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Oscillation, resonance and wave effects are among the most spectacular in mechanics and physics in 
general. They are also the keys to our ability to sense our environment and communicate with each other 
whether by voice, ears, and eyes or by artificial mechanical and electronic devices. It is the quality (in fact, 
the oscillator quality or finesse factor Q) of such devices that determines how well they amplify tiny signals 
and thus the quality of their physics. 
Spectral Green’s functions and Fourier amplitudes are the mathematical tools for resonance theory in both 
classical and quantum mechanics. Introduction to these are given along with classical-quantum analogies. 
This is an important part of physics for it appears that resonance and wave mechanics underlie all of 
physics and, indeed, our entire existence. So tune in!   
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-- The Purest Light and a Resonance Hero – Ken Evenson (1932-2002) --

	

 When travelers punch up their GPS coordinates they owe a debt of gratitude to an under sung hero who, 
alongside his colleagues and students, often toiled 18 hour days deep inside a laser laboratory lit only by the 
purest light in the universe.
	

 Ken was an “Indiana Jones” of modern physics. While he may never have been called “Montana Ken,” 
such a name would describe a real life hero from Bozeman, Montana, whose extraordinary accomplishments in 
many ways surpass the fictional characters in cinematic thrillers like Raiders of the Lost Arc. 

Indeed, there were some exciting real life moments shared by his wife Vera, one together with Ken in a 
canoe literally inches from the hundred-foot drop-off of Brazil’s largest waterfall. But, such outdoor exploits, of 
which Ken had many, pale in the light of an in-the-lab brilliance and courage that profoundly enriched the world. 

Ken is one of few researchers and perhaps the only physicist to be twice listed in the Guinness Book of 
Records. The listings are not for jungle exploits but for his lab’s highest frequency measurement and for a speed 
of light determination that made c many times more precise due to his lab’s pioneering work with John Hall in 
laser resonance and metrology†. 

The meter-kilogram-second (mks) system of units underwent a redefinition largely because of these 
efforts. Thereafter, the speed of light c was set to 299,792,458ms-1. The meter was defined in terms of c, instead of 
the other way around since his time precision had so far trumped that for distance. Without such resonance 
precision, the Global Positioning System (GPS), the first large-scale wave space-time coordinate system, would 
not be possible.

Ken’s courage and persistence at the Time and Frequency Division of the Boulder Laboratories in the 
National Bureau of Standards (now the National Institute of Standards and Technology or NIST) are legendary as 
are his railings against boneheaded administrators who seemed bent on thwarting his best efforts. Undaunted, 
Ken’s lab painstakingly exploited the resonance properties of metal-insulator diodes, and succeeded in literally 
counting the waves of near-infrared radiation and eventually visible light itself.

Those who knew Ken miss him terribly. But, his indelible legacy resonates today as ultra-precise atomic 
and molecular wave and pulse quantum optics continue to advance and provide heretofore unimaginable 
capability. Our quality of life depends on their metrology through the Quality and Finesse of the resonant 
oscillators that are the heartbeats of our technology. 

Before being taken by Lou Gehrig’s disease, Ken began ultra-precise laser spectroscopy of unusual 
molecules such as HO2, the radical cousin of the more common H2O. Like Ken, such radical molecules affect us 
as much or more than better known ones. But also like Ken, they toil in obscurity, illuminated only by the purest 
light in the universe.

In 2005 the Nobel Prize in physics was awarded to Glauber, Hall, and Hensch†† for laser optics and 
metrology. 
† K. M. Evenson, J.S. Wells, F.R. Peterson, B.L. Danielson, G.W. Day, R.L. Barger and J.L. Hall, 
Phys. Rev. Letters 29, 1346(1972).
†† The Nobel Prize in Physics, 2005. http://nobelprize.org/
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     Kenneth M. Evenson – 1932-2002
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Unit 2. Oscillation and Resonance

Chapter 2.1 Introduction
We begin our development of modern physics with resonance, a most important phenomenon or process. One 
could make the case that resonance is the single most important process in all of physics; without it we are deaf, 
dumb, blind, and have no telephone, radio, television or computers. Resonant amplification is needed to see or 
hear, and ever since the invention of the telegraph, our communication technology, power grid and electronics 
have all needed it, too.
 Use of resonance for communication is an obvious classical application, but as introduced in Chapters 
4-5, our quantum world lives and breathes resonance for its very existence. Apparently, oscillation is the 
currency of the universe and resonance is how nature's business is done. Without a good understanding of 
oscillation, resonance and waves, one should not expect to understand physics deeply if at all.
 Much of this book deals with relations and analogies between the older classical mechanics and the 
newer and more fundamental quantum theory of matter. An important part of this connection begins with a 
deeper understanding of resonance and resonant transfer of energy. We will introduce some key figures of merit 
for oscillators such as quality (Q) factors and uncertainty that also have deep significance in the development of 
quantum theory. We will also see how the quantum equations of motion (Schrodinger wave equations) are 
mathematically identical (analogous) to classical Hamiltonian oscillator equations, and how this helps us to 
appreciate both a little better.
 Modern applications of resonance require enormous quality factors; lately Q values of millions and 
billions are possible. As we will see, high quality and low uncertainty are inexorably connected. Without 
extremely high Q there can be no lasers, precision clocks, global positioning system (GPS), or high-speed 
computers. Indeed, it seems to be the case that the very quality of life for a modern civilization is strongly 
related to the quality Q of the oscillators in its technology.
 Two main types of resonance will be discussed. The first and most common classical type is the linear or 
additive resonance such as might occur if an oscillating electric E-field is applied to a cyclotron orbit . An 
example of a free linear driven oscillator equation is the following that will be treated first.

     
   
x +ω0

2x = Es cos ω st( ) .    (2.1.1)

In fact, this gives what is known as cyclotron resonance. The second type of resonance is known variously as a 
nonlinear or multiplicative resonance such as would occur if an oscillating magnetic B-field is applied to a 
cyclotron orbit. It is also called parametric resonance because the frequency parameter or spring constant k=mω2 
is being stimulated. An example of a parametric resonance equation is below where its k-parameter oscillates.

     
   
x + A+ Bcos ω st( )( )x = 0     (2.1.2)

The (2.1.2) form is the one by which resonance occurs in quantum mechanics at the deepest level. However, the 
(2.1.1) form provides a convenient approximation for much of Nature. So, that is where we will begin.
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Chapter 2.2 Linear oscillator response relations
Linear forced-damped-harmonic oscillator satisfy the following classical equation of motion.

    
  

d2z
dt2 + 2Γ dz

dt
+ω0

2z = a      (2.2.1)

Here 
 
a = a t( )  is an acceleration caused by a stimulating force 

 
F t( ) = ma t( )  (Often 

 
F t( )  is due to an electric field 

  
E t( ) : F t( ) = eE t( ). ) Coordinate 

 
z = z t( )  is the response coordinate or amplitude of a particle of mass  m  and charge 

e held by a harmonic (linear) restoring force:

   
  
Frestore = −kz,   k =ω0

2m( ),      (2.2.2a)

 We define the natural angular frequency of the oscillator in units of (radian)-  Hertz = s−1 . 

    ω0 =
k
m

= 2πν0      (2.2.2b)

Also included is a "friction" term of the form of a linear damping force:  

   
  
Fdamping = −b dz

dt
,    b = 2Γm( )      (2.2.3a)

 Here the decay constant is

    
  
Γ = b

2m
       (2.2.3b)

where  b  is the frictional damping coefficient.         

(a) Complex phasor solutions
 For zero stimulus   (a = 0)  one obtains a particular solution to (2.2.1) by letting  z  be a complex 

exponential phasor function

    
  
z t( ) = z 0( )e−iωt       (2.2.4a)

Euler-DeMoivre's polar-to-Cartesian expansion: reiφ = rcos φ + i rsin φ  expands as follows.

           

  

z t( ) = z 0( )e−iω t

      = A+ iB( ) cosω t − isinω t( )  ,  where: A = Re z 0( ), and: B = Im z 0( )
       = Acosω t + Bsinω t( ) + i −Asinω t + Bcosω t( )

 (2.2.4b)

Note: either the real or the imaginary part of the complex solution undergo undamped (Γ=0) oscillator motion 

introduced in Unit 1 Ch. 8. (Fig. 8.8 thru 8.11.) Two Euler forms of the initial value (  z(0) = reiα = r cosα + ir sinα ) 

let us conveniently derive two forms for the solution in the case of near-zero damping (Γ=0).

          
  

x(t) = Re z(t) = Re reiαe−iω0 t( )
= r cosα cosω0 t + r sinα sinω0 t( )

    (2.2.5a)        
  

x(t) = Re z(t) = Re reiα−iω0 t( )
= r cos ω0 t −α( )

 (2.2.5a)

Complex arithmetic gives "automatic trig-identities" and is one way it aids analysis of oscillatory phenomena. 
Also, as noted in Ch. 10 of Unit 1, complex phasors provide an oscillator phase space in which real and 
imaginary parts are proportional to position and momentum (or velocity). A sketch of a phasor diagram is shown 
in Fig. 2.2.1. Phasor-pairs track 2D oscillator orbits in Ch. 8 of Unit 1 and will do so in Ch. 2.3 of this Unit 2.
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Fig. 2.2.1 Anatomy of a Phasor z=x+iy=Aeiφ = Acos φ + i Asin φ 

The oscillator coordinate x(t) is the real part of the phasor.

  x(t) = Re( Ae-i(ω t-α) )  = Acos (ω  t-α)      (2.2.6)

Choosing a negative imaginary exponential time dependence e-iω t makes a phasor rotate clockwise.  Also, it 
makes the imaginary part have the same sign as the instantaneous velocity or momentum since the imaginary 

part of e-iω t is -sin ω  t with the same sign as the derivative of cos ω  t.

      v(t) = ω Im( Ae-i(ω t-α) )  = -ω Asin (ω  t-α)    (2.2.7)

So the phasor space is a phase-space with the momentum rescaled by ω so its orbit is circular instead of 
elliptical. Phasors orbit clockwise just as IHO phase vectors do. Engineers, on the other hand, prefer e+iω t 
phasors with positive or counter clockwise rotation. Perhaps it is right that physicist’s phasor turn clockwise 
since physicists are truly the world's timekeepers. Their legacy ranges from Galileo and Huygens thru the 
modern ultra precise work begun by Evenson, Hall, and others at the NIST Time and Frequency division.
 An example of a phasor with time plot is in Fig. 2.2.2. The real and imaginary parts are each rotated by 
90° so the real part matches the coordinate plot on the right-hand side of the figure. At the instant shown z- 
coordinate is positive and velocity is negative, corresponding to an instantaneous phase angle of φ  = -30°. 
 Modern calculators have P↔ R buttons for converting between polar and rectangular (Cartesian) 

coordinates. This is aimed mainly at converting between polar form (2.2.4a) and Cartesian form (2.2.4b) or 
(2.2.6) and (2.2.7). We need to be cognizant of pitfalls in the inverse R→ P  conversion that requires an inverse 
tangent or arctangent. Let us recommend functions atan2(y,x) be used instead of horrible atan(y/x) functions. The 
former, like P↔ R , always put the angle in the right quadrant. The latter only gets it right sometimes!
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x(t) = Re z(t)

v(t) = ω  Im z(t)

Fig. 2.2.2 Phasor z and corresponding coordinate versus time plot for ω0=2π and Γ=0

The oscillator above is a one-Hertz (  ν0=1/s. or: ω0 = 2π = 6.2832rad/s. ) oscillator.

(b) Transient or decaying solutions
The complex phasor e-iω·t  works for damped oscillation, too. Substituting e-iω·t into (2.2.1) gives a quadratic 
equation for ω .  The solutions are complex roots ω± .

   
  
−ω 2 − 2iΓω +ω0

2 = 0,    ω± = −iΓ ± ω0
2 − Γ2      (2.28) 

We choose ω+  the first root so phase  e−iω t  moves clockwise, as explained before. The resulting z(t) is called a 

complex transient solution, and the real part of this solution is the position x(t). 

     
  
ztransient t( ) = z 0( )e−Γte−iωΓt      (2.2.9)

It oscillates at an angular frequency ωΓ  reduced slightly by .05% from  ω0  due to damping Γ =0.2.

ωΓ = ω0
2 − Γ2 =ω0 −2

1 (Γ2 /ω0 )+ ...= 6.2831853− 0.003183+ ..= 6.280002 + ...= 6.280001  (2.2.10)

More important is exponential decay of amplitude 
 
z t( )  by about 95% per time interval t5%=15 sec.

  t5% = 3
Γ
= 3
0.2

= 15  (2.2.11a)   t4.321% = π
Γ
= π
0.2

= 15.708  (2.2.11b)

An easy-to-recall 5% approximation is   e−3 ≅ 0.05 .  A more precise one is e−π ≅ 0.04321 . 
A phase graph and t-plot of stimulus-free damped oscillator decay is given in Fig. 2.2.3 with  ω0 = 2π  and 

 Γ = 0.2 . This corresponds to a damped one-Hertz (or  ω0 = 2π = 6.2832rad/s.) oscillator.  A damping of Γ=0.2 

reduces its natural frequency only by about 0.05% to 0.9995Hz. Fig. 2.2.3 would need a longer time, about 200 
seconds, to magnify such a tiny frequency lag so it could be visible on such a graph. Also, a huge amplitude 
scale factor, about e20, would be needed to lift the decayed wave off the z=0 axis.

©2016 W. G. Harter Chapter 2 Linear oscillator response relations   10



Instead of decay rates we prefer to think of lifetimes. For rough estimates we use e-3=5% lifetimes. In 

precise calculations, use e-π = 2.321% lifetime or π
Γ
= 15.708 seconds in (2.2.11b).

        

Decay-to-5% Lifetime
Δt5%=3/Γ=15s

Fig. 2.2.3 Phasor z and corresponding coordinate versus time plot for ω0=2π and Γ=0.2

(c) Lorentz-Green stimulated response function
 The complex phasor e-iω t is particularly useful for describing resonance or stimulated oscillation. 
Consider a monochromatic (single frequency ωs) stimulus

     
  
a t( ) = a 0( )e−iωst .      (2.2.12)

We postulate a response of the same frequency whose amplitude is proportional to the stimulus.
     

  
zresponse t( ) = Gω0

ωs( )a t( )      (2.2.13)

The proportionality factor G is supposed to depend upon the stimulus frequency ωs, the natural frequency ω0 , 
and damping constant Γ , only. Because the equation is linear and time independent the G -factor should not 
depend on the amplitude As of the stimulus. It may help to think of the oscillator as a 'black box' that responds 
linearly to input as shown below in Fig. 2.2.4.

    

    

Stimulus
as(t)=Ase-iωst

Lorentz-Green's
Function

Gω(ωs)=|Gω(ωs)| e ιρ

Response
z=Gω(ωs) as

0
00

Fig. 2.2.4 Black-box diagram of oscillator response to monochromatic stimulus 

Now we substitute 
  
zresponse  into the equation of motion (2.2.1) and solve for Gω0

ω s( ) . The resulting Gω0
 is 

called a complex Lorentzian response function or classical Green’s function of the stimulus frequency ωs. 

         
   
Gω0

ωs( ) = 1

ω0
2 −ωs

2 − i2Γωs   
= ReGω0

ωs( ) + i ImGω0
ωs( ) = Gω0

ωs( ) eiρ         (2.2.14)
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The Lorentz-Green’s function G is a constant amplitude for fixed stimulating frequency ωs and natural ω0, so 

  
zresponse  is called the steady-state stimulated response. The real and imaginary parts of the Green’s function are 

the two parts of the following Cartesian form of the Green’s function G.

ReGω0
ω s( ) = ω0

2 −ω s
2

ω0
2 −ω s

2( )2 + 2Γω s( )2
 (2.2.15a) ImGω0

ω s( ) = 2Γω s

ω0
2 −ω s

2( )2 + 2Γω s( )2
 (2.2.15b)

Then the magnitude Gω0
ω s( )  and polar angle ρ  of the polar form of G are the following:

Gω0
ω s( ) = 1

ω0
2 −ω s

2( )2 + 2Γω s( )2
 (2.2.15c) 

  
ρ = tan−1 2Γω s( )

ω0
2 −ω s

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   (2.2.15) The 

angle ρ  is the response phase lag, that is, the phase angle by which the response oscillation lags behind the 

phase 
 
−ω st( )  of the stimulating oscillation.

    zresponse t( ) = Gω0
ω s( ) a 0( )e−i ω st−ρ( )      (2.2.15)

It may help to visualize stimulus and response phasors as a pair rigidly rotating at rate ωs. The response phasor 
lags ρ radians behind the stimulus as shown below in Fig. 2.2.5.

     

ρ

ρStim
ulus

Response

Stimulus

Response
G(ωs)

ReG(ωs)

ImG(ωs)

Real Axis

Imaginary
Axis

e -iω
s t

ρ

ωst

ωst-ρ

Initial time t=0 Later time t

Fig. 2.2.5 Oscillator response and stimulus phasors rotate rigidly at angular rate ωs. 

 The real and imaginary parts of G determine the phase lag angle ρ according to (2.2.15d). This angle is a 
sensitive indicator of the amount of power being delivered during resonance as discussed below.

(d) Lorentzian or Greenʼs function properties
 Views of the Lorentz Green’s function (2.2.15) are shown in Fig. 2.2.6 for a 1 Hz oscillator with natural 
angular frequency ω0 = 2π = 6.283 radian( ) / s  and decay constant Γ = 0.2 / s . A complex G(ωS) phasor is plotted 

ReGvs.ImG in Fig. 2.2.6a for a range (0<ωs <13 ) of stimulus angular frequency (or 0<νs <2 Hz of standard 
frequency).  In Fig. 2.2.6b the response R= G(ωS)aS due to three G-function parts ReG(ωS) (blue), ImG(ωS) 
(green),  and | G(ωS)| (gray dots) are plotted for the same range.
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Fig. 2.2.6 Anatomy of oscillator Green-Lorentz response function plots

 The anatomy (mathematical and physical properties) of this function and related terminology are very 
important for the understanding resonance dynamics.  They are presented here in a way that should help you 
remember key principles.  This goes along with Exercises 2.2.3 to 2.2.5. 
 The response magnitude |G(ωs)| is a dotted curve enveloping the others in Fig. 2.2.6b. It starts at   ω s = 0  

small and fairly flat (  ω s <<ω0  is called the DC response region.) and peaks near resonance point ω s =ω0  and 

falls to zero for   ω s >>ω0  (high frequency fall-off). Real part ReG(ωs) dominates in the DC region. ReG(ωs) 

reaches a peak just shy of where it intersects the rising imaginary part ImG(ωs). ImG(ω0) achieves its peak value 
near resonance point ω s =ω0 where ReG(ω0)=0 in the center of the resonance region between two Full Width at 

Half-Maximum (FWHM) points ω s
FWHM ±( ) =ω0 ± Γ  shown in Fig. 2.2.7. These ω s

FWHM ±( ) points are near ones 

that give max or min ReG(ωs), half-max ImG(ωs), and half-max |G(ωs)|.
 The ratio of the resonant response | G(ω0)| to the DC-response |G(0 )| is a very important number. From 
(2.2.15) we calculate the following  (See Exercises 2.2.4 to 2.2.5.).

   AAF = Resonant response 
DC response

=
Gω0

ω0( )
Gω0

0( )
=

1/ 2Γω0( )
1/ω0

2 = ω0
2Γ

≡ q    (2.2.16)

This ratio is about 15 in Fig. 2.2.7a and 30 in Fig. 2.2.7b.  We will call this ratio the amplitude amplification 
factor (AAF) or angular quality (q) factor of an oscillator. A Standard Quality Factor Q=υ0/2Γ=q/2π is more 
commonly known1 just as standard frequency υ=ω/2π is more common than angular frequancyω=2πυ. 
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Resonance
Region
FWHM

=0.4

(a) Γ=0.2 (b) Γ=0.1

ωFWHM(-)
=ω0 − Γ

ωFWHM(-)
=ω0 − Γ

ωFWHM(+)
=ω0 + Γ

Resonance
Region
FWHM

=0.2

ωFWHM(+)
=ω0 + Γ

2Γ

ω0

Fig. 2.2.7 Comparing Lorentz-Green resonance region for (a) Γ=0.2 and (b) Γ=0.1. Maximum and minimum 
points of ReG(ω) and inflection points of ImG(ω) are near region boundaries ωFWHM(±)=ω0±Γ. 

High values for these numbers Q, q, or AAF are good for us as humans in order that we see or hear the 
tiny optical or acoustical signals. The graphs for q=15 and q=30 in Fig. 2.2.7 look like impressive peaks or 
monuments. However, the q of a typical atom or laser resonator is much greater, in fact, millions of times higher 
and sharper. They are what has given modern physics its sharp teeth!  
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 Resonance peaks are characterized by their width as well as their height.  The Full Width at Half-
Maximum (FWHM) is the stimulus frequency range within which the response is at least 50% of its maximum 
(resonant) value of  1/ (2Γω0 ) .  At the boundaries of this range the first term   (ω0

2 −ω s
2 )2  in the denominator of 

(2.2.15a-b) equals the second denominator term   (2Γω s )2 .

    ω0
2 −ω s

2( ) = 2Γω s  (For: ω s =ω s
FWHM ±( ) )  (2.2.17)

If detuning difference Δ= ω s - ω0  is much less than ω0 or ω s we may use a near-resonant approximation.

   
  
ω0

2 −ω s
2 = ω0 −ω s( ) ω0 +ω s( )

                           
  
≅ ω0 −ω s( )2ω0 ≅ ω0 −ω s( )2ω s ,    for: ω0 ≈ω s     (2.2.18)

Then (2.2.17) gives FWHM boundaries at approximately the frequenciesω s
FWHM ±( ) .

    
   
ω s

FWHM ±( ) =ω0 ± Γ       (2.2.19a)

    
   
ω s

FWHM +( )−ω s
FWHM −( ) = 2Γ      (2.2.19b)

The FWHM resonance region is seen to have a width of  2Γ  that is 0.4 in Fig. 2.2.7a, and centered on ω0. At 

  
ω s

FWHM ±( )  response |G(ω s)| is about 50% of its maximum and its real part (2.2.15a) equals plus-or-minus its 

imaginary part (2.2.15b). (See Fig. 2.2.6 or Fig. 2.2.7.)
  

 
ReGω0

ω s( ) ≅  ImGω0
ω s( ),    (for ω s =ω s

FWHM ±( ))     (2.2.20)

So, at the low end 
 
ω −( )

FWHM  of the resonant region, the phase lag ρ (2.2.10e) is approximately  45 or π /4( ) , but is 

 135 or 3π /4( )  at the high end 
 
ω +( )

FWHM . ( where ReG(ω s) is plotted versus ImG(ω s) in Fig. 2.2.6a.)

  ρ ω s
FWHM ±( )( ) ≅ ρ ω0( ) ±π / 4 =

3π / 4 for: ω s=ω0 +Γ
π / 4   for:  ω s =ω0 − Γ

⎧
⎨
⎪

⎩⎪
   (2.2.21)

At exactly the resonance point (ωs=ω0) phase lag is exactly  90  or π / 2( )  by (2.215d).

  ρ ω0( ) = π / 2   for: ω s=ω0  ( )        (2.2.22)

The real part   ReG(ω s )  of Green’s function is nearly maximum at the FWHM boundary ωsFWHM(+) and nearly 

minimum at ωsFWHM(-), as seen in Fig. 2.2.7.  The resonant value   ω s =ω0  gives exactly zero for 
  
ReG ω s( )  and 

nearly a maximum for 
  
ImG ω s( ) . (See Exercises 2.2.6-7 to compute exact values.)    

(e) Oscillator figures of merit:  quality factors Q and q=2πQ 
 To summarize; if an oscillator of a given natural frequency  ω0  has a smaller Γ  (or greater  q ), then it will 

have greater response to a resonant  (  ω s =ω0  ) stimulus.  (Recall:   q =ω0 / 2Γ  is the amplification factor (2.2.12).) 

On the other hand, the resonant width  (2Γ)  in (2.2.15b) divided by  ω0 , i.e., the inverse of  q , is the relative error 

that a stimulus frequency may have and still resonate.  So, if you double an oscillator’s amplification capability, 
you will halve its tolerance for frequency error.  Larger peak height means proportionally smaller peak width.  
Compare Fig. 2.2.7a with Fig. 2.2.7b.

HarterSoft –LearnIt Unit 2 Oscillation and Resonance 15



 Other important quantities are related to  q . One is the number of oscillations in the 5% decay time 

(2.2.10).  Natural oscillation frequency (2.2.9) is approximately (for  Γ <<ω0 ) υ0 =ω0 / 2π .  Multiplying by   t5%  

gives a number   n5%  of oscillations in a lifetime that decaying oscillator loses 95% of its amplitude.

   
  
n5% =

ω0
2π

t5% =
ω03
2πΓ

≅
ω0
2Γ

= q       (2.2.23)

For example, it takes about   q = 15  oscillations to decay to 5% in Fig. 2.2.3.  (Here we approximate  π = 3 . Better, 

we use t4.321% from (2.2.11)). So, angular quality  q  approximates the number of “heartbeats” in the life of an 

oscillator.  It is interesting to compare  q , for your own life expectancy, to that of atoms and molecules.  

 The most commonly used figure of oscillator merit is the standard energy quality factor Q which is 
defined as the ratio of an oscillator’s instantaneous energy content to energy lost each cycle.  Since energy is 

proportional to the square of oscillator amplitude it will decay according to 
  

eΓt( )2 = e−2Γt  i.e., at a rate of  2Γ  

times the instantaneous energy content. (See Exercise 2.2.8)
      dE = −2ΓE  .
So the relative energy lost during each cycle period τ0 = 1/υ0( )  is:

    τ0
−dE
E

⎛
⎝⎜

⎞
⎠⎟ =

2Γ
υ0

≡ 1 Q .      (2.2.24)

The AAF quantity  q  was called the angular quality factor since 1/q is the relative loss (dE/E) per radian of phase 

while 1/Q is the relative loss per cycle of oscillation

(f) Beats and lifetimes
 The quality factor  q , decay constant Γ , and lifetime   t5%  apply as well to the birth of a resonance as they 

do to free oscillation decay.  Suppose at   t = 0  a stimulus of constant angular frequency  ω s  and constant 

amplitude 
  
a 0( )  is applied to a ‘cold’ oscillator 

  
z 0( ) = 0( ) .  Then the sum of two solutions (2.2.8) and (2.2.15) 

describes the subsequent motion z(t). (Verify!)
   z t( ) = ztransient t( ) + zresponse t( ) ≡ zdecaying t( ) + zsteady state t( )

    = Ae−Γte−iωΓt +Gω0
ω s( )a 0( )e−iω st        (2.2.25a)

   = Ae−Γte−iωΓt + Gω0
ω s( ) a 0( )e−i ω st−ρ( )      (2.2.25b)

The initial condition 
  

z 0( ) = 0( )  demands that the complex transient amplitude  A  be given by:

   A = − Gω0
ω s( ) a 0( )eiρ    for z 0( ) = 0( )      (2.2.25c)

so A  cancels the stimulated response at t=0.  Then as time progresses, the transient amplitude 
  
ztransient t( )  dies at 

rate Γ  and the solution eventually grows up to the steady state zresponse t( ) , alone.  An example with a resonant 

stimulus (  ω s =ω0 = 2π ) is shown below in Fig. 2.2.8.
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Re z(t)

Im z(t)

Re F(t)

Re F(t)

(a) (b)

Beat Period
τbeat

(c) (d)

Fig. 2.2.8 On Resonance  (a)Response z-phasor lags ρ=90° behind stimulus F-phasor. 

(ωs=ω0=2π and Γ=0.2).  (b) Time plots of Re z(t) and  Re F(t) 

       
Fig. 2.2.8 Below Resonance  (c)Response z-phasor lags ρ=8.05° behind stimulus F-phasor. 

(ωs=5.03,ω0=2π ,Γ=0.2).  (d) Time plots of Re z(t) and  Re F(t). Beats are barely visible. 

 The length of time it takes 
 
z t( )  to approach the steady state oscillation 

  
zresponse t( )  is the same as the time 

it takes the transient part to die.  So, after the 5% lifetime, the solution is mostly, i.e., 95%, steady state response.  
In Fig. 2.2.8b the transient dies after about   t = 15sec.  or about 15 oscillations.  The angular quality factor   q = 15  

gives the number of oscillations needed for the transient to decay to less than 5% and establish 95% of a 
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resonance. The outline trace of the hidden transient is shown in Fig. 2.2.8a. It is the same as the outline of the 
plot in Fig. 2.2.3. 
 Note that each response oscillation is one-quarter period to the right of its stimulating oscillation in Fig. 
2.2.8b, in other words, it lags by a quarter period.  This is shown more clearly by the phasor diagram in Fig. 

2.2.8a where the z phasor is behind the stimulus 
  
F = a 0( )e−iωst  by 90° ( ρ = π / 2 ). This is consistent with (2.2.22). 

Since the real part of the response vanishes at resonance (ReG(ω 0 )=0), the response at ω s=ω 0  is exactly pure 

imaginary ( Gω0
ω0( ) = ImGω0

ω0( )  ).

