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Physical systems that have resonances corresponding to representations of multidimension symmetry 
g,roups can be constructed from electric circuit elements. Examples involving symmetries of two 
four-dimensional polytopes are shown. Also a group theoretical analysis of linear constraints is 
described. 

I. INTRODUCTION 

Characters of four-dimensional cubic symmetry were 
calculated on computer by Birman and Chen, 1 who 
speculated that these representations and symmetries 
might possibly be associated with accidental degeneracies 
in some crystal lattice vibration frequencies. In the 
following we demonstrate some interesting realizations 
of these representations and degeneracies in the vibra
tions of certain electrical networks, and suggest what 
other sorts of symmetries can be visualized and treated 
similarly. 

In fact, the vector representations given by Birman 
were found by Littlewood over thirty years before,2 but 
it was not made clear by Littlewood whether he knew or 
cared about higher point symmetries, since his main 
concern was the study of the permutation group and its 
subgroups. Nevertheless, his methods are general 
enough to produce the characters of anyone of such 
higher symmetries. (Higher point symmetries are 
effectively catalogued by the existing regular polytopes 
as listed in Appendix C.) 

The treatment of complex symmetric networks con
tained below is a straightforward extension of the usual 
group projection techniques,3.4 except that one must take 
account of the Kirchhoff current conservation con
straints. A group theoretical method for deriving the 
constraint effects is described in Sec. II in connection 
with an example that can also be treated conventionally. 

In Sec. tIl the results of the group analysis are dis
played in the form of current-flow illustrations for the 
elementary resonances on OSCillating networks having 
the connectivity of the four-dimensional cube and tetra
,hedron. The correspondence of the high degeneracies 
found in each case with higher symmetry representa
tions is demonstrated. 

It is apparently incorrect to claim that such analyses 
fill a need in circuit engineering since probably no 
laboratory has considered such network configurations. 
It is better that we simply offer the examples as inter
esting diversions, and the methods as solutions awaiting 
a problem. 

II. GROUP THEORETICAL ANALYSIS OF KIRCHHOFF 
CONSTRAINTS 

The coordinates that describe the state of internal 
currents in an electric network must be chosen to be 
independent. The twelve coordinates VI" .j12} indi
cated in Fig. 1 (a) are too many, since the number of 
degrees of freedom of this network is seven. In general, 
Kirchhoff current conservation constraints reduce the 
number of independent coordinates of a b-branched 
closed network to b - n + 1, where n is the number of 
nodes or junctions.5 

For networks that are planar like the example in Fig. 
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1, it is possible to choose exactly the right number of 
mesh loops to be the independent coordinates as is done 
in Fig. 1, but it is sometimes not convenient to define 
mesh loops for planar or especially, nonplanar networks. 
However if the network possesses some topological 
symmetry a group theoretical coordinate definition may 
be more convenient in either case. For example, to 
define coordinates for the network in Fig. 1 the irre
ducible representations (m) of the cubic-octahedral 
group 0" characterized by Table I, are employed. Each 
group operator is labeled by its effect on the Cartesian 
coordinates (xyz)[(yxz): x ~ y,y ~ - x,z ~ - z], and, in 
turn, their effect on any of the 12 (nonconservative) 
current states lin> is obtained by inspection as sho\Yll 
in Eq. (1) (Un> is the state in which unit current is flow
ing in branch n) 

(yxz)lh> =-lis>"'(Yxz)U 12> =-Ijg>' (1) 

From these are obtained orthonormal vectors of Eq. 
(2) that transform irreducibly as per Eq. (3): 

12 

Iw!> = ~ Un>(jn Iw/>, 
n 

(The standard procedures that accomplish this are 
sketched in Appendix B.) 

