
PHYSICAL REVIEW A VOLUME 8, NUMBER 6 DEC EMB ER 19-73

Alternative Basis for the Theory of Complex Spectral

%'. G. Barter
Department of Physics, University of Southern Cahfornia, Los Angeles, California 90007
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A neve method is given for deriving the angular factors of energy matrices in l" atomic

configurations, and the need for coef6cients of fractional parentage, Racah coef6cients, algebraic

formulas, and chain calculations is avoided. Instead, matrix elements are obtained directly by a
comparatively simple digital counting procedure.

I. INTRODUCTION

Raeah's group-theoretical techniques for analyz-
ing complex atomic spectra have seen extensive
use and development since their introduction over
20 years ago. ' The application of Lie-group-
representation theory has become a more power-
ful tool for physicists than the earlier methods of
Condon, Shortley, or Slater. For one thing, the
mathematics of Racah provided a better labeling,
than previously existed, for the plethora of spec-
tral terms that arise in an orbital shell configura-
tion of the pure form l". The quantum numbers
thai gave this labeling corresponded to irreducible
representations of various (depending on shell /)
chains of Lie groups chosen vrith their terminal
links being the groups R(3)& R(2) of spatial rota-
tions in three and two dimensions (the latter about
a "g axis"), respectively. These chain links al-
lowed a simplifying factorization of states and
operators with the final two links corresponding
to total orbital momentum L and z-component M,
and thereby one obtained some additional computa-
tional power above that of ordinary angular mo-
mentum calculus.

However, physics problems are now arising for
which even Racah's methods ean become extreme-
ly difficult or impractical. For example, exhaus-
tive searches for rare-earth-crystal-fieM laser
systems require optimum use of enormous comput-
ing machinery just to get energy matrices by Ra-
cah's techniques, leaving little flexibility and time
to solve or analyze them. Many other mathemat-
ically similar problems in atomic, molecular, or
nuclear physics remain untouched apparently be-
cause of the complexity of "quantum bookkeeping. "

I report here that most of these problems, for
orbital I" configurations at least, vanish if one
redoes the angular factor analysis using a rela-
tively new type of mathematics. ' Furthermore,
are expect that similar problems can also experi-
ence great simplificatioq. since this near approach
and mathematics is quite general in scope. The

mathematics used is based upon the recent works
of Qelfand and Zetlin'; Baird, Biedenharn, Louck,
and Giovannini' '; Moshinsky and Ciftan'"; and
Gilmore, "as referenced below. The theory is
different from the seniority or quasispin and inter-
shell group analysis given by Judd" "and others.
However, the following work was motivated by an
apparent need in Judd's intriguing theories to deal
efficiently with enormous Lie groups, '~ and un-
doubtedly the two procedures will eventually blend
ln an interesting way.

I demonstrate the analysis by giving some sim-
ple rules (Sec. IV) for obtaining angular matrix
elements of orbital 2"-pole one-body operators and
scalar two-body operators. Vfe replace previous
expressions or chain calculations involving Racah
coefficients, fractional parentage coefficients,
%'igner coefficients, phases, sums, and other fac-
tors, arith comparatively simple counting algo-
rithms. Indeed, the higher angular momentum
states for any multiplet from p", d", f", g", etc.
configuration ean have matrix elements evaluated
"on the back of an envelope" without extensive nu-
merical or algebraic tables. Lower momenta
which, in atoms, generally have higher energy,
may require more computation depending on the
configuration, but always the procedure is straight-
forward, and the use of tables or other forms of
memory is avoided.

In order to appreciate the motivation for reject-
ing the Racah scheme, one shouM be aware of an
apparent difficulty in its mathematics. No group
chain that ends with B(8)Dft(2) can guarantee only
one state exists for a given set of irreducible rep-
resentation labels. In fact, Bacah's labels fail"
to delineate several pairs of states in configura-
tions f' f'. This is a -serious flaw if one expects
the group-mathematical machinery to provide
closed-form expressions for operators. In fact,
the Racah scheme uses coefficients of fractional
parentage which require individual (and often labo-
rious) treatment since no closed form can be writ-
ten for them. (The Racah recoupling coefficients,
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on the other hand, do have a closed, albeit some-
what complicated, formula ).