 A stimulus frequency below resonance causes transient oscillatory beat modulation. In Fig. 2.2.8c-d the 
angular frequency (  ω s = 5.026 ) of stimulus and steady state response is less than that of the transient 

( ωΓ ≅ω0 = 2π = 6.28.. ). So, the transient phasor ztransient  turns faster than response phasor  zss-response by 

  ω0 −ω s = 1.25 radian/s , and it will "2π-lap" the slower phasor every 1.25/(2π) seconds. This lap rate is called the 

beat frequency υbeat=ωbeat/2π . 
    υbeat = υs −υ0 = ω s −ω0 / 2π( ) = 0.199s−1     (2.2.26)

The corresponding beat period τbeat =1/νbeat  is
    τbeat = 1/ υs −υ0 = 2π / ω s −ω0 = 5.01s     (2.2.27)

 A beat period of about 5 sec. is seen in Fig. 2.2.8d. Beats are only visible before the transient decays below 
about 5%. Then the poor z(t) phasor has lost 95% of its faster transient part and can no longer "lap" the stimulus 
F-phasor. It is left with only the steady-state response part of (2.2.25a) and forced to "settle down" and lag 
dutifully at angle ρ behind the all-powerful stimulating F-phasor. 

In its "younger days" the transient phasor ztransient is big enough that the phasor sum z(t)= ztransient +  
zss-response  swells up as ztransient passes the stimulus F-phasor and zss-response but then z(t) shrinks as ztransient 
goes on to be opposite zss-response and make a node. The interference sum z(t) experiences a beat every time 
ztransient  laps zss response , as shown in Fig. 2.2.10 below.
 However, note how much smaller the transient phasor has become just in the time it takes to make a beat. 
It is "aging" at rate Γ while the steady-state response-phasor  zss-response is just stuck ρ behind its stimulus F-
phasor according to zss=G·Fstimulus. Soon z(t) falls into  zss response to stay as long as Fs lasts.
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(b) t=1.42

(c) t=3.88

(a) t=0.16

z ss response

z transient

z transient

z transient

z ss response

z ss response

= Beat Periodτbeat

z(t)

z(t)~0

z(t)

F(t)

F(t)

F(t)

Fig. 2.2.9 Beat formation. Transient phasor ztransient  catches up with F-phasor and passes it. 
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 By counting the number of beats per second one directly measures the magnitude of the relative detuning 

  υs −υ0 = Δ , but not the sign of Δ. The following example in Fig. 2.2.10 has the stimulus faster than resonance by |

Δ|=0.199s−1  but with υ0 −υs = −0.199/s , the negative of (2.2.26). 

Beat Period
τbeat(a) (b)

Fig. 2.2.10 Above Resonance (a)Response z-phasor lags ρ=170.2° behind stimulus F-phasor. 

(ωs=7.53,ω0=2π ,Γ=0.2).  (b) Time plots of Re z(t) and  Re F(t) 

Below is an example with half the detuning (ω0 −ω s = −0.63 and υ0 −υs = −0.1 ), and so the beats are 

twice as long or about 10 seconds. As ωs  approaches the resonance region (ω0±Γ) the beat period gets longer 
still. Finally, τbeat is so long that the poor transient's beating dies below 5% before it can even make a single 
beat. Such is nearly the case in Fig. 2.2.8d, which looks like a half-beat that has barely come down.

Beat Period
τbeat

Fig. 2.2.11 Above Resonance (a)Response z-phasor lags ρ=161.6° behind stimulus F-phasor. 

(ωs=6.91,ω0=2π ,Γ=0.2).  (b) Time plots of Re z(t) and  Re F(t)  
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Comparing resonant and non-resonant cases
 For the below-resonance case in Fig. 2.2.8c and Fig. 2.2.9, the response phase lag according to (2.2.15d) 
is  ρ = 0.1405 , so zss response  (and eventually z(t) itself) is only 8.05° behind the stimulus. For the above-

resonance case in Fig. 2.2.10, the response zss response  and z(t) lag behind by about 180° (ρ=170.2°). This a the 
signature of high frequency response G(∞) : it becomes nearly π out of phase with the stimulus. In contrast the 
low frequency or DC response G(0  )  is very nearly in phase with the stimulus.
 Another difference between high and low frequency response is that high frequency response goes to 
zero G(∞)~1/ ωS 2->0 (as ωS->∞)  but low frequency resonance approaches a constant value, namely 
     DC response = G(0  ) = 1/ ω0 2.    (2.2.28)
G(0  ) is just the response due to a static (DC) unit force. For high frequency oscillators, G(0  ) will be very small, 
but if you multiply little G(0  )  by the big angular quality factor ( q=ω0 /2Γ is the number of oscillations in the 
time needed to achieve 95% of a resonance), then the result 1/2ω0 Γ  is exactly the resonant response amplitude 
G(ω0 ). (Recall (2.2.23).) In other words, the DC response (2.2.28) is the average amplitude increase which is 
achieved during each cycle of a unit resonant stimulus before the damping Γ really takes effect.

High-q resonant and non-resonant cases
 For very high q quality oscillators (very low Γ) the resonant region (ω0±Γ) is so small that it may be 
considered non-existent. In classical Hamiltonian systems we deal with this limiting case exclusively since 
damping is zero by definition! Hamiltonian systems are a "transient heaven"; the beats go on forever and the 
transients never die or even fade away!  (To a typical atom first being excited in a laser resonance with a q of 
fifty million, it might seem like transients live forever, too.) For infinite q there are only two values for the 
response phase lag angle: in-phase (ρ=0  ) and out-of-phase (ρ=π  ). The out-of-phase (ρ=π  ) occurs above 
resonance (ωs >ω0) as shown in Fig. 2.2.12a. The in-phase (ρ=0  ) case occurs below resonance (ωs <ω0) as 
shown in Fig. 2.2.12c. Exactly at resonance (ωs =ω0) the steady state response and the transient are both infinite 
and opposite so they cancel each other, and the z(t) builds up forever as shown in Fig. 2.2.12b. Each cycle of 
revolution adds another bit of amplitude equal to the DC response (2.2.28) just as we explained above.

 Fig. 2.2.12 Zero damping response ( ω0=2π ,Γ=0)                       (Next page)
 (a) Above resonance (ωs=6.91) 
 (b) Resonance (ωs=6.28) (Stimulus amplitude reduced to show response.)
 (c) Below resonance (ωs=5.65)
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(a) Above Resonance

F(t)

z(t)

z transient
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z transient
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z ss response
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Beat Period τbeat = ∞
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(g) Time and frequency uncertainty relations
 Physicists and musicians must deal with oscillators or instruments of moderate q=10-100. They may 
"tune" an oscillator or instrument by detecting the beats between the oscillator and a reference stimulus of much 
higher q.  But, how accurately can a finite-q oscillator be tuned?
 Even if the stimulus is perfect there is a fundamental uncertainty Δω  associated with the oscillator that 
depends on its decay rate Γ .  Suppose you tune the stimulus until you no longer can detect any beats and the 
tuning is the best it can be.  Recall that beats are transient and decay to less than 5% after time t5% = 3 /Γ .  If this 

time passes before half a beat it is hard to see beats as in Fig. 2.2.8d. Half a beat takes time
τhalf-beat = π / ω s −ω0 .  So to see a beat we needτhalf-beat  to be less than  τ5%  or 3/Γ.

      π / ω s −ω0 < 3 /Γ .

This means the ω-detuning error is about equal to the decay rate Γ. (Here we approximate π~3.0, again.)
      ω s −ω0 > Γ

In other words, any detuning less than Γ  is becoming undetectable. Total ω uncertainty is ±Γ or twice Γ that is 
the FWHM width Δω = 2Γ in (2.2.19). Linear frequency uncertainty isΔυ = Δω / 2π .
      2Γ = Δω = 2π ·Δυ      
The relative frequency uncertainty  Δυ /ν0  is therefore the inverse of the angular quality factor q.

      2Γ
ω0

= Δω
ω0

= 1
q
= Δυ
υ0

,     (2.2.29)

If we think of the 5% or 3.321% lifetime of a musical note as its time uncertainty  Δt , thenΔtΔυ = 3 /π ≈1
  Δt = t5% = 3 /Γ   (2.2.30a)   Δt = t4.321% = π /Γ   (2.2.30b)

This is a Heisenberg relation: ΔtΔE ≈ h if energy E is Planck-related to frequency by E=hυ.

(h) Initial conditions
In general, the transient amplitude 

 
A = A eiα  is a function of the initial conditions 

  
x 0( ) = x0 = Re z 0( )  and 

   
v0 = x 0( )  

as well as stimulus frequencyω sand initial acceleration a 0( ) = a 0( ) .  See Exercise 2.2.9.

    
ReA = A cosα = x

0
−R cosρ  where: R = G

ω0
ω

s( ) a 0( )     ImA = A sinα =
ν

0
−ω

s
R sinρ+Γ x

0
−R cosρ( )

ω
Γ

 (2.2.32)

The "cold" oscillator (x0=0 =v0) of (2.2.25c) is a special case of (2.2.32).

(i) Ideal Lorentz-Green functions and Smith plots
When physicists speak of Lorentzian function they generally mean an ideal version of the real Lorentz response 

(2.2.15) with high-Q near-resonant  ωs →ω0  conditions ω02 −ω s
2 ≅ ω0 −ω s( )2ω s of (2.2.18).

 Gω0
ω s( ) = 1

ω0
2 −ω s

2 − i2Γω s
ω s→ω0

⎯ →⎯⎯⎯ 1
2ω s

1
ω0 −ω s − iΓ

≈ 1
2ω0

1
Δ − iΓ

= 1
2ω0

L(Δ − iΓ)  (2.2.33)

A complex detuning-decay δ=Δ-iΓ variable δ is defined with the real detuning  Δ =ω0 −ωs  defined as before to 

give an ideal Lorentzian L(δ)=1/ δ below. Its imaginary part  Γ /(Δ2 +Γ2)is what many call “a Lorentzian.” With 
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Δ=0, it becomes 1/Γ. With Γ=0, the real part becomes 1/Δ. Algebra and geometry of ideal L(δ)=1/ δ functions is 
simple as given below, and 1/z-plots known as Smith plots show their geometry in Fig. 2.2.13.

    
L(Δ − iΓ) = 1

Δ − iΓ
= ReL      + i Im L     =   Δ

Δ2 + Γ2   + i Γ
Δ2 + Γ2 =   | L |2 Δ  + i | L |2 Γ

               =| L | eiρ =| L | cosρ + i | L | sinρ = cosρ

Δ2 + Γ2
+ i sinρ

Δ2 + Γ2
 where:| L |= 1

Δ2 + Γ2

 (2.2.34)

Constant Δ and Γ curves in Fig. 2.2.13 are orthogonal circles of dipolar coordinates. Recall Fig. 1.10.11.

  | L |  = 1
Δ

cosρ  (2.2.35a)     | L |  = 1
Γ

sinρ   (2.2.35b)

 

ρ|L|

ρ

1
Δ

1
Γ

|L|= sin ρ1
Γ

|L|= cos ρ1
Δ

Ideal Lorentz-Green’s functions
L=Δ + iΓΔ2+ Γ2=|L|ei ρ

Inverse detuning axis
(Beat period)

1
Δ

Inverse decay rate axis
(Lifetime)

1
Γ

Fig. 2.2.13 Ideal Lorentzian in inverse rate space. (Smith life-time  1/Γ vs. beat-period 1/Δ coordinates)

 A circle of constant decay rate Γ and varying detuning frequency Δ has a diameter of1/Γ along the vertical 
of the inverse frequency space in Fig. 2.2.13. As detuning approaches zero (perfect tuning) the polar phase-lag 
angle angle ρ approaches π/2 and the inverse detuning or beat-period1/Δ approaches infinity.
 There appears to be circle of constant decay rate Γ=0.2 in Fig. 2.2.6, however, it cannot be a perfect 
circle, particularly in the DC region around origin.  Ideal Lorentzian (2.2.34), unlike the real one, has no DC 
response. As decay rate Γ  increases the1/Γ circle shrinks and becomes distorted by its DC “flat” at ω =0 as 
shown by a rather low quality (Q=1/4)-example havingΓ=2.0 and ω=2π in Fig. 2.2.14 below.

 
Fig. 2.2.14 Highly damped Lorentz-Green function plots with Γ=2.0  and ω=2π .
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Exercises for Ch. 2.2: Oscillator G-functions of Forced Damped Harmonic Oscillator (FDHO)

Exercise 2.2.4 DC G-response of FDHO

DC response 
  
Gω0

0( )  is the amplitude caused by a unit acceleration 
  

a = 1( )  at zero stimulus frequency.  This may be confusing since 

there is no acceleration at zero frequency.  A clearer definition of 
  
Gω0

0( )  is the response due to a static force of magnitude 

 F = ma = m  acting on mass  m .  Use this to show that the value of 
  
Gω0

0( )  is consistent with the spring force equation (2.2.2) and 

Hooke’s Law.

Exercise 2.2.5 Resonant G-response of FDHO
Resonant response 

  
Gω0

ω0( )  is the amplitude caused by a unit acceleration amplitude 
  

a t( ) = 1( )  or force amplitude 
 

F t( ) = m( )  at 

resonance
  
ω s =ω0( ) .  Compute the value of 

  
Gω0

ω0( )  and show it is consistent with drag force equation (2.2.3), and that all work 

done by  F  is wasted by friction.

Exercise 2.2.6 The “standard” Lorentzian

In physics literature a standard Lorentzian function generally means a form 
  
L Δ( ) = A / (Δ2 + A2 )  with constant A. If one uses the 

near-resonant approximation (NRA is (2.2.18)) then L(Δ) or its derivative results from exact G-equations (2.2.15).

(a) Use NRA (2.2.18) to reduce (2.2.15a-d) to a standard Lorentzian function of the detuning parameter   Δ =ω s −ω0 .

(b) Show that NRA for complex response   G = ReG + i ImG  gives an arc of a circle in the complex plane for constant Γ  and variable 

detuning Δ .  How does this circle deviate from what appears to be a circle in Fig. 2.2.6?  (Consider higher Γ  values for which NRA 

breaks down.) Fixed Δ  and varying Γ  give what curve? Explain and do a ruler-and-compass construction of plots of NRA Lorentz 

Green functions
  
ReGω0

ω s( ),  ImGω0
ω s( ),  and Gω0

ω s( ) .

      

1
b

b

1
b

b
θ
θ

θ

x=b cotθ

y= r sinθ
=(1/b)sin2θ

x2=b2 cot2θ=b2 =b2 = b2cos2θ
sin2θ

1-sin2θ
sin2θ

b2
sin2θ

b

x=b cotθ

θ
θ

θ

y = r sin θ
=(1/b)cosθsinθ

π/2−θr=(1/b)sinθ

r =(1/b)cosθ

1
b

y

yx

x

x

x b cotθ b2 cosθ b2

y (1/b)cosθsinθ cosθsin2θ sin2θ
= = =

Exercise 2.2.7 Max and min G-values
Derive equations for the extreme values for the response function or function related to G as asked below. 
For part (a) only use near-resonant approximation (NRA): See preceding Ex. 2.2.6.

 (a) Find  ω s  values which give maxima for: 
  
ReGω0

ω s( ),  ImGω0
ω s( ),  and Gω0

ω s( ) . 

 (b) Do (a) for exact 
  
Gω0

ω s( ) . Exact plots by calculator help check these answers.

 (c) Find exact ω s value(s) that maximize peak KE of responding oscillator.

      (First show total KE=1/2  mω2 x2 for oscillation of amplitude x.)
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Exercise 2.2.8 Lifetimes
Compare the number of heartbeats in your lifetime (assuming you live to a ripe old age of 100 years) to the number of oscillations in 

atomic and molecular lifetimes given below.  (First, estimate your own angular quality factor  q .)

Typical atomic energy decay time is t5% = 3 Γ = 3.4 ×10−8 s  for a green spectral 600Thz line. Compute atomic   q and Q .

Exercise 2.2.9 Initializing
Derive the initial transient components  Re A  and  Im A  in terms of initial values

   
x0 = x 0( ),  v0 = x 0( )  of stimulated FDHO, response 

magnitude
  
R = Gω0

ω s( ) , initial stimulus
  
a 0( ) =| a | eiα ,  Γ, ωΓ , and ρ. 

(Check that your total solution (2.2.25) does satisfy the initial conditions.)

Exercise 2.2.10 Wiggling Old-Main lamp posts
Let a static force of   10N  on a lamp post cause it to bend   1cm . Upon release it vibrates at   1Hz  for a minute before its amplitude dies 

to less than   0.05cm.  Estimate ω0, Γ, and q and how much it bends 1 minute after a   1Hz  oscillating force of ±1N starts. What is the 

bending after 2 minutes? Do this quickly by reasoning using q-factor properties and 5% mnemonics. (Points-off for too much algebra!) 

Exercise 2.2.11 Timing is everything! (A formula to remember)

(a) Let oscillating force F(t)=Fscosωt act on a mass whose response x(t)=Gcos(ωt-ρ) also is frequency ω but with a amplitude G and a 

phase lag of ρ. Derive a formula for the work loop integral  F  dx∫ for exactly one period of oscillation. Discuss how result relates to 

work done against friction in a FDHO. (Recall Ex. 2.2.5.)

(b) Let oscillation x1 and x2 each have amplitude A but x1 lags x2 by phase ρ. Show by geometry that the x1 vs. x2 path is an ellipse of 

major axis a=A√2cos(ρ/2) and b=A√2sin(ρ/2) and area W=____. Compare this W to loop work derived in part (a).

v1 /ω v2 /ω

x2

x2

v 2
/ω

x1

x 2

x1

FL

L

ρ

Cb

ρ

Step 4b.
Locate diagonal
contact point
Cb for ellipse

FL

ρ
F

LAsin(ρ/2)

b
a

Minor axis
b=A√2 sin(ρ/2)

Major axis
a=A√2 cos(ρ/2)
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Chapter 2.3  Coupled Oscillators: Eigenvalues and Eigenvectors
The Lorentz theory of preceding Ch 2.2 may be generalized to derive the spectral response of coupled 
oscillators.  Variations of this will be used throughout the following sections.  First we will consider coupled 
oscillator system consisting of two masses shown in Fig. 2.3.1. It is analogous to coupled pendulum pairs in Fig. 
2.3.2 or to a single 2-dimensional oscillator in Fig. 2.3.3. The latter was introduced in Ch. 8 of Unit 1. 

x  = 0

k k k

x  = 0

1 12 2

1 2

m1 m2

Fig. 2.3.1 Two 1-dimensional coupled oscillators  

    

θ1
θ2

κ




m
m

1

2

	

 	



.

x  = 01

x 
 =

 0
2

m

Fig. 2.3.2 Coupled pendulums   Fig. 2.3.3  One 2-dimensional coupled oscillator  
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(a) Equations of motion
Linear (Hooke’s law) spring forces in Newton or Lagrange equations of motion for the system in Fig. 2.3.1 are 

gradients of a sum of Hooke-Law potential energies 
  
V = ∑

1
2

k ΔL( )2  for each spring.

  
  
V = 1

2
k1x1

2 + 1
2

k2x2
2 + 1

2
k12 x1 − x2( )2

  V = 1
2
k1 + k12( )x12 − k12x1x2 + 12 k2 + k12( )x22      (2.3.1)

Kinetic energy is simply a sum of squares of velocities.

  
   
T = 1

2
m1 x1

2 + 1
2

m2 x2
2

 The resulting dynamic equations are the following:

  
   

d
dt

∂T
∂ x1

⎛

⎝⎜
⎞

⎠⎟
= m1x1 = F1 = − ∂V

∂ x1
= − k1 + k12( )x1 + k12x2

  
   

d
dt

∂T
∂ x2

⎛

⎝⎜
⎞

⎠⎟
= m2x2 = F2 = − ∂V

∂ x2
= k12x1 − k2 + k12( )x2      (2.3.2)

 Similar equations can be derived for the torsion coupled pendulum system in Fig. 2.3.2 for small angles. 

  
sinθ j ≅θ j  if θ j <<1 ( )  The torsion spring constant is κ .

     m1
2 θ1 = −m1gsinθ1 −κθ1 +κθ2 ≅ −m1gθ1 −κθ1 +κθ2

     m2
2 θ2 =κθ1 − m2gsinθ2 −κθ2 ≅κθ1 − m2gθ2 −κθ2     (2.3.3) 

For large angles, the equation has a non-linear ‘sine-gordon’ form.  The small-angle approximation yields an 
equation identical to (2.3.2) with 

 
x j = θ j  and 

  
  
k1 =

g
l
+ κ

l2 = k2      
  
k12 =

κ
l2 .    (2.3.4)

(b) Matrix equation and reciprocity symmetry
A matrix form of the equation of motion is the following:

   
 

m1x1
m2x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= −

κ11 κ12
κ 21 κ 22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x1
x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

     (2.3.5a)

where we define diagonal force matrix components.
   κ11 = k1 + k11,    κ 22 = k2 + k22        (2.3.5b)

Off-diagonal force constants are minus the original coupling constant in Fig. 2.3.1 and equation (2.3.1).
       k12 = −κ12 = −κ 21 = k21       (2.3.5c)

Off-diagonal symmetry of force matrices is mandatory for conservative potentials, according to Reciprocity 
Relations such as the following:

  
k12 =

∂ F1
∂ x2

=- ∂ 2 V
∂ x2∂ x1

=- ∂ 2 V
∂ x1∂ x2

=
∂ F2
∂ x1

=k21       (2.3.5d)

This depends on either order of partial differentiation giving the same result. 
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(c) Rescaling and symmetrization
Suppose we replace each coordinate 

  
x1,x2( )  with appropriately rescaled coordinates 

  
q1 = s1x1,q2 = s2x2( ) .  This can 

be used to symmetrize the mass factors on the 
  
q j  terms.

 
 
− m1
s1
q1 =κ11

q1
s1

+κ12
q2
s2

   
 
−q1 =

κ11
m1

q1 +
κ12s1
m1s2

q2 ≡ Κ11q1 +Κ12q2

 
 
− m2
s2
q2 =κ12

q1
s1

+κ 22
q2
s2

 (2.3.6)  
 
−q2 =

κ12s2
m2s1

q1 +
κ 22
m2

q2 ≡ Κ21q1 +Κ22q2  (2.3.7) 

The resulting mass-symmetrized equations can be made to have reciprocity symmetry, too if new constants Kij 
satisfy the following. The pseudo-reciprocity relations require a special scale factor ratio (2.3.8d) below.

  Κ21 =
κ12s2
m2s1

= Κ12 =
κ12s1
m1s2

= −k12
m1m2

    Κ11 =
κ11
m1

= k1 + k12
m1

       Κ22 =
κ 22
m2

= k2 + k12
m2

       
  

s2
s1

=
m2
m1

  (2.3.8a)    (2.3.8b)     (2.3.8c)   (2.3.8d)
Caution is recommended since forced symmetry may lead to unphysical results.

(d) Impedance operators and general oscillation equations
There are other coefficients besides the mass-symmetrized spring force constant matrixKij .

    Kij = K ji         (2.3.9)

A general linear equation may also have a resistive or frictional damping coefficient matrix 
 
Rij , and an inductive 

or inertial coefficient matrix 
 
Lij , as well as stimulus components 

 
fi t( )  as in the following general equation for 

two coupled damped and stimulated oscillators.

  
 

L11 L12
L21 L22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
q1
q2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+

R11 R12
R21 R22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
q1
q2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+

K11 K12
K21 K22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

q1
q2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

f1 t( )
f2 t( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (2.3.10a)

It is often the case that the reciprocity relations hold for all impedance matrices, as well as they do for potential 
force and acceleration components. (But don’t count on it!)
    

  
Lij = Lji ,      Rij = Rji        (2.3.10b)

 The equations can be written using Dirac matrix notation Zij = i Z j  for each impedance matrix 

element, Dirac bra-ket notation qj = j q  for each coordinate, and f j t( ) = j f t( )  for each component of the 

stimulus 
  

i, j = 1,2( ) . (See the review of Dirac bra-ket notation in Appendix 3.A below.)

   
 

i L j j q + i R j j q + i K j j q = i f t( )
j=1

2
∑     (2.3.10c)

Removing bra i  and using completeness relation Σ j j = 1( )  yields an abstract operator equations of motion.

   
 
L q +R q +K q = f t( )    or:    L i q+R i q+K iq = f (t)    (2.3.10d)

 In electric circuits, capacitance Cij−1 is the spring matrixKij  and  q = I is current flow of charge q.

    
 
L i I+R i I+C−1 Idt∫ = Vemf t( )       (2.3.10e)

This is a combination of laws of Faraday (V = L i I) , Ohm (V = R i I) , and Gauss  (V = C iq = C i Idt∫ ) .
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Appendix 3.A Review of Dirac Bra-ket Notation
	

 Dirac bra-ket notation is not just for quantum mechanics; it is used for all types of linear algebra. A bra-
ket 

 
a b  indicates a scalar product (This is a.b in the older Gibbs notation.) 

    

a b = a •

b = a1 a2  an( )•

b1

b2


bn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= ak
k
∑ bk  of a column or ket vector 

    

b =

b =

b1

b2


bn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  	

 	

 (2.A.1)

with a row or bra vector 
    

a = a = a1 a2  an( ) . Expansion of a vector in terms of a complete set of unit 

vectors    e1,e2 ,,en in Gibbs notation is 
	

     

a = a1
e1 + a2

e2 ++ an
en  	

 or else       


b = b1

e1 + b2
e2 ++ bn

en

In Dirac notation we write this as
	

  a = a1 1 + a2 2 ++ an n   or else   

   
b = b1 1 + b2 2 ++ bn n 	

 	

 	

 	

 (2.A.2)

Scalar product orthonormality of unit bras 
   

1 , 2 , n{ }  with kets 
   

1 , 2 , n{ }  is required.

	

 	

 	


  

j k = δ jk =
1  if j=k
0  if j≠ k

⎧
⎨
⎪

⎩⎪
	

 	

 	

 	

 	

 	

 	

 (2.A.3)

It implies that each bra or ket component is itself a bra-ket scalar product.
	



   
a 1 = a1,  a 2 = a2, a n = an   or else,   

   
1 b = b1, 2 b = b2, n b = bn .	

 	

 	

 (2.A.4)

This in turn implies what is called completeness of the unit bases 
   

1 , 2 , n{ } and 
   

1 , 2 , n{ } .

      
   

a = a 1 1 + a 2 2 ++ a n n   or else, 
   
b = 1 1 b + 2 2 b ++ n n b  	

 	

 	

 (2.A.5)	



The scalar product (2.A.1) is the following in full Dirac notation.
	

 	



   
a b = a 1 1 b + a 2 2 b ++ a n n b = a k k b∑ 	

 	

 	

 	

 (2.A.6)

If 
   

1 , 2 , n{ }  is another set of n-base vectors that is orthonormal then it must be complete, too.

      
  

m n = δmn =
1  if m=n

0  if m ≠ n
⎧
⎨
⎪

⎩⎪
  implies: 

   
j k = j 1 1 k + j 2 2 k ++ j n n k  	

 	

 	

 (2.A.7)

The n-by-n matrix of scalar products between these two bases are called transformation matrices.

Transformation T:

   

1 1 1 2  1 n

2 1 2 2  2 n

   
n 1 n 2  n n

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

       Inverse T-1:

   

1 1 1 2  1 n

2 1 2 2  2 n

   
n 1 n 2  n n

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

	

 	

 (2.A.8)

The matrix product TT-1 is a unit matrix according to (2.A.6) and (2.A.7) and so is T-1T. (Prove!)
	

 	

 	

 	

 	

 TT-1 =1=T-1T 	

 	

 	

 	

 	

 	

 (2.A.9)
T maps each ket into the corresponding "barred" ket, while T-1 maps bras similarly.
	



    
T 1 = 1 ,  T 2 = 2 ,  T n = n  , and 

    
1 T−1 = 1 ,  2 T−1 = 2 ,   n T−1 = n

 So: 
  
1 T 1 = 1 1 ,    1 T 2 = 1 2 ,  etc. , and  

  
1 T−1 1 = 1 1 ,    2 T−1 1 = 2 1 ,  etc.  are the transformation operator 

matrix components. (Prove: 
  
1 T 1 = 1 T 1 ,    1 T 2 = 1 T 2 ,  etc.)
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(e) Change of basis and eigenstate equations
 It is always possible to introduce a new ket-basis ε1 , ε2{ }  that is a linear combination of the old basis 

1 , 2{ } and similarly for the bra-vectors. (See Appendix 3.B Review of Change of Basis )

   εk = Σ j j εk ,      εk = Σ εk j j     (2.3.11)

Then new coordinates 
  

qε1,qε2{ }  will be the bra-combination of the old 
  

q1,q2{ } . See Appendix (2.B.5).

   qεk ≡ εk q = Σ εk j j q = Σ εk j q j    (2.3.12)

The equation of motion in the new basis is the same form as (2.3 10c) only it uses new bra-kets.

 
 

ε j L εk εk q + ε j R εk εk q + ε j K εk εk q⎡⎣ ⎤⎦ = ε j f t( )
k=1

2
∑   (2.3.13)

Here the new impedance components ε j Z εk  are obtained from the old j Z k  using a basis transformation 

matrix ε j j  and its inverse k εk . (See Appendix (2.B.6).)

   ε j Z εk =
k
∑

j
∑ ε j j j Z k k εk     (2.3.14)

 A basis change is very helpful if all the impedance  Z -operators L, R, and K can be simultaneously 
diagonalized, so each  Z  is reduced to numbers only on its diagonal (eigenvalues) as described in (2.C.2).

