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Preface: A back-to-the-future look at the classics 
Before beginning a book attempting to merge classical mechanics with quantum mechanics it 

should be noted that classical mechanics is out of date. For centuries, following work by Galileo and 

Newton, mechanics was physics. No classical descriptor was needed. Then along came the quantum and 

relativity revolutions started principally by Max Planck (1900) and Albert Einstein (1905). After that we 

have to distinguish classical mechanics from quantum mechanics.

While classical mechanics may be out of date, it’s not obsolete and never will be for things that 

go Bang! or Click! or any other acoustical onomatopoeias. (Google if unfamiliar.) Our first examples, 

involving banging cars and balls, are easy classical problems but very difficult quantum problems. 

Detailed 21st-century quantum mechanical solutions at even a Joule of energy would require impossible 

1040 byte computers. Classical mechanics, on the other hand, permits solution by classical Greek 

computers, that is, a ruler and compass. Quantum mechanics may be more fundamental and elementary 

but it is not easier since it involves an astronomical increase in number of variables. 

This text will begin with material excerpted from the introductory review Unit 1 of our graduate 

text on classical mechanics. (Classical Mechanics with a BANG! is web-available (as are all our texts/

lectures including, eventually, this one) at our own 2016 Honors Physics Colloquium web site. Much 

effort is going toward making this text and lectures more accessible to undergraduate students, still you 

may refer to CMwB for more detailed treatments.)

The approach herein and by CMwB combines Euclidian geometry with Newtonian calculus in 

ways that Newton did in his Principia. However, 21st-century computer graphics are much better at 

exposing hidden power of geometry than Newton’s tediously engraved 18th-century figures. With old 

fashioned engraving, authors had to overlap multiple geometric steps into indecipherable spider-webs. 

Thus we get a modern impression that the logic of algebra and calculus always trumps that of geometry.

Of the many physics books only a few attempt to use analytic geometry to gain derivations, 

solutions, and most important, understanding of physics. Among a few that begin to revive this ancient 

art are famous CalTech lectures by Richard Feynman and lesser known (Six Easy Pieces (Persius 

1997)). Also, works by Vladimir Moser and Frank Crawford use geometric developments.
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The weapons of math instruction
When your physics fails (as in String theory) it could be you have lousy axioms. If so, it’s back to the 

drawing board. That’s how we start this course. It goes wa-aaay back to geometry of Thales (600BCE) and 

Euclid (300BCE). You should always ask what tools have survived the test of time and check them out.

Toolbox 1: Euclidian plane geometry (Rule and compass)
 Note that Toolbox 1 has a rule not the ruler. That’s in Toolbox 2. A rule is just a straightedge, a 

ruler without its inch or mm scale. Euclid’s pretty strict about this. Formal plane geometry is kind of a 

game to see how much you can do drawing lines and circles with just these tools. Toolbox 1 has 

limitations, at least by formal rules of Mr. Euclid. You may have heard that you can’t trisect an angle as 

Mr. Euclid wants it done, formally and exactly in a finite number of steps. That won’t stop us. We’ll do 

that and other “illegal” moves approximately and in as few steps as possible using tools below.

Toolbox 2: Navigational geometry (Set 1+ protractor, ruler, divider, parallel rule)
 These were the tools used by the Portuguese, Spanish, Dutch, French, and English navigators 

who were at least indirectly responsible for many of us living where we are. These tools were also used 

by weekend sailors until the Global Positioning System made obsolete all but six-packs of beer. 

Toolbox 3: Analytic geometry (Set 2+ graph paper, algebra, calculus, calculator)
 The idea is not to discard algebra and other such formalisms but to understand them better. So 

one of the first things we do with each geometric graph is figure it out using algebra. This is called 

analytic geometry and is one of the quickest ways to understand calculus as applied to physics. This 

leads to complex algebra and geometry also important to physics. Certainly we include scientific 

calculators. (Most of these have complex algebra capability.)

Toolbox 4: Computer geometry (Set 3+ high resolution graphics, C++  etc.)
 This is the “open” class of geometric analysis, and anything goes. A modern scientist without 

graphics programming is at a disadvantage. Current languages of greatest general usage, speed, and 

power are C++ and Objective C used to write simulations BounceIt, BandIt, etc. for this book and now root-

level HTML to run them on anybody’s browser. High-level languages such as Maple™, Mathematica™ are 

fine, too, though sometimes pricey. 

Toolbox 5: You, the algebraic geometer
 This is challenging stuff. Doing it will seem hard sometimes. Rome was not built in a day and 

neither was any understanding of Nature. So this book depends most on how much you like thinking and 

doing. Ignorance about science is not a burden you must accept. It is a challenge you should overcome.
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(a) Toolbox 1. Euclidian Geometry

(b) Toolbox 2. Navigational Geometry

parallel rule, ruler, and protractor

rule and compass

(c) Toolbox 3. Analytical geometry

1/z=r-1 e-iθΘ

∫1/z dz=ln z
Rect xy- Polar rθ

Graph paper and calculator

Complex algebra and calculus

(d) Toolbox 4. Computer geometry...Anything goes!
Harter-Soft

Elegant
Educational Tools
Since 2001FaceIt BounceItBohrItBandIt

WaveItColorIt U2 OscillIt RelativIt

The Weapons of Math Instruction
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About the computer simulations and future capabilities
The first tier of computer programs used to make figures in this book and provide animated 

visualizations of physical phenomena or analogies thereof in this book is LearnIt series consisting of 

BounceIt, OscillIt, QuantIt, WaveIt, etc. listed in the tables and links below. The idea was to make them 

like analog computers that allow text figures to become dynamic thought experiments.

