
Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators
William G. Harter and Chris W. Patterson 
 
Citation: Journal of Mathematical Physics 20, 1453 (1979); doi: 10.1063/1.524199 
View online: http://dx.doi.org/10.1063/1.524199 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/20/7?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Averaging fourthrank elastic tensors for textured polycrystalline aggregates without physical symmetry 
J. Appl. Phys. 66, 2338 (1989); 10.1063/1.344293 
 
Asymptotic behavior of group integrals in the limit of infinite rank 
J. Math. Phys. 19, 999 (1978); 10.1063/1.523807 
 
The Coefficient of Friction as a Second Rank Tensor 
Am. J. Phys. 40, 475 (1972); 10.1119/1.1986581 
 
Averaging FourthRank Tensors with Weight Functions 
J. Appl. Phys. 40, 447 (1969); 10.1063/1.1657417 
 
Lagrangian Theory for the SecondRank Tensor Field 
J. Math. Phys. 6, 788 (1965); 10.1063/1.1704335 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.192.114.19 On: Thu, 18 Dec 2014 13:47:21

http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/578858469/x01/AIP-PT/CiSE_JMPArticleDL_121714/Awareness_LibraryF.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=William+G.+Harter&option1=author
http://scitation.aip.org/search?value1=Chris+W.+Patterson&option1=author
http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://dx.doi.org/10.1063/1.524199
http://scitation.aip.org/content/aip/journal/jmp/20/7?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/66/6/10.1063/1.344293?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/19/5/10.1063/1.523807?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/40/3/10.1119/1.1986581?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/40/2/10.1063/1.1657417?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/6/5/10.1063/1.1704335?ver=pdfcov


Asymptotic eigensolutions of fourth and sixth rank octahedral 
tensor operators 

William G. Hartera) 
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Chris W. Patterson 

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545 
(Received 23 August 1978) 

Qualitative and quantitative features of high quantum rotational spectra are discussed by 
appealing to geometrical and topographical representations of the tensor operators. 
Approximate formulas are derived for level-cluster energies. The approximate conditions 
for the occurrence of "anomalous" fourfold clusters are given. 

I. INTRODUCTION 

Eigensolutions offourth-rank octahedral tensor opera
tors (T4) have become very useful for analyzing high-resolu
tion laser spectra of heavy spherical top moleculesl.Z such as 
CF4 , SiF4 , and SF 6' 

3 The operators model the centrifugal dis
tortion effects of the molecules which show up in the fine 
structure patterns in the rotational or rovibrational spectra. 
Because of high rotational inertia of these molecules their 
most easily observed lines belong to high rotational quanta 
typically J = 10--100 and higher in some cases. The highJ 
lines are arranged into surprising patterns of spectral "clus
ters," and the understanding of the clusters has led to 
simpler theories and better understanding of these 
molecules. 

It is interesting to note that the first observations of 
clusters were made in computer studies of crystal field split
ting of rare earth atomic levels. Lea, Leask, and Wolf 4 used a 
computer to investigate the effect of adding varying amounts 
of the sixth rank (T6) tensor operator to the fourth rank ten
sor (T'). They noticed some unexpected triple point degener
acies in their energy level diagrams even for low angular 
momentum states. (They treated J.;;;8 only.) Ten years later 
Dorney and Watson l diagonalized T4 for J.;;;20 and noted 
many nearly degenerate clusters for the higher J, and gave a 
classical model to explain some properties of them. Finally, 
Fox, Galbraith, Krohn, and Louck6 performed computer 
diagonalization of T4 for J = 2-100 and observed many ex
traordinary properties of clusters. This led to the quantum 
theory of spectral clusters, parts of which will be reviewed 
briefly below. HI 

The purpose of this article is to continue the original 
investigation by Lea et at: of the effects of adding varying 
amounts of sixth rank tensor T6 to T4. The results of cluster 
theory will be used and asymptotic formulas will be derived 
for the limiting cases of high J. The analysis of effects due to 
tensors of rank six or higher is important for the light spheri
cal tops such as CH4 (methane), SiH4 (silane), or GeH4 (ger-

"JPresently at The School of Physics, Georgia Institute of Technology, At
lanta, Georgia 30332. 

mane) which have appreciable amounts of T6 in their model 
Hamiltonians. While there are far fewer light (hydride) tops 
we believe they may make up for their small number with 
interesting spectroscopic effects. We shall try to emphasize 
the intuitive physical nature of the cluster eigenstates and 
indicate what effects one might predict. 