    ε j Z εk = Zkδ jk      (2.3.14)

Such is always possible for a frictionless coupled oscillator for which the resistance operator is zero 
 

R = 0( )  and 

the inertial operator is a unit matrix 
 

L = 1( ) . Matrices 1 and 0 are invariant to a change of basis that diagonalizes 

a symmetric acceleration matrix (K = K†) and such K are always diagonalizable.

 In an eigenbasis { ε1 , ε2 } in which (2.3.14) holds, the equations (2.3.13) decouple into two separate 

stimulated damped harmonic oscillator equations.  
  

 
L1 ε1 q + R1 ε1 q + K1 ε1 q = ε1 f t( )

  
 
L2 ε2 q + R2 ε2 q + K2 ε2 q = ε2 f t( )     (2.3.15a)

If inertial eigenvalues 
  

Lk ≠ 0( )  are non-zero then two equations of standard form (2.2.1) result.

  
 
qε1 + 2Γ1 qε1 + ω0

2 ε1( )qε1 = aε1 t( ) = ε1 a t( )

  
 
qε2 + 2Γ2 qε2 +ω0

2 ε2( )qε2 = aε2 t( ) = ε2 a t( )     (2.3.15b)

The decay constants  Γk  and eigenfrequencies 
  
ω0 εk( )  are related to impedance eigenvalues.

  2Γk = Rk Lk  (2.3.15c)   ω0
2 εk( ) = Kk Lk  (2.3.15d)

Accelerating stimuli are combinations of the   f1 and f2 , or   a1 and a2  using transformation (2.3.12).

  aεk t( ) = εk f
Lk

=
Σ
j
εk j f j t( )
Lk

= εk j a j t( )
j
∑     (2.3.15e) 
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Appendix 3.B Review of Change-of-Basis Transformations
	

 First we find the effect of the transformation on the unit ket vectors. Consider a rotational transformation 
T=R(φ) that takes each Cartesian ket x , y{ }  and maps it into a new rotated basis x = T x , y = T y{ }  given by 
the following and shown in Fig. 2.B-1.
	

 	

 x = T x = cosφ x + sinφ y ,         y = T y = −sinφ x + cosφ y{ }  	

(2.B.1)

     

|x〉

|y〉
|y〉=T|y〉=-sinφ |x〉 + cosφ |y〉
|x〉=T|x〉= cosφ |x〉 +sinφ |y〉

sin φ

- sin φ

cos φ

cos φTT
 Fig. 2.B.1 Transformation T maps unit kets into rotated ones
Dotting (2.B.1) by bra x  and then by bra y  gives the four transformation matrix components. 

	

 	


x x x y

y x y y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x T x x T y

y T x y T y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosφ −sinφ
sinφ cosφ

⎛

⎝
⎜

⎞

⎠
⎟ 	

 	

 	

 (2.B.2)

The bras transform inversely to preserve orthonormality j k = δ jk = j k .

	

 	

 x = x T−1 = x cosφ + y sinφ,         y = y T−1 = − x sinφ + y cosφ{ }  	

 	

 (2.B.3)

	

 Now it is a simple matter to derive the transformation rules for components of any ket vector Ψ  that 
lives in this ket space. Remember that Ψ  does not move. It is just expressed in two equivalent ways. (In other 
words, it has two "aliases" as shown below.)
	

 	

 Ψ = x x Ψ + y y Ψ = x x Ψ + y y Ψ 	

 	

 	

 	

 	

 (2.B.4)

	

         
|x〉

|y〉 |Ψ〉 |y〉

|x〉

|Ψ〉
〈x|Ψ〉 〈y|Ψ〉

〈x|Ψ〉

〈y|Ψ〉

  Fig. 2.B.2 Same vector Ψ with different coordinates
Dot x  in (2.B.3) on the right by Ψ or (2.B.4) on the left by x  or y  to get new coordinates.

	

 	

 x Ψ = x x x Ψ + x y y Ψ = cosφ x Ψ − sinφ y Ψ
y Ψ = y x x Ψ + y y y Ψ = sinφ x Ψ + cosφ y Ψ

	

 	

 	

 	

 (2.B.5)

The same expansion done twice gives a transformation of matrix operator components m O n .

	

 	

 	

 m O n =
m
∑

n
∑ m m m O n n n 	

 	

 	

 	

 	

 (2.B.6)

In matrix form this is O = TOT−1 . It is called a similarity transformation.
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Appendix 3.C Review of Eigensolutions and Diagonalization
	

 The eigenvectors 

 
ε1 , ε2 , εn{ }  of a matrix operator M are the most convenient basis for dealing with 

M. An eigenvector ε k  of M is in a direction that is left unchanged by M, that is
	

 	

 	

 M ε k = ε k ε k ,   or:  M − ε k1( ) ε k = 0 ,	

 	

 	

 	

 	

 (2.C.1)

where εk is the eigenvalue associated with that eigenvector ε k  direction. A change of basis to 
 
ε1 , ε2 , εn{ }  is 

called diagonalization. If ε k  are orthonormal by (2.A.3) then (2.C.1) is

	

 	



 

ε1 M ε1 ε1 M ε2  ε1 M εn
ε2 M ε1 ε2 M ε2  ε2 M εn
   

εn M ε1 εn M ε2  εn M εn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

ε1 0  0
0 ε2  0
   
0 0  εn

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 .	

 	

 	

 (2.C.2)

	

 The first step in finding solutions to (2.C.1) is to solve or factor the secular equation 
	

 	



 
detM − ε1 = 0 = −1( )n ε n + a1ε

n−1 + a2ε
n−2 +…+ an−1ε + an( ) 	

 	

 	

 	

 (2.C.3)

where:  a1 = −TraceM,,  ak = −1( )k diagonal k-by-k minors of ∑ M,,   an = −1( )n det M

The secular equation has n-factors, one for each eigenvalue.
	

 	

 	

  detM − ε1 = 0 = −1( )n ε − ε1( ) ε − ε2( ) ε − εn( ) 	

 	

 	

 	

 (2.C.4)

If each ε in (2.C.4) is replaced by M and each εk  by εk 1 then the following matrix equation results.
	

 	

 	

  0 = M − ε11( ) M − ε21( ) M − εn1( ) 	

 	

 	

 	

 	

 (2.C.5)
This is obviously true if M has the diagonal form (2.C.2). (But, that is circular logic since one needs to prove the 
diagonal form.) (2.C.4) is known as the Hamilton-Cayley equation or theorem.
	

 To obtain eigenvectors we construct projection operators pj by replacing j th   factor from (2.C.5) by unit 
matrix (   1   ) as follows. (Assume distinct eigenvalues  ε1 ≠ ε2 ≠ ...   here.)

	

 	



 

p1 =      1     ( ) M − ε21( ) M − εn1( )
p2 = M − ε11( )      1     ( ) M − εn1( )
      

pn = M − ε11( ) M − ε21( )      1     ( )      or:    pk =
j≠k
∏ M − ε j1( )

	

 	

 	

 (2.C.6)

Each operator pk has the delightful property that it contains ket eigenvectors ε k  in its columns and bra 

eigenvectors ε k  in its rows, that is, the pk  solve the original eigenvector equation (2.C.1).   

	

 	

 (M - εk 1) pk  = 0    or:	

 M pk = εk pk  = pk M 	

	

 	

 	

 (2.C.7)
We may normalize pk  operators to make the idempotent projection operators Pk  defined by

   Pk = j≠k
∏ M − ε j1( )

j≠k
∏ ε k − ε j( ) = ε k ε k    where:  PjPk = δjk Pk  , and P1 + P2  + ...+ Pn  = 1	

 	

 (2.C.8)

for distinct eigenvalues. The projection ortho-completeness relations are given in (2.C.8).
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(f) Quadratic forms
The matrix form for potential (2.3.1) is a quadratic form first defined in Ch. 2 and Ch. 9 of Unit 1. 

   
 
V = Σ

i=1

2
Σ
j=1

2 1
2
xiKij x j =

1
2
x iK i x       (2.3.16)

(Recall spring matrixKij .) Dirac notation for Cartesian coordinates j x ≡ x j  gives V as follows.

   V = Σ
i=1

2
Σ
j=1

2 1
2
x i i K j j x = 1

2
x K x .    (2.3.17)

If eigenvectors ε1 , ε2{ }of K replace Cartesian bases 1 , 2{ } then K is diagonal ( εi K ε j = δ ijK j ).

   
 
V = Σ

i=1

2
Σ
j=1

2 1
2
x εi εi K ε j ε j x = 1

2
x K x = 1

2
x iK i x   (2.3.18)

This simplifies  V  to a diagonal sum of squares of normal coordinates qε j ≡ x εi .

   V = Σ
i=1

2
Σ
j=1

2 1
2
qε iδ ijK jqε j =

1
2
Σ
j=1

2
K jqε j

2 = 1
2
(K1q1

2 + K2q2
2 )    (2.3.19)

For constant  V  these are equations for elliptical level curves in the valley shown in Fig. 2.3.4 and 3.3.5.

	



XX11
((EEaasstt))

XX22
((NNoorrtthh))

ε++
((NNoorrtthhEEaasstt))

--XX22
((SSoouutthh))

--XX11
((WWeesstt))

--ε++
((SSoouutthhWWeesstt))

ε--
((NNoorrtthhWWeesstt))

--ε--
((SSoouutthhEEaasstt))

Fig. 2.3.4 Plot of potential function V(x1,x2) showing elliptical V(x1,x2)=const. level curves.
 
The concentric ellipses are topographical lines V=const. for an elliptical paraboloid that is like a “ski-bowl” with 
major (North-East) and minor (South-East) axes along eigenvectors ε1 = ε+ , ε2 = ε−{ }  of K.
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ε++ aaxxiiss

ε-- aaxxiiss

PPootteennttiiaall
EEnneerrggyy
VV((xx11 ,, xx22 ))

ε

XX11
((EEaasstt))

--XX22
((SSoouutthh))

XX22
((NNoorrtthh))

--XX11
((WWeesstt))

  Fig. 2.3.5 Topography lines of potential function V(x1,x2) and orthogonal ε+ and ε− normal mode slopes

 One can visualize coupled oscillator motion by imagining a mass sliding in the elliptical bowl in Fig. 
2.3.5.  A mass moves on a straight line if it is dropped on the major ε1=ε+  axis  ("Beginner Slope") or on the 
minor ε2 =ε−  axis  (“Advanced Slope”) of the ellipses. It will go back and forth on an eigenvector axis forever 
since the force gradient is always along the axis. The frequency of oscillation 

 
ω0 ε1( ) for major axis is lower than 

 
ω0 ε2( ) for the minor axis since the potential slope is least along  ε1 and greatest along  ε2 . In fact, the eigenvectors 
represent extreme values for a quadratic form expression.

x K x
x x

=
is minimum for x = ε1  

is maximum for x = ε2  

⎧
⎨
⎪

⎩⎪
    (2.3.20)

Eigenvalues of 

   

K =
K11 K12

K12 K22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

k1 + k12( ) / m1 −k12 / m1m2

−k12 / m1m2 k2 + k12( ) / m2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 are solutions to secular equation (2.C.3)

     K 2 − (TraceK)K + det |K |= 0      (2.3.21)

     
  
K1 = K11 + K22 − K11 − K22( )2 + 4K12

2⎛
⎝⎜

⎞
⎠⎟

/ 2 ,    
  
K2 = K11 + K22 + K11 − K22( )2 + 4K12

2⎛
⎝⎜

⎞
⎠⎟

/ 2 .

The normal mode eignevectors are then given from (2.C.6) and (2.C.7).

   
  

ε1 =
K11 − K2

K12

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

/ norm(1)  (2.3.22b)  
  

ε2 =
K11 − K1

K12

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

/ norm(2)  (2.3.22b)

The two normal coordinates oscillate independently of each other according to (2.3.15b). Each parabolic  ε1  
section of the   V (ε1,ε2 ) paraboloid has the same shape regardless of its ε2 coordinate and visa-versa. So the force 
f1 along  ε1 direction depends only on coordinate ε1  and not on  ε2  and visa-versa for f2.
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(g) Normal coordinates and modes 
 We consider an example of a frictionless oscillator (2.3.2) with equal masses   m1 = 1= m2  and spring 

constants k1 = 7 − 3 3,  k2 = 13− 3 3,  and k12 = 3 3 .  With  L = 1  and  R = 0  we are left with only the spring 

constant matrix K to diagonalize.  Using (2.3.8-9) we find K.  (See Exercise 2.3.3)

   K =
K11 K12
K12 K22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 7 −3 3

−3 3 13

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   (2.3.23)

The secular equation K 2 − 20K + 64 = 0 has as roots eigenvalues Kk and squared eigenfrequencies ω0(εk)2

   K1 =ω0
2 ε1( ) = 4,      K2 =ω0

2 ε2( ) = 16,        (2.3.14)Example

with eigenbra vectors

   ε1 =  3 / 2    1 / 2 ( ),      ε2 = −1/ 2    3 / 2 ( )        (2.3.11)Example

From this we derive normal coordinates qε1 = ε1 x ,qε2 = ε2 x( )  in terms of old x1 = 1 x , x2 = 2 x( ) .

   qε1 =
3
2
x1 +

1
2
x2 = ε1 x

   qε2 = − 1
2
x1 +

3
2
x2 = ε2 x      (2.3.12)Example

The old coupled equations of motion need to be uncoupled by normal mode transformation.

   
 

x1
x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+ 7 −3 3

−3 3 13

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x1
x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

a1
a2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,   (2.3.25)

They are uncoupled equations in new coordinates and with new stimulus components 
 
aε j

= ε j a ,

   
 
qε1

+ 4qε1
 =  ε1 a = aε1

   
 
qε2 +16qε2 = ε2 a = aε2 .     (2.3.15b)Example

The stimulus transformation is the same as the coordinate transformation (2.13.12) above.

  aε1 = ε1 a = ε1 1 a1 + ε1 2 a2 =
3
2
a1 +

1
2
a2

  aε2 = ε2 a = ε2 1 a1 + ε2 2 a2 = − 1
2
a1 +

3
2
a2 .   (2.3.15d)Example

In the absence of stimuli 
  

a1 = 0 = a2( ) , equations (2.3.15)Example predict simple harmonic motions in two 

orthogonal directions ε1  and ε2  that are called normal modes of vibration.

 x t( ) = qε1
t( )  ε1 + qε2

t( )  ε2 , where:  qεk t( )  =  Ak cos ω (εk )t +α k( )  (2.3.26)

The coordinates 
  

qε1,qε2( )  along these directions are called normal coordinates and their axes are drawn in Fig. 

2.3.3.  They lie along eigenvector directions tipped at 30°:

   ε1 = 3
2

1 + 1
2

2 ,      ε2 = − 1
2

1 + 3
2

2 .        (2.3.27)
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Fig. 2.3.6 Normal coordinate axes, coupled oscillator trajectories and equipotential (V=const.) ovals for an 
integral 1:2 eigenfrequency ratio (ω0(ε1)=2.0, ω0(ε2)= 4.0) and zero initial velocity.

 In this example, the eigenfrequency is ω0 ε1( ) = K1 = 2.0  for qε1 oscillations and ω0 ε2( ) = K2 = 4.0  for 

  
qε2

 oscillation for a ratio of exactly 2:1 between 
 
ω0 ε1( )  and 

 
ω0 ε2( ) . Because of this, the trajectory in 

  
qε1,qε2( )  

space executes two oscillations in the 
  
qε2

 direction for every one 
  
qε1  oscillation as shown in Fig. 2.3.6.  The 

initial values which give this trajectory are 
  

x1 0( ) = 1,x2 0( ) = 0( )  for the primitive coordinates, and ( qε1 0( ) = 3 / 2 , 

qε2 0( ) = −1/ 2 ) for the normal coordinates. The initial velocities are assumed zero, here. Then each normal 

coordinate oscillates simply and independently of the other. Time parametric equations for the resulting normal 
coordinate oscillation are as follows:

   qε1
t( ) = 3

2
cos2t,      qε2

t( ) = − 1
2

cos4t
⎛

⎝⎜
⎞

⎠⎟
.    (2.3.28a)

From   cos2x = 2cos2 x −1  one derives the parabolic trajectory seen in Fig. 2.3.6.

   qε2 = − 1
2
2cos2 2t + 1

2
 = − 4

3
qε
2
1
+ 1
2

     (2.3.28b)

Trajectories generated by two normal modes having rational frequency ratios are called Lissajous figures.  If the 
ratio is an integer (and 

   
q j 0( ) = 0 ) the trajectories are given by simple polynomials such as (2.3.28). These are 

closely related to Chebyshev polynomials.  (See Exercise 2.3.4)  For non-zero initial velocity the trajectory 
makes a loop as shown in Fig. 2.3.7. But, it is still a closed or periodic trajectory. It always returns home exactly 
with a precise period (2π/ω1=π here.).
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Fig. 2.3.7 Same as Fig. 2.3.6 with non-zero initial velocity.

Now we change k11 from 7 to 6.876. The mode trajectories weave a complex pattern that densely fills a 
rectangle aligned with the normal coordinate axes as shown in Fig. 2.3.8.  

Fig. 2.3.8 Like Fig. 2.3.6 but has irrational ω2:ω1=2.0218..ratio due to changing k11 slightly.
 
This is an example of a more typical open or quasi-periodic trajectory. The usual coupled oscillator trajectory 
lacks integral or rational frequency ratios so it may not ever quite return to the same coordinate or phase point. It 
almost returns after each π sec. but not quite! Instead, it evolves through a series of shapes including ones that 
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temporarily resemble the parabola seen in Fig. 2.3.6 and then the loop seen in Fig. 2.3.7. If you wait long 
enough you can find it repeating itself to an arbitrary degree of accuracy. This so-called Poincare period will be 
discussed later.
 First, we must discuss beat periods. With more nearly equal eigenfrequencies, the time plot of 

  
x1 t( )  and 

  
x2 t( )  exhibit obvious beating or modulation as seen in Fig. 2.3.9 below.

    

qε1qε2 ‹ε2|x(0)›
=-1/√2

‹ε1|x(0)›
= 1/√2

Beat
cos(ω2-ω1)t /2

Carrier
cos(ω2+ω1)t /2

sin(ω2-ω1)t /2

Fig. 2.3.9  Beats in weakly coupled symmetric oscillators with equal mode magnitudes.

The acceleration matrix for this example is K =
K11 K12
K12 K22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 10 −1

−1 10
⎛
⎝⎜

⎞
⎠⎟

  (2.3.9)Example 2

Its eigenvalues Kk and squared eigenfrequencies ω0(εk)2  are 
   K1 =ω0

2 ε1( ) = 9,      K2 =ω0
2 ε2( ) = 11,          (2.3.14)Example 2

with eigenbra vectors located at ±45° relative to x1 and x2 axes as seen in Fig. 2.3.7.

  ε1 =  1 / 2 1 / 2  ( ),      ε2 =  1 / 2 -1 / 2  ( )         (2.3.11)Example 2

 Let us use complex normal coordinates  qε1
(t) = ε1 x(t) ,   qε2

(t) = ε2 x(t)( )  to describe the motion in the 

Fig. 2.3.9. Each coordinate is an independent phasor rotating at its assigned eigenfrequency  ω1=ω0(ε1)=3 or 
ω2=ω0(ε2)=√11=3.3166, respectively.

 qε1
(t) = ε1 x(t) = ε1 x(0) e−iω1t ,   qε2

(t) = ε2 x(t) = ε2 x(0) e−iω2t( )    (2.3.29)

The resulting coordinate vector is, by completeness (2.A.5),

     x(t) = ε1 ε1 x(t) + ε2 ε2 x(t) = ε1 ε1 x(0) e
−iω1t + ε2 ε2 x(0) e

−iω2t     (2.3.30a)

In vector notation
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x(t)    =     ε1    ε1 x(0) e−iω1t +     ε2    ε2 x(0) e−iω2t

x1(t)
x2(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1/ 2

1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ε1 x(0) e−iω1t + −1/ 2

1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ε2 x(0) e−iω2t

   (2.3.30b)

The initial coordinates (
  
x1 0( ) = 1  and 

  
x2 0( ) = 0 ) for Fig. 2.3.9  give initial normal coordinates 

  qε1
(0) = ε1 x(0) = 1/ 2,   qε2

(0) = ε2 x(0) = −1/ 2( )     (2.3.30c)

Let us use the expo-trig relation eia ± eib = ei(a+b)/2 (ei(a-b)/2 ± e-i(a-b)/2) so each component factors.

x1(t)
x2(t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

e−iω1t + e−iω2t

2
e−iω1t − e−iω2t

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= e

−i (ω1+ω2 )
2

t

2
e
−i (ω1−ω2 )

2
t
+ e

i (ω1−ω2 )
2

t

e
−i (ω1−ω2 )

2
t
− e

i (ω1−ω2 )
2

t

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= e

−i (ω1+ω2 )
2

t cos
(ω 2 − ω1 )t

2

i sin
(ω 2 − ω1 )t

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (2.3.30d)

The factors cos(ω2-ω2)t/2 and isin(ω2-ω2)t/2 above are slow beat waves seen on top and bottom of Fig. 2.3.9. 
Each long beat contains shorter carrier waves e-i(ω1+ω2)t/2 with a higher frequency
   ωcarrier = ω2 +ω1( ) /2 ( = 3.156 ~ 1/ 2Hz in Fig. 2.3.7)     (2.3.31)

that is the average of the two eigenfrequencies. The carriers suffer amplitude modulation (AM) with a lower 
frequency that is the difference of the two eigenfrequencies,
   ωbeat =ω2-ω1 ( = 0.3166 ~ 1/ 20Hz in Fig. 2.3.7)     (2.3.32)

That is about 10 carrier waves per beat, as seen in Fig. 2.3.9 and in Fig. 2.3.10 below. 

‹ε2|x(0)›
=-b/√2

‹ε1|x(0)›
= a/√2

Beat
√[a2+b2 +2ab cos(ω2-ω1)t]

Beat
√[a2+b2 -2ab cos(ω2-ω1)t]

qε1
qε2

 
Fig. 2.3.10  Same as Fig. 2.3.9 but mode-1 magnitude a/√2 is greater than b/√2 for mode-2.

Note we use (ω2-ω1) not (ω2-ω1)/2 for ω  beat . The latter is the frequency of a double beat or two groups that 
would be seen if Fig. 2.3.9 ran another 20 sec. Fig. 2.3.10 shows why ω  beat is used instead of ω  beat /2. The 
coordinates factor only for equal mode amplitudes. Otherwise we have
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x1(t)
x2 (t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

ae− iω1t + be− iω2t

2
ae− iω1t − be− iω2t

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

a2 + b2 + 2abcos(ω1 −ω 2 )t eiΩ1t

2
a2 + b2 − 2abcos(ω1 −ω 2 )t eiΩ2t

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  (2.3.33)

Here the amplitude factor oscillates at (ω2-ω1) not (ω2-ω1)/2 while the phase factors eiΩt vary the carrier 
frequency from high to low when the amplitude goes through a minimum. Compare Fig. 2.3.9 where the carrier 
is a constant frequency of about 1 Hz. to Fig. 2.3.10 or 3.3.11 below where the carrier frequency slows down at 
the beat minimum.

‹ε2|x(0)›
=-b/√2

‹ε1|x(0)›
= a/√2

qε1
qε2

Fig. 2.3.11 Same as Fig. 2.3.9 but mode-1 magnitude a/√2 is less than b/√2 for mode-2.

 The coordinate 
 
x  is a combination (2.3.26) of two normal coordinate vectors 

 
ε1  and 

 
ε2  or normal 

modes. Pure normal modes oscillate at eigenfrequencies 
 
ω1 =ω0 ε1( )  or 

 
ω2 =ω0 ε2( ) , as shown in Fig. 2.3.12 a 

and b respectively. Combinations of the modes such as Figs. 3.3.9-11 have beats that go up and down at their 

relative angular velocity, i.e. the difference (2.3.32). The beat period is 2π over ωbeat or about 20 in Figs. 
3.3.9-11 above.
   

 
τ beat = 2π /ωbeat = 2π / ω2-ω1   ( = 19.85 in Fig. 2.3.9)     (2.3.34)

Beats seen in these figures are similar to the beats between stimulus and response seen in Fig. 2.2.8 and 
described by (2.2.21).  
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(a) Lower frequency symmetric mode

(b) Higher frequency anti symmetric mode

Fig. 2.3.12  Normal modes for symmetric coupled oscillators

 Note that pure modes move along major or minor axes of the elliptical equipotential curves. If the 
oscillators are symmetric (K11=K22) these axes are at exactly ±45° as in Fig. 2.3.12. (If the mode frequencies 
are close in value the equipotential curves are nearly circular.) For general asymmetric oscillators the 
equipotentials have arbitrary inclination.  
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(h) Poincare periods and orbit closure
 Beat periods (2.3.34) or frequencies (2.3.32) depend on the differences (ω2-ω1 ) of eigen-frequencies. 
However, many of the finer properties of the dynamics depend upon the ratios ω2 /ω1 of the frequencies. What 
distinguishes closed orbits like the one in Fig. 2.3.7 from those in subsequent Figs. 3.3.8-11 has to do with the 
rationality of the ratio ω2 /ω1 . To assess the rationality of any number we approximate it using successive levels 
of continued fractions.

     

   

α = n0 +
1

n1 +
1

n2 +
1

n3 +
1

n4 +
1


    (2.3.35)

Then we compare how closely each level approximates the number. If any level gives the number α exactly then 
α is perfectly rational, that is, an integral ratio α  = m/n. Otherwise, it depends upon how close α is to a given 
integral fraction m/n and how small are the integers m and n. Consider, as our first example, the number π = 
3.1415926..., and the following recipe for getting nk .

A0 =α = 3.14159265...

A1 =
1

A0 − n0
= 7.06...

A2 =
1

A1 − n1
= 15.99...

A3 =
1

A2 − n2
= 1.003...

n0 = INT (A0 ) = 3

n1 = INT (A1) = 7

n2 = INT (A2 ) = 15

n3 = INT (A3) = 1

π ≅ = 3.000..

π ≅ 3+ 1
7
= 22
7

= 3.1428

π ≅ 3+ 1

7 + 1
15

= 333
106

= 3.141509

π ≅ 3+ 1

7 + 1
15 +1

= 355
113

= 3.14159292

The first level approximation of 22/7 is within 0.0013 of π, and the second level approximation 333/106 is 
within 0.00008 of π, and so on. A larger integer nk means a better k-th level approximation to α. A zero or 
infinite nk terminates (2.3.35) which makes α perfectly rational. If higher level- k is needed to get a desired 
degree of approximation to α, then α is less rational. Consider the Golden Mean G=(1+√5)/2=1.618... 

A0 = G = 1.618033989...

A1 =
1

A0 − n0
= 1.6180...

A2 =
1

A1 − n1
= 1.6180...

A3 =
1

A2 − n2
= 1.6180...

n0 = INT (A0 ) = 1

n1 = INT (A1) = 1

n2 = INT (A2 ) = 1

n3 = INT (A3) = 1

G ≅ = 1.000..

G ≅ 1+ 1
1
= 2
1
= 2.000

G ≅ 1+ 1

1+ 1
1

= 3
2
= 1.500

G ≅ 1+ 1

1+ 1
1+1

= 5
3
= 1.666...

G is clearly less rational than π. Its first and second levels are off by 0.4 and 0.12 respectively. In fact G is often 
called the most irrational number since each level integer nk is 1,the smallest it can be. (If an nk is 0, the series 
terminates as a rational.) The sequence (1, 2, 3, 5, 8, 13, ..., fk  = fk -1  + fk -2 ,  ...) of G fraction parts is called a 
Fibonacci sequence . This sequence is often seen in nature because nature is irrational by nature!
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 A closed or periodic orbit requires that the amplitudes of the form in (2.3.33) or 

     z=a eiω1t + b eiω2t
 

will be exactly the same at some time t =τp as they were at t = 0 . The first time this happens is when both of the 
following two equations hold
	

 	

 	

 ω1 τp = n1 2π       and     ω2 τp = n2 2π       (2.3.36)
for integers n1 , n2 = 1, 2, ....that are relatively prime. The time is called the Poincare' recurrence period 
    τp = n1 2π  /ω1  = n2 2π  /ω2    (2.3.37)
This implies that eigenfrequency ratio is perfectly rational reduced fraction.
      ω1 / ω2  =  n1 / n2      (2.3.38)
The beat period (2.3.34) is
    τ beat =2π / |ω2 - ω1 |= τp / |n2 - n1 |   (2.3.39)
which is an integral fraction of the Poincare period which it must be to have perfect periodicity.
Below are some examples. The arrow indicates the Poincare period in each case.

Fig. 2.3.13  Ratio of eigenfrequencies: 3:5 . Two beats per Poincare' period.
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Fig. 2.3.14 Ratio of eigenfrequencies: 7:5 . Two beats per Poincare' period.

Fig. 2.3.15  Ratio of eigenfrequencies: 8:5 . Three beats per Poincare' period.

Characterizing resonances: Chaos or not?
Resonance between a pair of frequencies ω1 and ω2 is described first by their sum or carrier frequency ω1+ ω2 
and their difference or beat frequency ω1- ω2 in the expo-trig relation used in (2.3.30). Here it has just been 
shown that the product ω1 ·ω2 and ratio ω1 /ω2 are important, too, for the detailed shape of the waveforms.
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 The latter are important in the study of non-linear and chaotic oscillators. The effect of higher order 
potentials is to generate harmonics and sub-harmonics. If the ratio ω1 /ω2 is composed of small integers as in Fig. 
2.3.7 then the harmonics may add tremendous resonances, while a less rational case like Fig. 2.3.8 is less likely 
to do so. So it is the symmetric and rational cases that are most susceptible to the ravages of classical oscillator 
chaos.