The suffix “It” attached to most of these programs is derived from the FaceIt interface invented 

by Dan Kampemier of FaceWare in Urbana, IL a worldwide programming project I joined in 1985 to 

1993. A lot has changed since then! Now with T.C. Reimer begins re-application using X-Code, IOS, 

HTML5, Mathematica, and others. One needs a graphical user/programmer interface (GUI or GPI) that 

can be easily updated with controls, text editors, OpenGL, 3D stereo windows and so forth. 

Academic application needs GPI to keep model, control, and view separate to avoid wasting time 

reinventing the wheel or debugging buttons in class. Teaching useful root-level object oriented 

programming along with physics is possible. Mixing serious academics with coding is coming of age.

GPI’s facilitate a tree of programming projects for a given course. Such project trees make up a 

CodeIt system. Eventually, students can use one or more branches of CodeIt trees to build their own 

applications as homework or lab projects, leading to applications of sufficient complexity to aid in their 

thesis or dissertation research projects. Also, select CodeIt applications may be added to the LearnIt. 

Ideally, each LearnIt program has an accompanying expository text and/or on-line help hypertext.

Listed below are Units 1-3 with some LearnIt and CodeIt programs that apply to each.

Unit 1 Review of elementary classical mechanics of velocity, momentum, energy, and fields.
	

  BounceIt , AnalyIt , BoxIt , CoulIt, Trebuchet, and ColorU(2).

Unit 2 Oscillations and waves.
	

 OscillIt, WaveIt, ColorU(2), JerkIt, Pendulum, Cycloidulum, and BoxIt.

Unit 3 Relativistic mechanics and advanced topics. RelativIt, Relawavity, BohrIt, and QuantIt

To make the applications as widely available as possible, the old Fortran, Pascal, C++ FaceIt 

applications for Classic Mac, listed above, were ported to the HTML5 (HyperText Markup Language 

Version 5), Javascript, and CSS (Cascading Styles Sheets) programming languages.  The user interfaces 

was changed, from those of the Classic versions, to accommodate the native hypertext markup language 

tags; yet much of the functionality previously available only to those running Macintosh computers is 

now available, at yet higher resolution, to most devices that connect to the internet with a modern web 

browser.
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The following is a list of the LearnIt applications that have been ported to the web as of Jan. 15, 2016.  

Links to select LearnIt Web Applications for Physics
BohrIt at http://www.uark.edu/ua/modphys/markup/BohrItWeb.html
BounceIt at http://www.uark.edu/ua/modphys/markup/BounceItWeb.html
BoxIt at http://www.uark.edu/ua/modphys/markup/BoxItWeb.html
CoulIt at http://www.uark.edu/ua/modphys/markup/CoulItWeb.html
Cycloidulum at http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html
JerkIt at http://www.uark.edu/ua/modphys/markup/JerkItWeb.html
MolVibes at http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html
Pendulum at http://www.uark.edu/ua/modphys/markup/PendulumWeb.html
QuantIt at http://www.uark.edu/ua/modphys/markup/QuantItWeb.html
RelativIt at http://www.uark.edu/ua/modphys/markup/RelativItWeb.html
Relativity - 2005 Pirelli Entrant at http://www.uark.edu/ua/pirelli	

 	

 Title page	

 Site map
RelaWavity at http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html
Trebuchet at http://www.uark.edu/ua/modphys/markup/TrebuchetWeb.html
WaveIt at http://www.uark.edu/ua/modphys/markup/WaveItWeb.html

For the latest apps available online, 
LearnIt Portal Page at http://www.uark.edu/ua/modphys/markup/LearnItTitlePage.html
LearnIt Resource Listing at http://www.uark.edu/ua/modphys

For the original 2005 Pirelli Multimedia Challenge site for relativity and quantum theory
	

 URL: https://www.uark.edu/ua/pirelli	

 Title page	

 Site map
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Chapter 1. Introducing classical momentum and collisions
Momentum and energy are the currency of physics, the “Bang!” for the “$Buck$” as an old American 
expression goes (along with all its terrible historical connotations). We’ll start with classical momentum 
(the “Bang”) and let that discussion lead us to classical energy. (Right now ten kiloWatt·Hours of energy 
costs you about one “Buck” or $1.00 at the local electric power grid.) If you’re in a fireworks store near 
the 4th of July (Independence Day in the USA) you may hear patriot patrons requesting more “Bang-for-
the-Buck.” Similar requests will be heard year-around in the US Congress as DoD lobbyists plead 
endlessly (and quite successfully) to spend more GigaBucks-for-the-TeraBang.
 Without some understanding of momentum and energy you can’t intelligently discuss either the 
old classical physics or the modern quantum physics we introduce later on. (And, to intelligently discuss 
modern and future world politics you are going to need all of the above!)