(2) 

(3) 

The coefficients (jn Iwj> define currents in the dia
grams of Fig. 2 and it is 'seen there that some m bases 
conserve currents while others do not. The seven con
servative bases may replace the seven mesh loops of 
Fig.l(b). In fact relations like Eq. (4) are obtained by 
inspection of Fig. 2: 

31wA2K) (lw~'Jg) + IW~Jg) + IW~Jg) 
Ill) = 2{3 -----:2-----

2(lw[2K) + IW~2K) + IW;2K) 
+ 2"V'2 (4) 

FIG.1. LabelIng octahedral network currents. (a) The twelve currents 
shown are not independent if conservation is required. (b) Since the net
work is planar, the seven mesh loops give an independent and complete 
labeling. 
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CONSERVATIVE STATES 

2 

NON CONSERVATIVE STATES 

2017 

A nonconservative current state will in general 
require all 12 states in Fig. 2 as, for example, does 
Ii 1) in Eq. (5): 

Iw~g) IW T1g) IW T2g ) + IW T2g ) 

1i1) = 2./3 - + + 1 2..[2 3 

IwEg) \WEg) (IWTlU)_\WTlU») + __ 1_ + __ 2_ _ 1 (5) 
2-'/"2 2../6 2-./2 • 

The question of which sets are conservative can be 
deduced abstractly in such a way that one can see the 
general results of applying symmetric linear con
straints like the Kirchhoff current conservation rela
tions. 

The current conservation constraints for the octa
hedral network are linear in j n and can be written in 
rectangular matrix form of Eq. (6), where zeroing of 
cn (n = 1, •.• ,6) implies conservation: 

j 1 C 1 

K ]2 = C2 

Cs 

]12 

(6) 

These constraints presumably have the topological sym
metry of the network and this is expressed by a general
ized commutation relation 

K·J(g) = C(g) ·K. (7) 

In the above,J(g) is a 12 x 12 matrix that represents 
transformation of branch currents by group operation 
g of Ok follOWing Eq. (1). C(g) is an analogous 6 x 6 
matrix that represents transformation of vertices. Both 
J. and C are reducible, the former into A2K + T 19 + T 2 u 
+ Eg + T 1u (see Fig. 2) and the latter into A 1g + Eg + 
T 1u' and these are indicated in Eq. (8): 

FIG.2. Independent conservative and nonconservative states for 
octahedral network. Directed arrows in all configurations except >I!~g 
represent unit current flow. Thicker arrow in the latter represents 
twice unit flow. Normalization denominators are shown under each 
figure. 

V-1JV = A 2g + T 1g + T 2u + Eg + T 1u ' 

U-1CU = A 1g + Eg + T 1u ' 

The columns of V are the previously mentioned [Eq. 

(8) 

TABLE 1. Character table of three-dimensional cubic octahedral symmetry group Ok' 
Polynomials corresponding to IR's of Ok are given. 

(yzx) (yU) 
(y~ (y~ 
(yzx) (xzy) (zyx) (yzx) (xzy) (zyX) 
(yzx) (zyx) (iyX) (yzx) (zyx) (zyx) 
(zxy) (yxz) (yxZj (:exy) (yxz) (yxz) 
(ixy) (xyz) (xzy) (yxz) (zxy) (xyz) (xzy) (yxz) 
(ixy) (xyz) (zyx) (xzy) (zxy) (xyz) ("Zyx) (xzy) 

(xyz) (zxy) (Xyz) (yxz) ('Xzy) (xyz) (hy) (xy"Z) (yiZ) (xzy) 

1 x 2 + y2 + z2 
- 1 x4(y2 - Z2) + y4(Z2 _ X2) + z4(x2 _ y2) 

o 2z2_ X2_y2,{3(x2 _y2) 
- 1 y3z - z3Y,z3x - X2Z,X 3y - y3x 

1 YZ,xz,xy 

A lg 1 1 1 1 1 
A Zg 1 1 1 - 1 -1 
E 2 -1 2 0 0 
?;.g 3 0 -1 1 - 1 
T Zg 3 0 -1 -1 1 

1 1 1 1 
1 1 1 -1 
2 -1 2 0 
3 0 - 1 1 
3 0 -1 -1 

A l • 1 1 1 1 1 -1 -1 -1 -1 - 1 x(y3z - z3y) + y(z3x - X3y) + z(x 3y - y3x ) 
1 xyz 
o .J3xyz(x2 - y2),xyz(2z 2 - x2 _ y2) 