Exercises for Ch. 2.3, Ch. 2.4, and Ch. 2.5 Coupled oscillators

X

k1=16 k12=36

Y

k2=37

MM

1a.Two identical mass M=1kg blocks slide friction-free on a rod and are connected by springs k1=16N·m-1 and k2=37N·m-1 to ends of a 
box and coupled to each other by spring k12=36N·m-1.
Write Lagrangian equations of motion.
Solve for eigenmodes and eigenfrequencies of system and plot their directions on an X,Y-graph. Use spectral decomposition methods 
of Appendix 3.C to derive eigensolution projectors.
Given initial conditions (X(0)=1,Y(0)=0), plot the resulting path in the XY-plane. Show algebraically that it is a parabola.

1b. Decompose the spring K-matrix for problem 1 into an H-matrix where K= H 2 as in (2.4.8).
Give the resulting H-matrix as an (A,B,C,D) combination of 1, σA, σB, and  σC as in (2.4.9). 
Find the resulting Ω-whirl vector or “crank” in (A,B,C)–space as in (2.4.10).
For (X(0)=1,Y(0)=0) find the initial S-state vector or “spin” in (A,B,C)–space as in (2.4.16). Show its evolution by Ω as in Fig. 2.4.2.

2. Do the exercises 1a and 1b for a system with two identical springs k1=4N·m-1=k2 and M=1kg masses coupled to each other by spring 
k12=30N·m-1. Show it is a B-type system. Does (X(0)=1,Y(0)=0) also give a parabola? If not, what curve or function?

k

k
kM

MM
M

k

k

k
M

M

k
M

3. Let three identical M=1kg  masses slide on a circular friction-free rod and be coupled by three identical k=4N·m-1 springs. Show that 
the resulting K-matrix can be written as a combination of three matrices that commute, satisfy r3m=1, and have 3rd-roots-of-unity 
eigenvalues eim2π/3={1,ei2π/3,e-i2π/3}.

r0 = 1 =
1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟   ,  r1 = r =

0 0 1
1 0 0
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟   ,  r2 = r·r =

0 1 0
0 0 1
1 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟   Note: 

r 1 = 2
r 2 = 3
r 3 = 1

 ,i.e., r
1
⋅
⋅

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

⋅
1
⋅

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ,etc.

Obtain a spectral decomposition of rm and use it to get a K-matrix spectral decomposition, as well. Make a table of eigen modes and 
their frequencies and show they are also linear combinations of 3rd-roots eim2π/3.

4. Do exercise 3 for four identical spring-k-coupled masses.
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Chapter 2.4 Classical Oscillators and Quantum Analogs
A fundamental equation of quantum dynamics, namely Schrodinger's equation, is related to that of classical 
coupled oscillators.  Consider, for example the simplest quantum system: the two-level atom or a spin-1/2 
particle.  The equation has a general form (2.4.1a) that for 2-levels uses 2-D arrays (2.4.1b-c).

     
 
i ∂
∂t

Ψ t( ) = H Ψ t( )       (2.4.1a)

 H  is a 2-by-2 Hermitian 
  

H† = H( )  matrix operator and Dirac ket Ψ  is a 2-D complex vector.

 H = A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟

 (2.4.1b) Ψ =
Ψ1
Ψ2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

x1 + ip1
x2 + ip2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

a1
a2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

           (2.4.1c) 

Separating real and imaginary parts of the amplitudes (2.4.1c) lets us convert the complex 2D equation (2.4.1a) 
into twice as many real differential equations.  The results are as follows.

 
   

x1 = Ap1 + Bp2 −Cx2

x2 = Bp1 + Dp2 +Cx1
 (2.4.2a)   

   

p1 = −Ax1 − Bx2 −Cp2

p2 = −Bx1 − Dx2 +Cp1
 (2.4.2b)

A classical analog of Schrodinger dynamics
 The same equations arise from the following classical coupled oscillator Hamiltonian in which 

 
x j  and 

 
p j  are canonical coordinate and momentum pairs, respectively.

  
  
Hc =

A
2

p1
2 + x1

2( ) + B x1x2 + p1p2( ) +C x1p2 − x2 p1( ) + D
2

p2
2 + x2

2( )     (2.4.3a)

Hamilton’s equations of motion are the following. (Recall (4.12.5) or (2.12.10).)

 

   

x1 =
∂Hc
∂ p1

= Ap1 + Bp2 −Cx2

x2 =
∂Hc
∂ p2

= Bp1 + Dp2 +Cx1

   (2.4.3b) 

   

p1 = −
∂Hc
∂ x1

= − Ax1 + Bx2 +Cp2( )

p2 = −
∂Hc
∂ x2

= − Bx1 + Dx2 −Cp1( )
  (2.4.3c)

Note that these are identical to Schrodinger’s equations (2.4.2).
 To see a connection with conventional second order coupled oscillator equations (4.3.7), we differentiate 
the 

  
x j  equations (2.4.3b) and substitute the 

  
p j  expressions (2.4.3c).  (Note:  Canonical momentum here is not 

the usual 
  
p j = mx j .  See Exercise 2.4.1.)

    x1 = Ap1 + Bp2 −C x2

     
  
= −A Ax1 + Bx2 +Cp2( )− B Bx1 + Dx2 −Cp1( )−C Bp1 + Dp2 +Cx1( )

                
  
= − A2 + B2 +C2( )x1 − AB + BD( )x2 −C A+ D( ) p2       (2.4.4a)

    x2 = Bp1 + Dp2 +C x1

      
  
= −B Ax1 + Bx2 +Cp2( )− D Bx1 + Dx2 −Cp1( ) +C Ap1 + Bp2 −Cx2( )

      
  
= − AB + BD( )x1 − B2 + D2 +C2( )x2 +C A+ D( ) p1       (2.4.4b)

Setting Schrodinger parameter C to zero reduces (2.4.4) to coupled oscillator equations (2.3.5) or (2.3.7).
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      −x1 = K11x1 +  K12x2      (2.4.5a)

       −x2  = K21x1 + K22x2      (2.4.5b)

Spring force matrix components Kmn are related below to  H -matrix parameters A, B, and D.

  K11 = A
2 + B2,     K12 = AB + BD,

  K21 = AB + BD,    K22 = B
2 + D2 .    (2.4.6)

 The eigenfrequencies for the Schrodinger equation (2.4.1) with 
  

C ≡ 0( )  are squares of the eigenvalues of 

the K-matrix in (2.4.5).  (See Exercise 2.4.2.)  This is quickly seen in the case  A = D  and C=0 where the 
quantum Hamiltonian matrix (2.4.1b) has a super-symmetric form.  

    
  
H = A B

B A
⎛

⎝⎜
⎞

⎠⎟
       (2.4.7a)

This Hamiltonian matrix has the following eigenvalues.
     ε1 = A+ B,       ε2 = A− B.    (2.4.7b)

For the same parameters A = D , B, and C=0, the classical acceleration matrix is super-symmetric, too. 

   K = A2 + B2 2AB
2AB A2 + B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= A B

B A
⎛
⎝⎜

⎞
⎠⎟

A B
B A

⎛
⎝⎜

⎞
⎠⎟
= H2   (2.4.8a)

A is the matrix square of H so the classical acceleration eigenvalues are squares of quantum eigenvalues.
   K1 = A + B( )2 ,     K2 = A − B( )2 .   (2.4.8b)

 Quantum dynamics differs from classical dynamics in a few important ways. First, the classical 
equations are second order differential equations so eigenvalues  give squared frequencies as in (2.4.8b) rather 
than frequencies as in (2.4.7b).  Also, stimuli for quantum dynamics enter multiplicatively by varying  H  
components A, B, C, or D. Quantum equation 

 
i Ψ = H Ψ  is always homogeneous, i.e. 

 
i Ψ −H Ψ = 0  is always 

zero unlike classical  x +K x = a . Finally, parameter  C  corresponds to classical cyclotron or Coriolis effects. It 

gives circular cyclotron orbits if the others are zero. This is discussed later on.

ABCD Symmetry operator analysis and U(2) spinors
Let us decompose the Hamiltonian operator H in (2.4.1) into four ABCD symmetry operators that are so labeled 
to provide helpful dynamic mnemonics and symmetry names (as well as colorful analogies).

A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟
= A 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟
+ B 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟
+C 0 −i

i 0
⎛
⎝⎜

⎞
⎠⎟
+ D 0 0

0 1
⎛
⎝⎜

⎞
⎠⎟
= Ae11 + BσB +CσC + De22

   

                           = A− D
2

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
+ B 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
+C 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
+ A+ D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

                        H = A− D
2

   σA     + B    σB    +C     σC       + A+ D
2

  σ0  

   (2.4.9a)

The { σ1, σA , σB , σC } are best known as Pauli-spin operators { σ1= σ0 , σB= σX , σC=σY , σA= σ Z }but ones 
quite like them were discovered a century earlier by Hamilton who was looking to generalize complex numbers 
to 3-dimensional space. Hamilton’s quaternions {1, i, j, k} are related as follows to the ABCD or ZXY0 
operators. (He carved them into a bridge in Dublin in 1843, though, not in technicolor.)
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   {σ1=1= σ0 , iσB=i= iσX , iσC =j= iσY, iσA =k= iσZ }    (2.4.9b) 
Note: i 2 = j 2 = k 2 = -1. Each squares to negative-1 like imaginary number i2=-1. Pauli’s form removes the 

imaginary i so each σµ squares to positive 1 (σX2 = σY 2 = σ Z 2 = +1) and each belongs to a cyclic C2 group.
 We’ll consider each C2 symmetry C2A={1, σA}, C2B={1, σB}, and C2C={1, σC} in turn. They are labeled 
as A (Asymmetric-diagonal), B (Bilateral-balanced), or C (Chiral-circular) symmetry, respectively. Each is an 
archetype of dynamics and symmetry. The systems in Ch. 3.3 belong to A-to-B cases in Fig. 2.4.1 below.
 

x1

x2

x1

x2

4455°°
x1

x2

(a) C2A-symmetry (a-b) C2AB-symmetry (b) C2B-symmetry
A 0
0 D

A B
B D

A B
B A

slow

fast
slow

fast slo
w

fas
t |e 1

=|+

|e
2 =|-

Fig. 2.4.1 Potentials for (a) C2A-asymmetric-diagonal, (ab) C2AB-mixed , (b) C2B-bilateral U(2)system.
 
A secret to Hamilton’s Hamiltonian decomposition (2.4.9) lies in how it can solve the fundamental 1st order 

 
i Ψ −H Ψ = 0  equation (2.4.1) by evaluating and (most important!) visualizing matrix-exponent solutions.

         Ψ(t) = e−iH·t Ψ(0)      (2.4.10a)

Hamilton generalized Euler’s expansion e− iΩt = cosΩt − isinΩt  so a matrix exponential becomes powerful.

     

   

 e−iH·t = e
−i A B−iC

B+iC D
⎛

⎝⎜
⎞

⎠⎟
·t
= e

−i A−D
2

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
·t−iB 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
·t−iC 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
·t−i A+D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
·t

        = e−iσ•Ω·t /2e−iΩ0·t  where:  Θ=Ω⋅ t=

ΩA
ΩB
ΩC

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⋅ t =
A− D
2B
2C

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ⋅ t  and:  Ω0 = A+ D

2

(2.4.10b)

Each matrix H has a rotation crank vector Θ=Ω ·t that dots with quaternions to solve (2.4.1). Ω is a 3D ABC-or 
XYZ -space whirl rate like ω described in Ch. 3.11c. Hamilton generalized a 2D complex phasor rotation 
e− iΩt = cosΩt − isinΩt  and he did this by first generalizing  the imaginary number i = −1 as described below.

(a) How spinors and quaternions work
Symmetry relations make spinors σ X ,σ Y , and σ Z or quaternions  i = −iσ X , j = −iσ Y , and k = −iσ Z  powerful.  Each

σ X squares to one (unit matrix 1 =σ X ⋅σ X ) and each quaternion squares to minus-one (–1=i·i=j·j, etc.) just like 

i = −1 . This is true even for spinor components based on any unit vector â = (aX ,aY ,aZ )  for which 

â• â = 1= aX
2 + aY

2 + aZ
2 . To see this just try it out on any â -component:σ a =σ • â = aXσ X + aYσ Y + aZσ Z .
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σ a
2 = (σ • â)(σ • â) = (aXσ X + aYσ Y + aZσ Z )(aXσ X + aYσ Y + aZσ Z )

=
aXσ XaXσ X +aXσ XaYσ Y +aXσ XaZσ Z

+aYσ YaXσ X +aYσ YaYσ Y +aYσ YaZσ Z

+aZσ ZaXσ X +aZσ ZaYσ Y +aZσ ZaZσ Z

=
aXaXσ Xσ X +aXaYσ Xσ Y +aXaZσ Xσ Z

+aYaXσ Yσ X +aYaYσ Yσ Y +aYaZσ Yσ Z

+aZaXσ Zσ X +aZaYσ Zσ Y +aZaZσ Zσ Z

To finish we need another symmetry property called anti-commutation: σ Xσ Y = −σ Yσ X , etc. (Check this!) Put this 

together with unit squares 1 =σ X
2 , etc. Then all off-diagonal terms cancel so that 1 =σ a

2 , too.

  

σ a
2 = (σ • â)(σ • â) = (aXσ X + aYσ Y + aZσ Z )(aXσ X + aYσ Y + aZσ Z )    

=

aX
21 +aXaYσ Xσ Y +aXaZσ Xσ Z

−aXaYσ Xσ Y +aY
21 +aYaZσ Yσ Z

−aXaZσ Xσ Z −aYaZσ Yσ Z +aZ
21

            = (aX
2 + aY

2 + aZ
2 )1 = 1

   (2.4.11)

Finally, that anti-commutation relation is cyclic: σ Xσ Y = iσ Z = −σ Yσ X ,   σ Zσ X = iσ Y = −σ Xσ Z ,  and σ Yσ Z = iσ X = −σ Zσ Y . 

So, σ-products do dot • and cross× products. (ε-products do× in (4.11.22).)

 

σ aσ b = (σ • a)(σ •b) = (aXσ X + aYσ Y + aZσ Z )(bXσ X + bYσ Y + bZσ Z )    

        =
aXbX1 +aXbYσ Xσ Y −aXbZσ Zσ X

−aYbXσ Xσ Y +aYbY1 +aYbZσ Yσ Z

+aZbXσ Zσ X −aZbXσ Yσ Z +aZbZ1
 =  (aXbX + aYbY + aZbZ )1 

+i(aYbZ − aZbY )σ X

+i(aZbX − aXbZ )σ Y

+i(aXbY − aYbX )σ Z

  (2.4.12a)

To see this we write the product in Gibbs notation. (Where do you think Gibbs got his {i,j,k} notation!)
    σ aσ b = (σ • a)(σ •b)=        (a • b)1            +     i(a × b)•σ     (2.4.12b)

Complex numbers A=Ax+iAy do a similar thing if you *-multiply them as follows. (Recall (1.10.29).)

        
    

A*B = (A
X

+ iA
Y
)*(B

X
+ iB

Y
) = (A

X
− iA

Y
)(B

X
+ iB

Y
)

       = (A
X
B

X
+ A

Y
B

Y
)+ i(A

X
B

Y
−A

Y
B

X
) =  (A • B) +  i(A×B)

   (2.4.13)

The results are just the 2D versions of dot and cross products. Hamilton’s idea was to generalize to three 
dimensions and even four dimensions. (Lorentz relativity transformations are done by spinors, too!) So finally 
Hamilton is able to generalize Euler’s complex rotation operators    e+iϕ and   e

−iϕ . (Recall (1.10.17).)

     

e−iϕ = 1+ (−iϕ)+
1
2!

(−iϕ)2 +
1
3!

(−iϕ)3 +
1
4!

(−iϕ)4=  [1        −
1
2!
ϕ2           +

1
4!
ϕ4] =       [ cosϕ]   

                                                                         − i(ϕ            +
1
3!
ϕ3               )      − i(sinϕ)

Euler’s series is the result of the binomial series definition of the exponential growth function ert.

 
    
ert = lim

N→∞
(1+

rt
N

)N = lim
N→∞

(1+ N
rt
N

+
N(N −1)

2!
rt
N

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

+
N(N −1)(N −2)

3!
rt
N

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

3

+…)   

Euler’s identity works because even powers of (-i) are ±1 and odd powers of (-i) are ±i. That is how−iσ a works, 

too. Hamilton replaces (-i) with −iσ a in an   e
−iϕ power series to get a sequence of terms

 (−iσ a )0 = +1,   (−iσ a )1 = −iσ a ,   (−iσ a )2 = −1,   (−iσ a )3 = +iσ a ,   (−iσ a )4 = +1,   (−iσ a )5 = −iσ a , etc.    

This allows Hamilton to generalize Euler’s    e−iϕ  rotation to e−iσaϕ for any σ a = (σ • a) = aXσ X + aYσ Y + aZσ Z .

  e−iϕ = 1 cosϕ    −   i sinϕ   generalizes to:   e−iσaϕ = 1cosϕ    −   i σa sinϕ

Below are σA= σZ and σC= σY rotations and a σa-rotation around a general 3D whirl axis ω̂ = Θ̂a = â .
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              e
−i(σA)ϕA=    1   cosϕ

A
 −  i  (σ

A
) sinϕ

A
= R(ϕ

A
)           e

−i(σC )ϕC =     1 cosϕ
C
− i   (σ

C
) sinϕ

C
= R(ϕ

C
)

          (2.4.14a)            (2.4.14c)

      

    

e
−i 1 0

0 −1
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
ϕA

= 1 0
0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cosϕ

A
− i  1 0

0 −1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
sinϕ

A

=  
cosϕ

A
− i sinϕ

A
0

0 cosϕ
A
− i sinϕ

A

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
= e−iϕA 0

0 eiϕA

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

            

    

e
−i 0 −i

i 0
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
ϕC

= 1 0
0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cosϕ

C
− i  0 −i

i 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
sinϕ

C

              =  
cosϕ

C
−sinϕ

C

sinϕ
C

cosϕ
C

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

    e−iσ aϕa =e−i(σ•â)ϕa = 1cosϕa − i (σ • â)sinϕa     (2.4.14b)

We now see that 3D (ABC) rotations are by an angle Θa=2ϕa that is twice the angle ϕa in 2D space{x1,x2}.

The “mysterious” factors of 2

A factor of 2 or 2
1  relates ϕa-rotation of 2D oscillator variables {x1,x2} to 3D vector rotation Θa in ZXY or ABC-

space. 3D vector â  defines a combination σa =aAσA+ aBσB+ aCσC of operators σA,σB ,σC to be rotated by 2-by-2 
matrices (2.4.15) acting twice, fore and aft-1(as operators do in (4.B.6)) by twice the 2D angle ϕa.

 

    

               R ϕ
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A
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sinϕ
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⎜⎜⎜⎜⎜⎜
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⎟⎟⎟⎟⎟
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sin2ϕ
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⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
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⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cos2ϕ

C
+ 0 1

1 0

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟⎟
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C

=    σ
A
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C
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B
  sin 2ϕ

C
  

  

    

              R ϕ
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⎟⎟⎟⎟⎟⎟⎟
0 1
1 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

cosϕ
C

sinϕ
C

−sinϕ
C

cosϕ
C

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

=
−2sinϕ

C
cosϕ

C
cos2ϕ

C
− sin2ϕ

C

cos2ϕ
C
− sin2ϕ

C
2sinϕ

C
cosϕ

C

⎛

⎝
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C
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So the 2D rotation ϕa angle must be exactly 2
1 the 3D angle Θa of rotation. When a spin axis goes from up-A to 

down-A that is a rotation by ΘC=π or 180° in ZXY or ABC-space, but only by ϕC=π/2 or 90° in spinor space {x1,x2}. 

State 
 
↑  of spin up-Z and the state 

 
↓  of spin down-Z are orthogonal kets 90° apart. This analogy to a 2D{x1,x2}-

oscillator underlies spin 2
1 . So, 3D crank vector  


Θ and spin operator S  are defined for 3D ZXY or ABC-space 

with a ratio 2
1 or 2 between Θa and ϕa= 2

1 Θa or between S  and σ = 2S .

 

 

e−iσ•

ϕ=e−iσ•


Θ/2 =e−iS•


Θ= 1cosΘ

2
− i (σ • Θ̂)sinΘ

2
=

cosΘ
2
− iΘ̂A sinΘ

2
(−iΘ̂B − Θ̂C )sinΘ

2

(−iΘ̂B + Θ̂C )sinΘ
2

cosΘ
2
+ iΘ̂A sinΘ

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(2.4.15a)

    2D angle :ϕ =2
1 Θ             3D Crank  vector :  


Θ =ΘΘ̂ = 2ϕaâ = 2


ϕ                2Dspinmatrix :  S =2

1 σ  

                    (2.4.15b)                (2.4.15c)     (2.4.15d)

Eighty years after Hamilton (1924) comes Pauli and Jordan  spin S =  2
σ  with its half-quantum factor   2

 .
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2D polarization and 3D Stokes vector S
In 1862 George Stokes found an application of Hamilton’s mathematics to optical polarization that has a 2D 
complex oscillator space {E1,E2} analogous to Ψ-space {a1,a2}={x1+ip1,x2+ip2} in (2.4.1c). He gave 3 Stokes 
vector components Sa that wonderfully define polarization ellipses, 2D HO orbits, and spin 2

1  states.

   Asymmetry SA = 1
2
a σ A( a) = 1

2
a1

* a2
*( ) 1 0

0 −1
⎛
⎝⎜

⎞
⎠⎟

a1

a2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 = 1
2
a1

*a1 − a2
*a2⎡⎣ ⎤⎦  = 1

2
x1

2 + p1
2 − x2

2 − p2
2⎡⎣ ⎤⎦  (2.4.16a)

    Balance      SB = 1
2
a σ B( a) = 1

2
a1

* a2
*( ) 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

a1

a2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  = 1
2
a1

*a2 + a2
*a1⎡⎣ ⎤⎦   = p1 p2 + x1x2⎡⎣ ⎤⎦ 	

 (2.4.16b)

    Chirality   SC = 1
2
a σC( a) = 1

2
a1

* a2
*( ) 0 −i

i 0
⎛
⎝⎜

⎞
⎠⎟

a1

a2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 = −i
2

a1
*a2 − a2

*a1⎡⎣ ⎤⎦= x1 p2 − x2p1⎡⎣ ⎤⎦ 	

 (2.4.16c)

Components of real 3D spin-vector S=(SA, SB, SC) label orbit states in 4D phase space (x1,p1,x2,p2) just as real 
components of 3D whirl-vector Ω=(ΩA,ΩB,ΩC) label 4D matrix operators H that whirl these states.

A

C

B

ΩΩ
SSSS

A

CB

Ω

ϑ=60°
Θ=Ω t

ϕ=45°

Fig. 2.4.2 Two views of Hamilton crank vector Ω(ϕ,ϑ) whirling Stokes state vector S in ABC-space.

Matrix H cranks S around rotation axis Θ = Ω·t according to (2.4.15) at whirl rate Ω as Fig. 2.4.2 depicts.

Ω =|Ω|=
   
Ω

A
2 +Ω

B
2 +Ω

C
2        (2.4.17)

Length of  Θ=(ΘA,ΘB,ΘC)= Ω·t =(ΩA·t,ΩB·t,ΩC·t) grows at a constant rate Ω  but its direction is fixed if the 
constants ( A,B,C,D ) or (ΩA = A − D,  ΩB = 2B,  ΩC = 2C ) in H are in fact constant. The Ω-whirl direction is given 

by polar coordinates (ϕ,ϑ) that we call Darboux angles after the inventor of ω-whirl vectors. The spin S-vector 
has polar coordinates, too, so designated in the next section by Euler angles (α,β).

Fixed points: A port in the storm of action
It helps to look at Fig. 2.4.2 as a phase space analogous to that of harmonic oscillators. Points on H ‘s whirl 
vector Ω are stable fixed points for state spin-S where it can rest and not be whirled. It still twists if S could do 
so. Such a twist is in the 0th-overall average angular phase rate Ω0=(A+D)/2 in (2.4.10). The S-states for which S 
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aligns  (α,β)=(ϕ,ϑ) or anti-aligns (α,π−β)=(ϕ,ϑ) are called  own-states or eigenstates of H. This gives a nice quick 
computational aid later.
 The Sa-terms in (2.4.16) are the same as the parts of the classical Hamiltonian Hc in (2.4.3a).  

  
  
Hc =

A
2

p1
2 + x1

2( ) + B x1x2 + p1p2( ) +C x1p2 − x2 p1( ) + D
2

p2
2 + x2

2( )   (2.4.3a)repeated

Rearranging  the A and D terms lends a classical action form  q
mpm = ω i J = Ω iS  to the expression of Hc.

 

   

H
c

=
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2
x

1
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1
2−x

2
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⎢
⎢
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⎥
⎥
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2
⎡
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1
2 + p
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2
2⎡

⎣⎢
⎤
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      =
1
2
Ω

A
S

A
⎡
⎣⎢
⎤
⎦⎥                      +

1
2
Ω

B
S

B
⎡
⎣⎢
⎤
⎦⎥          +

1
2
Ω

C
S

C
 ⎡⎣⎢
⎤
⎦⎥                   +

1
2
Ω

0
   I⎡⎣⎢
⎤
⎦⎥

 (2.4.18a)

Contrast this with the quantum spin matrix operator form for H=Ω•S+Ω01 given by (2.4.9) thru (2.4.15).

  

 A B − iC
B + iC D

⎛

⎝⎜
⎞

⎠⎟
= A− D⎡⎣ ⎤⎦

2
1 0

0 −2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ 2B

0 2
1

2
1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ 2C

0 −2
i

2
i 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ A+ D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

                            H =     ΩA       SA        +ΩB    SB     +ΩC    SC      +    Ω0    1 

  (2.4.18b)

Classical Sa-magnitude is 
   
I / 2 = S

A
2 +S

B
2 +S

C
2   but the matrix forms give:    SA

2 +  SB
2 +  SC

2 =  4
31. 
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(b) Oscillator states by spinor rotation
Sophus Lie sought to define classical dynamics in terms of transformation operators. The preceding (2.4.10) and 
(2.4.15) let us do this for a 2D oscillator by relating it to a 3D spinning body. All states

   
a = (

a2

a1 )  of a 2D 
oscillator or 3D body are defined by rotation R of an initial 2D state 

  
1 = (

0
1)  or 3D vector    S(1) = (0,0,1) .  

  
    
a = a2

a1⎛
⎝⎜

⎞
⎠⎟ = R(a) 1 = e−iσ•


ϕa

2×2
0
1( )   (2.4.19a)    
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⎛

⎝

⎜
⎜
⎜⎜
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⎠

⎟
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⎟⎟

= R(a) i S(1) = e−iS•

Θ

3×3

0
0
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⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 (2.4.19b)

 3D rotation R has 3 parameters (ΘA,ΘB,ΘC) or else 3 Euler angles (α,β,γ) as shown in Fig. 2.4.3. That can 
define a 2D oscillator’s 4 phase variables (x1,p1,x2,p2) if energy is conserved. Else, we need to include an intensity 
amplitude  I1/2  =A with the 3 rotation angles. Euler’s ZYZ or ACA rotation of 1st-state 

 
1 gives state

   
a =R

a
1  of 

spin S with 2 polar angles (α,β) and a phase factor    e
−i
γ
2 with phase −γ/2.

    
    
a =R αβγ( ) 1   (Euler’s definition of any state

 
a  )    (2.4.20a)

  
    
=R[αaboutZ ]⋅R[β aboutY ]⋅R[γ aboutZ ] ↑  (Using matrix R(α/2) of (2.4.14a) and R(β/2) of (2.4.14c))
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Real xk and imaginary pk parts of phasor variables ak=xk+ipk are functions of all 3 Euler angles (α,β,γ) and A.
  x1= Acos(α+γ)/2·cosβ/2   x2= Acos(α-γ)/2·sin β/2    (2.4.20b)
  p1=-Asin(α+γ)/2·cosβ/2   p2= Asin(α-γ)/2·sin β/2    (2.4.20c)
But, the 3 components (2.4.16) of spin vector S depend on only 2 polar angles (α,β) and I as in Fig. 2.4.3. 

SA = 1
2
x1

2 + p1
2 − x2

2 − p2
2⎡⎣ ⎤⎦ =        I

2
[cos2 β

2
− sin2 β

2
]                                       = I

2
cosβ  	

 	

 (2.4.21a)

SB= p1 p2 + x1x2⎡⎣ ⎤⎦=I −sinα + γ
2

sinα −γ
2

+ cosα + γ
2

 cosα −γ
2

⎡
⎣⎢

⎤
⎦⎥
cos β

2
sin β

2
= I

2
cosα sinβ 	

 (2.4.21b)

SC= x1 p2 − x2p1⎡⎣ ⎤⎦=I cos
α + γ
2

sinα −γ
2

− cosα −γ
2

⋅−sinα + γ
2

⎡
⎣⎢

⎤
⎦⎥
cos β

2
sin β
2
= I
2
sinα sinβ  (2.4.21c)

Intensity factor I=A2 is called a norm and is unity (I=1=A) for quantum states. Here it is the total action of 
classical oscillators. Spin (SA,SB,SC) is independent of phase −γ/2. Action I is independent of γ, β, and α.