Some terminology needed to define Momentum
The word momentum shares its first two letters “mo” with the word motion. Both words share first letter 
“m” with the word mass. Momentum is defined as a product of the other two. It’s our first equation:
   (momentum p) = (mass m) · (motion v)   or:   p=m·v    (1.1)
Most people can quantify motion as velocity in miles per hour (mi./hr.) or feet per second (ft./sec.) or, in 
metric units of meters per second (m/s) or kilometers per hour (km/hr) if one lives outside the US. 
However, most people outside of the STEM crowd have trouble quantifying mass and even some of the 
STEMites may goof on this.
 The metric system of mks-units makes it easy with its kilogram (kg) unit of mass. (mks is an 
abbreviation of meter-kilogram-second.) Perhaps, it is ironic that drug dealers of “kilos” are little ahead 
of most in defining mass correctly. (However, a “kilo” of anything weighs 2.2 pounds. That most likely 
would be a serious overdose!) Sixty or so years ago scientists favored the cgs-system of centimeter-
gram-second units for which 1-gram is the mass of a cubic-centimeter (1cc) of water, a lot smaller dose.
 In the British system of units (that US and Cameroon use) the official unit of mass is called the 
Slug. It is not a pound, that’s a unit of force that we’ll deal with later. In the meantime, it is ok to say that 
a slug weighs 32.2lbs, approximately, but to speak of pounds of mass is a definite faux pas in the 
politely correct STEM society! 
 Now, if only we could explain what mass is or how something gets massive. It is not helpful to 
just claim that mass results from eating Higgs-Boson cookies. Instead, a classical theory posits axioms 
(also known as laws) that describe what mass does, or more precisely, what it does not do.

The great momentum axiom
 Here is a restatement of Newton’s 1st Law or Axiom for mass and momentum.  

      Axiom-1: All mass or masses keep their total momentum until it is changed by some outsider.

The clause before “until” sounds like a powerful conservation law. But, then it’s undone by any 
“outsider” that comes along to give or take part of this precious “total momentum.”  A little historical 
context helps to see the law’s power. It’s actually due to Galileo about a century before Newton. He saw 
large vessels gliding in ports like Venice or Pisa. So he was able to disabuse the Aristotelian notion that 
all motion required an outside force to keep dragging it along. Instead, motion (momentum or just plain 
velocity in this case) is constant until an outside force alters it. If only there had been frictionless air 
tracks or magnetic levitation gliders for Aristotle to study, then Axiom-1 might have been seen sooner.
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Geometry makes momentum axiom-1 more powerful
 Let’s use Axiom 1 to calculate outcomes of a freeway collision. Normally, you wouldn’t try such 
a calculation until several more weeks of formulas, axioms, or laws. (There are three laws of Newton.) 
But, we can let geometry simplify this and then re-derive these laws including those for energy.
 The stage is set by a distance vs. time graph in Fig. 1.1a showing a 4-ton SUV going 60 mph (a 
mile per minute) toward a rear-end collision with a 1-ton VW putting along at 10 mph. The SUV driver 
is busy with his I-phone text message during the countdown -60sec., -48sec.,...,-12sec., -6sec.,... until 
just before collision at 0 sec. in upper right of the plot. (By then it’s way too late to avoid a Bang!)

Ka-bong!Ka-bong! Ka-runch!Ka-runch!

Totally
inelastic
case

Perfectly
elastic
case

1060 1060

0-0.2-0.4-0.6-0.8-1
-6 sec.
-12 sec.

-24 sec.

-36 sec.

-48 sec.

1 mile

1
m
in
ut
e
(6
0
se
c.
)

(b) Collision! (c) After collision?

-60 sec.

(a) Before collision...

Fig. 1.1 Time vs. space graphs of (a) SUV (going 60mph) and VW (going10mph), (b) collision, and (c) 
possible outcomes of two extreme cases: the inelastic “ka-runch!” and perfectly elastic “ka-bong!”

 To calculate outcomes we need to decide if this collision is a “ka-runch!” that welds cars into a 
single mass (See top right of Fig. 1.1c.) or a “ka-bong!” an opposite extreme that bounces them with no 
damage (very unlikely) as in center Fig. 1.1b. More likely is an intermediate “ka-whump!” collision to 
be detailed later on. The technical term for ka-runch is a totally inelastic collision that we’ll study first 
followed by the ka-bong (technically a perfectly elastic collision) and later a generic range of ka-
whumps or partially inelastic collisions that lie between the first two extremes. 
 However, regardless of whether this collision is a ka-runch or a ka-bong or even a ka-whump, it 
obeys Axiom-1 with constant total momentum. The sum of SUV and VW momenta is a constant PTOTAL.  
  PTOTAL = MSUVVSUV +MVWVVW = 4 ·60 +1·10 = 250 = constant     (1.2)

In the instant of collision, the velocities VSUV and VVW each change very suddenly, but the weighted sum 
PTOTAL in (1.2) cannot vary. Initial bottom-right point (VSUV, VVW)=(60,10) on the plot of VVW versus VSUV 
in Fig. 1.2a will move (very suddenly) along a sloping line that points up and to the left as the ka-runch! 
occurs. Whatever momentum the SUV loses, the VW gains so that (1.2) has zero change (ΔPTOTAL =0). 
Then whatever velocity SUV loses (say, ΔVSUV = -10), the VW picks up times-four (ΔVVW = +40). 