A 2• 1 1 1 -1 -1 
E. 2 -1 2 0 0 

-1 -1 -1 1 
-2 1 -2 0 

Tt. 3 0 -1 1 - 1 -3 0 1 -1 1 x,y,z 
Tz.. 3 0 ~1 -1 1 -3 0 1 1 - 1 x( y2 - z2),Y(Z2 _ x2), z(x2 _ yZ) 

identity ± 120" ISO" ± 90" 180" inversion ± 120" mirror ± 90" mirror 
rotation rotation rotation rotation rotation reflection rotation reflection 

mverstion class inversion class 
class class 

\.. class class class class / 
V 

0 
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(2)] current vectors I "iJ!}<>'~. Now, rewritting Eq. (7) as 
Eq. (9) below, 

U-1K V V-1 J(g)V = U-1 C(g) U U-1 K V, (9) 

and applying Schur's lemmasG to selected block sub
matrices of the matrix U-1 K V, one proves that the 
latter must have the form: 

1 A 1g 

U-1 K V= 

,0 
, 

Finally one obtains the following: 

K V= 
submatrix 
guaranteed 

zero 

submatrix 
not guaranteed 

zero 

{3 

]Eg 

r {3 

(3 

Tlu 
(10) 

(11) 

which, if compared with Eq. (6), is seen to state explicitly 
that the first seven· current states (Fig. 2) are con 
servative while the remainder may not be. 

For the preceding analysis of constraints to be valu
able, one only needs to know some topological sym
metry of the network in question, which in turn presum
ably corresponds to the symmetry of the constraints. 
If in addition the equation of motion for transient cur
rents in the network has this same symmetry, then the 
conservative IR bases (Fig. 2) will be the normal modes 
or elementary resonances of the network. In this latter 
case we can say that the physical symmetry is the same 
as the topological symmetry. When the physical sym
metry is lower than the topological symmetry some 
mixing of the conservative states may be necessary to 
produce the resonant modes. 

Also mixing will be necessary for repeated equivalent 
IR's should they appear in columns or rows of relations 
like Eq. (8). The procedures for dealing with these 
occurrences are straightforward. 

III. EXAMPLES OF NONPLANAR NETWORKS 

The cubic configuration shown in Fig. 3 has 17 con
servative degrees of freedom, but it is not immediately 
clear how 17 independent loops could be drawn into the 
32 branches. However, the IR of Ok' which correspond to 
conservative states, are easily found (Fig.4). The IR's 
T 19 and Eu both appear twice, and so one is at first free 
to pick arbitrary orthogonal combinations of the pair of 
T 19 - IR's and similarly for the Eu' 

A most interesting application of this involves finding 
the frequencies of normal vibration of a linear tank cir
cuit constructed upon this network. 

The equations of motion are a coupled set of 32 dif
ferential equations, the first of which is given by 

d 2 i 
__ 1 = ail + bi2 - cis + bi4 + bi5 - ciG + bi7 - bI1 dt 2 

+ bI7 + cj1' (12) 
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The .coefficients a, b, etc. are assumed to be constants 
dependent upon impedance values of branches and 
arranged so that the physical symmetry is Ok' 

If b = b' and c = c' the currents drawn in Fig. 4 are 
in precisely the right proportion to decouple the 32 

iz 
~ 

I 

tis 

lsI I i7 

FIG.3. Nonplanar network having cubic symmetry. The 32 currents 
shown are not independent. Furthermore, the mesh loop procedure 
successful in Fig. 1 cannot be applied here. 

FIG.4. Independent conservative states of cubic network and level dia
grams for modes under three- and four-dimensional cubic symmetry. 
As shown in the text, the higher degeneracies can be traced to certain 
!R's of the higher symmetry. 
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equations of motion. The resulting equation for each of 
the first six modes (the D modes) is 

d 2D - = (a + 2b + c)D. (13) 
dt 2 

The next eight modes (labeled Q modes) all satisfy 
another equation: 

d2Q = (a + 2b - c)Q. (14) 
dt 2 

The remaining three modes have still another 
equation. 

d
2
0 = (a + 2b - 3c)O. (15) 

dt 2 

'" N 

2019 

The degeneracies in frequency of (T 19) (D) and (T lu) (n) 

at wD =.fa + 2b + c, of (Eu)(Q), (T2g )(Q), and (T1g)(Q) at 
w Q =,;-;; + 2b - c and of (A )(0) and (E )(0) at w(o) = . , 2u u 
..fa + 2b - 3c might seem unexpected (accidental) but one 
can prove that they correspond to an IR of the four
dimensional cubic octahedral group 0k(4). 