II. TENSOR OPERATORS AND THEIR 
EIGENVALUES 

Rank-k irreducible tensorial operators T~(q = k, 
k-l, ... , - k) of the rotational group R3 are sets of2k + 1 
operators which transform as follows l2 

R (a(Jy)T~R 'l(a(Jy) = LT~, iiJ~'q (a(Jy), (1) 
q' 

where iiJ ~'q are irreducible representations of rotation opera
tors in R3 = ! .. ·R (a(Jy) .. ·]. Certain combinations of certain 
T~ are invariant to the subgroup of octahedral rotations. 
Besides the trivial case Tg we shall consider the two lowest 
rank octahedral invariants 

A-

T' = (7/12)1/2T6 + (5/24)II2(T! + T4_ 4) (2) 

and 

(3) 

Here we have chosen axes of quantization to be the fourfold 
symmetry axes of the octahedral subgroup. Many texts l

) give 
procedures for deriving invariant operators. Instead of giv
ing derivations we shall show ways to picture the operator so 
that their octahedral symmetry is obvious. 

The operators T4 and T6 can be expressed in terms of 
polynomials of coordinate operators x, y, and z or else angu
lar momentum operators Jx , Jy ' and Jz. This is done by 
replacing each T~ with spherical harmonics yk(O,cp) 

k q 
= Y lx/r,y/r,z/r) or else angular momentum harmonics 
y~(Jx,Jy,JZ>· Using spherical harmonics we obtain 
/-. 

T' = (21111')112[(35 cos40 - 30 cos20 + 3) 

+ 5 sin40 cos4cp ]132 

= (7/3JT)1I2(15)[X4 + y4 + z4 - (3/5)"]/8" 
and 

(4a) 

(4b) 
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FIG. I. Geometrical representations of oc!.ahedral tensor 

T{j.t) = 1" coSfl + T'siIIJL [T' = (IN 8) 1"]. Each combination T{j.t) 
for f.1. = 0,17/6,217'16, ... ,1117/6 is drawn in spherical coordinates 
[r = I + 1.2 T (j.t,e,r/J )] using (2), (3), (4a), and (Sa). Drawings were made on 
a computer using codes and algorithms written by Chela Kunasz and 
Thomas Wright. 

T6 = (l04hr)tl2[(231 cos68 - 315 cos48 + 105 cos28 - 5) 

+ 21 sin48 (11 cos48 - 1) cos4¢J ]/256 (Sa) 

= (l3/21T) '/221[x6 + y6 + Z6 _ sexy + y4x2 + X4Z2 

+ y4z2 + z4X2 + z4y2) + 70XYZ2 - (5/21),-2]/40r. Sb) 
Figure 1 shows solid spherical plots of the function 

T(J.l) = T4 coSf.l + P sin,u, (6a) 

where anglefl ranges from zero to 21T in steps of 21T/12 and 
the nonnormalized operator 

(6b) 

is used. The plots ofEqs. (4) to (6) were done on computer by 
Chela Kunasz using solid graphics software developed at the 
National Center for Atmospheric Research by Thomas 
Wright. The octahedral symmetry of the figures is evident if 
one ignores the "wood grain" which merely stands for the 
limit of the computer storage resolution. (To obtain hidden 
line drawings the entire function is first stored numerically.) 
It is useful to think of each figure as a potential surface. One 
can imagine the hills and valleys correspond to high and low 
energies in the octahedrally anisotropic Hamiltonian. Note 
that diametrically opposed numerals on the clock, i.e., 12 
and 6, 1 and 7, ... etc., correspond to potentials that differ 
only by overall sign, that is, hilltops are interchanged with 
valley bottoms. 

