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New tableau formulas are derived which allow mixed configuration Russell-Saunders states to be expressed in
terms of products of their pure configuration constituents. Using these and other simple tableau formulas,
matrix elements for spin- and orbit-dependent operators can be easily evaluated for mixed configurations
without the use of recoupling or fractional-parentage coefficients.

I. INTRODUCTION

To put the present treatment in the proper con-
text we briefly review the progress that has been
made in the application of a Gel’fand basis! to
atomic and molecular problems,

The basic theory and formalism for the unitary
group approach to the many-body problem has been
laid down by Moshinsky et al.,? Biedenharn and
co-workers,® and Louck et al.* It was Moshinsky®
who first outlined the specific applicability of a
Gel’fand basis for atomic and molecular problems,
and his ideas were put to use for complex atomic con-
figurations independently by Patera and Sharp,® and
Harter.” Although it was realized early that the
Gel’fand bases could be used to enumerate the angular
momentum states within a multiplet,®the actual con-
struction of orbital angular momentum states out
of a Gel’fand basis was tedious for multielectron
configurations. This was because of the compli-
cated formulas needed to evaluate unitary opera-
tors acting on a Gel’gand basis and the difficulties
involved with repeated angular momentum states
within a multiplet (the multiplicity problem).

Simplifications of the unitary operator formulas
were made by Paldus® and the present authors.!®
These formulas could be easily computer coded
and enabled the orbital angular momentum states
to be readily constructed from a Gel’fand basis
and orbital operators to be easily evaluated. The
equivalence of the various formulas used has re-
cently been demonstrated by Paldus.! The prob-
lem of repeated angular momentum states within a
multiplet was resolved numerically by Drake,
Drake, and Schlesinger.'? :

The evaluation of spin-dependent operators has
been carried out by Gouyet, Schrammer, and
Seligman'? in a second quantization scheme using
angular momentum recoupling coefficients. The
present authors have developed simple tableau
techniques for constructing antisymmetric states
from Russell-Saunders states using a Gel’fand
basis.!® The evaluation of spin- and orbit-depen-
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dent operators acting on the resulting Slater deter-
minants is then trivial. Our tableau techniques
have been computer coded by Caird'* to find oscil-
lator strengths in rare earths and by Drake,
Drzke, and Schlesinger'® to compute spin-orbit
parameters in the atomic f shell. Applications of
our tableau formulas to atomic jj coupling and
more than half-filled shells have also been made,!®
Recently, the Gel’fand basis has been applied to
various molecular problems by Matsen,'” Wormer
and Avoird,!® and Paldus.!®

In this work, we shall give a detailed treatment
of mixed configurations in atoms and develop
further the tableau techniques introduced in two
earlier works,”"'® (We shall refer to these as I and
II.) We described in II a treatment of pure con-
figurations which represents a significant im-
provement over the methods developed by Racah,?°
since complicated sums over recoupling and frac-
tional-parentage coefficients are avoided. Now we
give tableau formulas as promised in II which ex-
press mixed-configuration Russell-Saunders states
in terms of products of their pure configuration
constituents. We can then €asily extend all the
techniques developed for pure configurations to
mixed configurations.

Such an extension is difficult using a Racah
basis. Earlier treatments of mixed configurations
by Elliot,?* Innes, and Ufford® using the Racah
basis led to complicated expressions which made
computer matrix calculations for complex atoms
impractical, Subsequent improvements have been
made by Layzer,?® Shore,? and others,?~28 but
still many matrix calculations are beyond the capa-
bility of modern computers, Again, the problem is
with expressions involving 3z — j and fractional-
parentage coefficients, the latter being stored in
the computer since no closed-form expressions
exist.

