies the characters of I 
with 1 three times and - 1 once. This yields the four sets of I 
characters with the one in the lower right-hand corner, the 
negative of the otherso 

In many cases the use of group characters in the solution 
of a problem greatly reduces the amount of analysis required 
in that the group irreps are not needed. Here we reproduce 
the 05 cluster eigenvalues given in Table IV using icosahe-
dral characters only. The exact reproduction of the formulas 
given is possible because there are no repeated irreps in the 
reduced Cs induced to I representation. 

Eigenvalues are given by 

E" = (-!-) I X('':; °Cg Trace (Hg), (Al) 
G classes 

Cg 

whereXfg) is the ath characterofg given in (a) ofTahIe VI. 
The order of the dass Cg is denoted °Cg , His the Cst 1 tunnel-
ing Hamiltonian and the element g is a representative opera-
tor arbitrarily chosen from the class Cg • The trace is given by 

Trace (Hg) = L(lns!Hg!lns) 
I 

= I(1nsW- lH Iglns} 
I 

= 2:(1nsIH 11-1glns), 
I 

(A2a) 

(A2b) 

where the commutation of the Hamiltonian H and the C5 
coset leaders I was used, and 115 = Os, 15, 25 , 35 , and 45 are Cs 
irrep labels. The trace given by Eq. (A2b) is particularly 
useful in that it requires only the first row of the Cst I tunnel-
ing matrix. 

TABLE VI. (a) Characters of the icosahedral group. (b) Characters of the inversion group. 

(a) 
C, CR CR' C, C, C" CIR CIR , C" Cli 

A g I ! 
T,g 3 G+ G- O -I 3 G+ G- O -1 
T3g 3 G- G+ 0 -1 3 G- G+ 0 -1 
G , 4 -1 -I 1 a 4 -I -1 1 0 
H. 5 0 0 -1 5 0 0 -1 
Au 1 1 -1 -1 -1 -1 -1 
T ,u 3 G-+ G- o -1 -3 -0+ -G- o 
T,u 3 G- G+ 0 -1 - 3 -G- -G+ 0 
Gu 4 -1 -1 1 0 -4 I 1 -1 0 
Hu 5 0 0 -1 -5 0 0 -I 

G+ = (l + JS)/2 G -- = {1 - ..[5)/2 
(b) 
C, C'N 

+ I 
-1 
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Substitution ofEq. (A2b) into Eq. (Al) yields 

Ea=(-!-) L ")' Xc:; °Cg (1nsIHI1- 1glns)' (A3) 
G classes 

eM 
It is important to note that the product 1-- IgJ will in general 
belong to a C5 coset but it may not be the leader chosen for 
the Cs induced representation. The result is that for ns = 15' 
25,35, and 45 the matrix element (lnslH II-Iglns ) will be 
shifted by a phase factor dependent on [-lgl. However, for 
Its = Os the matrix elements are independent of the choice of 
coset leader and Eq. (A3) may be used with the initial tun-
neling matrix elements derived in Sec. IV. 

Evaluation of the matrix elements (lnslH I! -Igln,,) in 
Eq. (A3) gives 

Ea = j [X a.* + 2Xa* + 2X",*,) 12H 60 C, C R (R 

+ + + 
+ + + 

(A4) 

Substitution of the characters from (a) of Table VI into 
g 

Eq. (A4) results in the following expressions for the Os clus-
ter eigenvalues 

E A =&J(1 +2+2)12H+ (2+2+ 1)60S 

+ (2 + 2 + l)60T+ 60U] 

=H + 5S+ ST+ U, 
E T , = ob[(3 + 2G+ + 2G -)12H + (2G + - 1)605 

+ (2G - - 1)60T - 60U] 

=H U, 
E T , = fo[(3 + 2G -- + 2G+)12H + (2G--- - 1}60S 

+ (2G+ -1)60T-60U] 

= H -,[SS + ..j5 T - u, 
E H =ob[(5)12H+ (-2+ 1)60S 

+ ( - 2 + 1)60T + 6OU] 

=H-S-T+U. 
The evaluation of Eqo (A4) with a = G characters yields 

EG=O. 
In order to calculate the ns = 15' 25, 35 , and 45 cluster 

spIittings using the tunneling matrix derived in Sec. IV the 
use of icosahedral irreps is necessary. Methods for generat-
ing these irreps will be given in the following paper. 