If one is interested in moe1cular centrifugal distortion 
operators then it is appropriate to imagine that each of the 
twelve objects in Fig. 1 are plotted in (J x Jy Jz J space. For 
example the 12 o'clock object corresponds to molecule 
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whose energy is highest when rotating around the Jx , Jy , or 
Jz axes which go through the hilltops, and lowest when the J
vector points out of the valley in the (1,1,1) direction. Each 
surface gives the energy as a function of J direction for fixed 
total angular momentum 

J ~ + J ~ + n = const. (7) 

An octahedral (XY6) molecule would be distorted the least 
by centrifugal force when rotating around a fourfoldx,y, or z 
axis since then the force is along or perpendicular to the six 
stronger radial bonds. Rotation around the (1,1,1) or three
fold axis affects the weaker bending bonds and causes the 
greatest distortion. Greater distortion corresponds to more 
rotatio'nal inertia and hence lower energy. This in turn corre
sponds to a valley on the potential surface. Therefore the 
surfaces around the 12 o'clock position are apt to describe 
octahedral XY6 pure rotational distortion, while their "nega
tives" around 6 o'clock are more apt to describe cubic (XYs) 

or tetrahedral (XY4) rotational distortion. Note that tetrahe
dral symmetry alone would allow a third-rank invariant 

(8) 

but this is excluded according to time reversal symmetry. 

The matrices of tensor operators are made using the 
Wigner-Echart theorem 

(~'IT;I~) =(- V-M(_~, ; ~)(JIITkIIJ),(9) 
where the reduced matrix element (J II TkIIJ) can be taken 
outside of the matrix since it does not depend on M or M'. 
We shall set it equal to unity here, but its value can be com
puted once the exact form of the tensor operator is estab
lished. The other factor in (9) is the Wigner 3-j coefficient. 
The following values of this coefficient are needed: 

4 

o ~) 
= ( - I)J -.11 [6(J + 2: - 1) 

_ lOM2(6J' + 6J - 5) + 70M4]1[(2J + 5: - 3)]112, 

(lOa) 
4 

-4 ~) 
= ( _ I)J - M [70(J + M + 0: - 3)(J - M + 4:1)] tl21 

[(2J + 5: - 3)]112, 

6 

o ~) 
= ( _ I)J - M [ _ 20(J + 3: - 2) 

+ 84M 2(5 J4 + lOP - 20P - 25 J + 14) 

(lOb) 

- 420M4(3J' + 3J -7) + 924M6]1[(2J + 7: - 5)][/2 

(lOc) 

W. G. Harter and C. W. Patterson 1454 
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6 

-4 ~) 
= 12( - W-M(50 - 44M + IIMz -J2 -J) 

x [(7/2) (J + M + 0: - 3) (J - M + 4:1))112/ 

[(2J + 7: - 5)] liZ. (lOd) 

Here we use the notation 

(X + a:b) = (X + a)(X + a - 1)( ... )(X + b + 1)(X + b). 
(11) 

The angular momentum representation of the (4,6)-oc
tahedral operator 

T(v) = T4 cos v + T6 sin v (12) 

in the I~> basis is a (2J + I)X(2J + 1) matrix. Using octa
hedral symmetry adapted bases l.2 it is possible to reduce it to 
a direct sum of smaller block diagonal matrices belonging to 
each symmetry speciesAI,A 1, E, Th and Tz• For example for 
J = 30 one can reduce the (61 X 61) matrix to two (3 X 3) Al 
and Az blocks, a (5 X 5) E block, a (7 X 7) Tl block, and an 
(8 X 8) Tl block. Finally 26 distinct eigenvalues (the E- and 
T-Ievels are, doubly and triply degenerate, respectively) are 
obtained in the (J = 30) case by diagonalizing the sub 
blocks. These blocks can be produced and diagonalized by 
computerl4 and the results for J = 30 are shown in Fig. 2 as a 
function of parameter v (0< v< 1T). It is only necessary to 
carry this expensive computer calculation half way around 
the v-clock. The eigenvectors of a matrix are unchanged by 
an overall (-1) factor and the eigenvalues are merely 
inverted. 