Action = 2S0 = a 1( a) = x1
2 + p1

2 + x2
2 + p2

2⎡⎣ ⎤⎦ = I[cos
2 β
2
+ sin2 β

2
]= I = Intensity  	

 	

 (2.4.21d)

According to (2.4.18 a,b,c) action is twice the spin magnitude: 
   
 I / 2 = S

A
2 +S

B
2 +S

C
2  .

 Let a 2D elliptic orbit of frequency ω have amplitudes A1 and A2, and phase shifts ρ1 and ρ2 =−ρ1.
  x1= A1cos(ω t +ρ1)   x2= A2cos(ω t −ρ1)    (2.4.22a)
  p1=-A1sin(ω t +ρ1)   p2=-A2sin(ω t −ρ1)    (2.4.22b)
This is a case of (2.4.20). Euler angles (α,β,γ ) and action amplitude A are set to match (2.4.22) as follows.  
 α =2 ρ1   tanβ/2=A2/A1  γ  =2ω·t  A2=A12+A22    (2.4.22c)
This example is used to show how the Stokes-Hamilton formulas expose orbital geometry and dynamics.
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Fig. 2.4.3 The operational definition of Euler (αβγ)-angle coordinates is applied to a unit spin-state.
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The A-view in {x1,x2}-basis
 The orbit (2.4.22) has angles αA= ρ1-ρ2 =2 ρ1, βA=2tan-1A2/A1, and γA=ω t/2 with intensity I=A2=A12+A22.

	


a1
a2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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e−iαA /2 cos2
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⎜
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⎟ e

−iωt = A
cos(ω t +2

αA )− isin(ω t +2
αA )( )cos2βA

cos(ω t −2
αA )− isin(ω t −2

αA )( )sin2βA
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

x1 + ip1
x2 + ip2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  	

 (2.4.23)

Fig. 2.4.3 shows an ellipse (2.4.22) next to its ABC space S-vector (2.4.21) for A or Z-axis Euler angles 
   α=αA= ρ1-ρ2 =2 ρ1=60° (2.4.24a)  β=βA=2tan-1A2/A1=60° (2.4.24b)  γA=ω t/2. (2.4.24c)

Cartesian-x1x2 axes in Fig. 2.4.3a map onto ± A or Z -axis in Fig. 2.4.3b. Azimuth angle-αA off the B-axis 
is the phase lag between a1=e-iα/2 |a1| and a2=e+iα/2 |a2| in (2.4.23). Note projected A1 or A2 box contact points in 
Fig. 2.4.2a. Contact points go to the box diagonal for αA =0° or the other diagonal for αA =180°, or the box xk-
axes for αA =±90°. Polar βA angle of S from A-or-z-axis is the angle between ellipse box diagonals in Fig. 2.4.2a. 
An orbit with  βA=0°(180°) is x1(x2)-polarized. Circular orbits have βA =±90°=αA. 

x1

x2

√ I

ν=β/2

A1

I

A
B

C

βA=2ν αA=2ϑ
A2

(a) (x1,x2) Space (b) (A,B,C) Space

A-axis
polar
angle

2ν=βA=60°

Stokes
vector
S

A-axis
Azimuth
angle

2ϑ=αA=60°

phase lag
2ϑ=αA=60°

2ν=βA=60°

Fig. 2.4.3 Polarization described by (a) plane-x1x2 bases and (b) A-axis polar angles of Stokes vector.

 Converting an A-based set (2.4.20) of Stokes parameters into a C-based one or into a B-based one is 
simply a matter of cyclic permutation of A, B, and C polar formulas as follows.

  Asymmetry SA = I
2

cosβA             = I
2

sinαB sinβB = I
2

cosαC sinβC   (2.4.25a)

        Balance      SB = I
2

cosαA sinβA = I
2

cosβB            = I
2

sinαC sinβC   (2.4.25b)

 Circularity  SC = I
2

sinαA sinβA  = I
2

cosαB sinβB = I
2

cosβC    (2.4.25 c)    

To find the C-axis polar angle βC in terms of A-axis angles αA and βA, we use (2.4.25 c). 
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The C-view in {xR,xL}-basis
 The same orbit can be expressed in right and left circular polarization {xR,xL}-bases using angles (αC, βC, γC).

   
aR
aL

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= A

e−iαC /2 cos2
βC

e+iαC /2 sin2
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⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
e−i2

γC
=

xR + ipR
xR + ipR

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

    (2.4.26)

Angles (αC, βC) are found quickly using (2.4.25). C-axial polar angle βC uses (2.4.25c). See βC in Fig. 2.4.4b.

 sinαA sinβA = cosβC          or:   βC = ACS(sinαA sinβA ) = ACS( 3
2

⋅ 3
2

) = 41.4°   (2.4.27)

C-axis azimuth angle αC relates to A-axis angles αA and βA by (2.4.25a) and (2.4.25b). See αC in Fig. 2.4.4b.

    cosαA sinβA
cosβA

= tanαC    or:   αC = ATN2(cosαA sinβA / cosβA ) = ATN2(1
2
⋅ 3

2
/ 1

2
) = 40.9°   (2.4.28)

Half the azimuth angle αC turns is the ellipse tipping angle ϕ= αC /2, and half –polar-elevation 2ψ=π/2−βC is the 
ellipse diagonal half-angle ψ as seen in Fig. 2.4.4a.  Recall, 2D angles are 2

1 the corresponding 3D ones.

√ I

ν
ϕ

ψ

a

b

I

A
B

C

2ν
2ϑ

2ψ

A1

A2
x1

x2 C-axis
polar
elevation

2ψ=

π/2−βC=48.6°

C-axis
azimuth
angle
2ϕ=

αC=40.9°

(a) (x1,x2) Space (b) (A,B,C) Space

Stokes
vector
S

C-axis
polar
angle

βC=41.4°

αC=2ϕ

 Fig. 2.4.4 Polarization described by (a) circular-RL bases and (b) C-axis polar angles of Stokes vector.

 A 90° B –rotation 
    
R(π / 4) x

1
= x

R
 of axis A into C gets (αC, βC, γC) from (αA, βA, γA) all at once.

    cos4
π isin4

π

isin4
π cos4

π

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

x1 + ip1
x2 + ip2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 2

2 1 i
i 1

⎛
⎝⎜

⎞
⎠⎟

Ae−iαA /2 cos2
βA

Ae+iαA /2 sin2
βA

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ e

−i2
γ A

=
Ae−iαC /2 cos2

βC

Ae+iαC /2 sin2
βC

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
e−i2

γC
=

xR + ipR
xR + ipR

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   (2.4.29)

 Circular polarization is the more natural for applications that involve chirality or “handedness” 
associated with magnetic fields or Coriolis rotational effects. Then the C-axis becomes the “special z-one” as 
indicated in Fig. 2.4.5.
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|y〉

I

A
B

C

SS
Ω

α=2ϕ

β=2ψ

(a)
Stokes Vector
ABC-Space

(b)
Polarization
xy-Space

|x〉

√ I

ϕ=α/2
a

b

|y〉

|R〉

|x〉

|L〉

-A-B

ψ= β/2

Fig. 2.4.5 Polarization variables (a) Stokes real-vector space (ABC) (b) Complex xy-spinor-space (x1,x2).
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(c) How spinors give eigensolutions (Gone in 60 seconds!)

	

 Can you write down all eigensolutions to the following H -matrix in 60 seconds?

	



    

H=
10 + 4cos

π
3

4cos
π
4

sin
π
3
− i4 sin

π
4

sin
π
3

4cos
π
4

sin
π
3

+ i4 sin
π
4

sin
π
3

10− 4cos
π
3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
12 6(1− i)

6(1+ i) 8

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

We’re not just asking for eigenvalues in 60 minutes, but all eigensolutions, vectors and values, in 60 seconds 
flat! If you know your spinors, it’s as easy as  π . Here they are.

	



    

eigenvalue−1

ω
↑

= 10 +
12−8

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

+ 6( )
2

+ 6( )
2

   = 10 + 4 = 14
eigenvector −1

↑ =
e
−i
π
8 cos

π
6

e
+i
π
8 sin

π
6

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
1

e
i
π
4 3

3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

e
−i
π
8 3
2

	

 	



    

eigenvalue−2

ω
↓

= 10−
12−8

2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

+ 6( )
2

+ 6( )
2

   = 10− 4 = 6
eigenvector −2

↓ =
−e
−i
π
8 sin

π
6

e
+i
π
8 cos

π
6

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

= −e
i
π
4 3

3
1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

e
−i
π
8 3
2

	



The trick: Get the H crank vector 

Ω  polar angles of azimuth ϕ , polar ϑ , and rate Ω . Here   Ω = 8 .

     

Ω = [(A−D), 2B, 2C ] = Ω[cosϑ, cosϕ sinϑ, sinϕ sinϑ]    where:    Ω = (A−D)2 + (2B)2 + (2C)2 	

 (2.4.30a)

	



    

H=

A + D
2

+
Ω
2

cosϑ
Ω
2

cosϕ sinϑ− i
Ω
2

sinϕ sinϑ

Ω
2

cosϕ sinϑ+ i
Ω
2

sinϕ sinϑ
A + D

2
−
Ω
2

cosϑ

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

= A B− iC
B + iC D

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
	

 (2.4.30b)

Eigenstate
 
↑ spin vector  


S has Euler angles of azimuth  α = ϕ , pole  β = ϑ , and any phase   (let:γ = 0) . 

	



    

↑ =
e
−i
α
2 cos

β
2

e
+i
α
2 sin

β
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

e
−i
γ
2 =

e
−i
ϕ
2 cos

ϑ
2

e
+i
ϕ
2 sin

ϑ
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

has eigenvalue: ω
↑

=
A + D

2
+
Ω
2

	

 	



    

↓ =
e
−i
α
2 cos

β
2

e
+i
α
2 sin

β
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

e
−i
γ
2 =

−e
−i
ϕ
2 sin

ϑ
2

e
+i
ϕ
2 cos

ϑ
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

has eigenvalue: ω
↓

=
A + D

2
−
Ω
2

	

(2.4.30c)

Eigenstate
 
↓ with spin vector   −


S has same azimuth   α = ϕ , flipped pole  β = ϑ± π , and arbitrary phase γ/2.

	

 It doesn’t get much easier! You just line up state spin vector-  

S angles  (α,β)  and   (ϕ,ϑ) of Hamiltonian 

crank vector to get the first (spin-up) eigenstate, and then stick   

S  the other way to get an orthogonal (spin-down) 

eigenstate. But, don’t goof the H angles. Use atan2 or   Rct  Pol .  

	

     ϕ = atan2(C,B)   [tan−1(C / B) is  unreliable ] 	

 	

     ϑ = atan2(2 B2 +C 2 ,A−D)

Simple arc-functions like arctan(C/B) are unreliable due to their multi-valued quadrant ambiguity.
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(d) How spinors give time evolution 
	

 Can you just as quickly write down the evolution operator of that Hamiltonian?

	

 	

 	


    
U(0,t) = e−iHt/ = e

−i
12 6(1−i)

6(1+i) 8

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟
t/

= ? ?
? ?

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

A formal exponential is pretty useless unless you expand it using the H -crank 

Ω in (2.4.15c).

	

 	

 	


 
e− i(σ•


Ω t )/2 =e− iS•


Ω t = 1cosΩt

2
- i (σ • Ω̂)sinΩt

2

This is the e− iS•

Θ  formula (2.4.15a) with whirl rate-times-time    


Ωt =


Θ  replacing turn-axis vector  


Θ .

	

 	

 	


 

U(0,t) = e− i(σ•

Ω t )/2 = 1cosΩt

2
- i (σ • Ω̂)sinΩt

2
        The overall phase factor  e

− i A+D
2

t

 may be attached later. (Or ignored)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	

 (2.4.31a)

(The unit crank vector Ω̂ = [(A − D), 2B, 2C] /Ω =[cosϑ, cosϕ sinϑ, sinϕ sinϑ ] is also unit  ̂Θ .)

	


U(0,t)=      1     cosΩt

2
- i (     σ A     cosϑ +     σ B   cosϕ sinϑ +     σ C      sinϕ sinϑ )sinΩt

2

          = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

cosΩt
2

- i ( 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

cosϑ + 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

cosϕ sinϑ + 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

sinϕ sinϑ )sinΩt
2

	

 (2.4.31b)

Sum this all into a single matrix and you get a useful general evolution operator.

   

U(0,t)= 
cosΩt

2
− icosϑ sinΩt

2
−i cosϕ − isinϕ( )sinϑ sinΩt

2

−i cosϕ − isinϕ( )sinϑ sinΩt
2

cosΩt
2

+ icosϑ sinΩt
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

          =
cosΩt

2
− icosϑ sinΩt

2
−ie− iϕ sinϑ sinΩt

2

−ie+ iϕ sinϑ sinΩt
2

cosΩt
2

+ icosϑ sinΩt
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
cosΩt

2
− iΩ̂A sinΩt

2
−i Ω̂B − iΩ̂C( )sinΩt2

−i Ω̂B + iΩ̂C( )sinΩt2
cosΩt

2
+ iΩ̂A sinΩt

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	

 (2.4.31c)

Our numerical crank rate is  Ω = 8.Our unit crank rate vector Ω̂  fills in the numbers for U(0,t) .  

	

 Ω̂ = [(12 − 8), 2 6, 2 6]
Ω

= 1
2

, 6
4

, 6
4

⎡

⎣
⎢

⎤

⎦
⎥ = cosϑ, cosϕ sinϑ, sinϕ sinϑ[ ]  =[Ω̂A,Ω̂B,Ω̂C ]

	

 	

 	

 U(0,t)=
cos4t − i 1

2
sin4t −i 1− i( ) 6

4
sin4t

−i 1+ i( ) 6
4
sin4t cos4t + i 1

2
sin4t

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Starting from any initial state like 
  
Ψ(0) = 1

0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
we compute what it will be at time t.

	

 Ψ(t) =U(0,t) Ψ(0) =
cos4t − i 1

2
sin4t −i 1− i( ) 6

4
sin4t

−i 1+ i( ) 6
4
sin4t cos4t + i 1

2
sin4t

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0

⎛
⎝⎜

⎞
⎠⎟
=

cos4t − i 1
2
sin4t

1− i( ) 6
4
sin4t

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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B-Type Oscillation: Simple examples of balanced beats
Resonant beats in Fig. 4.3.9 are super-positions of a 0°-in-phase mode  (→    →) of slower frequency ωslow and 

a 180°-out-of-phase mode  (→  ←)  of faster frequency ωfast. Transverse 0°-in-phase modes 
 

→
→

⎛

⎝
⎜

⎞

⎠
⎟  and 180°-

out-of-phase modes 
 

→
←

⎛

⎝
⎜

⎞

⎠
⎟  belong to complex amplitude vectors e−iω slowt 1

1
⎛
⎝⎜

⎞
⎠⎟

 and e−iω fastt 1
−1

⎛
⎝⎜

⎞
⎠⎟

, respectively. 

 Let’s add them half-and-half or 50-50. (We let slow and fast phases be s=-ωslowt and f=-ωfastt.) 

  
a1
50−50

a2
50−50

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1
2
e−iω slowt 1

1
⎛
⎝⎜

⎞
⎠⎟
+ 1
2
e−iω fastt 1

−1
⎛
⎝⎜

⎞
⎠⎟
= 1
2
eis 1

1
⎛
⎝⎜

⎞
⎠⎟
+ eif 1

−1
⎛
⎝⎜

⎞
⎠⎟
= 1
2

eis + eif

eis − eif
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (2.4.32)

We could write the complex numbers in Cartesian form: eis = cos s + isin s  and eif = cos f + isin f .

a1
50−50

a2
50−50

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1
2

eis + eif

eis − eif
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1
2

cos s + isin s + cos f + isin f
cos s + isin s − cos f − isin f

⎛

⎝
⎜

⎞

⎠
⎟ =

1
2

cos s + cos f( ) + i sin s + sin f[ ]
cos s − cos f( ) + i sin s − sin f[ ]

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

X1 + iP1
X2 + iP2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Cartesian X1=Re a1, P1=Im a1, X2=Re a2, P2=Im a2 are then given.  A factored polar form is better: 

 
a1

50−50

a2
50−50

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1

2
eis + eif

eis − eif
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1

2
e
i s+ f

2 (e
i s− f

2 + e
−i s− f

2 )

e
i s+ f

2 (e
i s− f

2 − e
−i s− f

2 )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
e
i s+ f

2 cos s − f
2

e
i s+ f

2 isin s − f
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

    where: 
cosA= e

iA + e−iA

2

isinA= e
iA − e−iA

2

Note: this trick easily gives four sin-cos identities like cos s + f
2
cos s − f

2
= 1
2
(cos s + cos f ) . Now we factor out 

overall phase and compute the (get real!) Stokes vector S=(SA, SB, SC) as functions of time.

a1
50−50

a2
50−50

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= e

i s+ f
2

cos s − f
2

isin s − f
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= e
i s+ f
2

cos Δ
2

isin Δ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 gives the following where: Δ = s − f = − ω fast −ω slow( )t .

SA = cos
Δ

2
i sin

Δ

2

⎛
⎝⎜

⎞
⎠⎟

*
1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

cos
Δ

2

i sin
Δ

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= cos
Δ

2
−i sin

Δ

2

⎛
⎝⎜

⎞
⎠⎟

cos
Δ

2

−i sin
Δ

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

       = cos2 Δ
2
− sin2 Δ

2
= cosΔ = cos(s − f )

SB = cos
Δ

2
i sin

Δ

2

⎛
⎝⎜

⎞
⎠⎟

*
0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

cos
Δ

2

i sin
Δ

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= cos
Δ

2
−i sin

Δ

2

⎛
⎝⎜

⎞
⎠⎟

i sin
Δ

2

cos
Δ

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

      = icos Δ
2

sin Δ
2
− isin Δ

2
cos Δ

2
              = 0

SC = cos
Δ

2
i sin

Δ

2

⎛
⎝⎜

⎞
⎠⎟

*
0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

cos
Δ

2

i sin
Δ

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= cos
Δ

2
−i sin

Δ

2

⎛
⎝⎜

⎞
⎠⎟

sin
Δ

2

i cos
Δ

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= cos Δ
2

sin Δ
2
+ sin Δ

2
cos Δ

2
= sinΔ = sin(s − f )

It is a B-axial rotation of Stokes vector S=(SA, SB, SC)=(cosΔ,0,sinΔ) past ±A and ±C-axes as in Fig. 2.4.6.
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The angular frequency Δ = ω fast −ω slow  of the rotation is called a beat frequency . In quantum theory it is the 

Rabi rotation frequency or the NMR precession frequency in spin resonance that Rabi pioneered. It is simply the 
relative angular velocity between two phasors having a race around the clock. It is twice that of the half-

difference Δ / 2 = ω fast −ω slow / 2  seen in phasor space. That mysterious factor of 1/2 discussed after (2.4.14) 

appears again and makes us sharpen our view of space and time.

	



A

-A

C

-C

B

-B

H crank-Ω vector
for negative B=-S

|(+)〉

|(−)〉

|R〉

|L〉

|x〉

|y〉

Ω

     Fig. 2.4.6 Time evolution of a B-type beat. S-vector rotates from A to C to -A to -C and back to A.

   For example if you follow the rotation in the X1=Re a1, P1=Im a1, X2=Re a2, P2=Im a2 space you will 
see that one rotation by 360° in ABC-space is only half way back to the starting line, and another 360° rotation 
(either way) is needed in ABC-space to get a full 360° rotation in phasor xy-space. That is, a rotation of 720° or 
0° in the Stokes ABC-space is needed to return to where they started in xy-space. 
 Points that are separated by 180° in ABC-vector-space map onto phasor (2D-spinor) base vectors that are 
only 90° apart since in xy-space x and y  are orthogonal. So a 180° separation in xy-space, that is, a 180° 

phase factor e±iπ = −1 , maps onto the same Stokes-vector in ABC space. Another way to see this strange phase 
shift is to look at a C-rotation that happens in Circular polarization environments, or in a Cyclotron oscillator, or 
in the presence of a Coriolis or Chiral force of Earth rotation. (Notice all the C’s including Complex that are 
used to describe the circular case.) The Fig. 2.4.7 shows how +x-polarization returns first to –x-polarization, that 
is 180° out of phase and needs another 360° rotation around the C-axis to really be back to +x-polarization. The 
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xy-spinor rotates by half the angle its Stokes vector turns in ABC-space so xy-oscillation vector returns to the 
North pole “pointing backwards” with a 180° phase shift.

|x(120°)〉

A

-A

C
B

-B

H crank-Ω vector
for C=1

|x(45°)〉=|(+)〉

|(−)〉

|x〉

|y〉

Ω

|x(30°)〉

|x(15°)〉

|x(60°)〉

|x(150°)〉

β/2=30°
β=60°

Fig. 2.4.7 Time evolution of a C-type beat. S-vector rotates from A to B to -A to -B and back to A.

Exercise 2.4.1
The example given in (2.4.32) was a perfect 50-50 combination of the balanced ±45°polarization B-modes as repeated here.

a1
50−50

a2
50−50

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1
2
e−iω slowt 1

1
⎛
⎝⎜

⎞
⎠⎟
+ 1
2
e−iω fastt 1

−1
⎛
⎝⎜

⎞
⎠⎟
= 1
2
eis 1

1
⎛
⎝⎜

⎞
⎠⎟
+ 1
2
eif 1

−1
⎛
⎝⎜

⎞
⎠⎟
= 1
2

eis + eif

eis − eif
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

It starts at time t=0 in the x-polarization state 1
0

⎛
⎝⎜

⎞
⎠⎟

 goes through circular polarization and then y-polarization and so on.

What if, instead, we start at time t=0 in the x-tipped-at-angle-ψ-polarization state 
cosψ
sinψ

⎛

⎝
⎜

⎞

⎠
⎟ ? 

_______________________________________________________

Find the combination of  ±45°polarization B-mode vectors 1
1

⎛
⎝⎜

⎞
⎠⎟
/ 2 , 1

−1
⎛
⎝⎜

⎞
⎠⎟
/ 2  for intial state and it’s initial Stokes vector.

Let the B-mode base vectors oscillate as they did in Fig. 2.4.6 and calculate how the Stokes vector of this initially (tipped-at-angle-ψ)-

polarization state evolves vs. time t.  To compare with an earlier phasor construction take ωslow=1 and ωfast=2.  

Sketch or describe the results in ABC-space and xy-space for intial angles ψ=15°, 30°, 45°.
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Solutions to ψ-state dynamics

ψ-polarization state
cosψ
sinψ

⎛

⎝
⎜

⎞

⎠
⎟  is an (a+ ,a− )  combination of B-unit vectors + = 2

1

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

and − = 2
1

2
−1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.

ψ = a+ + + a− −  is represented by 
cosψ
sinψ

⎛

⎝
⎜

⎞

⎠
⎟ = a+

2
1

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ a−

2
1

2
−1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 with components (a+ ,a− ) in A-basis.

   a+ = + ψ = 2
1

2
1⎛

⎝⎜
⎞
⎠⎟

cosψ
sinψ

⎛

⎝
⎜

⎞

⎠
⎟ =

cosψ + sinψ
2

,  a− = − ψ = 2
1

2
−1⎛

⎝⎜
⎞
⎠⎟

cosψ
sinψ

⎛

⎝
⎜

⎞

⎠
⎟ =

cosψ − sinψ
2

.

It helps to factor the sum cosψ + sinψ  using relations cosψ =2
1 (eiψ + e−iψ ) and sinψ = 2

−i (eiψ − e−iψ )

a+ = cosψ + sinψ
2

=2
1 eiψ + e−iψ

2
−2
i eiψ − e−iψ

2
=2
1 1− i( )eiψ + 1+ i( )e−iψ

2

a− = cosψ − sinψ
2

=2
1 eiψ + e−iψ

2
+2
i eiψ − e−iψ

2
=2
1 1+ i( )eiψ + 1− i( )e−iψ

2

The polar forms 
1+ i( )
2

= eiπ /4 and 
1− i( )
2

= e−iπ /4  let you factor the sums. (Here we define: β=2ψ−π/2.)

 a+ =2
1 (e−iπ /4eiψ + eiπ /4e−iψ ) =2

1 (ei(ψ −π /4) + e−i(ψ −π /4) ) = cos(ψ −π / 4) = cos2
β

 a− =2
1 (eiπ /4eiψ + e−iπ /4e−iψ ) =2

1 (ei(ψ +π /4) + e−i(ψ +π /4) ) = cos(ψ +π / 4) = −sin2
β

Each component oscillates at its assigned mode frequency.

 

a1
(ψ )(t)

a2
(ψ )(t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= a+e

−iω slowt 2
1

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ a−e

−iω fastt 2
1

2
−1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= cos2

β eis 2
1

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
− sin2

β eif 2
1

2
−1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 1

2

cos2
β eis − sin2

β eif

cos2
β eis + sin2

β eif

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

We simplify using B-unit vectors and define β = −β that turns out to be the B-axis polar angleβ ≡ βB . 

a+
(ψ )(t)

a−
(ψ )(t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= a+e

−iω slowt 1
0

⎛
⎝⎜

⎞
⎠⎟
+ a−e

−iω fastt 0
1

⎛
⎝⎜

⎞
⎠⎟
= cos2

β eis 1
0

⎛
⎝⎜

⎞
⎠⎟
− sin2

β eif 0
1

⎛
⎝⎜

⎞
⎠⎟
=

eis cos2
β

−eif sin2
β

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

eis cos2
β

eif sin2
β

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

The idea is to make it more like the standard form (A.11). The overall phase (s+f)/2 is factored out.

a+
(ψ )(t)

a−
(ψ )(t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

eis cos2
β

eif sin2
β

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= e

i (s+ f )
2

e
i (s− f )

2 cos2
β

e
−i (s− f )

2 sin2
β

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= e
i (s+ f )

2
e
−iα

2 cos2
β

e
+iα

2 sin2
β

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  where: α = f − s ≡ αB

Standard (α,β)-forms yield S-vectors with azimuth-α and polar angle-β in σ-operator quad-forms.

The quadratic forms of the operators σ B = 1
0
0
1( ) , σC = i

0
0
−i( ) , and σ A = 0

1
−1
0( )  give three S-components in terms of their polar 

angles (α ,β ) . However, the β  angle refers to the B-axis and α  to the C-axis.
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e
−iα

2 cos
β

2
e
iα
2 sin

β

2

⎛

⎝
⎜

⎞

⎠
⎟

*

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

e
−iα

2 cos
β

2

e
iα
2 sin

β

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= e
iα
2 cos

β

2
e
−iα

2 sin
β

2

⎛

⎝
⎜

⎞

⎠
⎟

e
−iα

2 cos
β

2

−e
iα
2 sin

β

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  = cos2 β
2
− sin2 β

2
                 = cosβ

e
−iα

2 cos
β

2
e
iα
2 sin

β

2

⎛

⎝
⎜

⎞

⎠
⎟

*

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

e
−iα

2 cos
β

2

e
iα
2 sin

β

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= e
iα
2 cos

β

2
e
−iα

2 sin
β

2

⎛

⎝
⎜

⎞

⎠
⎟

e
iα
2 sin

β

2

e
−iα

2 cos
β

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= eiα + e−iα( )cos β
2

sin β
2
= cosα sinβ

e
−iα

2 cos
β

2
e
iα
2 sin

β

2

⎛

⎝
⎜

⎞

⎠
⎟

*

0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

e
−iα

2 cos
β

2

e
iα
2 sin

β

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= e
iα
2 cos

β

2
e
−iα

2 sin
β

2

⎛

⎝
⎜

⎞

⎠
⎟

−ie
iα
2 sin

β

2

ie
−iα

2 cos
β

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= eiα + e−iα( )cos β
2

sin β
2
= sinα sinβ

Fig. B.3 Spin vector being rotated around B-axis during beats. The ψ-45° case is fixed on B-axis.
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How spinors give rotation products 

Now we find the product Ra Rb of rotation Ra by crank-axis  

Θ a = Θ̂aΘa following Rb by axis  


Θ b= Θ̂bΘb .

  

Ra (Θa ) ⋅Rb (Θb ) = e− i(σ•

Θa )/2e− i(σ•


Θb )/2 = (1cos Θa

2
   −   i (σ • Θ̂a )sin Θa

2
) (1cos Θb

2
   −   i (σ • Θ̂b )sin Θb

2
) =Rab (Θab )

=(1cos Θa

2
cos Θb

2
− i (σ • Θ̂a )sin Θa

2
cos Θb

2
− i (σ • Θ̂b ) cos Θa

2
sin Θb

2
− (σ • Θ̂a )(σ • Θ̂b )sin Θa

2
sin Θb

2
)

=1 cos Θa

2
cos Θb

2
− (Θ̂a • Θ̂b )sin Θa

2
sin Θb

2
⎛
⎝⎜

⎞
⎠⎟ − i σ • Θ̂a sin Θa

2
cos Θb

2
+ Θ̂b cos Θa

2
sin Θb

2
+ (Θ̂a × Θ̂b )sin Θa

2
sin Θb

2
⎡
⎣⎢

⎤
⎦⎥

= 1                           cos Θab

2
                      ⎛

⎝⎜
⎞
⎠⎟ − i σ •                                        Θ̂ab sin Θab

2
                                         ⎡

⎣⎢
⎤
⎦⎥

By equating the first two (expressions) you find the product crank angle Θab. Then you can equate the second two 
[expressions] and get the direction Θ̂ab of the product crank vector.