 0 ≡ ΔPTOTAL = MSUVΔVSUV +MVWΔVVW   implies :   ΔVVW = − MSUV

MVW

ΔVSUV = −4ΔVSUV   (1.3)
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Thus the collision line in Fig. 1.2a has a slope that is minus the mass ratio: -MSUV MVW =-4 . But, where 
on the collision line in Fig. 1.2b does FINAL velocity point stop? It cannot keep rising forever, can it?

50mph20 40 60 90
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100mph

VVVW
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10 30 70 80
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VVeelloocciittyy-vveelloocciittyy pplloott

6600mph

1100mph

During
collision.....

1

4

Before
collision: MMSSUUVV

MMVVWW

PPTToottaall
MMVVWW

VVVVWW== -- VVSSUUVV ++
== -- 44 VVSSUUVV ++ 225500

ooff AAxxiioomm--11::
MMSSUUVVVVSSUUVV ++ MMVVWWVVVVWW
==ccoonnssttaanntt ==PPTToottaall==225500

INITIAL

??FFIINNAALL????

MSUV
=4

MVW
=1

((aa)) ((bb)) After KKaa--rruunncchh ! collision...

Fig. 1.2(a) (VVW ,VSUV) plot, INITIAL (10,60)-point, and PTOTAL-Line    (b) Find FINAL Ka-runch! point?? 
  
If  VW and SUV Ka-runch! into a single mass their final velocities must be equal (VSUV

FINAL=VVW
FINAL ). A 45° 

(y =x)-line from origin hits the collision line at FINAL Ka-runch!-point (VSUV
FINAL= 50 =VVW

FINAL ) in Fig. 1.3a. 
That point is the Center of Momentum (COM). It also locates the FINAL Ka-Bong!-point in Fig. 1.3b. 
You simply strike a compass arc from INITIAL point around COM to hit it at (VSUV

FINAL=40,VVW
FINAL=90) .  A 

perfect elastic Ka-Bong! has to Un-krunch as much coming out of COM as it krunched going into COM.

Fig. 1.3(a)Find FINAL Ka-runch! point at 45°. (b)Find FINAL Ka-Bong! point using circle around COM. 

SUV de-accelerates from 60mph to 50mph in the ka-runch! and then from 50mph to 40mph if it could do 
a perfectly elastic ka-Bong! VW accelerates by 4 times that; from 10mph to 50mph in a ka-runch! and 
then from 50mph to 90mph if it does a ka-Bong! Cars built to crumple and finish with a total ka-runch! 
at COM will suffer half the acceleration that a ka-Bong! would entail. A 50% reduction of acceleration, 
as we’ll see, is a 50% reduction of force and less passenger injury. By crumpling or ka-runching, 
modern cars waste energy that would injure passengers. Our momentum-conservation analysis will let 
us define and quantify energy-conservation and then see ways to not conserve it. 
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Galilean relativity and space-time symmetry
Galileo grew up near a sea port and observed ships gliding along wharves. We can imagine that he noted 
how apparent velocity of a ship decreases as you catch up with it. This may seem to be a trivial 
observation, but replacing the word “apparent” with relative begins a theory of relativity. 
 In any case, what we now call Galilean relativity posits that if you add a velocity v to yourself 
(say, by riding on a ship having velocity v) then you subtract that velocity v from (or add -v to) all other 
objects or phenomena in the universe. Later, when we take up Einstein relativity, our first task will be to 
explain how Galileo’s axiom starts to fail for velocity near that of light (c=299,792,458m/s), and how 
chasing a lightwave using a high-speed-v ship never yields the slightest change of the wave’s speed c.
 Application of Galilean relativity to classical collisions is simpler than that of the Einstein theory 
particularly if you apply velocity-velocity geometry shown in Fig. 1.4. (Later we find geometric tricks 
that simplify Einstein relativity, too.) Fig. 1.4a shows a “slide-rule” to transform a ka-Bong collision 
from the initial (VSUV, VVW)-or Earth-frame view in Fig. 1.3b to that seen in COM-frame. Galileo does it 
by subtracting velocity vector VCOM=(VCOM, VCOM)=(50,50) from each Earth-frame point. In fig. 1.4a 
abbreviations FEarth for FINAL point (40,90), MEarth for COM point (50,50) and IEarth for INITIAL point 
(60,10) apply to those points in Fig. 1.3b. Subtraction gives COM-frame points in Fig.1.4a below.

   
FCOM = FEarth -VCOM = (40,90)-(50,50) = (-10, 40)
MCOM=MEarth-VCOM= (50,50)-(50,50) = (0, 0)
ICOM = IEarth -VCOM = (60,10)-(50,50) = ( 10,-40)

     (1.4)

In COM view final vector FCOM=(-10,40)  is inversion of initial vector ICOM=(10,-40)=-FCOM thru MCOM.