This is accomplished shortly after one realizes that 
the order of the group 0k(4) must be 384 (Appendix C), for 
there exists a subgroup of 88 of order 384 which Little
wood has found, along with a great number of other 
groups that he has listed. 2 With a bit of patience one may 
finally sort and identify the characters and classes of 
Littlewood's group with this group of higher cubic sym
metry. The result is tabulated below (Table II) and com
parison with Table I verifies the degeneracies and split
tings shown in the level diagrams of Fig. 4. 

As a final example, consider the Simplest nonplanar 
network: the well known Wheatstone bridge in Fig. 5. 

The topological symmetry is 85 , which happens to be 
isomorphic to the four-dimensional tetrahedral sym
metry. The physical symmetry of the bridge depends, of 
course, upon the values of the impedances, and examples 
varying from 85 to 81 are shown in Fig. 6. The IR of 8n 
are labeled by Young tableaux. 
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APPENDIX A: CONSTRUCTING IR FROM 
POL YNOMIALS 

Polynomials in x"y 8z y that form the bases of IR of Ok 
are given in Table 1. A norm is defined for these bases 

FIG. 5. Impedance bridge. Each impedance block Z. represents series as follows: 
effective capacitance and inductance C. and Ln, respectively. This is 
the simplest example of a nonplanar network. (X"Y 8z Y Ix" 'y 8'z y' > = 0"" ,0 88 ,On" (A1) 
TABLE II. The character table of four-dimenSional "cubic-octahedral" symmetry 0h(4). 
The four-dimensional cube has eight Volumes that will be permuted one into the other by the rotations of 0h(4), hence the latter is isomorphic to a 
subgroup of 88, Littlewood's procedure is used to derive the characters. 

'" '" '" '" classes of 0h(3) found in 0h(4) classes 

'" til til til 0: g g 
c .9 0: 

0: .9 g .§ 0 0 .e- ~.8 'en 6'&1 ~:g .9 ~ .... :a 
~ ~~ '"'0:.= .... o " ... :5 0:5 ~:5 .. CIl ~:5C1l ... CIl 0h(3) content Q,)N~Q) .. -- .!:: -=: CIl .... 0 coo "'0 coo >.... > .... 'Q1 Q)o~ of 0h(4) m :g ... ... ....... ... ... .... ... .S -H ,",.5 El ... +I '-c ..... El ~ 

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A 1g 
B 1 1 1 -1 -1 -1-1 -1 1 1 1 1 1-1-1-1-1 1 1 1 Azu 
C 6 0 -2 -2 2 0 0 0 0 0 6 0 2 - 2 0 0 0-2 0 o Tzu + T 2g 
D 6 0 -2 2 -2 0 0 0 0 0 6 0 2 2 0 0 0-2 o 0 T ,. + T1g 
E 4 1 0 2 0 -2 1 2 0 2 -4-1 0-2 0 0-1 0 o - 2 Ale + T,u 

F 4 1 0 -2 0 2 - 1 -2 0 2 -4-1 0 2 0 0 1 0 o - 2 A z• + T 2g 
G 4 1 0 -2 0 -2 1 2 0 -2 -4-1 0 2 0 0-1 0 o 2 A zg + T2u 
H 4 1 0 2 0 2 -1 -2 0 -2 -4-1 0-2 0 0 1 0 o 2 A 1• + T 1g 
I 6 0 -2 0 0 0 0 0 -2 2 6 0-2 0 0 0 0 2 o 2 T 2g + T1u 
J 6 0 -2 0 0 0 0 0 2 -2 6 0-2 0 0 0 0 2 o - 2 T1g + T 2u 

~ K 2 -1 2 0 0 2 - 1 2 0 0 2 - 1 2 0 0 2 -1 2 0 o Eg 'Jr L 2 -1 2 0 0 -2 1 -2 0 0 2 - 1 2 0 0-2 1 2 0 o Eu 
~ M 3 0 3 1 1 -3 0 -3 - 1 -1 3 0-1 1 - 1 1 0-1 1 - 1 A 1u + Eu 

~ N 3 0 3 -1 -1 3 0 3 - 1 - 1 3 0-1 - 1 1 - 1 o - 1 1 - 1 A 2g + Eg 

° 3 0 3 - 1 -1 -3 0 -3 1 1 3 0-1 - 1 1 1 o - 1 - 1 1 A 2u + E. 