In T and II, we already developed methods for
evaluating matrix elements of spin- and orbit-
dependent operators acting on Gel’fand bases. Our
main concern for mixed configurations
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(n,1,)1(n,1,)2 - - -, is therefore the construction of
Gel’fand bases of Uy . 4. ({1]=21+1) which are
eigenstates of total orbital angular momentum
LZ+LZ+- -,

For pure configurations (2{)’ we have constructed
Gel’fand bases of U, with good total angular mo-
mentum L by applying the lowering operator L_
to the highest L state. The highest L state is al-
ways a Gel’fand state, and furthermore we may
easily expand L_ in terms of the lowering genera-
tors E;.,,; of Uy, Since the matrix elements of
the E;.,,; are known, the effect of L_ acting on the
Gel’fand bases is readily evaluated. For repeated
L states lowering does not uniquely specify the
bases and one must use projection operators and
Gram-Schmidt orthogonalization procedures.!?'1¢
It is not difficult to generate Gel’fand bases with
good L for pure configurations using lowering
operators, and such bases have been constructed
by Caird for the p, d, and f shells.

For mixed configurations we can obtain Gel’fand
bases with good L by lowering with L_=L,_+L,_
++++ from the highest L state, as explained in II.
However, there are problems with Gel’fand bases
for mixed configurations derived with lowering
‘operator techniques. First, the orthogonalization
procedures can lead to extremely large numbers
which overflow the computer for high multiplicities
of L. Second, the bases must be derived indepen-
dently for each mixed configuration without taking
advantage of the fact that we have already derived
bases for the separate pure configurations. Fi-
nally, the bases generated have no physical sig-
nificance—they do not represent any partial sym-
metry of the Hamiltonian.

These difficulties are eliminated by the develop-
ment of simple formulas which relate ‘the Gel’fand
states of Uy 1+, +. .. to the Gel’fand product states
of Uy 1% Uy, . Once Gel’fand bases have been
derived for the separate pure configurations
(n, 1)1, (nyL)2, . .., of Uy 3, Uy, - -« , with good total
orbital angular momenta L,, L,,..., we may use
these formulas to couple the angular momenta of
the pure configurations and thereby find Gel’fand
states of the mixed configuration (z,1,)",
(n,0,Y2,..., with L=L, +L,+*+*. The treatment
of mixed configurations then becomes a relatively
simple extension of that for pure configurations.

IL. UNITARY STRUCTURE FOR MIXED CONFIGURATIONS

If a single electron can occupy g different orbital

subshells n,l,, n,ly,...,nl, there will be

h=[0]+[]+ - +[L,]

single-electron states possible, We shall restrict
our attention for the moment to p electrons occu-

pying only two orbital subshells %I, and #n,l, with
h=[1,]+[L,], since this special case is easily gen-
eralized. For typographical convenience, the

ath particle state shall be labeled |1)%, [2)%, ...,
|[,]1)® corresponding to magnetic quantum num-
bers m, ==1, -l +1,...,1 and |[],]+1)%,
[[,]+2)%,...,|1)® corresponding to magnetic quan-
tum numbers m,=-1,, —I,+1,...,l,. We may con-
sider these ath particle states to form a basis for
U,, the unitary group of dimension 2. The single-
particle generators operate on the single-particle
states such that

egjlj'>a'=6aa’ 6jj'|i>a, 1)
where ,j=1,2,...,hand a=1,2,...,p.

The product states of p electrons (n,l, +n,l,)
form a reducible basis for U, with generators

By =Yes, @)
o=1

where i, j=1,2,...,h. These generators satisfy

the well-known unitary commutation relations

[Em Ekl]=6jkE{l_61iEkj' (3)
The intevshell multipole or tensor operators
V%(l,1,) can be expressed in terms of these gen-
erators using Wigner’s 3 - j symbols as follows:

n,l n,l
v = 32 (o) e

k
q

iy g 1 m,

= ¥ e s ko e
e —ml q mZ 172
172

)
Also,
V’:(lzll) = ("1)11_ ’2+GV~fq(lll2) s

where E, m,=Emnym. The intrashell operators
Vi(l,l,) and V}(L,L,) can also be expressed in terms
of the generators E;; as follows:

3 - ml k”1l1> ,
Vq(llll)_m;{ < m, Yq ml' E"‘1"‘1
= Z (_l)l]‘- m1(2k +1)1/2( ll k l1/> Eo mt ’
my,my —-my 4 m i

(5)

and

k - 1)~ m 1/2 lz k lz
Vil 3 (0T @k1) (_m.‘3 3w B

(6)

Together, the intershell and intrashell tensor
operators form a complete set of operators for U,.
We now consider the mixed configurations sub-
space (r,l,)"1(n,l,)"2 of the product space (n,l,+n,l,)
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where p =p, +p,. We shall first analyze the pure
configuration factor spaces (v, Yt and (n,l,)>
separately.