Fig. 1.4 Galilean transform of “KaBong” in Fig. 1.3 to (a) COM-frame and (b) to other frame views

In COM view middle vector MCOM (that is the COM point) is reduced from MEarth=(50,50) to MCOM =(0,0).
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Geometry of Balance: Center of Momentum (COM) and Center of Gravity (COG)
The uniqueness and constancy of a COM for the SUV and VW is connected with underlying space-time 
symmetry or geometry of spatial balance in Newton’s Axiom-1 (1.2) repeated below in different forms.
  PTotal =PSUV +PVW =MSUV·VSUV+ mVW·VVW = MTOTAL·VCOM=constant  (1.5a)
Total momentum is a product of VCOM and total mass MTOTAL=MSUV+mVW of a 5-ton SUV-VW “hunk”. This 
holds whether the “hunk” parts stick in a Ka-Runch or the cars bounce off in a Ka-Bong or Ka-whump. Both 
PTotal =MTOTAL·VCOM and VCOM are constant throughout the collision regardless of “auto-body-elasticity.”

   VCOM =
MSUV ⋅VSUV +mVW ⋅VVW

MSUV +mVW
=weighted  average
of  VSUV  and  VVW

    MSUV :mVW =
constant
MTOTAL

   (1.5b)

Weighted average VCOM of (VSUV,VVW) is fixed as V goes from initial to middle to final values. Collisions 
in Earth frame Fig. 1.3 have VCOM=50. The 4:1-weighted average of each coordinate pair (40,90), (50,50), 
(60,10), (70,-30),etc. on the slope-(-1:4)-line (in Fig. 1.5a below) is VCOM=50. In COM view VCOM=0.

Fig. 1.5 Geometry of (a) 4:1-weighted velocity average (b) 4:1-weighted coordinate average.

Weighted average of velocity VSUV and VVW in (2.5b) implies similar balance of position xSUV and xVW.

   xCOM =
MSUV ⋅ xSUV +mVW ⋅ xVW

MSUV +mVW
=weighted  average
of  xSUV  and  xVW

    MSUV :mVW     (1.6)

As SUV and VW close, collide, bounce, or stick, the Center of Mass xCOM maintains a constant velocity 
VCOM. In the COM frame VCOM is zero as sketched in lower right of Fig. 1.5b. Weighted average xCOM in 
(1.6) of coordinates xSUV and xVW is also called a Center of Gravity and is cartooned by a 4:1 balance. Fig. 
1.5 sums up momentum analysis of the collision problem posed in Fig. 1.1. Next: energy analyses.
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Exercise 1.1 Abstract reasoning about symmetry of collisions
Fig. 1.4b shows the SUV-VW collision in Fig. 1.3 from the viewpoint of six different reference frames 
(not counting the original Earth-relative frame). Each of the frames belong to three points on a sloping 
line, two of which are labeled I(INITIAL) and F(FINAL) with a COM point midway between I and F.
(First copy plot in Fig. 1.4b. Then write or diagram answers to the following questions onto plot.)  
(a) Each frame moves faster than one to its right. Give direction of motion and speed of each frame.
(b) One of the frames is the IN frame of the VW before it was hit. Another frame is the FIN frame for the 

VW after it was hit. Show how I, COM, and F points on one of these frames is related to F, COM, and 
I points, respectively, on the other frame by a vector inversion operator I·.

      (      I· is defined by: I··(VSUV,VVW) = (-VSUV,-VVW). or by: I··V= -V     )
(c) Do (b) with VW replaced by SUV.
(d) Explain how the COM-frame is the only one that has inversion symmetry, that is, is unmoved by I·.
(e) In some sense the I·-operator acts like a time-reversal operator. Explain.

Exercise 1.2
Plot a  (VSUV-1,VSUV-2)=(60,10) collision like Fig. 1.5 but with an identical M=4 SUV replacing the VW.
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Chapter 2. Vector-tensor algebra of momentum and energy conservation
Classical momentum theory is aided by vector-tensor-matrix notation as is quantum theory. Let us 
condense P=M·V forms (1.5) into matrix notation. We store mass values M1, M2… in a mass M-tensor or 
M-matrix, and define vector V=(V1, V2,…) for velocity and P=(P1, P2,… ) for momentum.   

    

PSUV = MSUVVSUV

PVW = MVWVVW

⎫
⎬
⎪

⎭⎪
denoted :


P =


M i

V or :

PSUV

PVW

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

MSUV 0

0 MVW

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

VSUV

VVW

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (2.0a)

This generalizes later from 2D {1=SUV, 2=VW} to n-dimensional matrices of n2 inertial coefficients Mjk. 

    

P1 = M11V1 + M12V2 + ...

P2 = M21V1 + M22V2 + ...
                          

⎫

⎬
⎪⎪

⎭
⎪
⎪

   denoted :

P =


M i

V or :  

P1

P2

   

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

M11 M12  

M21 M22  
                

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

V1

V2

   

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	

   (2.0b)

Tensor expressions for Axiom-1
The following is a summary of Axiom-1 given first by (1.2) and later by (1.5). Fig. 2.1 plots (2.1) below. 
Recall Fig. 1.5a plot of (1.5) with 45° diagonal VCOM vector with equal components:V1

COM=V2
COM=VCOM .  