Another more or less serious objection to the
Bacah scheme involves the vrork one must do to
make states correspond to the Pauli principle,
since this scheme is set up to couple particles
one pair at a time. %hen dealing arith two or less
particles, comparatively little difficulty arises;
but wave functions or operators involving three or
more particles must be uncoupled and recoupled
repeatedly, using various coefficients and phases
to get the right permutational symmetry. Conse-
quently, the procedure becomes grossly inelegant.

The preceding objectionable behaviors do not
exist in the new approach. First of all, the or-
bital states are labeled uniquely by a chain of quan-
tum numbers {ir~„],{X& J, . . . , X» correspond-
ing to a "canonical" chain of unitary groups U(urn)

DU(m —1)D. ~ D V(1). The notation for a state is
given by a triangular array of these numbers, and
called a Gelfand pattern. [An example with m =5
is shown in Fig. 1(a).] Secondly, the orbital wave
function implied by each Gelfand pattern has a
quasidefinite permutational symmetry, so recou-
pling is unnecessary. The role of box diagrams,
which are called "Young Tableaux" [see Fig. 1(b),
for example], to define permutational symmetry

happens to be fairly complicated and subject to
some choice of convention. Ho~ever, the basic
idea of the "tableaus" is sketched in the figure
caption of Fig. 1, and very little more knowledge
than this is required to understand and use the the-
ory given in the following.

Gelfand' first wrote closed-form expressions for
the "elementary operators" E & in terms of ration-
al roots of polynomials in the numbers A,,&. Bieden-
harn' and Louck have elucidated the structure of
these results and developed a "Gelfand pattern
calculus" to obtain further algebraic formulas
Gilmore" has given patterns that produce similar
algebraic formulas for aO the classical Lie groups.

For applications, it turns out to be convenient
to convert the algebraic-pattern formulas to count-
ing algorithms involving the tableaus of Fig. 1(b).
These algorithms are generally much simpler to
remember and to use when a numerical result is
desired. The "Jawbone formula" of Sec. IH, is a
counting algorithm for matrix elements of elemen-
tary operators.

all and G. de@.Robinson'e may have been the firs
to derive any sort of tableau algorithms when they
wrote counting formulas for unitary representation
dimension (Fig. 2) and permutation group represen-
tation dimension, but until now, this sort of "cal-
culus" has seen little development or application. ""

The elementary operators are components of the
more familiar multipole orbital operators 7,", as
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FIG. 1. Conversion from (a) Gelfand pattern notation
to (b) 'Young tableau" notation for U(5). Gelfand quan-
tum numbers A~„g„~~ A give the lengths of rows ofboxes
in a tableau for Ug). Then A&„&Q„~~ ~ .A„~„~tell
the lengths of a U(g-1) tableau. inside the previous tab-
leau, aqj so on down to U(1), which corresponds to
only one row of A«boxes con&&Y1&TtfF 1's. Each box re-
presents a particle, and the number it holds tells in
what state the particle resides. A Young tableau indi-
cates the permutational symmetry of a many-particle
state. For example, a tableau state is antisymmetric
to permutation of states in a column. (Hence, no two
numbers in a column are alike). On the other hand, a
tableau state is symmetric to permutation of states in
any row that has no boxes above or below it.
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FIG. 2. (a) Hall-Robinson formula for unitary dimen-
sion and (b} example for U(5). A "hook length" of a
given box in a tableau is the number of boxes in a "hook"
which includes the given box and every other box below
it and to the right of it. The 24 states predicted by ex-
ample (b} are displayed in Fig. 6.
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explained in Sec. IV. Also, the Gelfand states are
related to states of definite total orbital momen-
tum. This last point represents a disadvantage of
the new basis. While the new orbital base states
have definite total g-component M of orbital mo-
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mentum and can be assigned to a definite total
spin S, they have indefinite total orbital (L) mo-
mentum and are, to this extent, unphysical. How-

ever, in Sec. II we give a physical interpretation
of Qelfand states and compare the level diagrams
of p" configurations (Fig. 3) involving Gelfand
states on the one hand, to Racah states on the other.
Furthermore, in Sec. IV the procedure for ex-
plicitly relating the two types of states is given,
as part of a sample calculation for a d' configura-
tion.