The configuration (#,/, Y1 forms a reducible basis
for Uy, with generators

2y
Emm =2 € mis )
a=1
for m,, m!{=1,2,...,[l,]. We may express the

intrashell operators V%(/,/,) in terms of the gen-
erators E,, »; as in Eq. (5) These tensor opera-
tors form a complete set of operators for U[, I8
The configuration (n )’z forms a reducible baSLS
for U, with generators

» .
— o
for m,, m,=[1,]+1, [},]+2,...,h. Again, we may

express the intrashell operators V%(J,l,) in terms of
the generators E,, . as in Eq. (6) and these tensor
operators form a complete set of operators for
Uy

As has been discussed in II, the irreducible rep-
resentations (IR) of U uy for configuration (n,l D
are labeled by Young frames [u,] with [1,] rows
and p, boxes. Similarly, the IR of Uy , for con-
figuration (r,l,)’2 are labeled by Young frames
[#,] with [1,] rows and p, boxes. The canonical
irreducible bases or Gel’fand bases for Uy ; or
Uy 1 may be enumerated using Gel’fand tableaus.
For example, for the pure configuration (nlll)”l
= (nd)? we have the Gel’fand tableaus

13150 < 1D (D15 1213 <12 :13)
corresponding to IR [«,]=[11]. Similarly, for the
pure “configuration” (n,l,)"2 = (np) we have the
Gel’fand tableaus |6) :|7) :|8) corresponding to

R [u,]=[1].

For the case where the Gel’fand bases of [,
[#,] have two columns or less, we may easily
evaluate the effect of operators E,, »; and E ymy
on the bases as shown in II. (We reproduce these
results in Fig. 1 to make our presentation reason-
ably self-contained.) In particular, we note that the
Gel’fand bases are eigenstates of the “number
operators” E;;. Thus, the above states of d* and p
are eigenstates of the angular momentum projec-
tion operators L,, and L,, given below:

L,,=v10 Vi(dd)=2E,, +E,, — E,, —2E,

] or

(9)
Ly, =W/?V},(PP) =Egs— Egg.

To find the linear combination of Gel’fand states

in (n,1,)"t or (n,l,)2 which have good orbital angular
momentum we simply lower the highest L state
using the lowering operators L,_ or L,_. In our
case

(a)

T~
-

E..
ii
(c)
E =]l = -
E i-bi | i d E|—|,| @
(d)
: : -] 1]
E. . = ——-—I = E -
; i-l,i vd d = i-4i o d

(e)
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Fig. 1. Simplified jawbone formula for electronic
orbital operators. (a) Number operators E;; are dia-
gonal. (The only eigenvalues for orbital states are
0, 1, and 2.) () Raising and lowering operators and
simply transposes of each other. (c)-(h) E;_, ; acting
on a tableau state gives zero unless there is an i in a
column of the tableau that doesn’t already have ani—1,
too. Then it gives back a new state with the (7) changed
to (2 —-1) and a factor (matrix element) that depends on
where the other (i)’s and (i—1)’s are located. (Boxes
not outlined in the figure contain numbers not equal to
¢t ori—1.) Cases (c) and (d) involve the ‘“city block”
distance d which is the denominator of the matrix ele-
ment. Numerator is one larger (@+1) or smaller @-1),
depending on whether the involved tableaus favor the
larger or smaller state number (¢ or i — 1) with a high-
er position. Special cases of (@=1) shown in (f) always
pick the larger (and nonzero) choice of d+1=2. All
other nonzero matrix elements are equal to unity.