We now see ways to understand the results of the dia
gonalizations and derive simple approximate formulas for 
the eigenvalues. 

III. APPROXIMATIONS FOR TENSOR 
OPERATOR SPECTRA 

The first thing one notes in Fig. 2 is that many of the 26 

0.10 

(/) 0.08 
J : 30 
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FIG. 2. (J = 30) Eigenvalue spectrum of T(v)' = T' cosy + T' sinv. 
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FIG, 3. (J = 30, v = 1T) Spectrum of T(v), Magnified view of the level clus
ters are shown to exhibit the separate octahedral symmetry species. 

eigenvalues are "clustering" for most v values. The spectrum 
is a good deal simpler than it would have been if all 26 values 
had been randomly deployed. Figure 3 shows the spectral 
detail for the extreme right-hand side of Fig. 2, i.e., v = 1T •. ; 

[the extreme left-hand side (v = 0) is just the negative of 
this]. The lower portion of the spectrum exhibits alternative 
(A Ell TEll E) and (Tl Ell T1) clusters. Each of these clusters con
tain six levels: either 1 + 3 + 2 = 6 or 3 + 3 = 6. As ex
plained in Refs. 7-9 each set of six levels corresponds to six 
more-or-Iess well-defined localized rotation states in each of 
the six valleys on fourfold axes at 6 o'clock (v = 1T = /1) in 
Fig. 1. The upper portion of the spectra exhibits 
(AI Ell Tl Ell Tz EIlA z) and (Tl EIlEEIl Tz) clusters each containing 
eight levels. These belong to states sitting in each of eight 
hills on three-fold axes at 6 o'clock or in each of eight valleys 
at 12 o'clock (v = 0 = /1). Note that the fourfold axial hills 
or valleys are deeper than the threefold valleys or hills at the 
12 o'clock or 6 o'clock positions. Therefore there are more 
fourfold or six-level clusters than threefold or eight-level 

W. G, Harter and C. W, Patterson 1455 
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clusters at these positions. However, at just before 4 o'clock 
(p = 120° = 21T/3, v = tan- I [(1/8)lI' tan,u] = 148S 
= 9.91T/12) or else at 10 o'clock in Fig. 1 the threefold hills 

or valleys predominate. In the corresponding neighborhood 
between v = 81T and v = I01T in Fig. 2 the threefold clusters 
dominate the spectrum. 

The splitting of a level cluster is determined by how 
easily tunneling occurs between the valleys or hills associat
ed with the cluster. As explained in Refs. 6-9 and 11 the 
nearest neighbor tunneling amplitude ( - S) appears in the 
(AI E!) TI E!)E) cluster eigenvalues 

E(E) =H + 2S, 

E(TI ) =H, 

E (A 1) = H - 4S, 

(13a) 

(13b) 

(13c) 

and predicts the observed 2: 1 splitting ratio between E-TI 
and T,-A 1 intervals in the fourfold region of Fig. 3. (Here H is 
the cluster center-of-gravity which will be discussed short
ly.) Similarly, threefold cluster eigenvalues are given by 

E (A 1) = H + 3S + 3 T, 

E (TI ) = H + S - T, 

E(T,) =H -S- T, 

E(A,)=H-3S+3T, 

(I4a) 

(I4b) 

(I4c) 

(l4d) 

for the (AI E!) TI E!) T, E!)A,) cluster and for the (TI E!) E E!) T,) 
cluster by 

E (T,) = H + 2S - T, 

E(E) =H + 3T, 

E(TI) =H - 2S - T, 

(I5a) 

(I5b) 

(15c) 

where S is nearest neighbor tunneling amplitude and Tis the 
next nearest neighbor tunneling amplitUde. For most three
fold clusters the T amplitude is negligible, however there are 
certain cases when S goes through zero with T nonzero as 
will be discussed at the end of this section. 