P 3 0 3 1 1 3 0 3 1 1 3 0-1 1 - 1 - 1 0-1 - 1 1 A 1g + Eg 
Q 8 -1 0 0 0 4 1 -4 0 0 -8 1 0 0 0 0-1 0 0 o T 19 + T2e + Eu 
R 8 -1 0 0 0 -4-1 4 0 0 -8 1 0 0 0 0 1 o 0 0 T 1. + T 2. + Eg 
8 1 1 1 - 1 -1 1 1 1 -1 - 1 1 1 1 - 1 - 1 1 1 1 - 1 - 1 A 2g 
T 1 1 1 1 1 -1-1 -1 -1 -1 1 1 1 1 1 - 1 - 1 1 - 1 - 1 Alu 

Cycle 
structure 18 12,32 14,22 14,4 12,23 12,2 3 1,6 16,2 12,2,4 14,22 24 2,6 42 22,4 8 22,4 2,32 24 42 24 
of 88 
class 

Order of 
0.(4) 32 6 12 24 4 32 4 24 12 1 32 12 12 48 24 32 12 48 12 
class 
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From this the IR matrix components :0 follow imme

diately. For example, lEg;: (lx2 ) - /y2)//"2,and lEg -
1 2 

(21z2) - Ix2) - ly2»//6 are bases of mE according 
to Table I, and of unit norm according to (I1). Then for 
group element (yzx) we have the following: 

E (E I IE> <E I Ix
2

) - ly2) :0 l~(YZX) = t (yzx) t :::: t (yzx) .f2 

:::: (Eg Ily 2) - Iz2) = _ If. 

1..[2 2 

Eg (Egi lEg) (Eg/2IX2) - ly2) - Iz2) :0 (yzx) = (yzx) = r;; 
12 1 2 1 v6 

= -/3/2 

E 
:0 9 (yzx) = - .[3/2 

21 

E 
:0 g(yzx) = - V2 • 

22 

APPENDIX B: CONSTRUCTING IR CURRENTS 

states Iw"la», Iw2(a», ... , I wfa)(a» that obey Eq. (3), 
and thereby comprise a normalized basis of IR (Il), are 
found by applying projection operators pl:;) , P2¥;.> , ••• , 
p1(a)(a)m defined by (B1): 

p<a) ::::( Z(a) ) E :O~)(g)*g 
1m number of group operators group 

operrors (B1) 

to state vector like Ij ) as in (B2). (It will be assumed 
that vectors like g Ii 3 span the entire space in question, 
which in this first case is the 12-branch octahedral net
work. IT not, other state vectors, like 111) and Ii!) in the 
case of Fig. 3, are picked, and the process to be des
cribed here is repeated for each.) 

(B2) 

In (B2) the scalar N~a) is either a normalization con
stant or zero, and is determined quickly by (B3): 

(B3) 

For those in which N,.~a) ;>t 0, exactly Z(a) orthonormal 
states Iw}a» (Z:::: 1,2, ..• , l<cd) are constructed accord
ing to (BZ). Those m for which NJ.a) = 0 give nothing. 

For example, the operators (B4) with (a) = T 1g 

pry = ls{(zxy) + (zxy) - (zxy) - (zxy) - (Yxz) + (yxz) 
+ (Yxz) - (xyz) + (zxy) + (zxy) - (zxy) - (Zxy) 

- (yxZ) + (yxz) + (yxz) - (xyz)} , 

pi~g = is {(xyz) - (xyZ) + (xyZ) - (xyz) + (zyx) + (zyx) 
- (zyx) - '(zyx) + (xyZ) - (xyz) + (xyz) - (xy2) 
- (zyx) + (zyx) - (zyx) - (zyx)} (B4) 