=v20 V1,(dd) =2E, +V6 E,, +V6 E +2E,,,
_=2VL, (pp)=V2 E,g+V2 E,,. (10)

Applying Eqs. (9) and (10) to the d? configuration
we find the | L, M,) states below:

|@2F3)=|1),

|a2 F2) =|1),

|a2 F1) = (L,_/v10)|%)
=(1/VI0)(2E, +V6 E,, +V6 E q +2E. )%
=(2]2) +V6 [1)/V10 .



Orthogonalizing, we find
| P1) = (V6 |2) - 2|2))/V10 .
Similarly,
|a*Fo) = (4]2) +2[})/v20,
|a2P0) =(2|2) - 4[L))/v20 .

For the trivial p “configuration” we find the
|L, M,) states below:

[pP1y=(68), [pPO)=|T), |pP-1)=[8). (12)

(11)

Later, we shall use the results in Egs. (11) and
(12) to derive Gel’fand states of (d?p) with good

L =L, +L, which can be readily coupled to spin

states to form an antisymmetric basis.

It is now clear that the mixed configuration
(n, 1,1 (11,2 forms a reducible basis for Uy,
XUy, with IR [«,]x[u,] and with generators E m,
En,mg, and is a subspace of the product space
(n,1, +n,l,Y of U,. The IR of U, are labeled by
Young frames [«] with ~ rows and p boxes.

It is much more convenient to deal with the
Gel’fand bases of U, than the product Gel’fand
bases of Uy ;XUp,;. This is because orbital opera-
tors may be evaluated without introducing spin
states. ForeachIR [u] of U, there are associated spin
states corresponding to an IR of U, conjugate to [u]
with rows and columns exchanged. The orbital
states of U, and the spin states of U, may be cou-
pled using the assembly formula in II to produce
antisymmetric states with good orbit and spin-
quantum numbers. We reproduce this formula in
Fig. 2.

Since spin states of U, are limited to frames
with two rows or less, the orbital states of U, must
be limited to frames with two columns or less.
This limitation enables us to calculate matrix ele-
ments for any intershell or intrashell operators
E;; with ¢, j=1,2,...,h between orbital Gel’fand
states of U, using the formulas in Fig. 1. It would
therefore be helpful if we could find the orbital
states of U, for configuration (n,l, +n,l,) in terms
of the orbital product states of Up;;X Uy, for mixed
configurations (n,1,Y1(n,1,)"2. First, let us specify
which IR [«,]X[«,] of the subgroup Uy ;X Uy, are
contained in the IR [u«] of group U,. That is, we
first find the subduction series

[u] ¥ UUIJXUUzlz Z 8uyugu [ul]x[uz] . (13)
Uy U

The series expansion coefficients gu u,» may be
evaluated using the simple methods developed by
Littlewood.? When [«] is restricted to frames
with no more than two columns, it is found that
Su upu=0 unless both [«,] and [«,] are frames with
no more than two columns. Thus, [«,] and [«,]
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FIG. 2. Assembly formula for combining orbital and
spin states. Each column state (Slater determinant) on
the left-hand side of the sample table has a definite spin
(arrow) on each orbital state (number). Formulas will
give the overlap of this Slater state with a given orbital
tableau state if we first write the spins within this or-

-bital tableau in exactly the same way. Then we proceed
to remove boxes with numbered spins starting with the
highest number(s). Each “removal” gives a factor de-
pending on what is being removed and where (cases
A-E). All of the numbers in the formulas refer to the

condition of the tableau just before the box outlined in
the figure is removed.

must correspond to IR which are allowable for the
pure configurations (#,},)1 and (#,l,)2. LetS,, S,,
and S be the total spin angular momentum for the
spin states conjugate to the frames [u,], ‘[u,],

and [«], respectively. Then we find that for a
given [u,] and [u,], guuu is zero unless

[S; = Sl <5<8,+8S,. (14)

The allowable frames [u] for a given [u,] and [u,]
are found by coupling the conjugate spin states
such that S =S, X S,. Thus, the inequality Eq. (14)
and the fact that [#] must have p boxes uniquely
determine the possible [u].