The fourfold clusters dominate the spectrum around 7 
o'clock in Fig. 1 and, of course, also at the antipodal position 
of 1 o'clock (1 o'clock corresponds to f-l = 30° or 
v = 11.53° = 0.771T/12). Note that the "pass" between four
fold valleys becomes higher as one goes from 5 o'clock to 6 
0' clock. Finally, just before 7 o'clock the pases get cut off and 
6 perfect "craters" are formed around the fourfold valleys. 
This is close to the v-value for which the spectrum in Fig. 2 is 
all fourfold clusters. By 8 or 9 o'clock the "passes" have 
grown up to form twelve mountains. On the opposite side at 
2 or 3 o'clock twelve valleys are visible in Fig. 1. These twelve 
extrema are the source of the twelve-level two-fold clusters 
(A 1 E!) EI E!) TI E!) 2T,) and (A, E!) E E!) T, E!) 2TI) discussed in Ref. 
8. (They also can arise in a v3-type coriolis spectrum. IS The 
twofold axes are located at saddle points or "passes" on the 
T4 surface (12 and 6 o'clock) and these points correspond to 
crossover regions in the spectrum of Fig. 3 between threefold 
clusters on the high side and four-fold clusters on the low 
side. Saddle points do not give rise to clusters since it is possi
ble to travel globally between them without having to rise or 
fall in energy. Clusters correspond to localized states, only. 

1456 J. Math. Phys., Vol. 20, No.7. July 1979 
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FIG.4. Local T (v) potential values attwo-, three-, and fourfold axes. Values 
of potential T(v) = T4 COSy + T6 sinv are plotted versus v using (4a) and 
(Sa) for select (B,</J ) values corresponding to the three kinds of octahedral 
symmetry axes. 

It is instructive to plot the harmonic form of the tensor 
T(v) (12) using (4a) and (5a) for fourfold (¢l = 0, e = 0), 
threefold [¢l = 1T/4, e = cos- I (l/3)lI')], and twofold (¢l = 0, 
e = 1T14) axes as in Fig. 4. The qualitative form of the spec
trum in Fig. 2 is imitated to some extent. The two-, three-, 
and fourfold curves mark the regions in which the respective 
clusters exist. The curves take turns serving as cluster 
boundaries, i.e., hill tops or valley bottoms, and crossover 
boundaries, i.e., "passes" at saddle points. 

A more accurate approximation of the spectrum is ob
tained using the matrix elements in (10). If the operators are 
represented in the appropriate basis then excellent cluster 
energy approximations are given just by the diagonal com
ponents. Even more accurate results are obtained by pertur
bation. The operators in (2) and (3) are set up in the fourfold 
basis already. The following zeroth approximation follows: 

<T(V»~_fold 

=(7/12)11'( J 
-M 

+ (1/8)11' ( J 
-M 

4 

o 

6 

o 

~)( - I)J-M cOSY 

~)( _ I)J - M sin v, (16) 

where M = K4 is the fourfold axial momentum associated 
each cluster. (Recall Fig. 3.) One can do the same for the 
threefold cluster by first representing (2) and (3) in a three
fold axial basis as follows 

T4 = - 2 [(7 112)'12Tci + 2(5/24)/'(T4_ 3 - Tj) ]13, 
(17) 

T' = 2[ (8)II2T~ + (70/24)1I2(T~ - T6_ 3) 

+ (77 /24V'(T~ + TO_ 6) ]19. (18) 

Then the zeroth threefold cluster approximation is 

<T(V»~_fold 

- (2/3)(7/12)II2( ~ M 
4 ~)( - I)J-M COSY, 
o 

W. G. Harter and C. W. Patterson 1456 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.192.114.19 On: Thu, 18 Dec 2014 13:47:21



~o 
::> 
...J 

~ 
Z 
W 
(!) 

W 

-1.0 

, / 

< 

28 

27 

.. ---.. -r:. 
\~,. 

... 29" ... 

I '- .... _______ ..... 

" K2=M= 30 

2 

v (7T/6) 

K3 =M=30 ' 

29 

. >\;~ .. 
/ ' . 
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(19), and (20) are plotted versus v. Solid lines indicate where there is agree
ment with the exact results in Fig. 2. Dots indicate where clusters split and 
approximations break down. Dashed curves corresponds to classical poten
tials obtained by using (2Ia) with Pk = 1. 