 PTotal = M1V1
IN +M2V2

IN = M1V1
FIN +M2V2

FIN = M1V
COM +M2V

COM = MTotalV
COM   (2.1a)

A product of total momentum PTotal and VCOM  is expressed by tensor quadratic forms v•M•u as follows.

  V
COMPTotal =


VCOM i


M i

V IN =


VCOM i


M i

VFIN =


VCOM i


M i

VCOM =VCOMMTotalV

COM  (2.1b)

It helps to write this out with the numbers appearing in the original Fig. 1.5 starting with   V
COM = 50 .

 

   

50PTotal = 50 50( ) i 4 0
0 1

⎛

⎝⎜
⎞

⎠⎟
i 60

10
⎛

⎝⎜
⎞

⎠⎟
= 50 50( ) i 4 0

0 1
⎛

⎝⎜
⎞

⎠⎟
i 40

90
⎛

⎝⎜
⎞

⎠⎟
= 50MTotal50 = 12,500

 = 50 50( ) i 4 ⋅60
1⋅10

⎛

⎝⎜
⎞

⎠⎟
             = 50 50( ) i 4 ⋅40

1⋅90
⎛

⎝⎜
⎞

⎠⎟

= 50 ⋅(240+10) = 50 ⋅(160+ 90) = 2500 ⋅5= 250 ⋅50

  (2.1c)

We use a tricky COM vector notation: 
 


VCOM=(VCOMVCOM ) = (50 50)  or:  


VCOM= VCOM

VCOM

⎛

⎝
⎜

⎞

⎠
⎟ =

50
50

⎛
⎝⎜

⎞
⎠⎟
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Fig. 2.1 Generic time-symmetric collision geometry. (Recall Fig. 1.5 or Fig. 1.3b.)
Tensor expressions for Axiom-2
Relations (2.1) require that momentum PTotal =250 is the same at all points on line of slope -M1/M2. That 
includes IN, FIN, and COM. Now we invoke Axiom-2 a.k.a. the T-symmetry or Ka-Bong! Axiom:

         

VCOM =(


V FIN+


V IN )/2       (2.2)

Axiom-2 has ka-runch! from 

V IN to   


VCOM precede an ideal time-reversed !hcnur-ak from   


VCOM to 


VFIN that 

completes a perfectly elastic ka-Bong! That’s only possible in quantum worlds, but we’ll follow a time-
honored practice of approximating T-symmetry in most of classical mechanics theory. With that caveat, 
we substitute Axiom-2 T-symmetry relation (2.2) for   


VCOM into Axiom-1 relations (2.1b).

 
    
V COM PTotal =


V FIN+


V IN

2
i


Mi

V IN=


V FIN+


V IN

2
i


Mi

V FIN=


V FIN+


V IN

2
i


Mi


V FIN+


V IN

2
=

VCOM i


Mi

VCOM  (2.2a)

The 2nd and 3rd parts of (2.2a) each split into pairs, a symmetric quadratic form plus a lop-sided one.

 
    
V COM PTotal =

1
2

V IN i


Mi

V IN + 1

2

V FIN i


Mi

V IN    =    1

2

V FIN i


Mi

V FIN+ 1

2

V IN i


Mi

V FIN    (2.2b)

Transpose symmetry (Mjk =Mkj) of matrix M makes the two lopsided terms equal. (Here M12=0=M21.)

  

    


V FIN i


M i

V IN =


V IN i


M i

V FIN

40 90( ) i 4 0
0 1

⎛

⎝⎜
⎞

⎠⎟
i 60

10
⎛

⎝⎜
⎞

⎠⎟
= 60 10( ) i 4 0

0 1
⎛

⎝⎜
⎞

⎠⎟
i 40

90
⎛

⎝⎜
⎞

⎠⎟

= 100 ⋅105 = 100 ⋅105 = 10,500

    (2.2c)

Subtracting lopsided term shows that symmetric terms are also equal. A new conservation law appears!

     
    
V COM PTotal −


V FIN i


M i

V IN

2
=


V IN i


M i

V IN

2
=


V FIN i


M i

V FIN

2
  (2.2d)

    
  
V COM PTotal −

1
2

M1V1
FINV1

IN+M2V2
FINV2

IN( ) = 1
2

M1 V1
IN( )2+ 1

2
M2 V2

IN( )2= 1
2

M1 V1
FIN( )2+ 1

2
M2 V2

FIN( )2  (2.2e)

Conservation of kinetic-energy (KE)
This is conservation of kinetic energy (KE =2

1M1V1
2+2

1M 2V2
2 ): KE is the same at IN and FIN as long as 

both Axiom-1 (conservation of momentum PTotal) and Axiom-2 (time-reversal T-symmetry) holds true.
 It was noted after momentum conservation equations (1.2) and (1.3) that Axiom-1 is a linear 
relation whose (V1,V2)-plot is a straight line in Fig. 1.2 and Fig. 1.3. Axiom-2 or KE conservation is a 
quadratic relation whose (V1,V2)-plot is an ellipse. To see this we rearrange KE conservation relation 
(2.2e) by placing KE and masses in the denominator. (Numeric labels (V1,V2) replace (VSUV,VVW) here.) 

