
ar
X

iv
:1

60
2.

08
77

4v
1 

 [
qu

an
t-

ph
] 

 2
8 

Fe
b 

20
16

Many Correlation Tables are Molien Sequences
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Using the Jordan-Schwinger form of the quantum angular momentum eigenstates, it is straight-
forward to define rotational correlation tables such that the columns are Molien sequences for finite
rotational subgroup G. This realization gives a new and better means of calculation. Generalization
to unitary symmetry U(n) implies many more sequences, which determine degeneracy observables
in the context of electronic, vibrational, and rotational motion. This leads us to discuss one physical
significance of the Hilbert finite basis theorem.

PACS numbers: 03.65.Fd, 02.20.Rt, 33.20.Vq, 71.70.Ch

I. INTRODUCTION

The use of correlation tables to capture degener-
acy of eigenstates due to subgroup structureG ⊃ SG
dates back to the early years of the new quantum
mechanics [1]. Under any perturbation that breaks
Hamiltonian symmetry from G to SG, elements of a
correlation table, also called f -numbers, determine
splitting of eigenstates. Level-splitting directly af-
fects spectral measurements such as the intensity
of dipole absorption whenever a laser irradiates a
solid or molecule. Ease of accessibility gives the f -
numbers importance as quantum observables.
As an example, consider quantum angular mo-

mentum. Spherical symmetry SO(3) admits circular
dihedral symmetry D∞ as a subgroup, so we ex-
pect to find non-trivial degeneracy in the absence of
symmetry-breaking perturbations. The well-known
eigenstates have quantum numbers (j,m), which ad-
mit the correlation of Table I.

Table I. SO(3) ⊃ D∞ Correlation.

j\m 0 ±1/2 ±1 ±3/2 ±2 ±5/2 ±3 · · ·
0 1 0 0 0 0 0 0 · · ·

1/2 0 1 0 0 0 0 0 · · ·
1 1 0 1 0 0 0 0 · · ·

3/2 0 1 0 1 0 0 0 · · ·
2 1 0 1 0 1 0 0 · · ·

5/2 0 1 0 1 0 1 0 · · ·
3 1 0 1 0 1 0 1 · · ·
...

...
...

...
...

...
...

...
. . .

The spectra of a rotating molecule follows from
the specification of a Hamiltonian, Ω(J), a function
of quantum mechanical angular momentum vari-
ables J = (Jx, Jy, Jz). In a semi-classical theory
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FIG. 1. Rotational Energy Surface. Weak perturbations
do little to distort the shape of the RES. Trajectories at
j = 10 are colored according to representations of D3

symmetry: A0 red, A0/A1 red-orange, E1 green.

of rigid quantum rotations, the Hamiltonian deter-
mines a rotational energy surface (RES) where the J
vector moves, approximately, along quantized level
sets [2]. Description of planar molecules involves a
descent of symmetry

Ω =
ω

~2
J · J+

ξz
~2

J · Pz · J + ξθ θ(J/~), (1)

where Pz is a uniaxial projection matrix and θ is a
higher-order polynomial function of the J variables.
The approximate symmetry of the atomic nuclei con-
strain the range of possibilities for θ. Fig. 1 depicts
a spherical RES with slight perturbations.
Frequency hierarchy ξθ ≪ ξz ≪ ω characterizes

the simplest case where, to order ξz , the RES is an
ellipsoid with just one circular cross section. Fre-
quency levels split according to Table I. At j = 3, we
have doublets corresponding tom = {±1,±2,±3} as
well as one singlet m = 0. Including terms to order
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ξθ lifts some, possibly all, of the remaining degener-
acy.
Calculations of rotational frequency levels and

spectroscopic measurements of octahedral molecules
at high-j reveal intriguing degeneracy sequences [3].
Considering a great number of excited states, it be-
comes possible to extend upon and improve the sym-
metry analysis available through the original crystal
field theory. Harter explains how patterns of degen-
eracy follow the f -numbers of various correlations
between spherical, octahedral, and cyclic symmetry
groups [4].
The standard theory common between solid state

physics and molecular physics [5] defines rotational
correlations according to a character formula