(e) Relation of Lorentz oscillators to Schrodinger classical analog
 Lorentz theory was concerned with the atomic spectral frequencies.  For each spectral line, Lorentz 
presupposed another one of his oscillators.  The discovery of quantum theory lets us associate each spectral line 
with a transition between a pair of energy levels.  Each spectral frequency is a difference between two 
eigenfrequencies 

 
ω ε1( )  and ω ε2( ) , i.e.,

   
 
ω 1↔ 2 transition( )= ω ε1( )−ω ε2( ) ,

where energy values are proportional to corresponding quantum frequencies by Planck's constant 

   
 = 1.054572×10−34 J ⋅s( ) .  The energy level eigenvalues for the transition pair are 

  
ε1 = ω ε1( )  and ε2 = ω ε2( )  while 

the observed spectral energy is just the difference between energy levels.
  

  
ΔΕ = ε1 − ε2 = ω 1↔ 2 transition( ) =  ω ε1( )−ω ε2( )     (2.4.10)

 It is not possible to directly observe the individual level frequencies 
  
ω (ε j )  of any quantum system.  

Quantum energy eigenstates 
 
ε1  or "quantum normal modes" are asleep, motionless, dead to the world; indeed 

they are called stationary states. Eigenstates of (2.4.1) only have phase time dependence, i.e.,

    j εk t( ) = e−iω (εk )t j εk 0( ) .      (2.4.11)

To get state probability one takes the absolute square ( | |2 ) which kills the phase factor. So all pure state 
eigenstate probability factors are motionless or time independent.

  j εk t( ) 2
= j εk 0( ) * j εk 0( ) = j εk 0( ) 2

= constant.    (2.4.12)

 Only by mixing two or more states of differing energy do we actually get observable motion. This is 
analogous to mixing two normal modes as in (4.3.16) which gives a modulation oscillation or beat frequency.
  

 
ωbeat mode 1 plus mode 2( ) = ω (ε1)−ω (ε2 )

(Recall Fig. 4.3.4.)  The beat frequency is analogous to the transition frequency in (2.4.10).  All Lorentz 
oscillations are the result of 'beating' between eigenstates belonging to two different energy levels. 
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Exercises for Ch. 4 Classical-quantum oscillator analogs
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Chapter 2.5 Wave resonance in cyclic symmetry
One gains insight into Fourier analysis by framing it in finite discrete domains. Here we will generalize normal 
mode analysis of Ch. 2.3 and Ch. 2.4 using spectral decomposition of nth-order cyclic Cn symmetry groups and 
introduce a powerful techniques used in classical and quantum physics. Then Ch. 2.6 thru 2.8 treat Fourier 
analysis of Green’s functions, continuous spectral analysis, and parametric resonance.

(a) A 3D-oscillator with cyclic C3 symmetry
 Ch. 2.4 introduced the B-type or bilateral-balanced symmetry of a coupled 2D oscillator with equivalent 
parts, that is, equal masses (m1=m2) and spring (k1=k2) couplings. Such systems are described by a doubly 
symmetric Hamiltonian matrix H or spring-constant matrix K=H2 as in (2.4.8a), and either matrix is a simple 
expansion (2.4.9) of a unit matrix 1 and a Hamilton-Pauli reflection matrix σB.

    
H = A B

B A
⎛
⎝⎜

⎞
⎠⎟
= A 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
+ B 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

                       = A ⋅1        + B ⋅ σB

 
  
(4.4.9a)
repeated

(4.4.7a)   
K = H2 = A2 + B2 2AB

2AB A2 + B2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

              = (A2 + B2 ) ⋅1         + 2AB ⋅ σB

 (2.5.1)

This is based on reflection symmetry σB defined by (σB)2=1 or the following C2 group product table.

     

   

C2 1 σ B

1 1 σ B

σ B σ B 1

      (2.5.2)

Now we generalize (2.5.2) for a 3D oscillator with 3-fold cyclic symmetry shown in Fig. 2.5.1 based on 
3-fold ±120° rotations r=r1 and (r)2=r2=r-1 defined by (r)3=r3=1 or a C3 g†g-product-table in (2.5.3) that pairs 
each operator g in the 1st row with its inverse g†=g-1 in the 1st column so all unit 1=g-1g lie on diagonal.

   

C3 r0=1 r1=r−2 r2=r−1

r0=  1 1 r1 r2

r2=r−1 r2 1 r1

r1=r−2 r1 r2 1

     (2.5.3a)

A C3 H-matrix is then constructed directly from the g†g-table and so is each rp-matrix representation. 

  
H =

r0 r1 r2
r2 r0 r1
r1 r2 r0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= r0

1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ r1

0 1 0
0 0 1
1 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ r2

0 0 1
1 0 0
0 1 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

                                = r0 ⋅1                  + r1 ⋅r
1                  + r2 ⋅r

2

  (2.5.3b)

Each H-matrix coupling constant {r0, r1, r2} is related respectively to an operator {r0, r1, r2} that transmits a 
particular force or current as labeled in Fig. 2.5.1a. This particular H-matrix is self-conjugate (H†=H) and has 
time reversal symmetry provided {r0, r1, r2} satisfy conjugation relations.

    r0
∗ = r0  (2.5.4a)     r1

∗ = r2  (2.5.4b)     r2
∗ = r1  (2.5.4c)

H has reflection-parity symmetry C3v if the parameters r1 and r2 are also real and equal (r1=r=r2=r*).
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(a) equilibrium zero-state
x0=x1=x2=0 0

0
0

M

M

M

M

M
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xx00==11

xx11==11 xx22==11

120°
rotation
r1

-120°=240°
rotation
r-1=r+2

11
00
00

00
11
00

00
00
11

(p=0) unit base state
|0〉=r0|0〉

(p=0) unit base state
|0〉=r0|0〉

(p=1) unit base state
|1〉=r1|0〉=r-2|0〉

(p=1) unit base state
|1〉=r1|0〉=r-2|0〉

(p=2) unit base state
|2〉=r2|0〉=r-1|0〉

(p=2) unit base state
|2〉=r2|0〉=r-1|0〉

Unit displacement
of mass point-0
from equilibrium

Fig. 2.5.1(a) C3-symmetric coupled oscillator in equilibrium and unit-displacement base states p=0,1, and 2.

(b) C3 Spectral resolution: 3rd roots of unity
 We can spectrally resolve H if we resolve r since is H a combination (2.5.3b) of powers rp. The r- 
symmetry gives a cubic r3=1, or r3-1=0 that resolves to factors involve three 3rd roots of unity ρm=eim2π/3.

  1 = r3  implies :  0 = r3 −1 = (r − ρ01)(r − ρ11)(r − ρ21) where :  ρm = eim 3
2π

  (2.5.5a)

By (2.C.7) there is an idempotent projector P(m) such that r·P(m)=ρmP(m) for each eigenvalue ρm of r, and the 
three of them are orthonormal (   P

(m)P(n)=δmnP(m) ) and sum to unit 1 by the completeness relation in (2.C.8).

     r ⋅P
(m)=ρmP(m)   (2.5.5b)     1  =          P(0)   +        P(1)   +         P(2)  (2.5.5c)

 ρ0=e
i0=1 , ρ1=e

i 3
2π

,   ρ2=e
−i 3
2π

,     r  =   ρ0   P(0)  +   ρ1   P(1)  +   ρ2    P(2)  (2.5.5d)

 (ρ0 )
2=1 ,      (ρ1)2=ρ2 ,  (ρ2 )2=ρ1 ,     r

2 = (ρ0 )2P(0)  + (ρ1)2P(1)  + (ρ2 )2P(2)  (2.5.5e)

The last two expressions for r and r2 result if r acts once and twice on (2.5.5c) using (2.5.5b).
 Projector P(m) can be derived in terms of 1, r and r2 using (2.C.8), but there is an easier way since they 
are orthogonal by (2.C.7). Just conjugate each ρmp to ρ*mp in (2.5.5) and multiply by factor 31 . Its square root 

normalizes eigenbra vectors 
   

(m)3 = 0 P(m) / 3
1  listed below and in Fig. 2.5.2 of rp and H or K.
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P(0)=3
1 (r0  +    r1+    r2 ) =3

1 (1+            r1+            r2 )

P(1)=3
1 (r0  + ρ1

*r1+ ρ2
*r2 ) =3

1 (1+ e−i2π /3r1+ e+i2π /3r2 )

P(2)=3
1 (r0  + ρ2

*r1+ ρ1
*r2 ) =3

1 (1+ e+i2π /3r1+ e−i2π /3r2 )

    implies: 

   

(03) = 0 P(0) 3 = 3
1 ( 1       1         1      )  

(13) = 0 P(1) 3 = 3
1 ( 1  e−i2π /3  e+i2π /3) 

(23) = 0 P(2) 3 = 3
1 (1  e+i2π /3  e−i2π /3)   

(2.5.6)

 We simply use rp operators to define coordinate bases in Fig. 2.5.1 and their eigen-projectors. This then 
gives bra or ket eigenvectors of Hamiltonian matrix H or spring matrix K=H2.

Modular arithmetic of mode momentum m vs. position point p
 There are two distinct types of “quantum” numbers. One is p=0,1,or 2 that is power p of operator rp that 
defines each oscillator’s position point p in Fig. 2.5.1. The other is m=0,1,or 2 that is the mode momentum m of 
the waves sketched in Fig. 2.5.2. Each number follows modular arithmetic with sums or products taken as an 
integer-modulo-3 that is always 0,1,or 2. For example, for m=2 and p=2 the number (ρm)p=(eim2π/3)p is eimp·2π/3= 
ei4·2π/3= ei1·2π/3 ei2π= ei2π/3=ρ1. That is, (2-times-2) mod 3 is not 4 but 1 (4 mod 3=1), the remainder of 4 divided by 
3. Thus, (ρ2)2=ρ1. Also, 5 mod 3=2 so (ρ1)5=ρ2, and 6 mod 3=0 so (ρ1)6=ρ0. Other examples: -1 mod 3=2 [(ρ1)-1=
(ρ-1)1=ρ2] and -2 mod 3=1. The trick is to imagine walking around the ring in Fig. 2.5.1 and reading off the 
address points p=… 0,  1,  2,  0,  1,  2,  0,  1,  2,  0,  1,  2,…. If you just count the number of points without doing p mod 3 
your count is: …-3,-2,-1,  0,  1,  2,  3,  4,  5,  6,  7, 8,…. The mod 3 count is applied to both momentum number m and point 
number p since eimp2π/3 must always equal ei(mp mod 3)2π/3.
    (ρm)p=(eim2π/3)p = eimp·2π/3=ρmp = ei(mp mod 3)2π/3=ρmp mod 3   (2.5.6)

ρ2=e
-i2π/3

ρ1=e
+i2π/3

ρ0=1=e
+i0

Real axis

Imaginary
axis

p=0 p=1 p=2

m=0
3
ρ00=1 ρ01= 1 ρ02= 1

m=1
3
ρ10=1 ρ11=e

-i2π/3
ρ12=e

i2π/3

m=2
3
ρ20=1 ρ21=e

i2π/3
ρ22=e

-i2π/3

p is position

wave-number
m=

“momentum”

C3 mode phase character tables

norm:
1/√3

p=0 p=1 p=2

Real axis

Imaginary
axis

* * *

* * *

* * *

Fig. 2.5.2 C3 coupled oscillator moving-wave normal mode states m=0,1, and 2 in terms of 3rd roots of 1.

Eigenvalues and wave dispersion functions
 H (or K) matrix eigenvalues of eigenbra 

  
(m)3  or ket 

  
(m)3  in Fig. 2.5.2 are sums of eigenvalues 

  
m r p m =(ρm)p=(eim2π/3)p = eimp·2π/3 of rp according to (2.5.3b). C3v cases (2.5.4) are treated. (r1=r=r2=r*)
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 H eigenvalues for m=±1 (that is, m=1 and m=2) are degenerate and distinct from the m=0 level. Also, K 
matrix eigenfrequencies are square roots of K-eigenvalues. The m=±1 degeneracy allows us to combine 
conjugate moving wave pairs into real sine-and-cosine standing wave pairs as shown below. The K-eigen-

frequency for k0=2k is ω=
  

2k − 2k cos(  3
2πm) = 2 k | sin(  3

4πm) |shown by a right hand side plot in Fig. 2.5.3.

   

Moving  eigenwave Standing  eigenwaves H − eigenfrequencies K − eigenfrequencies
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Fig. 2.5.3 C3 coupled oscillator standing-wave normal mode states.
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Real standing wave phasors are either in phase (ρ=0) or else completely out of phase (ρ=±π). They must 
therefore be completely current-free states and are called quenched waves.

(a) Shower-Curtain Models
 What if we hook up N oscillators in a ring? Let’s imagine rings of N masses in Fig. 2.5.4 like lead 
weights at the bottom of a shower curtain. An N-dimensional K matrix like (2.5.10b) gives forces Fm.
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  where: 

K = k + 2k12

k = Mg


(⋅) = 0

 (2.5.12)

Each mass-M connects through a k12 spring to its two nearest neighbors. The mass at origin coordinate x0 
connects to x1 on its right and xN-1 on its left. Then the first mass to the right of origin with coordinate x1 
connects to x2 on its right and x1 on its left, and so on around the loop. If all in (2.5.12) are fixed except x0 (Let 

x0 vary but fix 0=x1=x2=…xN-1) then x0 has its pendulum oscillation frequency  ω = M
 k = 

g  plus that of two k12-

springs connecting it to fixed neighbors with restoring force –F0=Kx0 = (k+2k12)x0 from (2.5.12).
This circular shower curtain model may be solved using complex arithmetic and symmetry arguments. 
 We now use symmetry to find eigenvectors um of the K-matrix in (2.5.12) for which K•um=kmum. The um 
give directions in u-space that are invariant to spring-force matrix K and thus don’t change in time.

                 

N=7N=5

N=2 N=4 N=6

N=12
N=3

p=1

p=2
p=3

p=4

p=5

p=6

p=7
p=8

p=9
p=10

p=11

p=0 p=12

Fig. 2.5.4 N-Coupled Pendulums. (Viewed from above.)

Nth Roots of unity
 The eigenvectors and eigenvalues of the N-by-N-matrix K (2.5.12) are made of the complex Nth-roots of 
unity, that are solutions to the equation xN=1. The 2-mass solutions of (2.5.1) use 2nd roots ±1 of 1. Euler’s 
exponential leads to the Nth roots of 1=e2πi, that is, exactly N different solutions to xN= e2πi. 
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xN = 1= e2π i    implies : x = e2π i( )

1
N = e

2π i
N    and:   xm = e

2π i
N

m
  satisfies: xm( )N

= 1   (2.5.13)

Square, cubic, quartic, quintic(5th), hexaic (6th), and duodecaic (12th) roots of 1 are plotted in Fig. 2.5.5. They 
form regular polygons whose vertices are powers (ψN)m of a fundamental Nth root ψN=e2πi/N.
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Fig. 2.5.5 Nth-Roots of Unity. Collections of Fourier coefficients for discrete N=2,3,4,5,6.7, and 12.

 We’ll use N=12 since it’s easy to picture clock numerals. Note that 0 and 12 o’clock share a point (ψ12)
0=ei0=(ei2π/12)12=(ψ12)12 as do (ψ12)-1=(ψ12)11, and (ψ12)-2=(ψ12)10, and so on down to the 6 o’clock point (ψ12)-6=-1=
(ψ12)6. Real axis (6 and 12 o’clock) is horizontal in Fig. 2.5.5 but vertical in later Fig. 2.5.6.

(b) Solving shower curtain models by symmetry
 Eigenvectors of rotate-shuffle-ops r and r -1 are also eigenvectors of K-matrix (2.5.12).

     K = K ⋅1− k12 ⋅r − k12 ⋅r
−1    where:   1= unit matrix  , and :   (2.5.14a)
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 (2.5.14b)

So let’s find vectors um=(x0,x1,x2,x3,…) that are the same after a rotate-shuffle except for a factor fm. 
  r -1•um=r -1(x0,x1,x2,x3,…) =( x1,x2,x3,x4,…) = fm (x0,x1,x2,x3,…) = fmum   (2.5.14c)
Factors fm will be the desired eigenvalues for r -1, r  and by (2.18.14a) for K, too.
 The N=2 eigenvector u+=(1,1) in (2.3.30) gives us a clue for N=12. Fig. 2.5.6(g) shows pendulums 
swinging together in the (m12)=012 wave with phasor xp set to 0th-root (ψ12)=1. The π-out-of-phase wave (m12)
=612 has xp set to the pth power of 6th-root (ψ12)=-1, analogous to (2.3.30) vector u-=(1,-1).
  u0 = (1,1,1,1,1,1,…)  (2.5.15a)      u6 = (1,-1,1,-1,1,-1,…)  (2.5.15b)   
To understand general um eigenvectors consider the (m12)=112  and 212 vectors plotted in Fig. 2.5.6(g).
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xp : x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

u1 = (1 eik11 eik12 eik13 eik14 eik15 eik16 e−ik15 e−ik14 e−ik13 e−ik12 e−ik11 1)

u2 = (1 eik12 eik14 eik16 eik18 eik110 1 eik12 eik14 eik16 eik18 eik110 1)

eik1 = e2πi/12

ei12k1 = 1

Each phasor in wave u1 leads the phasor to the left of it by 1-hour. Clocks are set 12 o’clock, 1 o’clock, 2 
o’clock, 3 o’clock, 4 o’clock, 5 o’clock, and so on for one complete 12 hr. day going around the “world.”
Each phasor in wave u2 leads the phasor to the left of it by 2-hours. Clocks are set 12 o’clock, 2 o’clock, 4 
o’clock, 6 o’clock, 8 o’clock, 10 o’clock, and so on for two complete 12 hr. days going around the loop. This 

means the u±m eigenvalues of the shuffle-ops r -1 and r  are the single-step phase-factor fm =  e
±ik1m .

   r
−1 •um = eik1mum  (2.5.16a)       r •um = e−ik1mum  (2.5.16b)

Here k1=2π/N=2π/12. The K-matrix has the same eigenvalue and frequency for a u+m wave as for u-m.

  
   
K •um = K1− k12 r−1 + r( )⎡

⎣⎢
⎤
⎦⎥•um = K − k12 eik1m + e−ik1m( )⎡

⎣⎢
⎤
⎦⎥
um = K − 2k12 cosk1m⎡⎣ ⎤⎦um   (2.5.16c)

This gives the wave or spectral dispersion function. An ω(k)=ωm is the key to wave theory.

   ωm = K − 2k12 cosk1m
M

=
k + 2k12 − 2k12 cos 2πm / N( )

M
    (2.5.17)

Linear wave motions, velocity, and spreading (dispersion) are ruled by dispersion functions of some kind. The 
K-pendulum dispersion function ωm above is a good example and is plotted with others in Fig. 2.5.9.
An ω(k) plot is a graph of per-time (frequency ω) versus per-space (wavevector k). In other words it is a per-
space-time graph. These “winks-vs-kinks” functions determine wave physics as shown in Sec. (d).
 If we compare binary (N=2) oscillators with (N=3) models in Fig. 2.5.1 thru (N=12) “clocktane” models 
in Fig. 2.5.3 we see base-3 or modulo-3 labels (m)3 introduced in connection with (2.5.8) are analogous to binary 
base-2 labels of m=(0)2 (symmetric) and m=(1)2 (anti-symmetric) in Fig. 2.3.12.

	

 Higher N wave labeling approaches a continuum. The    K = k(21− r − r−1)  matrix (2.5.14a) is closely related 

to a 2nd finite-difference matrix that approaches a 2nd x-derivative operator 
  ∂t2
∂2 .
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2nd derivative:    ∂
2 y
∂x2 ≈ y(x + Δx)− 2y(x)+ y(x − Δx)
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−1 2 −1 ⋅ ⋅ ⋅
⋅ −1 2 −1 ⋅ ⋅
⋅ ⋅ −1 2 −1 ⋅
⋅ ⋅ ⋅ −1 2 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⋅
y1

y2

y3

y4

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

⋅
y0 − 2y1 + y2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H and K matrix equations are finite-difference versions of quantum and classical wave equations.

   

i ∂
∂t

ψ = (H − E)ψ     ( H-matrix equation)

i ∂
∂t

ψ = (−r ∂2

∂x2 − E)ψ   (Scrodinger equation) 
	

 	



   

− ∂2

∂t2 y = K y                 ( K-matrix equation)

− ∂2

∂t2 y = −k ∂2

∂x2 y       (Classical  wave equation)
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Because the latter has a 2nd time derivative (acceleration   a=y in Newton’s F=ma equal to Hooke’s F=-K·y) the 

frequency values of classical wave modes are square roots of the K-matrix eigenvalues , but quantum wave 
frequencies are simply proportional to H-matrix eigenvalues as was noted in (2.5.11).
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r 0 r 1 r 2 r 3 r 4 r 5 r 6

(a)
N=2

(b)
N=4

(c)
N=6

(e)
N=5

-16=

-26=

-15=

-25=

(f)
N=7

(d)
N=3

ReΨ

ImΨ

C12
012
112
212
312
412
512
612
712
812
912
1012
1112

r 0 r1 r 2 r3 r4 r 5 r6 r7 r 8 r9 r10 r11

(g)
N=12

-112= +1112

-212= +1012

-312= +912

-412= +812

-512= +712

-612= +612

-712= +512

-812= +412

-912= +312

-1012= +212 Entry in
Row-mN and Column-rp

of a Fourier Wave Table
is a plane wave phasor

with
wavevector:
km=m2π/N
position point:

xp=p

-ikmxpΨm(xp)=e*

Fig. 2.5.6 Discrete wave phasor or Fourier transform tables for N=2,3,4,5,6,7, and 12.
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(c) Wave structure and dynamics
 When watching phasor waves in motion we are struck by the impression that some “spirit” is going 
through the phasors. (See WaveIt and BohrIt animations.) That, like many spooky notions, is an illusion because 
only the individual phasors determine the motion of their respective oscillator. 
 To honor our spooky illusion we construct what’s called a wavefunction. We simply “fill in” the space 
between each xp-phasor point p=0,1,2… with the continuous plane wave function eikx of a continuous coordinate 

x. That is easy to since we are given discrete functions 
 
Ψm xp( ) = e

ikmxp in Fig. 2.5.6 and it is easy to replace xp 

with x and plot the resulting 
 
Ψm x( ) = eikmx . Wavevector km is still be discrete in order to fit an integral number m 

of wavelengths in the ring. But, as N becomes large, km becomes more continuous, too.

   
  
Ψm x( ) = eikmx = coskmx + isin kmx   where:  km = m 2π

N
.      (2.5.18a)

Fig. 2.5.7 shows the real part of the wave plotted darkly and the imaginary part shaded.

Distinguishing Ψ and Ψ*: Conjugation and time reversal
 Some symmetry conventions are used. The wave phasors plotted in Fig. 5.3 are for what’s called the 
conjugate Ψ* or time-reversed-wave. Its phasors run backwards or counter-clockwise like engineer phasors. 
Conjugation (*) reverses imaginary part ±sign.

  
Ψm * x( ) = e−ikmx = coskmx − isin kmx   where:  km = m 2π

N
.      (2.5.18b)

Wave tables with wavevector km or m-number as a row label must contain the conjugate (eikx)*=e-ikx. Since 
we’re plotting real Re Ψ in the vertical-up direction and Im Ψ in the horizontal-left direction, the act of 
conjugation (*) reflects the horizontal direction of phasor arrows. (Dirac’s bra-ket notation is 〈x|Ψm〉=Ψm (x)= 
〈 Ψm |x 〉* where “bras” or “row-vectors” imply a complex conjugating star (*)) 
 Ex.3.2.11 derives the sine-phase-lag rule: A phasor leading its follower by Δφ feeds it in proportion to 
the sine of Δφ. Wave propagation is from leader to follower. Plane wave eigenvectors are eigenvectors of the 
shuffle-op r in (2.5.14) so each phasor leads one side by Δφ and a follows the other side by the same lag -Δφ. 
Whatever is taken gets passed on with no chance to swallow and get fatter! Thus all phasors in a K-matrix 
eigenvector maintain area forever. Thus each Ψm (x) is a stationary state or eigenstate wave. A real vs. 
imaginary mnemonic: Imagination precedes reality by one quarter. The imaginary wave (gray) always precedes 
the real one by exactly  1/4-wavelength. ImΨ is the “gonna’be” and ReΨ “is.”
 Note that N-modular waves obey the base-N arithmetic. For example, the (11-mod-12) wave (1112) is the 
same as a (-1-mod-12) wave (-112). If we ignore the “spirit” wavefunction between the 12 points then (1112)=(-112) 
wave has the exact shape of a (+112) wave going in the opposite direction as seen by closely examining Fig. 
2.5.6(g). Wave (1012)=(-212) and wave (+212) are similarly related, and so forth up to the wave (612)=(-612) which 
are identical standing waves known as Brillouin-band-boundary waves.
 Standing waves are colored red while moving waves are colored green. (The international colors for stop 
and go are being used there and in preceding figures.) Recall that real number phase differences of Δφ=0 or else 
Δφ =±π imply energy flow stops since then sinΔφ=0. All other phases are complex and allow flow to go. 
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Fig. 2.5.7 Continuous “spirit” wavefunctions for N=2-7, and 12. NOTE:Gray ImΨ is for Ψ not Ψ*.
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(d) Wave superposition
 Suppose we add a Ψm=1(xp) wave to a Ψm=2(xp) wave of the same amplitude. The construction in Steps 
1-5 of Fig. 2.5.8 does this phasor-by-phasor at time t=0, showing both their real and imaginary components. A 
vector sum is performed to obtain a resultant phasor at each of 12 points x0, x1, x2, … x11, where starting point is 

x0=x12. The algebraic sum is done by an expo-sine-cosine identity ( eia + eib = e
ia+b
2 e

ia−b
2 + e

− i a−b
2

⎛
⎝⎜

⎞
⎠⎟

).

 
  

Ψm=1 xp( ) +Ψ ′m =2 xp( ) = e
imp2π

12 + e
i ′m p2π

12 = e
ip m+ ′m

2
π
6 e

ip m− ′m
2

π
6 + e

−ip m− ′m
2

π
6

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2e

ip m+ ′m
2

π
6 cos p m− ′m

12
π

 
  

Ψm=1 xp( ) +Ψ ′m =2 xp( ) = e
ipπ

6 + e
i2 pπ

6        = e
ip1+2

2
π
6 e

ip1−2
2

π
6 + e

−ip1−2
2

π
6

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

           = 2e
ipπ

4 cos pπ
12

  (2.5.19)

 The overall phase factor   e
ipπ

4 = e
i 3
2

p2π
12  turns 1.5 times while the envelope factor 

  
cos pπ

12
= cos 1

2
p2π
12

 does half a turn 

in the space between p=0 and  p=12. 

 Fig. 2.5.8 reveals a beat that appears at first glance to be 100% complete, but the 
  
cos pπ

12
 envelope is 

twisted π-out of phase at p=12, a kind of half-beat like the example in Fig. 2.5(a). The real wave inside the 
envelope does 1/2 phasor turn by p=4, which is 1/3 of the ring circumference from p=0 to p=12. So it’s doing 
3/2 turns per 12 units, but the twist of the envelope makes that look like two full turns. 

Wave phase velocity
 Each wave-km phasor turns clockwise with time in Step 6 according to its frequency ωm. 

 
  
Ψm xp ,t( ) = Ψm xp ,0( )e−iωmt = e

ikmxpe−iωmt = e
i kmxp−ωmt( )    (2.5.20a)

The wave appears to move. The point where phase 
  
kmxp−ωmt=0  moves at phase velocity Vphase.

 
  
Vphase 1 plane wave( ) = xp

t
=
ωm
km

      (2.5.20b)

Phase velocity is time wink rate over spatial kink setting, ω over k. The wink rate ωm is given in terms of kink 
setting or wavevector km=k1m by a dispersion function like (6.7). For low km, ωm is linear: ωm=C·km.

 ωm = 2k12 − 2k12 coskm
M

= 2 k12

M
sin2km ≈Ckm , where: C=Vphase = 4 k12

M
 for: km = m 2π

N
<<1      (2.5.20c)

(Note: gravity g and 
  
k = Mg


are zero here.) Short waves, like dogs with short legs, must walk faster to keep up a 

speed C. If long wave-km=1 advances all its phasor by one tick, then twice-as-kinky and half-as-short wave-km=2 
must do two ticks to keep up in Step 6-8 of Fig. 2.5.8 and make the beat pattern move rigidly. Otherwise, wave 
patterns disperse as we’ll see. That’s why the “winks-vs-kinks” function ωm(km) is called a dispersion function. It 
gives the phase and group velocities associated with any pair of frequencies as discussed in what follows.
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p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10 p=11 p=12
(start-
over)

Step-1 Construct 4 rows of 13 radius-2unit phasor circles with center-to-center distance of 5-units
(For sideways paper 5-units=1 inch. For normal vertical paper: 5-units=1/2 inch)

Label points p=0, 1, 2, 3, ....11, 12

p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10 p=11

Step-2 Construct 12 equal time tics on first ( p=0) and last ( p=12). Connect them with light horizontal lines
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Step-3 Construct and label the m12=112 or k=1 wave by setting phasors back 1 hr. for each p to 0, -1, -2, -3, ...
(12, 11, 10, 9 ..)