+ (2/9)(S)II2( J 
-M 

6 
o ~)( - Il- M sinv, (19) 

where M = K3 is the threefold cluster momentum. Finally, 
the zeroth approximation for the twofold clusters is 

<T(V»~_fold 

- (1I4)(7/12)1I2( -"M ~ ~)( - Il- M cosv, 

_ (13/S»(lIS)II2( J 
-M 

6 
o ~)( - I)J - M sinv, (20) 

where M = K2 is the twofold cluster momentum. The func
tions of v given by (16), (19), and (20) are plotted together in 
Fig. 5. The solid curves indicate where the agreement is 
within 2% of the exact results in Fig. 2. This occurs practi
cally everywhere that a cluster exists. In other words, the 
error is the same order of magnitude as the cluster splitting. 

It is interesting to use Edmond'sl6 approximate 
expression 

k 
o ~)( - V- M =Pk(cosO)l(2J + 1)112, 

(21a) 

where Pk is a Legendre polynomial and 

cosO = M I[J(J + 1)]1I2_M I(J + 112). (21b) 

Its accuracy is about 0.6% at M = J = 30 and about 0.05% 
at M = J = 100. It is very useful for helping to understand 
the classical limit. Let us imagine that the angular momen
tum in state I~) is represented by a cone of altitude <Jz ) 

= M and slant height <J.J)112 = [J(J + 1)]II2_J + 112 
about the axis of quantization. According to (21 b) the apex 
half-angle is 0, and according to (21a) the eigenvalue of ten-

1457 J. Math. Phys., Vol. 20, No.7, July 1979 

sor T k is proportional to the value of the k th harmonic at 
angle 0, i.e., 

<Tk)rxPk(cosO)/(2J + 1)112 

= Y~·(O)[41T/(2k + 1)(21 + 1»)112. (22) 

The harmonic valley bottom occurs at 0 = 0 where 
Pdl) = 1. Therefore, if we replace the 3 - j coefficient and 
phase in (16), (19), and (20) by (21 + 1)-112 we obtain a better 
representation than Fig. 4 for the fourfold, threefold, and 
twofold valley bottoms, hilltops or passes, whichever they 
might be. These are plotted as dashed lines in Fig. 5. Note 
that their form is similar apart from the overall magnitude to 
the topographical features represented by Fig. 4. Any differ
ence is due to the factor [41T/(2k + 1)]112 in Eq. (22), which is 
close to unity for k = 4 and 6. Note that even "top clusters" 
for whichJ = Mhave some"zero-point" energy with respect 
to their valley bottoms or hilltops. This becomes less and less 
significant as J_ 00 • 

While studying the asymptotic functional forms of an
gular coefficients, Ponzano and Reggel7 have deduced "po
tentials" for Schr6dinger-like equations for certain Racah 
coefficients. Schulten and Gordon l8 have developed a theory 
of these "potentials" and applied it to approximate deriva
tions of coupling coefficients. The cluster properties seem to 
point out the physical "reality" of these potentials. 

Improved accuracy of the cluster approximation is ob
tained by using off-diagonal matrix elements in perturbation 
formulas. This has been done successfully for several cases of 
fourth-rank tensor operators. IO,IS.19 It is interesting to ob
serve that the contribution from the sixth-rank tensor can 
cause key off-diagonal components to vanish. For example, 
the key component relating K. = M and K. = M - 4 four
fold cluster states will vanish when 

(5/24)112 ( J 
- (M - 4) 

4 
4 

~) cosv(O) 
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FIG. 6. (J = 10) Eigenvalue spectrum of T(v). 
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FI G. 7. R (10) Laser spectra of CH, (courtesy of Allen S. Pine, MIT Lincoln 
Laboratory). Symmetry species can be identified by fitting the spectrum 
with Fig. 6 (v,,"0.5/61T). This is further verified by the heights of the lines 
which approximately correspond to the well-known statistical weights: 5 
for A" 3 for T, or T" and 2 for E. 