         2
1M1⋅V1

2+2
1 M2 ⋅V2

2= KE     becomes:   V1
2

2 ⋅KE
M1

⎛
⎝⎜

⎞
⎠⎟

+ V2
2

2 ⋅KE
M2

⎛
⎝⎜

⎞
⎠⎟

= 1  	

 	

 	

 (2.3a)

Fig. 2.2a shows (VSUV,VVW)-plot of elastic ka-Bong!-ellipse (2.2e) of (x,y)-radii-(a,b) matching (2.3b).

   x2

a2
+
y2

b2
= 1      where: 

(x, y) =                 (V1,V2 )   

(a,b) = 2 ⋅KE
M1

, 2 ⋅KE
M2

⎛

⎝⎜
⎞

⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

    (2.3b)
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Just inside the elastic ellipse is the inelastic ka-Runch-ellipse. A smaller COM-frame-ellipse is in Fig. 2.2b.

Fig. 2.2a Elastic KE-ellipse hits (PTotal)-line at IN and FIN pts. b. Inelastic IE-ellipse hits only at VCOM pt.

Kinetic energy at the VCOM-point involves first and last parts of the Axiom 1&2 equation (2.2a) times ½.

  
    
1
2

V COM PTotal =
1
2


V FIN+


V IN

2
i


Mi


V FIN+


V IN

2
= 1

2

VCOM i


Mi

VCOM= 1

2
( M1+M2 )(V COM )2   (2.4a)

It is expanded like (2.2b) then reduced by equality of lopsided terms and of symmetric terms (2.2c-d). 

 
    
1
2

V COM PTotal =
1
2


V FIN i


Mi

V FIN+


V IN i


Mi

V IN+


V FIN i


Mi

V IN+


V FIN i


Mi

V IN

4
= 1

2
( M1+M2 )(V COM )2   (2.4b)

 
    
1
2

V COM PTotal =
1
4

V IN i


Mi

V IN+


V FIN i


Mi

V IN( )= 1

2
( M1+M2 )(V COM )2 ≡ KECOM     (2.4c)

This reduces to a relation between KECOM, KEIN, and the lopsided term. Again, it helps check the numbers.

     2
1V COM PTotal =2

1 KE IN+4
1 V FIN i


Mi

V IN =2

1( M1+M2 )(V COM )2 ≡ KECOM=4
1 V IN i


Mi

V IN+4

1 V FIN i


Mi

V IN  (2.4d)

 

    

2
112,500 =2

1
2
1 (6010)i 4 0

0 1
⎡
⎣⎢

⎤
⎦⎥
i 60

10
⎛
⎝⎜

⎞
⎠⎟+4

1 (5090)i 4 0
0 1
⎡
⎣⎢

⎤
⎦⎥
i 60

10
⎛
⎝⎜

⎞
⎠⎟ =2

1(5)(50)2                 Initial energy = KE IN

  6,250 =      4
1(4 ⋅602 +1⋅102) +  4

1(50 ⋅4 ⋅60+ 90 ⋅1⋅10) =6,250.                     KE IN =  2
1 V IN i


Mi

V IN   

  6,250 =           3,625              +          2,625               =6,250.                     KE IN =2�3,625=7,250

 (2.4e)

Consider difference KEIN-KECOM of total initial energy KEIN and kinetic energy KECOM left at VCOM-point. 

     KE IN−KECOM= 2
1KE IN−4

1 V FIN i


Mi

V IN=4

1 V IN i


Mi

V IN−4

1 V FIN i


Mi

V IN= 3,625-2,625=1,000   (2.5)
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KECOM in (2.4d) is the half-sum of symmetric and lopsided terms. KEIN-KECOM in (2.5) is the half-difference 
of those terms and equal to 1,000 energy units. That is a small fraction of the total KEIN = 7,250 units.
That difference KEIN-KECOM =1,000 is ka-Runch! energy lost to heat in a totally inelastic ka-Runch! case 
that ends at VCOM point. Initial energy KEIN =7,250 drops by 1,000 to KECOM =6,250 in (2.4e). The totally 
elastic ka-Bong! is the opposite extreme. It springs back from VCOM point to a final VFIN  point having 
recovered 1,000 units of energy to end with initial kinetic energy KEFIN =7,250 =KEIN . In this case we say 
the KEIN-KECOM =1,000 was stored as potential energy of compression at the VCOM point and (in this ideal 
case) none gets lost to heat and all the original KEIN  is recovered.
 Energy KEIN(VSUV=60,VVW=10) or KECOM(VSUV=50,VVW=50) in Fig. 2.2a use Earth-relative velocity. 

   KEIN= 2
14⋅602+2

11⋅102=7,250   KECOM=2
1 4⋅502+2

1 1⋅502= 6,250    (2.6a)

Energy KEIN(VSUV=10,VVW=-40) in Fig. 2.2b uses COM-relative velocity obtained by Galilean subtraction. 