Step-4 Construct and label the m12=212 or k=2 wave by setting phasors back 2 hr. for each p to 0, -2, -4, -6, ...
(12, 10, 8, 6 ..)

Step-5 Add phasors of k=1 wave to k=2 wave

Sketch real and imaginary “spirit“ waves Re Ψm and Im Ψm

Sketch real and imaginary “spirit“ waves Re Ψm and Im Ψm

p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10 p=11
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Step-6 Advanceall m12=112 or k=1 phasors by 1 hr.

Step-7 Advance all m12=212 or k=2 phasors by 2 hr.

Step-8 Add phasors of k=1 wave to k=2 wave

Sketch real and imaginary “spirit“ waves Re Ψm and Im Ψm

Sketch real and imaginary “spirit“ waves Re Ψm and Im Ψm

Fig. 2.5.8 Adding (m=1) and (m=2) waves. Step 1-5 is initial time t=0. Step 6-8 is later time t=1 tick.

©2016 W. G. Harter Chapter 5 Wave Resonance in Cyclic Symmetry 80



Group velocity and mean phase velocity
 A sum of two waves forms patterns that don’t resemble either wave and the patterns may change or 

disperse over time. We factor their sum using   e
ia + eia = ei(a+b)/2(ei(a−b)/2 + e−i(a−b)/2 ) = 2ei(a+b)/2 cos(  2

a−b) .

  
Ψkm

xp ,t( ) +Ψkn
xp ,t( ) = e

i kmxp−ωmt( ) + e
i knxp−ωnt( ) = 2e

i
km+kn

2
xp−

ωm+ωn
2

t
⎛
⎝⎜

⎞
⎠⎟ cos

km − kn
2

xp −
ωm −ωn

2
t

⎛
⎝⎜

⎞
⎠⎟

 (2.5.21)

The sum wave has two velocities, one for the cosine envelope, and one for the exponential phase inside. Zeroing 
the cos(.) phase gives exterior envelope velocity Venvelope or group velocity Vgroup.

  

km − kn
2

xp −
ωm −ωn

2
t

⎛
⎝⎜

⎞
⎠⎟
= 0  implies: xp =

ωm −ωn
km − kn

t     or:  Venvelope =
ωm −ωn
km − kn

=Vgroup   (2.5.22)

Zeroing the ei(.) phase gives an interior wave velocity Vinterior or mean phase velocity Vmean phase.

  

km + kn
2

xp −
ωm +ωn

2
t

⎛
⎝⎜

⎞
⎠⎟
= 0  implies: xp =

ωm +ωn
km + kn

t     or:  Vinterior =
ωm +ωn
km + kn

=Vmean phase  (2.5.23)

A linear dispersion (ωm =Ckm) makes a sum wave move rigidly, that is, its interior and envelope wave go the 
same speed C. By (2.5.20c), individual wavespeed is C, too. (ωm/km=C=const.)

  
  
Vinterior =

Ckm +Ckn
km + kn

= C =
Ckm −Ckn

km − kn
=Venvelope   if:  ωm = Ckm  for all m.     (2.5.24)

 For nonlinear dispersion, speed Vinterior of a wave’s “guts” differs from speed Venvelope of its “skin.” (Imagine a 
slithering boa constrictor swallowing live rabbits that continuously hop along inside it!)
 Absolute square | Ψ|2= Ψ* Ψ of equi-amplitude sum Ψ=ψm+ ψn (2.5.21) is just a cosine squared.

 
  
Ψ

2
= e

i kmxp−ωmt( ) + e
i knxp−ωnt( ) 2

= cos2 km − kn
2

xp −
ωm −ωn

2
t

⎛
⎝⎜

⎞
⎠⎟

   (2.5.25a)

The mean phase of ei(.) cancels (ei(.)*ei(.) = e-i(.)ei(.)=1) leaving envelope wave | Ψ|=√( Ψ* Ψ). Envelope | Ψ| is 
more complicated for a sum of waves with unequal amplitudes (Am≠ An). (Recall cosine law.)

  
  
Ψ = Ψ*Ψ = Ame

i kmxp−ωmt( ) + Ane
i knxp−ωnt( ) 2

= Am
2
+ An

2
+ 2 Am An cos2 km − kn

2
xp −

ωm −ωn
2

t
⎛
⎝⎜

⎞
⎠⎟

(2.5.25b)

Both (2.5.25a) and (2.5.25b) have the same cos(.) and envelope velocity Vgroup but internal phase behavior is 
very different and “gallops” at a rate that depends on SWR. (The rabbits try to hop out of the boa!)
 Fig. 2.5.9 plots archetypical dispersion functions ω(km). Constant dispersion (ω=K=Mg/l) describes 
uncoupled (k12=0) pendulums. Weak coupling but no gravity (g=0) is approximated by linear dispersion 
(ωm=Ckm)(2.5.20c), and quadratic dispersion (ωm=B+Ckm2) approximates weak coupling with gravity for low 
wavevector km<<π. Next we will see how any per-space-time ω(k) dispersion graph is related to a space-time x
(t) graph of paths of wave peaks and zeros.
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Fig. 2.5.9 Types of dispersion ω(k) functions and geometry of phase and group velocity.
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Chapter 2.6 Coupled Oscillator Spectral Response: Green's Operators

(a) Multidimensional Greenʼs operators 
 The normal coordinate eigenbasis gives decoupled equations (2.3.15b) of independent forced damped 
harmonic oscillators.  The Lorentz-Green solutions (2.2.15) and (2.2.25) may be applied, in turn, to each normal 
coordinate equation.

   
   
qε j

+ 2Γ j qε j
+ω0

2 ε j( )qε j
t( ) = aε j

t( )     (2.6.1)

Here the normal coordinate acceleration stimuli are assumed to have the form:

  aε j t( ) = ε j a t( ) = Σ
k
ε j k k a t( ) = Σ

k
ε j k ak 0( )e−iω st .  (2.6.2)

(Recall (2.3.15d).)  The 
  
ak 0( )  are amplitudes of stimulus acceleration applied to   k − th  original coordinate  xk  at 

frequency  ω s , and 
 
ε j k  are components of the transformation from  xk  to 

 
qε j

.

 The general normal coordinate solutions follow from (2.2.25):

  
  
qε j

t( ) = Aje
−Γ jte

−iωΓ j
t
+G

ω0 ε j( ) ω s( )aε j
0( )e−iωst     (2.6.3a)

The amplitude 
 
Aj  of the transient term depends on initial values 

  
qε j

0( ) , and 
   
qε j

0( ) .  Following (2.2.9) we define 

the damped angular frequencies.  (Recall Exercise 2.2.9.)

   ωΓ j
= ω0

2 ε j( )− Γ j
2       (2.6.3b)

The Lorentz-Green’s function has the same form as (2.2.14).

  

  

G
ω0 ε j( ) ω s( ) = 1

ω0 ε j( )2 −ω s
2 − i2Γ jω s

     (2.6.3c)

 Generally, a stimulus of just one of the original coordinates  xk  excites all the normal coordinates through 

the ε j k  components in (2.6.2).  This, in turn, means excitation of all 
   

x1, x2, …( )  coordinates by stimulus 

of any one of them.  However, stimulus of just one normal coordinates 
  
qε j

aεk
0( ) = aδ jk( )   leads to excitation of 

just that one coordinate.  

(b) Abstract Greenʼs operators 
 It is often possible to use spectral decomposition to solve abstract linear multidimensional equations 
such as, equation (2.3.10d) (which is repeated below) even when the impedance operators fail to commute.
    

 
L q +R q +A q = f t( )     (2.6.4)

By assuming a complex exponential solution and stimulus,

    q t( ) = q 0( ) e−iωt ,      f t( ) = f 0( ) e−iωt       (2.6.5)

one obtains an operator equation
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    F ω( ) q 0( ) e−iωt = f 0( ) e−iωt     (2.6.6)

where a composite force matrix operator is defined by 

    F ω( ) = −ω 2L− iωR +A .    (2.6.7)

The spectral decomposition of 
 
F ω( )  for fixed ω  may be used to solve (2.6.4).  The eigenvalues 

 
φ j ω( )  of 

 
F ω( )  

are functions of frequency ω and may be complex.

   F ω( ) ε j ω( ) = φ j ω( ) ε j ω( )      (2.6.8)

The eigenvectors ε j ω( )  may also depend on ω .

 Homogeneous or particular transient solutions ρ j ω( )  are those for which the stimulus is zero. 

f 0( ) = 0( )   These are eigenvectors for zero eigenvalues.

   F ω( ) ρ j ω( ) = 0 .      (2.6.9)

Solving the following gives ω  values analogous to free damped frequency (2.2.9).
   

  
φ j ω( ) = 0        (2.6.10)

Homogeneous eigenvectors ρ j ω( )  describe how the unstimulated or 'free' system behaves.

 Inhomogeneous or response solutions to (2.6.8) involve inversion of (2.6.6) to 

   q 0( ) =G ω s( ) f 0( )       (2.6.11)

where the Green’s operator is found by functional spectral decomposition to obtain the inverse 
  
F ω( )−1  for a 

given stimulus frequency  ω =ω s .

   G ω s( ) = Σ
j=1

1
φ j ω s( )Pj ω s( ) .     (2.6.12)

Idempotent projectors 
  
Pj  are found using (2.C.8).  Again, they may depend on  ω s .

Example: Ion trap
A non-trivial example of the abstract Green’s techniques is provided by linearized cyclotron trap equations.

 
 

m 0
0 m

⎛
⎝⎜

⎞
⎠⎟
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⎛

⎝
⎜⎜
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⎜
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⎝
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k1 0
0 k2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x1
x2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

f1
f2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

. (2.6.4)Example

Here 
  
β = eB  parametrizes a magnetic field force 

  
e v ×B( )  due to a  B− field  normal to 1-2 axes while k1 and k2 

represent the x1 and x2 harmonic force constants of a quadrupole trapping potential. This is a problem of one 
particle in two dimensions that has similar form to the preceding problems of two one-dimensional particles.  
One difference is that the R-matrix is anti-symmetric. The resulting 

 
F ω( ) -matrix is:

  F ω( ) = −ω 2L− iωR +A =
−ω 2m + k1 −iωβ

iωβ −ω 2m + k2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (2.6.7)Example

The homogeneous (stimulus-free) eigenvalue equation has the form:
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−ω 2m + k1 −iωβ

iωβ −ω 2m + k2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x1 0( )e−iωt

x2 0( )e−iωt
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0

0
⎛
⎝⎜

⎞
⎠⎟

    (2.6.9)Example

Dividing by mass m and setting the eigenvalues of 
 
F ω( ) /m to zero gives the following equation.

 φ ω( )
m

= −ω 2 + k1 + k2
2m

± k1 − k2
2m

⎛
⎝⎜

⎞
⎠⎟
2
+ ωβ

m
⎛
⎝⎜

⎞
⎠⎟
2
= 0      (2.6.10)Example

Solving for ω  gives two physically distinct values ω+ and ω- for the angular frequency.

  ω± = k1 + k2
2m

+ γ 2

2
± k1 − k2

2m
⎛
⎝⎜

⎞
⎠⎟

2
+ γ 2 k1 + k2

2m
⎛
⎝⎜

⎞
⎠⎟ +

γ 4

4
,   where: γ = β

m
  (2.6.13)

Here we denote the untrapped cyclotron angular frequency by γ = β  /m. 
  If the trapping potential is isotropic 

  
k1 = k = k2( )  the ω±  are frequencies of trapped cyclotron orbits. The 

isotropic F(ω)/m matrix is the following. 

   F(ω )
m

= −ω 2 0
0 −ω 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+ 1
m

k −iωβ
iωβ k

⎛

⎝
⎜

⎞

⎠
⎟     (2.6.14)

The eigenvector for the higher frequency ω+ (including a time dependent phase factor) is 

  
x1
+ 0( )e−iω+t

x2
+ 0( )e−iω+t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= r 0( )

1
2
i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

e−iω+t =
r 0( )cosω+t

r 0( )sinω+t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ imaginary parts( ) ,   (2.6.15a)

The eigenvalue (2.6.15b) and frequency (2.6.15c) come from (2.6.13).

 φ ω+( )
m

= −ω+
2 + k

m
+ γω+ = 0  (2.6.15b)  ω+ = k

m
+ γ 2

2
+ γ 2 k

m
+ γ 4

4
 (2.6.15c)

The eigenvector for the lower frequency ω-  (with its slower phase factor) is 

 
x1

_ 0( )e−iω _t

x2
_ 0( )e−iω _t

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= r 0( )

1
2
−i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

e−iω _ t =
r 0( )cosω _ t
−r 0( )sinω _ t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ imaginary parts( ) ,   (2.6.16a)

with eigenvalue (2.6.16b) and frequency (2.6.16c).

 φ ω−( )
m

= −ω−
2 + k

m
−γω− = 0  (2.6.16b)  ω− = k

m
+ γ 2

2
− γ 2 k

m
+ γ 4

4
 (2.6.16c)

Note that for no B-field (γ=0) we recover the trap frequency (ω+ = k
m

=ω− ) and for no trap ( k=0 ) we recover 

the untrapped cyclotron frequency ( ω+ = γ ) and zero ( ω-  = 0 ). Note also, that in this example the 
eigenvectors, apart from their overall phase factors, are independent of the frequency.
 The real parts of the eigenvectors give the orbit positions. The low (high) frequency orbits are clockwise 
(counter clockwise) circular orbits, respectively.  Counter-clockwise circles of a given radius r are faster because 
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the  v ×B  acceleration (γω+ r) is in the same center-pulling direction as the trapping force (kr) and together they 

oppose the centrifugal acceleration   (-ω+2r). These are the three terms that sum to zero in (2.6.15).  However, 
for clockwise circles the  v ×B  acceleration (-γω− r) opposes the trapping force (kr) as seen in (2.6.14), and this 
reduces the orbit speed and frequency.
 The difference in frequency due to different orbit handedness or orientation (i.e., right-handed versus 
left-handed or clockwise versus counter-clockwise) is called Zeeman splitting, or circular polarization when it 
occurs in polarization optics. It is the effect of one important kind of symmetry breaking usually caused by axial 
vector fields like rotation or magnetic dipole fields.
 A different type of splitting occurs if an isotropic trapping potential is made anisotropic   k1 ≠ k2  and the 

degenerate trap frequencies (ω+ = k
m

=ω− ) split into normal mode frequencies. Now the difference in 

frequency is due to orthogonal direction or alignment of the eigenvectors as in 
 
ε1  versus 

 
ε2  in Fig. 2.3.12. 

This is sometimes called Dichroism or Stark splitting, or linear polarization in optical models. It is generally 
caused by polar vector fields like electric dipole fields.
 If you have both types of effects at once the eigensolution orbits become elliptical with the ellipses 
becoming more and more eccentric as the polar fields dominate the axial fields. (See Exercise 2.6.6.)

 The Green’s solution for the isotropic trapping potential orbits with stimuli 
  
f j = f j 0( )e−iωst  is the 

following:

 
   

q1 0( )
q2 0( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e−iωst = G ω s( ) f1 0( )
f2 0( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

e−iωst       (2.6.11)Example

where

 

   

G ω s( ) = 1
k +ω sβ −ω s

2m

1
2

−i
2

i
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+ 1
k −ω sβ −ω s

2m

1
2

i
2

−i
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   (2.6.12)Example

Notice that it blows up if stimulus frequency approaches one of the homogeneous eigenfrequencies.  This would 
correspond to undamped cyclotron resonance.

Exercises for Ch. 5 Greenʼs function spectral response
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Chapter 2.7   Fourier Analysis of Polychromatic Stimuli
 So far only a single or monochromatic stimulus of angular frequency ω S represented by one complex 
phasor  aSe−iωSt   has been considered in equations of the form  

  
   
qε + 2Γε qε +ω0

2 ε( )qε t( ) = aε t( ) = aε 0( )e−iωSt      (2.7.1)

The Lorentz-Green's function solution (2.2.25) contains two terms,

  
  
qε t( ) = Aεe−Γε te−iωΓ (ε )t +Gω0 ε( ) ωS( )aε 0( )e−iωSt      (2.7.2a)

The first term is a transient at the oscillators own frequency 

  
 
ωΓ ε( ) = ω0

2 ε( )− Γε
2 ≈ω0 ε( )    (for Γε <<ω0 ε( )      (2.7.2b)

with decaying amplitude (Its dying last breaths.) set by initial conditions, and the second is a steady lock-step 
response at the stimulus frequency ω S with constant amplitude equal to the product of stimulus amplitude aS 
and Green's frequency response function

   
  

Gω0 ε( ) ωS( ) = 1

ω0 ε( )2 −ωS
2 − i2ΓεωS

     (2.7.2c)

Recall discussions around (2.3.15) and (2.6.3).
 Now we extend the theory to multi-band or polychromatic stimuli that are composed of a Fourier 
combination of multiple stimulus frequencies ω 1, ω 2, ω 3, ...as follows.
      q + 2Γ q +ω0

2q = a1e
−iω1t + a2e−iω2t + a3e

−iω3t + ...     (2.7.3)

Because the equation is linear in coordinate q the solution is simply a sum of solutions (2.7.2)

 
  
q t( ) = Ae−Γte−iωΓt +Gω0

ω1( )a1e
−iω1t +Gω0

ω2( )a2e−iω2t +Gω0
ω3( )a3e

−iω3t + ...

where the transient amplitude is set by initial values.     (2.7.4)
  

  
A = q 0( )−Gω0

ω1( )a1 −Gω0
ω2( )a2 −Gω0

ω3( )a3 − ...

Because of high-frequency fall-off for the 
  
Gω0

ωS( )  function, the components with ω S >ω 0 will be small 

compared to those below resonance (DC region). The only really significant contributions come from terms 
whose frequency falls in the resonance region. (   ω0 − Γ ≤ωS ≤ω0 + Γ )

(a) Fourier harmonic series
 Jean Baptiste Fourier first showed how any periodic function a(t) that always repeats after time τ   , can 
be expressed as a series of harmonics ν, 2ν, 3ν, ...of the fundamental frequency ν=1/τ or ω=2π/τ as follows
 

  
a t( ) = ...+ a−3e

i3ω t + a−2ei2ω t + a−1e
iω t + a0 + a1e

−iω t + a2e−i2ω t + a3e
−i3ω t + ...

or:     
  
a t( ) =

k=−∞

∞
∑ ake−ikω t           ω = 2π / τ( )    (2.7.5a)

in terms of constant Fourier coefficients ak given by the following single-period integrals

     
  
ak = 1

τ
dt

−τ /2

τ /2
∫ a t( )eikω t        τ = 2π /ω( )    (2.7.5b)
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The latter follows from the following elementary exponential integral

 

  

dt
−τ /2=−π/ω

τ /2=π/ω
∫ ei( j−k )ω t = ei( j−k )ω t

iω ( j − k)
−π/ω

π/ω

= ei( j−k )π − ei( j−k )π

iω ( j − k)
=

2sinπ j − k( )
ω ( j − k)

                                   =
2π /ω = τ   if j=k
0           if j ≠ k

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= τ δ j

k

     (2.7.5c)

Given a(t), this Fourier orthonormality relation yields the Fourier coefficients (2.7.5b) which can then be 
substituted into the Green's function sum to give the response (2.7.4) to a(t). Consider a square wave of period τ 
shown in Fig. 2.7.1. The integral (2.7.5b) has three parts.

 

  

ak = 1
τ

dt
−τ /2

−τ /4
∫ Ae

ik 2π
τ

t
+ dt
−τ /4

τ /4
∫ Be

ik 2π
τ

t
+ dt
τ /4

τ /2
∫ Ae

ik 2π
τ

t⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
A e−ikπ/2 − e−ikπ( )

2πk
+

B eikπ/2 − e−ikπ/2( )
2πk

+
A eikπ − eikπ/2( )

2πk

   ∫dt(                 )eikωt
−τ/4

−τ/2
τ
1 A

τ/4

−τ/4
τ
1  +   ∫dt(                 )eikωtB

  +   ∫dt(                 )eikωt
τ/2

τ/4
τ
1 A

−τ/2 τ/4−τ/4 τ/2

t

Fig. 2.7.1  Time plot of square wave and integrals that contribute to ak coefficient.

The resulting Fourier coefficients are sketched below.

  

ak = A sin kπ
kπ

+ (B − A) sin kπ / 2
kπ

=
k = 0
A+ B

2

⎧

⎨
⎪

⎩
⎪

 ,  
k = ±1
B − A
π

 ,  k = ±2
0

 ,  
k = ±3
A− B

3π
 ,  k = ±4

0
 ,  

k = ±5
B − A

5π
...

ω

1st
Harmonic

"Fundamental"

3rd
Harmonic

5th
Harmonic

7th
Harmonic

DC
Component

0 1-1-3 2-2

Fig. 2.7.2  Fourier frequency components of square wave

Note that even-k harmonics are zero except for the DC (k=0) one.
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a(t) = B − A
π

eiωt − ei3ωt

3
+ ei5ωt

5
− ...

⎛

⎝
⎜

⎞

⎠
⎟ +

A+ B
2

+ B − A
π

e−iωt − e−i3ωt

3
+ e−i5ωt

5
− ...

⎛

⎝
⎜

⎞

⎠
⎟

       = A+ B
2

+ 2 B − A
π

cosω t − cos3ω t
3

+ cos5ω t
5

− ...
⎛
⎝⎜

⎞
⎠⎟

This is a real function and therefore has both the positive and negative frequency components with exactly the 

same magnitudes. The response due to cosω  t is exactly double that of e-iω  t. Complex analysis needs only the 
positive frequency (clockwise) phasor amplitudes ak  (  k ≥ 0 ) in (2.7.4).
 Fourier series have a problem with vertical discontinuities such as the square wave jumps. Fig. 2.7.3 
shows a 5-term (up to the k=9 harmonic), a 10-term (k=19), and a 20-term (k=39) series approximation to the 
square wave in Fig. 2.7.1.

Fig. 2.7.3  Fourier series approximations to square wave stimulus up to k= 9, 19. and 39.

They all "overshoot" and "ring-down" then "ring-up" in between each jump. This is called Gibbs phenomena. 
Generally this phenomena or "fault" of Fourier analysis is not important since most oscillators can only "hear" 
the k=1 or k=3 harmonics. High frequency fall-off of response makes the oscillator "deaf" to high stimulus 
harmonics unless the stimulus fundamental is extremely low. Then the response is just that of a series of sudden 
origin shifts as shown in Fig. 2.7.4. Each square wave jump is followed by the normal decay of the oscillator 
around its new origin, but this has nothing to do with Gibb's "ring-down". The Gibb's "ring-up" seen in the 
stimulus approximation of Fig. 2.7.3 does not appear in the response. An oscillator cannot "predict" a future 
shift in origin. 
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Fig. 2.7.4  Response of oscillator to low frequency square wave stimulus.

Gibb's phenomena are not an issue for continuous functions such as a saw-tooth wave. With only 2- and 5-term  
Fourier approximations, the saw-tooth stimulus shown in Fig. 2.7.5 is quite accurately represented.

 

 
Fig. 2.7.5  Fourier series approximations to saw-tooth wave stimulus up to k= 3  and  9.

 Nevertheless, an oscillator will be unable to respond faithfully to this unless the first one or two 
harmonic frequencies are in the DC region and well below resonance. If the fundamental is near or above the 
resonant frequency ω0 of the oscillator, then it will be "deaf" to the harmonics and respond as though the saw-
tooth was a pure cosine wave of the same frequency.
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(b) Fourier integral transforms
 Fourier also showed how any function, periodic or otherwise can be approximated by sines and cosines. 
Consider the fictitious function of time shown in Fig. 2.7.6 which is periodic for awhile, but like most of us, 
cannot maintain the pace forever and gets in trouble. 

6 AM
Staggers
to work

10 AM
Coffee

12 PM
Lunch

5 PM
Bar

12PM
dec'd

1 AM
rises
again

1 PM
Nap

Fig. 2.7.6  A day in the life of a real function.

 The trick is to let the fundamental period 
 
τ = 2π /ω( ) in (2.7.5) approach infinity, and in the series 

 
a t( ) =

k=−∞

∞
∑ ake−ikω t , let the sum be an integral: 

  
=

k=−∞

∞
∑ Δk

k=−∞

∞
∑ → dk =

−∞

∞
∫ dω τ

2π−∞

∞
∫  and let frequency be

       ω = 2π k / τ        (2.7.7)

that is, k=0,±1,±2,... times the fundamental frequency
       ω Fundamental = 2π / τ       (2.7.8)

which approaches zero as τ approaches infinity. So does the incremental frequency interval 

     
  
dω = 2π

τ
dk       (2.7.9)

become infinitesimal while the sum increment is always one (dk=1) since k is an integer. Now k is very large for 
finite ω. So the Fourier series sum approaches a Fourier frequency integral  

    
  
a t( ) = 1

2π
dω

−∞

∞
∫ a ω( )e−iω t      (2.7.10a)

where we define the Fourier amplitude  
  
a ω( ) ≡ ak τ / 2π    given by a Fourier time integral  

    
  
a ω( ) = 1

2π
dt

−∞

∞
∫ a t( )eiω t      (2.7.10a)

that follows from (2.7.5b). This is copied below for comparison.

   
  
ak = 1

τ
dt

−τ /2

τ /2
∫ a t( )eikω t = 1

τ
dt

−τ /2

τ /2
∫ a t( )eik 2π /τ( )t      (2.7.5b)copy

 Consider some examples for real functions like Fig. 2.7.7 below. For a single square hump the Fourier 
amplitude (2.7.10a) is given by the elementary diffraction function 

  
  
a ω( ) = 1

2π
dt

−T /4

T /4
∫ Be−iω t = B e−iωT /4 − eiωT /4

−iω 2π
=

2Bsin ωT / 4( )
ω 2π

   (2.7.11)

so called, because it is the first approximation to an optical diffraction pattern of a single square aperture. This is 
the sin x/x function plotted in Fig. 2.7.7.
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Fig. 2.7.7  Elementary diffraction function: Fourier transform of single half square wave.

The Fourier amplitude due to more and more square humps is a combination of finer and finer elementary 
diffraction patterns. Three half-humps gives the following which is plotted below.

  

  

a ω( ) = 1
2π

A dt
−3T /4

−T /4
∫ e−iω t + B dt

−T /4

T /4
∫ e−iω t + A dt

T /4

3T /4
∫ e−iω t⎡

⎣
⎢

⎤

⎦
⎥

       = A eiωT /4 − e3iωT /4

−iω 2π
+ B e−iωT /4 − eiωT /4

−iω 2π
+ A e−i3ωT /4 − e−iωT /4

−iω 2π

       =
2 B − A( )sin ωT / 4( )

ω 2π
+

2Asin 3ωT / 4( )
ω 2π

   (2.7.12)

Fig. 2.7.8  Fourier transform of three half square waves.

The result which emerges after many humps is series of spikes corresponding to the Fourier series amplitudes in 
Fig. 2.7.1.
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Fig. 2.7.9  Fourier transform of seven half square waves.

Fig. 2.7.10 Fourier transform of fifteen half square waves.

Fig. 2.7.11a Fourier transform of forty-nine half square waves.

Compare the DC peak of Fig. 2.7.11a above and Fig. 2.7.11b below that has two more squares in the finite 
square wave pulse train f(t).
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Fig. 2.7.11b Fourier transform of fifty one half square waves.

The "ringing" between the peaks is generally considered to be a nuisance. One way to damp it is to turn the 
square wave more gradually. Fig. 2.7.12 shows the Fourier transform of a wave that has been turned on and off 
by a Gaussian (exp-(x/a)2). This windowing kills the ringing.The width of each peak varies inversely with the 
width a of the Gaussian window.

Fig. 2.7.12 Fourier transform of windowed square waves.

(c) Fourier analysis in Dirac notation
 Fourier transforms and series are best analyzed using Dirac notation. One must get used to viewing 
functions like   a(t)  as a list of bra-ket component 

  
a(t)= t a  of a vector 

 
a  in basis 

  
... t ,  t ' ,  t '' ,  ...{ }  of time 

values. Fourier transform function   a(ω )  is a bra-ket component 
  
a(ω )= ω a  of the same vector 

 
a  in basis 

 
...ω ,  ω ' ,  ω '' ,  ...{ }  of frequency values. Fourier just transforms bases. In Dirac notation (2.7.10)

 
  
a t( ) = 1

2π
dω

−∞

∞
∫ a ω( )e−iω t becomes: 

  
t a = dω

−∞

∞
∫ t ω ω a   with:

  
 t ω = e−iω t

2π
= ω t *    (2.7.13a)

Fourier transformation matrix component is t ω  . Its inverse is the conjugate.
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a ω( ) = 1

2π
dt

−∞

∞
∫ a t( )eiω t  becomes: 

  
ω a = dt

−∞

∞
∫ ω t t a      (2.7.13b)

The integrals are replaced by discrete sums for numerical purposes or when the variables can take on only 
discrete values as in (2.7.7). Then they identical to the Dirac transformations (2.A-5) in Appendix 2.A.
 The cool idea here is that an acceleration function or any function is an abstract "object" 

 
a  that can be 

represented in the t-basis as a(t) or in the ω-basis as a(ω) or in any ortho-complete basis. So any vector in the t-
basis 

  
... t ,  t ' ,  t '' ,  ...{ }  is represented using the ω-basis

 
...ω ,  ω ' ,  ω '' ,  ...{ }, and vice-versa. Substituting 

 
ω '  for 

 
a  in (2.7.13a) and 

  
t '  for 

 
a  in (2.7.13b) gives

  
  

t ω ' = dω
−∞

∞
∫ t ω ω ω '       

  
ω t ' = dt

−∞

∞
∫ ω t t t '    

Moreover, this applies to any combination of t-bases, or any function T(ω) and vice-versa for any function W(t).