CT (SO(3) ⊃ G) = χ̃ · χ−1. (2)

where χ and χ̃ are matrices of characters, the traces
of matrices that represent group actions. Each row
of character table χ corresponds to an irreducible
representation (irrep) of G, while each column cor-
responds to a conjugacy class of G. The rows and
columns of χ̃ correspond to irreps of SO(3) and the
conjugacy classes of G. The book Principles of Sym-

metry, Dynamics, and Spectroscopy [5] completely
explains character theory, up to the derivation of ro-
tational tables in Chapter 5.
General and important features of rotational cor-

relation tables are known and utilized since 1929:
The table rows have a periodic structure. Whole
integer representations of angular momentum cor-
relate to representations of the subgroup G while
half-integer representations correlate only to repre-
sentations of the double subgroup 2G. According to
these observations it should be possible to write the
correlation tables as a set of generating functions.
Referencing various column sequences in the On-

line Encyclopedia of Integer Sequences (OEIS) [6],
we find many suggestive connections between rota-
tional correlation tables and various Molien series.
Following the references through diversions into cod-
ing theory [7] and combinatorics [8], we make the re-
alization that classical invariant theory also applies
to quantum rotations and vibrations. The following
presentation provides an alternative, or at least a
supplement, to the standards currently available.

II. QUANTUM INVARIANT THEORY

In the history of science, the advent of quan-
tum transformation theory follows after classical in-
variant theory [9]. The old invariant theory, in its
general form, is founded upon famous theorems by
Hilbert, Noether, and Molien. These century old

theorems have practical value in a wide range of ap-
plications [7],[8]. They apply to quantum mechanics
wherever symmetry breaking lowers unitary to a fi-
nite subgroup. We show that classical and quantum
transformation theories admit a natural and fruitful
combination by considering polynomials of commut-
ing variables, the familiar quantum harmonic oscil-

lator raising operators a†i .
The SU(2) ∼ SO(3) double cover requires the use

of double groups. This critical insight allows us to
improve and extend the notion of a rotational cor-
relation table. By our definitions, Molien’s theorem
implies the following corollaries

• Corollary 1. The f -numbers of rotational
correlation table CT (U(2) ⊃ 2G : Γ1/2) are
determined entirely by the Molien equation
when Γ1/2 is a j = 1/2 representation of G.

• Corollary 2. For any n-dimensional irre-
ducible representation Γ of finite symmetry
group G, the f -numbers of correlation table
CT (U(n) ⊃ G : Γ) are determined entirely by
the Molien equation.

In stating these corollaries we use a naming con-
vention slightly different from Eq. 2, which is re-
quired in a wider context that applies throughout
the Born-Oppenheimer hierarchy; to the electronic,
vibrational, and rotational motion of molecules and
solids.

A. Molien Equation

Molien’s equation,

gf(Γx,Γy, λ) =
1

|G|
∑

Ai∈Γx

χ∗(Γy, i)

Det[I−Ai λ]
(3)

= f0(Γy) + f1(Γy)λ + f2(Γy)λ
2 + ...

is a clever utility that automates the analysis of in-
duced representations, thus enabling the counting of
invariants and covariants.
Representation {A1, A2, ..., Ag} ∈ Γx is a group

of m × m dimensional matrices Ai that act lin-
early on polynomial variables x = (x1, x2, ..., xm).
This one representation of G determines an infi-
nite set of representations {An

1 , A
n
2 , ..., A

n
g } ∈ Γn

x .
Each representation Γn

x acts linearly on a complete
set of polynomials of homogeneous order n, xn =
(xn

1 , x
n−1
1 x2, ..., x

n
2 , x

n−1
2 x3, ..., x

n
m). Notice that a

transformation of the x variables always causes an
element of xn to transform into a linear combination
of all elements of xn.
A subspace sn = P

n
sx

n ∈ xn is said to transform
covariantly to irrep Γy whenever the Γy projector
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acts as identity

sn = P
n
Γy
sn. (4)

If Γy is the trivial irrep with all characters equal to
one, then sn is also said to transform invariantly.
This definition gives the projectors Pn

Γy
central im-

portance in any attempt to enumerate sequences of
covariants.
To define the idempotent projectors [5], we need

the irreducible characters χ(Γy, i) of the i
th element

of groupG. These characters are listed by conjugacy
class in the character tables. Then we have,

P
n
Γy

=
1

|G|
∑

Ai∈Γx

χ∗(Γy, i)A
n
i , (5)

where the ∗ indicates complex conjugation. Every
polynomial of homogeneous order n transforms co-
variantly to some irrep according to the decomposi-
tion of the identity operator