Let us continue with our example to illus-
trate these results. For the configuration d?®
or U, we found orbital terms P and F forthe
frame [«,]=[11] with conjugate total spin S, =1.
.For the p “configuration” of U, we have a P term
for the frame [u,] =[1] with conjugate total spin
S,=%. Finally, for the mixed configuration d2p,
‘the IR[11]X[1] of U XU, give rise to the terms
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(P +F)XP =G +F +2(D)+P +S

with total spins 1X3 =%+, The frames of U, conju-
ate to the quartet S=2 and the doublet S=% are[111]
and [21], respectively, each containing the same an-
igular momentum terms above. Of course, the cou-
bling of the total angular momenta of spin S, S,,...,
and orbit L,L,,..., of pure configurations
(71,1, (n,l,)z,..., to determine the orbital terms
L and total spin S of the mixed configuration
(n,1, Y1(n,l,)2 - - - | is well known. It is a result of
the fact that the Pauli exclusion principle makes no
restrictions on product states arising from differ-
ent pure configurations with different parentage.
We would like to find the coupled orbital states of
UsXU, above in terms of the Gel’fand bases of
[111] and [21] of U,. In Sec. III we show that this
may be accomplished in two ways.

III. GEL’FAND BASES FOR MIXED CONFIGURATIONS

A. Lowering operators for Gel’fand bases
We begin by finding the total angular momentum
states for the d% configuration in terms of the
Gel’fand bases of U, with conjugate total spin S =3
We shall use the lowering operator methods de-
scribed in II. Operating with L_=L,_ +L,_ on the

highest L state |1°) with the proper parentage, we
find the |25*1L M) states below:

la?p?G4) =13,
|a2p2G 3) =(L./VB)I3%) =3(V3 13°) +]47)).

The |2F 3) state must be orthogonal to |2G 3).
Hence,

|a2p2F 3) =3(|3%) - V3 |37)).
Similarly, we find
FORNFORN PR
|d?p2G2)=(2v3 3v2 26 V2)/2Vi4, (15)
|d?p2F2)=(2 V6 -2v2 ~v6)/2V6.

The repeated |2D 2) states may be found by Gram-
Schmidt orthogonalizing the columns of the pro-
jection operator

B=1-1262)(G 2|~ |2F2)(3F 2| . (16)
we find

OB O FORN

|@%?D2),=(13 -4v6 -v2 VB)/(8xTx13)/2,

|d®2D2),=(0 1 -v3 3)MVI3. @7)

There are several disadvantages in using a
Gel’fand bases in a mixed configuration derived
from lowering and projection operator orthogonal-
ization. From a computational standpoint, the

numbers involved in expansions such as Eq. (17)
can be extremely Iarge, and lead to computer over-
flow—especially when dealing with the many re-
peated L terms which arise for complex configura~
tions. Also, we must separately treat the Gel’fand
bases conjugate to different total spins S without
making use of the Gel’fand bases already derived
for the pure configurations such as in Eqs. (11)
and (12). From a physical standpoint, the Gel’fand
bases generated do not correspond to any group-
theoretical scheme representing partial symme-
tries of the Hamiltonian, In particular, the |°D 2),
and [2D 2), states are always mixed by the Coulomb
electrostatic energy operator, The Gel’fand bases
that we now construct have none of these disad-
vantages.

B. Subduction coefficients for Gel’fand bases

The subduction coefficients St iz U2 are used to
transform the Gel’fand bases

[4) of U,
into lmear combinations of product Gel’fand bases
| [vq]) x| [u2]>
of the subgroup U[,1]>< U[,zl as shown below:
l [y]) - Z S [u1] [up] [uJ| [ull) Xl [u2]> (18)
4 i1 iy ig i iy ig /¢
[uy 1, [y]

Since the subduction coefficients are elements of
an orthogonal matrix, we have the following condi-
tions:

Do ST IS g 6, 6,
i

i{ i) zlz, igig  [y] [u{]" [up) [u3] 9
(19a)
> s ) g ) i1 () =5, (19b)

iy 4ig i i
[uy1s [ugl

We may use Eqs. (19a) and (18) to express the
Gel’fand bases of U yX Uy, in terms of the bases
of U, as follows:

|[¢ui]> x| [:ZJ>= Z‘: 3[21 [v;g] 1| 1y - (20)
To find these subduction coefficients, we shall
first couple the Gel’fand states
I['&]) and |[,'-‘§]>
of Uy,; and U[, ; to arbitrary conjugate spin states
I31) and [32)

of U, using the assembly formula In this manner,
we fmd the direct product states

1g S g S
|5'®32) and | G2®22)
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of Uy,®U, and U, ,®U, in terms of antisymmetric
states of U,p,; and Uy, We use ® to denote
direct products and X to denote simple products.
In the following example, we expand Gel’fand direct
product states of U,®U, and U,®U, in terms of
antisymmetric states of U, and U, using the as-
sembly formula.

3@ 49 =T (D) +13), (212)

[S@t4y =(81). _ (21b)

It is now a simple matter to generate antisym-

metric states of U,, from the antisymmetric prod-
uct states of U, ;;XU,;,; as shown below. Using
the assembly formula once more, the antisymme-
tric states of U,, may be decoupled from spin to
form the direct Gel’fand states

|%183%) of U,eU,.
The final result is an expansion of states

|tes) x|t g %)
of (Uy,;®U,)*% (U, ®U,) in terms of states

| BI®S) of U,®U,.
For our example, we have

L@t x|S@t4) =vE (LD +[1D)x[eh)

13 1:
([ <))
7t 7t

Decoupling gives

17 bt 16 it
|L®4¥) X |S@44) =~ %(J%_g@l )_‘/’%“g,@‘ ))
1
+ §(§®Hﬂ>> . (22)
- 7

Using the identity
(U[11]® U2)X (U[121®U2) = (U[IiJ X U[12])® (Uz X Uz) s
we have
EERESH
= (o)X (o)
= (i B8 (S1x52)

= wlgSy ig$| (L
& | VOD IR (Ix e (Gax 52

Note that ¢ is determined by ¢, and g,, and S is
determined by [«]. Finally, as a result of the
factorization lemma,3°

T (1S _(S1S2S Qluyl [up) [u]
(Fredl(fx e (S1x52)) =Cat e ST Y

(23)
we have

1k s Ul S
spog ety o
= [Z]:Cqsll Sazqsz SWILE W WeS) ()
u 1]

where the C;1327 are Clebsch-Gordan coefficients
of U, XU,.

Applying Eq. (24) to our example, we see that
the factors outside the parentheses in Eq. (22) are

just the Clebsch-Gordan coefficients
(exapith =it VT,
My X A4ty =CLtz =T,

F

1
1
1
1

The factors inside the parentheses in Eq. (22) give
us the expansions [Eq. (20)] which we desire:

18
2
7 ’

Xl =vE ) vz

1
2
8 .
7

Using the assembly formula, itis a straight-
forward task to evaluate the matrix expression on
the left of Eq. (23). Since the Clebsch-Gordan
coefficients CJ1227 for U,XU, are known, we may
use Eq. (23) to find closed-form expressions for
the subduction coefficients S 411 %2' 1 as shown in
Fig. 3. We see that we obtain results using these
formulas that agree with Eq. (25). Since we are
using a canonical unitary basis, the subduction
coefficients S{11 62! 1 are nonzero only if remov-
ing boxes containing Uy, states from the Gel’fand
tableau

%) of U,
results in the Gel’fand tableau
l Di‘f) of U[Il] .

Thus, the sums over [«,] and i, in Eqs. (18) and
(19b) are superfluous as are the Kronecker 6 func-
tions of [«,] and 7, in Eq. (192). .