- (7/16)'12( _ (~_ 4) 
6 

-4 
~ ) sinv(O) = O. 

(23) 

Solving this using (10) we have 

tanv'M(O) 
= (5/3)[ (2 J + 7)(2J + 6)(2J - 4)(2J - 5)/42] 112/ 

[50 + IIM(M - 4) - J(J + 1)]. 

For example for J = 10 one finds the predictions 

(24) 

v:g(O) = 9.98°, v~O(O) = 13.06°, v~O(O) = 17.74°, 

which agree rather well with the cluster formations on the 
left-hand side of Fig. 6. Indeed, it is remarkable that the all 
fourfold cluster tunneling amplitudes vanish at certain 
points for each (A EB T EB E) cluster to give the triple point 
cluster degeneracies first noticed by Lea etal. 4 [Note that the 
tunneling amplitude corresponding to "reversal" 

is not included in (13)-(15).] The "triple points" for J = 30 
clusters in Fig. 2 are not resolved on the scale of the graph. 
However, (24) predicts correctly the values v~g(O) 
= 16.8°, v~WO) = 15.1°, v~~(O) = 13.7°, v~~(O) 
= 12.4°, ... ,vjg(0) = 7.6° for which the low-M clusters exist 
near the fourfold "crater" region around 1 or 7 o'clock (see 
also Fig. 5). 

For threefold clusters there appear points at which the 
nearest-neighbor tunneling amplitude (S) vanishes while the 
next-nearest-neighbor tunneling amplitude (T) is small but 
nonzero. The residual (T) exists because of the extra T6+ 6 
terms in (18). This causes the (T, EB E EB TJ cluster to have a 
crossing of T, and T2 just below E in the upper right-hand 
corner of Fig. 6. This was predicted by (15) for S = 0 and T 
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small. Similarly, (14) predicts a coincident crossing of Al 
withA 2 and TI with T2 in the (AI EB TI EB T2 EBA2) cluster when 
S = O. This is seen at (v = 4.411'/6, E = - 0.04) in Fig. 6. 
Note just below that crossing there are two levels E and Tl 
getting together. This corresponds to part of a cluster falling 
together in the threefold dominated 4 o'clock (or 10 o'clock) 
region. The same thing happens to incomplete or "leftover" 
fourfold clusters in the 1 o'clock (or 7 o'clock) region. 

One concludes that sixth rank centrifugal tensors (P) 
can make fourfold clusters anomalously "tight" or degener
ate even for lower J, and reorder the structure of threefold 
clusters. This is important for high resolution spectroscopy 
since it makes anomalous or case (2) hyperfine structure pos
sible in more accessible regions of the spectrum. lO The mix
ing of hyper fine states and symmetry species that inevitably 
occurs at high J may also happen in select portions of the low 
Jspectrum. 

As an example, consider theJ = 10 spectrum ofCH4 by 
Pinell which is shown in Fig. 7. This fits rather well with the 
level diagram at about v = 0.9/1211' in Fig. 6. Note that the 
first (K4 = 10) cluster is very nearly degenerate at this point. 
The first two fourfold cluster splittings are not resolved in 
Pine's spectra. Note that the heights of the spectral lines 
correspond approximately to the well-known nuclear spin 
statistical weights: 5 for Al or A l , 3 for TI or Tl , and 2 for E. 
The weights "pile up" for clusters so Al + Tl + E is about 
ten units high in Fig. 7. 

More detailed treatments of the molecular Hamiltonian 
including Coriolis and off-diagonal tensor are needed to fit 
CH4 spectra properly , [the P (10) pattern does not fit Fig. 6 
well for any value of v.] One may need also a small amount of 
eighth rank tensor. However, it appears to be possible to 
simplify any tetrahedral Hamiltonian calculation by casting 
it into an appropriate cluster basis for high angular momen
tum, 11.15.19 and high momentum lines provide the most accu
rate determination of molecular Hamiltonian constants. 
Furthermore, the ease with which one can understand and 
discuss the tensor spectra should be evident. This alone 
should motivate further development and applications. 
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