P:18 = ls{{yzx) - (yzX) + (yzX) - (yzx) + (xzy) - (xzy) 
- (xzy) + (xzy) + (yzx) - (yzx) + (yzx) - (yzx) 
+ (xzy) - (xzy) - (xzy) + (xzy)} 

will give three states when applied to Ij 1> since N~lg is 
nonzero, 
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FIG.6. Mode and frequency level diagram for various physical sym
metries of bridge. Values of impedances are 
S5" ,ZE = Zi == Zr == Z;, S~ ••• Zi ZE >' Zr = Z;, 
S3' "ZE = Zi >' ZI >'Z;, and 52",ZE .. Zi >' ZI" Z;. 

TABLE ill. Characteristics of four"dimensional "regular solids." 

Vertices Lines Surfaces 3-Volumes 4-Volumes 

"Tetrahedron" 5 10 10 5 1 
"Octahedron" 8 24 32 16 1 
"600 Cell" 120 720 - 1200 600 1 
"Cube" 16 32 24 8 1 
"24 Cell" 24 96 96 24 ! 
"Dodecahedral 
complex" 600 1200 0 120 1 

(j1IP22 Ih) 

= <hl!ii{(xyz)'" - (zyx) ••• + (xjiz)'" - (zyx)}/il> 
1 T = 4: = N2 19 

The resulting orthonormal states are given in (B5), 
and 

Iwilg):::: 1 p{zglit) =!(2) - Ij5) + Us) -lin», 
..J Ni 19 2 

I w~ 19) = T Pi2lg Ijl) = ! (/it) - U4> + Ij7) - IjlO»' 
..JN2lg 2 (B5) 

IW~lg) = 1T 13¥ U1) = !(-Ih) + li6) - Ij9) + Ij12» 
..J N2lg 2 

drawn in Fig. 1. 
The number f(a~ of independent multiplets {I wia )} ••• 

Iw/a)(a»}' ··{llJIla ). "Iw/a)(a)>}/(a) is given by the 
standard frequency formula 7: 
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TABLE IV. n-Dimensional "Solids." 

"Tetrahedron" 

n Vertices Lines Surfaces 3-Volumes 4-Volumes 5-Volumes 

0 1 
1 2 1 
2 3 3 1 
3 4 6 4 1 
4 5 10 10 5 1 
5 6 15 20 15 6 

x y 
x+y 

"Cube" 

n Vertices Lines Surfaces 3-Volumes 4-Volumes 5-Volumes 

0 1 
1 2 1 
2 4 4 1 
3 8 12 6 1 
4 16 32 24 8 1 
5 32 80 80 40 10 

x y 
x + 2y 

HOctahedron" 

n Vertices Lines Surfaces 3-Volumes 4-Volumes 5-Volumes 

0 1 
1 2 1 
2 4 4 1 
3 6 12 8 1 
4 8 24 32 16 1 
5 10 40 80 80 32 

x y 
2x + y 

1 * 6 x(a.)(g) TrJ(g), 

oPg~&rs 
g (B6) 

f(a.) = 
number of group operators 

where 
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12 
TrJ(g) = L; (jn I (g) Un)' 

n=l 
T 

In the above example f 19 = 1. 

APPENDIX C: GENERAL POINT SYMMETRY 
There is a correspondence between a regular (Platonic) 

polytope and a highest point symmetry in a give 
Euclidian n space. The five three-dimensional regular 
solids are the tetrahedron having point symmetry Td the 
cube and octahedron each having point symmetry Ok' and 
finally the icosahedron and dodecahedron having Yh sym
metry. No three-dimensional point symmetries exist 
outside of these except the symmetries R(2) and R(3) of 
the cylinder and sphere, respectively, and their subgroups. 

Similarly the six four-dimensional regular "solids" 
described in Table III correspond to high four-dimen
sional point symmetry. 

The fourth "solid" is topologically represented in Fig. 
3, and has an order 384 point symmetry corresponding 
to all combinations of (± Xl' ± X 2 • ± X 3 , ± x 4 ). 

Beyond this there are only three n-dimensional solids 
for any given n;;. 5. These are recorded in the easily 
remembered triangle tables given in Table IV. 
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