With the aid of Fig. 3, we may now derive two
[2D 2) states of d?p having diffevent paventage with .
respect to' pure configurations d? and p, Coupling
the states in Eqs. (11) and (12), we derive the
doublet states (where S, =1, S, =3, S =3 in Fig. 3),

|@23P)p2D2) =|d2P1)X|pP1)
=VE (/6 [2) - 2(2))%]6)
=VE (-8 |20) +2]1°)),
|@°F)p*D2) =VE|a?F3)X|pP -1)
-VEl@2F2)x|pPo0)
+VE |@?F1)X|pP1)
==VE13) +VE 1FD)
- G )l + B 1),

(25)
3)%13) =
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i . (252 (25+1)
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FIG. 3. Subduction coefficients for [«lt[x,]x[x ] are
found by successive removal of boxes with highest state
numbers from Gel’fand tableaus [«,] and [#]. Each “re-
moval” gives a factor in terms of conjugate total spins
Sy, Sy, and S, depending on where the highest statesn
are located (Cases A—E). All of the numbers in the
formulas refer to the condition of the tableaus just be-
fore the boxes containingn are removed. Subduction co-
efficient is zero unless the tableau of [#] contains the
tableau of [#,] as indicated by the shaded area.

or
122) 13 15 13
|@3%P)p?p2)=(-v3 V2 0 0 A5,

|@3F)p?D2)=(-V2 -V3 5 =5V3)/(3x5XT)2,

(26)

Furthermore, we may simultaneously derive the
quartet states (where S, =1, S, =3, S=% in Fig. 3),

§> i) é) é)
|@3P)p*D2)=(¥3 v 0 0 )5

| @23F)p*D2)=(¥2 V3 =5 5v3)/(3x5xT)2,
@7

When there are no Coulomb electrostatic inter-
actions between shells (no intershell operators
Epym, O Ep,n ), the states in Egs. (26) and (27)
will be eigenstates of the Coulomb operator since
they have parentage traceable to simple products
of d? and p states. Hence, in the limit of small
electrostatic exchange integrals, there will be
little mixing of states with different parentage and
the states in Eqs. (26) and (27) become good ap-
proximations to the exact eigenstates, This occurs
in J,I coupling in the rare earths, for example.*

For mixed configurations with ¢ subshells

(1)1 (n,1,)2 - - ¢ (gl Ye,

where p=p, +p,+*** +p,, we couple the Gel’fand
states for each pure configuration iteratively using
Fig. 3. We can then easily form Gel’fand states of
U, from the product bases of

{++ (U Up,) X Uy 1%

Generating Gel’fand states with good L in pure
states is a relatively easy task. In fact, Racah
states have been generated for the p, d, and f
subshells in terms of Gel’fand states by Caird.
For computer calculations in pure configurations,
the suitable Gel’fand states may be stored.
Gel’fand states may then be generated for mixed
configurations using Fig. 3. Finally, spin- and
orbit-dependent tensor operators may be readily
evaluated using Figs. 1 and 2 as has been tho-
roughly discussed in II.

. .XU[lq]}‘

IV. CONCLUSIONS

We have now completely solved the problem of
evaluating matrix elements of spin- and orbit-
dependent operators in pure and mixed atomic
configurations using a Gel’fand basis. The essen-
tial parts of our treatment are the formulas il-
lustrated in Figs. 1-3.

Our fourth and final paper will concern more
than half-filled subshells in both pure and mixed
configurations. Using Figs. 1-3, we derive new
matrix relations for spin- and orbit-dependent
operators between configurations with more than
half-filled subshells and those with less than half-
filled subshells. Thus we relate matrix elements
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which involve “hole” states to those involving only
“particle” states in both pure and mixed con-
figurations.

Although our techniques have only been applied
to atomic subshells, they readily extend to nuclear
subshells using the jj-coupling scheme. The orbi-
tal states of (#l) in the atomic case become spin-
orbit coupled states of (zj)’ in the nuclear case

with j =1X%. The conjugate spin states for atoms
then corresponds to the conjugate isospin states
for nuclei. Configurations such as _

(73,1 (n,3,)2 - - -, may be treated as in the atomic
case using Fig. 3. Spin-, orbit-, and iso-spin-
dependent operators may then be evaluated when
operating on a nuclear Gel’fand basis using Figs.
1 and 2. We hope to clarify this in a later paper.
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