I
n =

∑

y

χ(Γy , 1)P
n
Γy
, (6)

where i = 1 is assumed to index the identity opera-
tion I = A1, and the sum is taken over all irreps.
Clearly the task of counting the number of polyno-

mial subspaces with some particular transformation
property reduces to computation of projector traces

fn(Γy) = Tr[Pn
Γy
], (7)

where by Eq. 6, fn(Γy) counts each χ(Γy, 1)-
dimensional multiplet exactly once. According to
properties of the trace function, Tr[Pn

Γy
] is deter-

mined from the quantities Tr[An
i ] alone.

Fortunately, Molien notices that

1

d(Γx, i, λ)
=

1

Det[I−Ai λ]
=
∑

n

Tr[An
i ]λ

n, (8)

thus it becomes unnecessary to calculate induced
representations explicitly. Finally, the proof of the
covariant Molien theorem rests upon the same crux
as the invariant theorem nicely re-proven by Sloane
[7].

• Theorem 1. (Molien) Coefficient fn(Γy) of
λn in the power series expansion of the gen-
erating function gf(Γx,Γy, λ) gives the num-
ber of Γy-covariants of homogeneous order n
in variables x = (x1, x2, ..., xm) that transform
according to a representation Γx of group G.

We apply this theorem in a physical context.

B. The Pseudotop Analogy

The pseudotop analogy[10] occurs in quantum me-
chanics wherever a quantum system with fixed spa-
tial orientation transforms according to a rotational
algebra. Numerous resources [5],[11],[12],[13] discuss
this analogy in the context of the two-dimensional
isotropic quantum harmonic oscillator. Here the
pseudotop analogy takes a most simple form, which
is both a sincere curiosity and a useful aid to practi-
cal calculations. Recall the Jordan-Schwinger form
for the eigenstates of angular momentum

|j,m〉 ∝ (a†1)
j+m(a†2)

j−m|0, 0〉, (9)

where (j,m) = 1
2 (n1 + n2, n1 − n2) provides a re-

lation between rotational quantum numbers (j,m)
and vibrational quantum numbers (n1, n2).
Polynomials of the commuting raising operators

η = (a†1, a
†
2) determine all representations of contin-

uous group SU(2) ∼ SO(3). As in section IIa we
define induced spaces η2j where polynomials of the
η variables have homogeneous order 2j. All polyno-
mials transform invariantly by identity symmetry, so
the trivial Molien equation in two-dimensions gives
the generating function for the total degeneracy

gf({(10 0
1)}, {(1)}, λ) = 1/(1− λ)2 (10)

= 1 + 2x+ 3x2 + 4x3 + 5x4...

The series coefficients equal the sum of columns in
Table I above.
In a situation where finite rotational symmetry G

constrains a Hamiltonian with approximate spheri-
cal symmetry SU(2) ∼ SO(3), we would also like
to impose the constraints of G onto the eigenstates.
This is usually done using projectors Pn

Γy
, but classi-

cal invariant theory provides an alternative approach
that we like to explore.
Our conventions present the only difficulty in ap-

plying Theorem 1 directly. Usually we start with
a real-space, j = 1 representation Γ1, but η trans-
forms according to the j = 1/2 representation Γ1/2.
To perform reverse-induction, define

η2i = η · gi · η, (11)

where g = 1
2 (I+ σ3,

√
2 σ1, I− σ3) with σi the stan-

dard Pauli matrices.
The matrix/vector g transforms according to ei-

ther

g −→ g′ = D1
α,β,γ · g, (12a)

gi −→ g′i = (D1/2
α,β,γ)

T · gi · D1/2
α,β,γ , (12b)

where Dj
α,β,γ is a j-irrep rotation matrix with Euler

angles (α, β, γ) [5].
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Equation 12 provides an equivalence between vec-
tor rotation and matrix conjugation that allows the
determination of Γ1/2 from Γ1. A difficulty arises
because the similarity transform allows −I to act as
identity. This opens up the possibility that Γ1 is
not a faithful representation of the group G repre-
sented by Γ1/2, that Γ1/2 may contain more distinct
elements than Γ1.