  
  
T (ω ') = dt

−∞

∞
∫ T (ω ) ω ω '    (2.7.14a)  

  
W (t ') = dt

−∞

∞
∫ W (t) t t '     (2.7.14b)

The functions 
 
ω ω '  or 

  
t t '  that satisfy these equations are called Dirac delta functions. 

  
 
δ ω −ω '( ) = ω ω ' = ω ' ω  (2.7.15a)  

  
δ t − t '( ) = t t ' = t ' t   (2.7.15b)

By (2.7.13) they are       

  

  

δ ω −ω '( ) = ω ω ' = dt
−∞

∞
∫ ω t t ω '

           = dt
−∞

∞
∫

eit ω−ω '( )
2π

  

  

  

δ t − t '( ) = t t ' = dω
−∞

∞
∫ t ω ω t '

           = dω
−∞

∞
∫

e−iω t−t '( )
2π

  

This is Dirac orthonormality; 
 
ω ω '  or 

  
t t '  are zero unless  ω =ω '  or   t = t ' , respectively. 

Then δ  is infinite (δ(0)=∞) but its integral is unity ( ∫δ(x) dx=1) from (2.7.14) with T=1=W.

  
  

dω
−∞

∞
∫ ω ω ' = dω

−∞

∞
∫ δ ω −ω '( )=1= dt

−∞

∞
∫ δ t − t '( )= dt

−∞

∞
∫ t t '       (2.7.16a)
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(c) Fourier-Green's operator analysis
 The power of Dirac notation shows in the Fourier analysis of Green's operators. Dirac would write the 
forced-damped-harmonic oscillator equation (2.2.1)

    
  
D ⋅q = d2q(t)

dt2 + 2Γ dq(t)
dt

+ω0
2q(t) = a(t)      (2.7.17a)

as an abstract operator equation
      

  
D q = a       (2.7.17b)

involving infinite dimensional ket coordinate vector 
 
q  and ket stimulus vector 

 
a  . Similar notation would be 

used for the more complicated "ion-trap" equation (2.6.4):

  
    
L q(t) + R q(t) + A q(t) = f t( )        becomes:   F q = f      (2.7.18)

Here the 2-dimensional 
  
q(t)  vector is abstracted into the  2 ⋅∞ -dimensional 

 
q  vector and the same for 

  
f (t)  

becoming 
 

f .

 The abstract definition of a Green's operator G is as simple as it is powerful. It is an inverse of D, that is
          G ⋅D = 1 = D ⋅G       (2.7.19)
so the solution to (2.7.17) results from operating on 

  
D q = a  with G.

     
  
G ⋅D q = q = G a       (2.7.20)

By representing these equations in bases 
  

... t ,  t ' ,  t '' ,  ...{ }  or 
 

...ω ,  ω ' ,  ω '' ,  ...{ }  one quickly derives Fourier-

Green solution formulas. This is summarized in Fig. 2.7.13.
 First, the two representations of the equation of motion (2.7.17) are as follows.

       
   

t D q = t a = a(t)

dt '∫ t D t ' t ' q = t a = a(t)
  

   

ω D q = ω a = a(ω )

dω '∫ ω D ω ' ω ' q = ω a = a(ω )
 

     (2.7.21a)       (2.7.21b)
The t-representation matrix of D is a combination of a Dirac delta function and its derivatives.

   
   

t D t ' = d2δ (t − t ')
dt '2

+ 2Γ dδ (t − t ')
dt '

+ω0
2δ (t − t ')      (2.7.22)

The δ-time derivative is evaluated using integration by parts: ∫u dv = uv-∫v du

  
  

dt '
−∞

∞
∫

dδ (t − t ')
dt '

f t '( ) = − dt
−∞

∞
∫

dδ (t − t ')
dt

f t( ) = −δ (t − t ') f t( ) −∞
∞

+ dt
−∞

∞
∫ δ (t − t ')

df t( )
dt

=
df t '( )

dt '
 (2.7.23)

A δ-time derivative amounts to a non-diagonal matrix. (It transforms f(t) into [f(t+dt)-f(t)]/dt.)
 On the other hand, the ω-representation of D is a diagonal matrix since the Fourier representation of the 
solution 

 
q ω( ) = ω q  is an eigenfunction. (Recall (2.2.15).)

    
   
ω D ω ' = −ω 2 − 2iΓω +ω0

2( )δ (ω −ω ')

    
  
−ω 2 − 2iΓω +ω0

2( )q ω( ) = a ω( )       (2.7.24)
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D|q〉=|a〉
Represented

in
t-basis

〈t|D|q〉 =〈t|a〉=a(t)
∫dt´〈t|D|t´〉〈t´|q〉=〈t|a〉=a(t)

∫dω〈t|ω〉〈ω|a〉=〈t|a〉=a(t)
∫dω e-iω ta(ω)=a(t)

Represented
in

ω-basis

〈ω|D|q〉 =〈ω|a〉=a(ω)
∫dω´〈ω|D|ω´〉〈ω´|q〉=〈ω|a〉=a(ω)

∫dt〈ω|t〉〈t|a〉=〈ω|a〉=a(ω)
∫dt e+iω ta(t)=a(ω)

D·G=1=G·D

〈t|D·G|t´´〉 =〈t|1|t´´〉=δ(t-t´´)
∫dt´〈t|D|t´〉〈t´|G|t´´〉 =δ(t-t´´)

〈ω|D·G|ω´´〉=〈ω|1|ω´´〉=δ(ω−ω´´)
∫dω´〈ω|D|ω´〉〈ω´|G|ω´´〉 =δ(ω−ω´´)

|q〉=G|a〉

〈t|q〉=〈t|G|a〉=∫dt´〈t|G|t´〉〈t´|a〉
q(t)= =∫dt´ G(t,t´) a(t´)

〈ω|q〉=〈ω|G|a〉=∫dω´〈ω|G|ω´〉〈ω´|a〉
q(ω)= = G(ω)a(ω)

Operator

D-Equation to solve

Definition of

Green’s operator

Green’s solution

if G is diagonal
in the ω-basis:

〈ω|G|ω´〉=G(ω)δ(ω−ω´)

√2π √2π
Inverse Fourier Transform

Fourier Transform

Fig. 2.7.13 Solving inhomogeneous equation in their time and frequency representations.
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Next, the two representations of the inverse equation (2.7.19) are as follows.

 
   

t D ⋅G t '' = t 1 t '' = δ t − t ''( )
dt '∫ t D t ' t ' G t '' = δ t − t ''( )  (2.7.25a)  

   

ω D ⋅G ω '' = ω 1 ω '' = δ ω −ω ''( )
dω '∫ ω D ω ' ω ' G ω '' = δ ω −ω ''( )  (2.7.25b)

The t-representation matrix of G is  non-diagonal and called the Green's time function G(t',t"). 
    

   
G t ',t ''( ) ≡ t ' G t ''        (2.7.26a)

Carrying out the matrix product integral (2.7.25a) gives the Green's unit impulse equation.

  
  
D ⋅G t ,t ''( ) = d2

dt2 + 2Γ d
dt

+ω0
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
G t ,t ''( ) = δ t − t ''( )       (2.7.26b)

So, G(t,t') is the time response at time t due to a unit "hit" or impulse at time t' that adds unit velocity. For initial 
conditions q(0)=0 and    q(0) = 1  the resulting Green's function is given below and plotted in Fig. 2.7.14.

  
  
G(t,0) = 0,  for t<0( ), and G(t,0) = q(t) =

e−Γt sin ωΓt( )
ωΓ

,  for t>0( )     (2.7.27)

G(t,0)

t

ω0=2π

Γ=0.5

Unit
impulse
at t=0

Fig. 2.7.14 Example of Green's time function G(t,0) .

Note that in Fig. 2.7.14 we have chosen the initial conditions of zero position and velocity before the unit 
impulse is delivered. This is not necessary. Any function φ(t) that satisfies the homogenous equation D.φ(t) = 0 
can be added to G(t,t") and it will still satisfy (2.7.26b).
 The ω-representation of G is a diagonal matrix and (2.7.25b) yields the familiar Green's frequency 
function G(ω) first derived in (2.2.14).

  
   

ω G ω ' = G ω( )δ ω −ω '( ) = δ ω −ω '( )
−ω 2 − 2iΓω +ω0

2( )       (2.7.28)

Finally, Green's solution (2.7.20) has the following two representations.

 
   

t q = t G a = dt '∫ t G t ' t ' a

q(t)  =    dt '∫ G t,t '( )a t '( ) (2.7.29a)  
   

ω q = ω G a = dω '∫ ω G ω ' ω ' a

 q(ω )   =     G ω( )a ω( )  (2.7.29b)

Since G is not diagonal in the t-basis its transformation is an integral (sum) over t'. In the ω-basis G is diagonal 
so the transformation is reduced to a simple multiplication.
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 A change-of-basis transformation (See Appendix 3.B-6.) from the t-basis to the ω-basis gives the time 
Green's function in terms of the frequency Green's function.

  

   

G t ,t '( ) ≡ t G t ' = dω∫ dω '∫ t ω ω G ω ' ω ' t '

                         = dω∫ dω '∫
e−iω t

2π
ω G ω ' eiω ' t '

2π
 

                         = dω∫ dω '∫
e−i ω t−ω ' t '( )

2π
G ω( )δ ω −ω '( )

                         = dω∫
e−i ω t− t '( )

2π
G ω( )

This proves that the Green's time function is a function of only one time variable; the difference between 
stimulus time t and response time t'. This, with (2.7.29) is called the convolution theorem.

   
  
G t ,t '( ) = G t − t '( ) = 1

2π
dω∫ e−i ω t− t '( )G ω( )     (2.7.30)

G is still an operator even though it's behaving like a vector in this special case. However, its Fourier transform 
requires an extra √2π which a vector transform like (2.2.13) doesn't have. 
 A Green-Lorentz solution 

  
q = G a  is not a unique solution to 

  
D q = a  since any amount of a solution 

φ  to the homogenous equation 
 
D φ = 0  can be added.

 
 
ψ = q +α φ   satisfies:

  
D ψ = a  , if: 

  
D q = a  , and: 

 
D φ = 0    (2.7.31)

The φ  may be a transient which sets the intial conditions while the steady state Green's solution 
 
q  responds 

only to the stimulus 
 
a .

Exercises for Ch. 7 Fourier analysis
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Chapter 2.8   Parametric Resonance
 Here we consider a second and much more complex type of resonance; the so called parametric 
resonance in which the spring constant or inertial parameter of an oscillator is being stimulated as follows. 

    
   
x + ω0

2 + Bcos ω st( )( )x = 0 .     (2.8.1)

This is how quantum mechanical time evolution equations such as (2.4.1) are stimulated. Also, the quantum 
Schrodinger wave equation for a cosine potential has the same form

    
  

d2φ
dx2 + E −V cos(nx)( )φ = 0      (2.8.2)

except a spatial independent variable x replaces time t. This kind of resonance is nonlinear and multiplicative, so 
if you double the amplitude B the solution may change in a very complicated way. Response is not simply 
proportional to stimulus as it is in linear resonance. Elementary Fourier and Green's function superposition 
techniques require linearity, too. 
 Let us consider a model in which both kinds of resonance can play a role. A simple pendulum with a 
oscillating support, such as is shown in Fig. 2.8.1, is such a model. 

X

Y

X-stimulated pendulum:
(Quasi-Linear Resonance)

X

Y

Y-stimulated pendulum:
(Non-Linear Resonance)

φφ



Fig. 2.8.1 Two cases for accelerated pendulum resonance .

 The equations of motion can be derived quite easily by applying the equivalence principle to the 
accelerating frame which contains the pendulum support. According to this, it is only necessary to subtract the 
acceleration vector a of an oscillating frame from the usual vertical gravity acceleration vector g to obtain the 

effective gravity   g
eff  experienced by the pendulum.

     
   

geff = g − a(t) = 0
−g

⎛

⎝
⎜

⎞

⎠
⎟ −

ax (t)

ay (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   (2.8.3a)

 If the support is oscillating in the horizontal or x direction with angular frequency ωx and in the vertical 
or y direction with angular frequency ωx , then the acceleration vector is
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a(t) =
ax (t)

ay (t)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

X 0

Y 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

−ω x
2 Acos(ω xt +α )

−ω y
2Bcos(ω yt + β )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟   (2.8.3b)

This gives the following effective gravity vector.

    

   

geff (t) =
gx

eff (t)

gy
eff (t)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

ω x
2 Acos(ω xt +α )

g +ω y
2Bcos(ω yt + β )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟    (2.8.3b)

 The general equation for the motion of a pendulum in such a   g
eff  field is the following.

    
   

d2φ
dt2 −

gx
eff


cosφ +

gy
eff


sinφ = 0      (2.8.4)

For small angles (cos φ~1 and sin φ~φ ) this reduces to 

    
   

d2φ
dt2 +

gy
eff


φ =

gx
eff


      (2.8.5)

The two cases indicated in Fig. 2.8.1 are X-stimulation 
  

A ≠ 0,   and  B=0( )

    
   

d2φ
dt2 + g


φ =

ω x
2 A


cos(ω xt +α )      (2.8.6)

and Y-stimulation 
  

A = 0,   and  B ≠ 0( )   (We take β=π here to get the same sign as (2.8.2).)

    
   

d2φ
dt2 + g


−
ω y

2B


cos(ω yt)
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ = 0      (2.8.7)

An X-stimulated pendulum satisfies a linear resonance equation like (2.2.1) with no friction and acceleration 

stimulus of amplitude  AS  acting on an oscillator of natural frequency    ω0 = g / .

  
   
AS =

ω x
2 A


 (2.8.8a)     
   
ω0 =

g


. (2.8.8b)

 The Y-stimulated pendulum satisfies a Schrodinger's wave equation (2.8.2) if we relate the independent 
variables of time t for the pendulum to distance x for a Schrodinger wave by equating the arguments 

 
ω y t  of the 

cosine stimulus to  nx  of the Schrodinger cosine potential. 

   
  

ω y t = nx,   or:   dt = n
ω y

dx,   and:   dt2 = n2

ω y
2 dx2 .    (2.8.9)

This converts the y-accelerated pendulum equation (2.8.7) to match a Schrodinger equation 

  
   

d2φ
dx2 + n2

ω y
2

g

−
ω y

2B


cos(nx)
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ = 0 = d2φ

dx2 + n2

ω y
2

g

− n2B


cos(nx)
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ    (2.8.10a)

where pendulum parameters 
   
g,  ,  B,  and ω y   match Shrodinger parameters   E,  V ,  and n  through

  
   

E = n2

ω y
2

g


, (2.8.10b)     
   
V = n2B


. (2.8.10c)

The pendulum Y-stimulus frequency 
 
ω y  and amplitude B are as follows, where we set g=1=.
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ω y = n g

E
= n

E
, (2.8.10d)     

   
B = V 

n2 = V
n2  (2.8.10e)

 The distinction between X-stimulated pendulum equation (2.8.6) and the Y-stimulated one (2.8.7) applies 
to the pendulum in Fig. 2.8.1 when it is near its lowest point (φ~0) where cos φ ~1 and sin φ~φ   This distinction 
also applies when the pendulum is "up-side-down", that is, near its highest point (φ ∼π ) where cos φ  ~ -1 and sin 
φ  ~ π−φ . Then the equation is that of a hyperbolic (unstable) oscillator whose growth constant is oscillating. As 
we will see, oscillation can stabilize it 

   
   

d2φ
dt2 − g


−
ω y

2B


cos(ω yt)
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
φ − π( ) = 0 ,   (where: φ ≅ π)      (2.8.10f)

 As the pendulum moves away from either straight up or straight down, the two kinds of resonance get 
mixed up according to the general equation (2.8.5). In the trebuchet, the little -pendulum support moves in a 
big circle so it involves both kinds of acceleration to transfer energy from the big R-arm to the little throwing 
arm  . So, the 10th century machine uses both kinds of resonance.

(a) Exploiting an analogy
 The analogy between Schrodinger waves along a line x and pendulum vibrations versus time t is a 
powerful one because it makes one think critically and differently about either problem. Let us start with the 
simplest case when the Schrodinger potential V is zero and, by analogy, the pendulum Y-stimulus B is zero, too, 
according (2.8.10e). The two equations are eigen-equations

 
  
− d2φ

dx2 = Eφ    (2.8.11a)    
  
− d2φ

dt2 =ω0
2φ  (2.8.11b)

The eigen-solutions are the familiar Bohr orbitals or, for the pendulum, the familiar phasor waves.

   
  

x M = φM (x) = e±iMx

2π
,  where: E=M 2  (2.8.12a) 

   
t ω = φω (t) = e±iω0t

2π
,  where: ω0= g


 (2.8.12b)

 While it may not be an obvious step for the pendulum problem, the Bohr problem uses periodic 
boundary conditions by restricting x between 0 and L and demanding the wave solution and its first derivative 
are equal for the two end points. If we do the same for the pendulum we will be demanding that the time 
function repeat perfectly after a time T. This leads to quantization conditions for Bohr orbitals and restricts the 
allowed pendulum frequency to harmonics of a fundamental frequency 2π/T. 

   
  
φ(0) = φ(L)⇒eiML = 1,  or: M = 2πm

L
 (2.8.13a) 

  
φ(0) = φ(T )⇒eiω0T = 1,  or: ω0= 2πm

T
 (2.8.13b)

For Bohr orbitals the range limit L is 2π because x is a polar angle x=θ . To simplify notation we use this limit 
L=2π=T for both analogies. Then the allowed energies and frequencies are

   E = m2 = 0,1,4,9,16...   (2.8.14a)   ω0 = m = 0,±1,±2,±3,±4,...    (2.8.14b)

 The solution to the Schrodinger equation with non-zero V can be done using Fourier series. The equation 
(2.8.2) and its abstract form are

   
   
− d2φ

dx2 +V cos(nx)φ = Eφ  ,        D + V( ) φ = E φ   
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It's Fourier representation is
    

  
j∑ D + V( ) k k φ = E j φ      (2.8.15a)

where Fourier matrices are
    

   
j D k = j2δ j

k ,        (2.8.15b) 
and, using (2.6.5c)

   

   

j V k = dx
0

2π
∫

e−i jx

2π
V cos(nx) e−i kx

2π
= dx

0

2π
∫

e−i j−k( )x

2π
V e−i nx + ei nx

2

            =V
2

δ j
k+n +δ j

k−n( )
   (2.8.15c)

(b) (n=2) Double-well potential and two-swing repeat
 For example, consider a cosine potential Vcos(2x) which has n=2 periods in the interval L=2π. Then the 
matrices by (2.8.15 b-c) break into two types; 

        

    

j D + V( ) k =    (for j and k even)              j D + V( ) k =    (for j and k odd)

   −6 , −4 , −2 ,  0 ,  2 ,   4 ,   6 ,             −7 , −5 , −3 , −1 ,   1 ,   3 ,   5 ,



62 v
v 42 v

v 22 v
v 0 v

v 22 v
v 42 v

v 62



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  , 



72 v
v 52 v

v 32 v
v 12 v

v 12 v
v 32 v

v 52



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

where the off-diagonal matrix elements are by (2.8.10c):

    
   
v = V

2
= 22 B

2
= 2B


            (2.8.16)

  The matrices go on forever in each direction. However, the lower eigenvalues Ej may be found 
by truncating them to 2-by-2 , or 3-by-3, ...or the 7-by-7 matrices shown in (2.8.16) if v=V/2 is small compared 
to the difference j2 -(j±2)2 between the diagonal  j2 values. For example, if v<<|32 - 12|  then the following 
matrix approximates E1± near 12, that is, the lowest odd-k eigenvalues.

     
  

12 v
v 12

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

      (2.8.17a)

   E1- ~ 12 - v ,    E1+ ~ 12 + v.    (2.8.17b)
The closest even-k eigenvalues are obtained approximately from the eigenvalues of

     

  

22 v 0
v 0 v
0 v 22

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

      (2.8.18a)

  E0 ~ 0 - 2v2/22+. , E2+ ~ 22 + 2v2/22+.. ,  E2- ~ 22 -..  (2.8.18b)
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as long as v<<|42-22| allows neglect of the 42 rows. Approximate eigenvalues can be found by perturbation 
theory or continued fraction expansions, but direct numerical calculation is preferred if v is given. Then one 
takes as large a matrix (2.8.16) as needed to get a desired accuracy.
 For example, the eigenvalues for V=0.2 or v=0.1 and V=2.0 or v=1.0 are listed below.
  V=0.2 or v=0.1    V=2.0 or v=1.0

  

  

E0 = −0.0050

E1− = 0.8988

E1+ = 1.0987

E2− = 3.9992

E2+ = 4.0042

E3− = 9.0006

E3+ = 9.0006

 (2.8.19a)   

  

E0 = −0.4551

E1− = −0.1102

E1+ = 1.8591

E2− = 3.9170

E2+ = 4.3713

E3− = 9.0477

E3+ = 9.0784

 (2.8.19b)

Fig. 2.8.2 is a plot of some Em-values versus the perturbation amplitude V or wiggle amplitude B. 
     Β =V/n2=2v/n2    (2.8.20a)
Plugging each Em-value into (2.8.10d-e) gives a corresponding Y-pendulum frequency ωy(m) .
     ωy(m) =n/√E=2/√Em    (2.8.20b)
   (V= 0.2 or B=0.05 and n=2)                (V= 2.0 or B =0.5 and n=2)  

  

  

ω y(0) = 2 / .0050 = 28.2843

ω
y(1− )

= 2 / .8988 = 2.10959

ω
y(1+ )

= 2 / 1.0987 = 1.90805

ω
y(2− )

= 2 / 3.9992 = 1.00010

ω
y(2+ )

= 2 / 4.0042 = 0.99948

 (2.8.20c)     

  

ω y(0) = 2 / .4551 = 2.9646

ω
y(1− )

= 2 / .1102 = 6.02475

ω
y(1+ )

= 2 / 1.8591 = 1.4668

ω
y(2− )

= 2 / 3.9170 = 1.0105

ω
y(2+ )

= 2 / 4.3713 = 0.9566

(2.8.20d)

The low amplitude oscillation (Β =0.05 or V=0.2) has only one negative Em-value while the high amplitude case 
(Β =0.5 or V=2.0) has two negative Em-values. According to (2.8.10f) negative E corresponds to "up-side-
down" or unstable motion. Surprisingly, it is stabilized for certain ωy.
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0+

1+

1-

2+

2-

3+
3-

Stable Inverted
V=2.0

Stable Hanging
V=2.0

1+

2-
2+

3-

0+1-

Unstable Resonance
Region

Fig. 2.8.2 E-Values versus perturbation amplitude V . Gray stability regions shown  for V=2.0 .

 The lowest region of stability lies between the O+ and 1- E-values. For perturbation amplitude V greater 
than V=1.8 these two E-values lie in the negative-E region and both motions correspond to inverted stability. 
Not until V becomes greater than 15 does another inverted stability region appear as the 1+ and 2- E-values go 
negative. (See extreme right hand side of Fig. 2.8.2.)
The O+ and 1- E-value motions (Y-stimulus frequency ωy(0+) =2.9696 and ωy(1-) =6.02475 from (2.8.20d).) are 
displayed in Fig. 2.8.3 a-b. Labels 1- (or O+) signify that the pendulum crosses φ=0 exactly one (zero) time(s), 
respectively. The ±sign - (or +, respectively) refers to odd (or even) parity of φ(τ) around a V-"hump" where the 
pendulum is feeling the least force.
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sinφ(t)(a)
O+ Mode

Y-perturbation
V(t)=-Bωy2cos(ωyt)

B=0.5
ωy(0+)=2.9646

   

sinφ(t)(b)
1- Mode

Y-perturbation
V(t)=-Bωy2cos(ωyt)

B=0.5
ωy(1-)=6.02475

Fig. 2.8.3 Inverted Modes  (a) Symmetric (one sided) 0+ mode, (b) Anti-symmetric 1- mode .

	

 The next two stable modes are the 1+ and 2- E-modes shown in Fig. 2.8.4. 

   

sinφ(t)
1+ Mode Y-perturbation

V(t)=-Bωy2cos(ωyt)

B=0.5
ωy(1+)=1.4668

(a)

   

2- Mode

B=0.5
ωy(2-)=1.01054

(b)

Y-perturbation
V(t)=-Bωy2cos(ωyt)sinφ(t)

Fig. 2.8.4 Hanging Modes  (a) Symmetric 1+ mode, (b) Anti-symmetric 2- mode .
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2+ Mode

B=0.5
ωy(2+)=0.9566

(c)

Y-perturbation
V(t)=-Bωy2cos(ωyt)sinφ(t)

Fig. 2.8.5 symmetric 2+ mode .

 The 2+ mode in Fig. 2.8.5 is very similar to the 2- mode in the preceding Fig. 2.8.4(b). The latter 2- wave is 
shifted relative to the stimulus by π/2, and therefore anti-symmetric with respect to the V-"humps." The 2+ wave 
is symmetric laterally, but its vertical rise exceeds its vertical drop because the effective gravity is minimum 
when the pivot is at its high point ("top of roller-coaster effect") and maximum at its low point. (The Y-
perturbation plot is effective gravity.)
 This same "roller-coaster" makes the 2- wave derivative steeper during the low (high-gravity) point than 
the high point. This effect is most pronounced in the 1+ wave of Fig. 2.8.3b where the effective gravity is almost 
zero at the top so the wave becomes a horizontal straight line. This mode is very near the E=V line in Fig. 2.8.2 , 
or by (2.8.10b-c), the ωy2B=g line.
 Most initial conditions lead to instability for any of the frequency values in between those of 1- and 1+ 
modes, as in the example below. Now the pendulum thinks it's a trebuchet arm!

   
Fig. 2.8.6 Unstable Modes for frequency ωy =1.5.

Unstable resonance is virtually all that is possible for ωy values between those of  1- and 1+ modes ( 1.4668< ωy 
< 2.9647) and above the 1- modes ( 6.0248< ωy < ∞). For amplitudes V less than ~1.8 there is a lower but no 
upper limit to the frequency which stabilizes an inverted pendulum.
 For perturbations with greater amplitude the frequencies are generally smaller.Consider an ampplitude of 
V=5.0 or B=1.25.
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  V=5.0 or v=2.5   (V= 5.0 or B =2.5 and n=2)

  

  

E0 = −2.15308

E1− = −2.07633

E1+ = 2.49593

E2− = 3.49247

E2+ = 5.61304

E3− = 9.18571

E3+ = 9.61215

   

  

ω y(0) = 2 / 2.15308 = 1.363013

ω
y(1− )

= 2 / 2.07633 = 1.387975

ω
y(1+ )

= 2 / 2.49593 = 1.265942

ω
y(2− )

= 2 / 3.49247 = 1.070196

ω
y(2+ )

= 2 / 5.61304 = 0.844172

Now the difference between sin φ and φ  is super critical. If they are not nearly the same magnitude the solution 
for the inverted cases may blow up as shown in Fig. 2.8.7a. Now the pendulum needs to "hug" the vertical axis 
during the period of high downward gravity (roller coaster at bottom) and only wander away from the axis a 
little when the effective gravity is pointing up. (Now the roller coaster is so fast that it feels several g's pulling 
up at the top.)

 

sinφ(t)

(a)
O+ Mode

Y-perturbation
V(t)=-Bωy2cos(ωyt)

B=1.25

ωy(0+)=1.36301

	



sinφ(t)
(b)
1- Mode

ωy(1-)=1.38798

B=1.25

Fig. 2.8.7 Higher amplitude modes with inversion stability

For comparison with Figs. 2.8.4-5  the higher amplitude hanging modes are shown in Fig. 2.8.8 below. All are 
quite stable
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sinφ(t)

1+ Mode

B=1.25

ωy(1+)=1.2659

(a)

	



2- Mode

B=1.25

ωy(2-)=1.0702

(b)

sinφ(t)

	


2+ Mode

B=1.25

ωy(2+)=0.8442

(c)

sinφ(t)
Fig. 2.8.8 Higher amplitude modes with hanging stability

 The bands of E-values, such as the gray lines in Fig. 2.8.2, are all allowed and stable modes, too. 
Howver, only the values on the edges repeat after exactly n=2 periods of the stimulus. By picking a random 
value inside one of the gray regions, you will get a wave that tries to repeat after some random number, say 2.81 
periods, or 3.11 periods, which means it won't really repeat at all. However, we can calculate how to make it 
repeat after any integral number n=2, 3, 4, ... of periods. This is left as a problem.
 It is also possible to calculate all these modes for a non-sinusoidal periodic acceleration for which we 
know the Fourier series. (Another problem!)

Exercises for Ch. 8 Parametric  resonance

©2016 W. G. Harter Chapter 8 Parametric resonance 110



Unit 2 Review Topics and Formulas 

C2 1 σΒ

1 1 σΒ

σΒ σΒ 1
    

1 1 1 1 1 2

2 1 1 2 1 2

⎛

⎝
⎜

⎞

⎠
⎟ =

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

 ,    
1 σΒ 1 1 σΒ 2

2 σΒ 1 2 σΒ 2

⎛

⎝
⎜

⎞

⎠
⎟ =

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
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