It should be noted now (since the difficulty does
not arise in Sec. IV) that one is free to pick what-
ever combinations of repeated equal-total-angular-
momentum states one finds convenient without in-
terfering with the effectiveness of the matrix eval-
uation. Racah's choice of sharp seniority is one
possibility but, outside of nuclear physics, not
always a convenient one.
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II. COMPARISON OF GELFAND STATES
VGTH RACAH STATES

The Racah bases for pure configurations were
labeled by quantum numbers associated with cer-
tain chains of groups depending on what shell was
involved. For example, orbital d" configurations
used the chain U(5)DR(5)DR(3) DR(2), correspond-
ing to quantum numbers [X, X, X, X, X,], (p„p,j,
I., and M. The new procedure involves one of the
so-called canonical bases developed by Qelfand,
Zetlin, and others. In the d" shell, which we shall
use as an example, the group chain and the quan-
tum numbers are given by the notations of Fig. 1(a).
In this notation the top rom is the same as Racah's
U(5) (X&, =X,), but otherwise the correspondence is
not direct.

To obtain some idea of this correspondence, we
examine p" configurations. The Racah chain for
these would be U(3)&R(3)&R(2), corresponding to
quantum numbers [X, X, X,], L, and M. The Gel-
fand chain is U(3) DU(2)~U(1), corresponding to
the quantum pattern

L*O 0

~s
I

~ ~ 0 ~ ~ ~ ~ 0 ~ ~ 0 ~ ~ t ~ ~ ~ 1 040

3

FIG. 3. (a) Bacah basis and (b) Gelfand basis of atomic
p-shell. Standard angular momentum basis (a) for p'
configurations is compared to the basis (b) arising from
a Gelfand chain. Correlation of final levels from each
is expressed by dashed or solid lines in the center of
the figure. A solid line implies an equality of the two
states it connects, while dashed lines imply a linear
mixing with some of the other levels connected by dashed
lines.

X~ X~ Xs

p o

P

The latter starts with the same triad [&~ 4 &3] as
the former.

There is a one-to-one correspondence between
a given triad and a certain total-spin S or "multi-
plicity" 28+1. This is because a triad denotes a
particular tableau of permutational symmetry for
the orbital wave function, and the "opposite" tab-
leaus of spin states must be "mated" in order to
make a totally antisymmetric (Paulo state. [A tab-
leau of spin states corresponds to just one total-
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spin S, because of the fairly intimate relation be-
tween two-dimensional unitary transformation U(2)
and ordinary rotation R(3).] The rule for convert-
ing orbital tableaus to an S is given by Eqs. (4),
in Sec. IV.

The p" levels as visualized by the Racah scheme
are shown in Fig. 3(a). The states correspond to
limiting eigenfunctions of strong scalar two-body
interactions and weak magnetic field.

The p" levels as visualized by a Gelfand basis
[Fig. 3(b)] can be thought to be limiting eigenfunc-
tions of a strong magnetic (Zeeman) field propor-
tional to one-body multipole operator V~ colinear
with a quadratic (Stark) electric field proportional
to one-body quadrupole operator V2, and weak two-
body interactions. If the proportions of the two
one-body components are cosp: sing, then the ex-
act locations of energy levels are given, as in Fig.
3(b), by the projections of triangular or hexagonal
"weight-vector" diagrams. P =0 gives pure Zee-

man splitting while p = tr/2 gives pure quadratic
Stark splitting.

The weight-vector diagrams were invented by
Cartan to display the eigenvalues of commuting
operators and show various relationships between
states and group operators g,&.

These relationships can be seen quite easily by
referring to the tableaus. A given tableau sits on
a point in a lattice which supports all possible
weight diagrams. (In general several tableaus may
share a single point. ) In Fig. 3(b) a "I"in a box
means a particle with pn =1; "2"means m =0; and
"3"means m = -1. The operator E„is capable of
changing a "j"to an "i" so one of the six operators
+12& ~1S& ~2S& E21& ESly and &S2 may change a tab-
leau state in Fig. 3(b) to any other state on any
other neighboring lattice point.