The general form of D1/2
α,β,γ is

D1/2
α,β,γ = e−iα

2
σ3e−iβ

2
σ2e−i γ

2
σ3 (13)

=

(
e−i (α+γ)/2cos β/2 −e−i (α−γ)/2sin β/2

ei (α−γ)/2sin β/2 ei (α+γ)/2cos β/2

)
.

The factor of 2 attached to all angles in Eq. 13
causes all 2 π rotations to have a representation

D1/2
2 π = −I, (14)

while, intuitively, a 2π rotation in Γ1 must act as
identity. This discrepancy requires that the Γ1/2

representation contains twice as many elements as
the Γ1 representation and explains the locution that
’SU(2) is the double cover of SO(3)’. We agree with
Klein [14] that the Γ1/2 representation of G is actu-
ally a representation of the double group 2G.
Γ1/2 takes a special place among all 2G irreps be-

cause of spin and the pseudotop analogy. By Eq. 11,
Γ1/2 also transforms η, so it is exactly the represen-
tation we need to use the tools of classical invariant
theory in an analysis of quantum rotations. Setting
Γx = Γ1/2 in the Molien equation, we have

CT (U(2) ⊃ 2G : Γ1/2) = gf(Γ1/2,Γy, λ), (15)

where each Γy of group 2G determines a column
of the correlation table. We assert that corollary
1 is proven by definition, but it is also possible to
prove equivalence between the character formula and
the Molien equation by comparing how each method
treats the decomposition of the Tr[Pn

Γy
].

1. Examples

Using Eqs. 12 we generate Γ1/2 from Γ1 for each
of the following groups: Triangular Dihedral(D3),
Octahedral (O), and Icosahedral (A5). From the
Γ1/2 representations we calculate correlation tables
CT (U(2) ⊃ 2G : Γ1/2) according to Molien’s Eq. 2.
These tables, available on-line [15], are the same as
typically obtained [1],[4],[16],[17] by character for-
mula Eq. 2, up to an arbitrary g or u label. The on-
line supplement also contains an incomplete cross-
reference of the column sequences with entries in the
OEIS [6]. Some of the sequences computed in this
investigation seem to be missing from the extensive
records.

C. Generalization

Corollary 2 generalizes corollary 1 by removing the
restriction Γx = Γ1/2. This is an important move be-
cause quantum mechanics involves many symmetries
other than SU(2) ∼ SO(3). In a sufficiently general
setting we have an n-dimensional representation Γn

of group G which is also a subgroup of U(n). The

representation generators ηn = (a†1, a
†
2, ..., a

†
n) are

the ladder operators of the n-dimensional isotropic
quantum harmonic oscillator. These commuting
variables we again subject to the constraints of sym-
metry.
The molecular physics literature already contains

numerous examples in the general setting, including
some investigation of the Molien function[18]. We
review a few articles and provide Molien generating
functions that help to explain symmetry classifica-
tion of excited vibrational states.

1. Examples

Level correlations in [19] are given by

SF6, UF6 : CT (U(3) ⊃ O : T1),

SiF4 : CT (U(3) ⊃ O : T2).

Tables available on-line [15] give f -numbers consis-
tent with the published levels.
Level correlations in [20],[21] are slightly more

complicated, but nevertheless yield to a Molien anal-
ysis. The separate ladders obey

|ν1, 0, 0〉 : CT (U(1) ⊃ D3 : A1),

|0, ν2, 0〉 : CT (U(1) ⊃ D3 : A1),

|0, 0, ν3〉 : CT (U(2) ⊃ D3 : E);

|ν1, 0, 0〉 : CT (U(1) ⊃ O : A1g),

|0, ν2, 0〉 : CT (U(2) ⊃ O : Eg),

|0, 0, ν3〉 : CT (U(3) ⊃ O : F1u).

Considering combintorial properties of the Molien
equation it is possible to join separate correlation
tables into one table that gives correlations for com-
bined states |v1, v2, v3〉. In these tables the f -
numbers are coefficients of a power series expansion
in three formal variables λ1, λ2, λ3. We write the
combined-ladder correlation tables as

|ν1, ν1, ν3〉 : CT (U(1)⊕ U(1)⊕ U(2) ⊃
D3 : A1 ⊕A2 ⊕ E).

|ν1, ν1, ν3〉 : CT (U(1)⊕ U(2)⊕ U(3) ⊃
O : A1g ⊕ Eg ⊕ T1u).