APPENDIXB 
Diagonalization of a tensor operator T is greatly facili-

tated through the use of its symmetry. If g is an element of a 
group G of order °G and gT = Tg for all gEG, then T has G 
symmetry. Analysis of the group G yields the irreducible 
representations Orreps} which permit the explicit construc-
tion of the group projection operators. These are given by the 
expansion 

p'!: = '" D'!:*(g)g, 
<.! "G f IJ 

(B1) 

where! a is the dimension of the ath inep, gEG, and D if (g) is 
the i,j component of the ath irrep of g. 

The projection of the angular momentum basis with 
P if yields a nonorthogonal basis within which the tensor 
operator T is block diagonal, 

IJa . ) = pa. IJ ) 
mfqlq lqJq m 

= c:;:) "+ (l);"°m (1) I;", )c5i<!"q (B2) 

Equation (B2) is obtained by the use of the expansion (B 1 ) 
and the transformation properties of the I;" >, 

gl-:") = L Igl;,,) = 2: -:"'m (g) I;",), (B3) 
j 171' mO 

where the D;"0m (g) are the m', m components of the J R 3 
irrep. The summation over all gEG is reduced to a summa-
tion over the coset leaders of an Abelian group He G via 
coset factorization. Usually, H is a cyclic group Cq • The no-
tationiq in (B2) means i mod q and labels the irrep ofCq and 
the type oflocal symmetry that a wave function (8,0\;") has 
about an axis colinear with the symmetry axis ofCq • The (j 
function in (B2) demonstrates that many projection opera-
tors will map the basis vector I;") into a null vector. These 
null projections may be avoided through the use of the rota-
tional correlation wheel in Fig. 3. Starting with the appropri-
ate angular momentum and working around the wheel the 
correct group irrep lable may be selected. The projection 
operator labeljq is given by K which begins at K = J and 
decreases by one unit for each cluster that is used. In this 
fashion each m value may be used as an orbit label and the 
projection operators of the group G may be used repeatedly. 
The frequency that a given irrep label is encountered as the 
wheel is traversed is the dimension of the resulting block 
diagonal element of the tensor operator labeled by the irrep 
label ao A reasonable estimate of the dimension of any la-
beled block is given by 

dUe:::. (U + 1)['" (B4) 
°G 

The frequency of any a labeled block is 1 a and reflects the 
degeneracy inherent in the symmetry of T. Each one of the I a 

block elements is labeled by a different iq in Eq. (AS) where 
the range of iq is from 1 to [a. 

In the projected basis the tensor operator T has the form 
TO! (Jet' TIJer )' 

mn'=:::: miqmq i hi'/'q 

The summation over m' is limited by the constraint that 
ml + m2 = m3 in the coupling coefficient used by 
the Wigner Ekhart theorem to evaluate the matrix element 

Since the projected basis is nonorthogonal a generalized 
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eigenvalue problem must be solved. This requires the con-
struction of an overlap matrix S whose elements are scalar 
products of the projected basis vectors with themselves: 

S:,,, = =(I<IOH) D';..*" (l)D-;",,(l). 
q---q q q °G q q 

(B6) 

For the case of an orthonormal set of basis vectors Sbecomes 
the unit operator. 

Both the T:'n and S are used to construct the ath 
eigenvalue equation: 

{T - AS} I 1/') = o. 
This is solved by first transforming S into the unit operator 
while operating on T with the same transformations. The 
matrix Tis then diagonalized in the usual fashion. There are 
also standard computer routines designed to find the eigen-
values of T given T and S. The resulting eigenvalues will be 
symmetry labeled by the irreps of the group G. Since the 
expressions in (B5) and (B6) are independent ofiq only one 
of the a blocks needs to be diagonalized. 

For the icosahedral group, the sixth-rank icosahedral 
tensor, andJ = 100 it is necessary todiagonalize a 201 X 201 
matrix to find the eigenvalues of the tensor if symmetry pro-
jection is not invoked, With projection one 4 X 4, two 
lOX 10, one 13 X 13, and one 17X 17 matrix are aU that need 
diagonalization. For J = 1000 projection requires the 
diagonalization of at most a matrix of dimension 175. Since 
the projection metod also labels eigenvalues by symmetry 
this avoids the symmetry labeling problems inherent in the 
nonprojective method. 
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