The general derivation and analysis of diagrams
like Fig. 3, is given in Sec. IV, along with a more
complicated example shown by Fig. 6.
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FIG. 4. Jawbone counting formula for elementary operator matrix elements. (a), (b) Matrix element is a positive
square root of a rational fraction made of products of hook lengths, as shown. %hen applying formula to a general tab-
leau, only those boxes containing m or less will be involved, so the rest can be shaved off. (c) An example involving
five-particle atomic orbital states appearing in Fig. 6.
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IH. THE JAWBONE FORMULA

The elementary operator E, can change one
particle from state m —1 into state m. In other
words E, can change any number m- i in a
tableau into an m, provided another m was not al-
ready in its column. The jawbone counting formula
of Fig. 4(a) gives the matrix element for this
change, and a reverse change. The figure ex-
plains the algorithm, although it should be pointed
out that it sometimes helps to add m-box columns
to tableaus lacking them [viz. , Fig. 4(c)] in order
to visualize all factors. (An m-box column is sca-
lar to Z „,.) Also, manifestly cancelling factors
in Fig. 4(c) are not drawn.

Still simpler algorithms can be derived for spe-
cial applications. However, Fig. 4(a) is conve-
nient to remember (with practice) and has the ad-
vantage of being completely general, and in quite
direct correspondence to algebraic results of Refs.
2-9.

Finally, elementary operators E are diagonal
with eigenvalues given simply by the number of
boxes containing m's.

IV. EXAMPLE OF APPLICATION

Some matrix elements involving quartet (S =-,')
states of definite orbital momentum I. in a five-
particle f =2 configuration (d') are evaluated below

~ 0 ~

~ ~ ~ ~

FIG. 5. Fundamental
(one-particle) representa-
tion of U(5). (a) Elemen-
tary operators E~& and
(b) Signer unit-tensor
operators e~.

~ ~ ~ ~

1
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to show the procedure.
All operators in d shell are constructed from

the unit tensors given by Eq (.2) and displayed in
Fig. 5(b):

y~ = l ™2y+l j~~

(2)

An n-particle l-shell spin-S multiplet belongs to
a particular set of Racah's A.

~ label. s defined by
(4), with the understanding that 1's appear exactly
2S times:

[X, X, ~ ~ X„„]=[22 ~ ~ 211 ~ ~ 10 ~ ~ 0], (4a)

X~+X~+. . ~ +A,q)+q =n. (4b)

A d orbiting particle can take on five values of
magnetic quantum number, and these are num-
bered: 1, m =2; 2, m =1; 3, m =0; 4, m = -l;
and 5, m =-2. The operators E„arerelated to
the Vf through their fundamental (one-particle)
representations, which are given in Fig. 5. Equa-
tion (3) is one such relation:

V', = (-I/v' 10)(v 2E„+v 3Z„+v 3E„+v 2E4,) .

As previously mentioned, this set is the first
row of the Gelfand pattern defining all those orbital
states. For example, each orbital state in the
five-particle d-shell spin- —,

' quartet belongs to a
Gelfand pattern having the top row [X, X, X, X4 X,]
= [2 1 1 1 0].

The example calculation is now given as a ser-
ies of steps which apply in general.

SteP 1. Filling out the Gelfand pattern so that
every integer is between the two integers above
it (the "betweenness" condition"') gives all states,
as shown in Fig. 6(a). It is helpful to lexically or-
der the states (211&210& 111&110 etc. ) Robin-
son's formula (Fig. 2) can check the number at
any level.

Step Z. Converting each pattern to a tableau de-
termines the g component M of angular momen-
tum of the state represented, since the M for a
tableau is the sum of its numbers less a constant.

It is convenient to reorder, where necessary,
the tableau into groups of equal M, as in Fig. 6(b).
This dictates the allowed ' "L, terms, which for
the example of Fig 6(b) .are 4~, 4», 4~, and 4~.