All level degeneracies calculated using the Molien
function agree with published results.
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D. Finite Reduction of Eigenspaces

The Molien equation allows us to count the num-
ber of excited states transforming covariantly to Γy

but does not exactly provide a means for enumer-
ating the states themselves. We could construct the
projectors Pn

Γy
by induction. Other authors [21], [22]

call the brute force method difficult, and seek out
new, creative approaches. According to the Hilbert
finite basis theorem, invariant theory provides an-
other alternative.
Preexisting theorems ( Cf. [8] Thm. 1.3, 3.10 )

guarantee the existence of a simple procedure that
generates a complete span of each Γy eigenspace.
The algorithm depends only on the input of a finite
set of polynomials, which belong to either one of
two classes [7],[8]. Surmounting the difficulties of
troublesome syzygies, we can arrive at a succinct and
sophisticated specification of the eigenspaces, which
allows us to classify excited states of a perturbed
oscillator.

1. Example

Examining the 2D3 : E1/2 Molien functions and
various idempotent projectors for 2j = 1, 2, 3, 4, 5, 6,
we determine a finite set of polynomial invariants
and covariants. From these, we write a basis of ro-
tational states

|j,m, χ〉 ∝ (a†1a
†
2)

(j−m)((a†1)
2m+χ(a†2)

2m)|0〉, (16)

with j ≥ m ≥ 0 and χ = ±1 or ±i. Apparently
these are a complete, orthogonal set of J2

z eigen-
functions. This basis also divides nicely into classes
that transform covariantly to the representations of
2D3. Table II gives the relation between quantum
numbers and symmetry labels.

Table II. Γy ←− |j,m, χ〉 .
Γy (j −m) 2m % 6 χ

A0 Even 0 +1

Odd 0 −1
Even m = 0 0

A1 Even 0 −1
Odd 0 +1

Odd m = 0 0

E1 · 2, 4 ±1
EL

3/2 Even 3 +i

Odd 3 −i
ER

3/2 Even 3 −i
Odd 3 +i

E1/2 · 1, 5 ±1

110

90

 z:0  /10  :0  /300

FIG. 2. Rotational Levels. The j = 9, 10 rotational
levels are colored according to symmetry type A0 red, A1

orange, E1 green. From left to right, a J2
z perturbation

of strength ξz is applied, followed by a D3 perturbation
of strength ξ∆. The D3 perturbation causes the A0/A1

doublets to split.

This table is completely consistent with table
CT (U(2) ⊃ 2D3 : E1/2) available on-line [15]. We
use table II and Eq. 16 to label level-splitting dia-
grams such as Fig. 2.

III. CONCLUSION

Direct involvement of the unitary creation oper-
ators clarifies the application of classical invariant
theory to quantum mechanics. These polynomial
variables often occur in molecular physics, as the
generators of quantized rotations or vibrations. We
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give a unified perspective that views electronic, rota-
tional, and vibrational multiplet counting as equiv-
alent tasks. The correlation tables defined herein
apply immediately to any molecule or solid with di-
hedral, tetrahedral, octahedral, or icosahedral sym-
metry.
As with any of the best mathematical theories,

the range of applications for classical invariant the-
ory is truly interdisciplinary. If we confine ourselves
to studying physics, we still expect to find connec-
tions wherever unitary symmetry occurs. One as-yet
unexplored possibility exists in quantum optics [23],
where correlation techniques should apply to solu-
tions of the plane-wave Helmholtz equation.
This letter focuses on the simple Molien equation,

which is only a small part of the complete invari-
ant theory. As this research continues, we confront
the exciting possibilities and the difficult challenges
(syzygies) that arise in a closer examination of the
Hilbert finite basis theorem. Immediately we find
a useful equivalence between polynomial rings and
irreducible eigenspaces. Explicit construction and
manipulation of creation-operator polynomials may
lead to new discovery in physics.
Invariant theory is an important chapter in the

history of science, because it already contains many
notions essential to the foundations of modern
physics. Clebsch and Gordan obtained early re-
sults regarding polynomials generated by two vari-
ables. In the generalization to an arbitrary number
of polynomial generators, Hilbert affected a change
of paradigm that brought new methods. We present
one of those methods here, and suggest more investi-
gation. Our hope is that the historical drama, taken
alongside the content of this article, will give physi-
cists vital motivation to seriously consider new ap-
plications of XIX century techniques.
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