SteP 3. Evaluation of relevant submatrices of
V', [Eq. (6a)] by jawbone formula and by Eq. (3)
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I I lo
IIO = U (3)
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FIG. 6. Display of +54L) states. (a) States are first Gelfand ordered, and then (b) reordered according to total z-
component M of angular momentum.
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leads directly to a block diagonal total-angular-
momentum matrix [Eq. (6b)]. [For the d shell,
total angular momentum operator is Eq. (5)]:

L =lof Vt3VO —V3V 3
—V iV3]. (5)

Since V', is the negative transpose of V', , the
products V 1V1 and V', V', are formed by making
a few select row and column intersections in V',

submatrices. V,' V,' contributes diagonal M'.

11121113121114131211
2 2 2 2 2 2 2 2 2 3
3 3 3 3 3 4 3 3 4 4
4 4 5 5 5 5 4 5 5 5

1-V1=1

~ P3R 0
o vows

~ PsR o o
~ . o Ps/8 o
~ 0 0 02 P3

(6a)

111211131211
2 2 2 2 2 2
3 3 3 3 3 4
4 4 5 4 5 5

20

(L) =

16 4
4 16

12 2v6 0
2v 6 14 2v 6

0 2W 12

(6b}

Step &. Desired sharp L and M states [Eq. (7)] are obtained by applying Sylvester's theorem or the row-
minor method to submatrices of L'. [Given the eigenvalues L(L+I) of submatrices, one finds eigenvectors]:

4) 3

12 12
G 12 12
s 7%3 'W 3

4 5

13 12 11
G ~2 ~42 ~2"3 '

~ 3
' I'4

4 5 5

12 12
p 12 12
s 7K3 753

4 5
3) 7T3

11
1 2

W4
5

1 3 12 11

4 5 5

This allows the determination of all one-body (crystal-field) operators of Eq. (8), where the n are given
in Fig. 5(b):

k
VO +1@11+ ™2+22 +S+$$ +4+44 +5@55' (8)

In examples (9) we note that even-k diagonal components are zero, as expected in center shell:
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11 11
G

v«,
G =2 v', 2

4 4

= 2@1+Qs + Q3+ 04+0Qs

=4/~ for k=1

= 1
v =~1~ (2E +6E +

The jawbone formula applied in sequence using
commutation relations (12) gives all components
needed, as seen, for example, in (13):

Ess =[EsaiEssl i Ess =[Ess~Ess] ~ Ess =[Es4~E4s] ~

=0 for 4=2, (12)

12 ll 12 ll
«G 2 2 2 2

4 5 «4 5
W2

1 1 1 1
2@1—2&2 + 2CV4 —2Q'5 ~

SteP 5. Scalar two-body operators are found
using the same procedure as for Eq. (6), with one
additional thing. For example, to find the quadru-
pole-quadrupole operator in Eq. (10),

23 22 13
3 = 3 3

~13 4 ~12 4 23 4
5 5 5

12 12
3 1 3

5 5

12 13
1 3 2

&24 ' 4
5 5

13
2

4
5

(13)

Vs Va) = VsVs +Vs Vs —VsVa Vs Va+VsVa,

one needs the E„„,to evaluate (11) (the V', are
taken care of by E„„,):

Some resulting V', and two-body quadrupole sub-
matrices are shown in Eqs. (14). One uses the vec-
tors produced in Step 4 to obtain the energy ma-
trices or, in this case, the energy eigenvalues
(14b) (this process is repeated for higher multipole
terms where desired):

1112111312111413121112131415
2 2 2 2 2 2 2 2 2 3 3 2 2 2
3 3 3 3 3 4 3 3 4 4 4 4 3 3
4 4 5 4 5 5 4 5 5 5 5 5 5 4

2 0 -2
leo-2 o

~ ~ 0 2 0 -06
0 -Pg -~ v5

~ -&3 -1 /8 0
~ Wi We -o o

(14a)

111211131211
2 2 2 2 2 2
3 3 3 3 3 4
4 4 5 4 5 5

20

14(v' v')=

32 -12
-12 32

36 -2W 8-
-2&6 26 -2'
-8 -2' 36

(14b)

[Eigenvalues for the three internal matrices in
(14b) are: 20; 20, 44; 20, 44, 34]

For most applications, one is interested in ma-
trix elements or eigenvalues of a two-body inter-

action operator like (14c):

V'(k. b) =-' g (-1) 'v, (a)v,'(b).
particle

a ssb

(14c)
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However, operators like (10) differ from this by
only a constant "self-energy" term, as shown by
the expansion (15), since the canonical scheme
automatically sums over all particles:

V' V'= g (-1)' 'v", (a)v,'(5)
partides

a, b

= Q (-1}' 'v', (a) v', (5)
particles

a&/

+ Q (-1}' 'v ', (a}v,'(a). (15)

(yL/ V (k k)fy'L) = ~(yL( V V fyL)

2k+1
5~ . (16)

Then, for example (16), (14), and (7) give desired
matrix elements, like (17):

(d'G
i
Vo(2 2) id G) = -25j14.

For example, in an n-particle d configuration one
has the following matrix relation (16) for interac-
tion operators [the self-energy term in (15) is pro-
portional to the unit operator, as can be seen by
examining Fig. 5]:

All further results of the type seen in Eqs. (9)
and (17) are straightforward applications of the
preceding steps, so this completes the description
of the canonical formulation of orbital states and
operators.

V. CONCLUSION

The preceding methods are immediately appli-
cable for studies involving an orbital she11. model,
including searches for potentially viable solid-
state lasers, ' and probably represent a significant
advance in the state of the art. Generalizations
that include effects of spin-dependent and n-body
operators will be reported later.

We suggest that these advances are just the be-
ginning of a much larger subject, and encourage
the mathematical study of canonical operators,
which is not yet complete. " The physical mean-
ing of canonical versus angular momentum bases
should be investigated more. ~ A general theory
of transformations like our Eq. (f) probably
exists. "

ACKNOWLEDGMENT

The author would like to thank Dr. U. Pano for
encouragement of this work.

Work supported in part by the Air Force Avionics Lab-
oratories, Wright Patterson Air Force Base, Ohio.

G. Racah, Phys. Rev. 76, 769 (1949).
2B. R. Judd, Operator Techniques in Atomic Spectros-

copy (McGraw-Hill, New York, 1963).
3W. G. Harter, Atomic Spectroscopy I, Optical Society of

America Annual Meeting, October 1972 (unpublished).
4I. M. Gelfand and M. Zeilin, Dokl. Akad. Nauk SSSR 71,

825 (1950).
5G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4,

1449 (1963).
L. C. Biedenharn and J. D. Louck, Commun. Math.
Phys. 8, 131 (1968).

~L. C. Biedenharn, A. Giovannini, and J. D. Louck,
J. Ma.th. Phys. ~8 691 (1967).
J. D. Louck, Am. J. Phys. ~38 3 (1970).
M. Moshinsky, in Physics of Many Particle Systems,
edited by E. Meeron (Gordan and Breech, New York,
1966).
M. Ciftan and L. C. Biedenharn, J. Math. Phys. 10,
221 (1969).
R. Gilmore, J. Math. Phys. 11, 3420 (1970).

~2B. R. Judd, L. Armstrong, Proc. R. Soc. A 309, 188
(1969).

~3B. R. Judd, Adv. At. Nol. Phys. ~7 251 {1971).
~4B. R. Judd, in Group Theory and Applications, edited

by E. Loebl and M. Leobl (Academic, New York, 1968).
5Reference 12, pp. 203-204.
86. deB. Robinson, Representation Theory of Symmetric
Groups (University of Toronto Press, Toronto, Canada,
1961).

~~Reference 10.
W. G. Barter, Phys. Rev. A 3, 1891 (1971).

~9Reference 5, p. 1460.
W. F. Krupke and L. G. DeShazer, supported by Air
Force Avionics Laboratory, Wright Patterson Base,
Dayton, Ohio (private communication).

2~L. C. Biedenharn, J. D. Louck, E. Chacon, and M. Cif-
tan, J. Math. Phys. ~13 12 (1972).
J. D. Louck and H. W. Galbraith, Rev. Mod. Phys. ~44

540 (1972).
23Since the example used happens to be the adjoint re-

presentation, there exists a simple relation between
Eq. (7) and Fig. 4(b), in this case.