   
KECOM-relative

IN =2
14⋅102+2

11⋅(-40)2=1,000  
where: VCOM-relative

IN =VEarth-relative
IN -VCOM=(60,10)-(50,50) = (10,-40)

  (2.6b)

Difference in energy between the two extreme types of collision, Ka-Bong and Ka-runch, is 1,000 units in 
the Earth frame and the same in all frames including the COM frame. But, only in the COM frame does 
the Ka-runch! take all their kinetic energy so both cars end up stationary at origin VFIN=(0,0) in Fig. 2.2b. 

 Head-on collisions (VSUVIN =3,VVW
IN =-4) are plotted in Fig. 2.3 with increasing inelastic frictional loss 

shown in parts (b) and (c). (Here the SUV is M1=6ton.) The elastic KE-Ka-Bong ellipse (Energy KEka-Bong=35 
in Fig. 3.2a) shrinks to a smaller inelastic ka-Whump ellipse (KEwhump=231/3 in Fig. 3.2b has loss 11⅔ to heat 
chosen arbitrarily). The smallest ellipse (KEka-Runch=14 in Fig. 2.3c) is the totally inelastic ka-Runch-case. 
Generic ka-whump cases are “in-between-ideals” and more like the real world. Each ka-whump case has two 
possible final F-points where its momentum conservation line intersects its ka-whump ellipse. The top 
Fwhump point shows an incomplete rebound from VCOM(2,2) to (4/3,6). The nature of the lower Fflump point is 
left as a thought-exercise. Indeed, it takes more thought to tease real-world physics from simple axioms.

Fig. 2.3 (V1=3, V2=-4) collisions. (a) Elastic (Eloss=0). (a) Generic (Eloss=112/3). (a) Inelastic (Eloss=21=ECOM).
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Gaps between “idealized” models and “real-world” physics are always open to criticism. The present 

model of point-masses on a frictionless 1-dimensional rail ignores “outsider” effects of air and road 

friction and multi-dimensional mechanical structures of cars composed of thousands of parts able to fly 

in any of 3-dimensions.  Axiom-1 (momentum conservation) is a good approximation even with internal 

friction, but axiom-2 (energy-conservation) may apply only for collisions of less than 5 mph (and even 

then not perfectly). To better understand effects of axioms 1 and 2 let us simulate an ideal rail to study 

multiple collisions of a pair of masses M1 and M2 and opposite ends of the rail. This simulation is by a 

web-app called BounceIt available with the lecture notes for this text.

Introducing chained collisions and KE ellipse geometry
	

 A top view of the two masses on their rail is shown in Fig. 2.4a. A (V1, V2)-plot with initial 

velocity VIN =(V1=60,V2=10) is shown in Fig. 2.4b. It traces a line between VIN and VFIN =(40,90) that is 

the momentum-conservation line in Fig. 1.3b. Then Fig. 2.4b shows the lighter mass (M2 =1) bouncing 

elastically off the top end of the track. This changes the velocity vector from VFIN =(40,90) to reflected 

vector VFIN-2 =(40,-90) so (M2 =1) has a 2nd collision with the heavier (M1 =4). After that is a second 

reflection and a 3rd collision ending at VFIN-3. Next M1 reflects to just past VCOM =(50,50) by bouncing off 

lower end of track. Fig. 2.4c shows many such bounces. All pause on an energy ellipse like Fig. 2.2a.
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-100

100

-50

-50

50

50

-100

V1

V2 V2

V1
VIN=(60,10)

VIN-2=(40,-90)

VIN-3

VFIN=(40,90)

VFIN-2

VFIN-3 VCOM=(50,50)

(a) (b) (c)

Fig. 2.4(a) Multiple (M1=4,M2=1) collisions. (b) 5 collisions starting at (V1=60, V2=10). c. Many more.
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Exercise 2.1 (A critical-thinking problem)

The linear-plus-quadratic equations of momentum (1.5) and kinetic energy (2.3a) have two algebraic 
solutions corresponding to geometric intersections of a momentum-line with kinetic energy ellipse or 
ellipses. For perfectly elastic (ka-Bong!) collisions the solutions are just INITIAL(IN) and FINAL(FIN), and 
similarly for perfectly inelastic (ka-Runch!) collisions, as shown in Fig. 2.3a and Fig. 2.3c, respectively.
	

 However, for partially elastic (ka-whump!) collisions, as shown in Fig. 2.3b, there seem to be four 
possible intersections. One in particular is labeled as Fflump and lies below primary solution point Fwhump. 
(a) Discuss Fflump and compare to Fwhump. Are both physically possible? What situation could possibly 
give rise to an Fflump? Think outside of the box(es) of cars and more in the realm of molecular, atomic, 
nuclear, and quantum particle collisions. 
(b) Actually, you can simulate an Fflump on BounceIt. (That would pretty well take care of this problem!)
     See if you can divine what is going on before doing the simulation. 
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Quick construction of Energy ellipses
Graph paper facilitates construction of energy ellipses given the two radii a and b in (2.3). First step: 
draw concentric circles of radius a and b. Then any radial line OBA “points” to point E on the ellipse.
Ellipse point E lies at the intersection of a vertical line AE thru radial intersection A with circle a and a 
horizontal line BE thru radial intersection B with circle b. Graph grid helps locate E for a radius OBA, 
and usually there is no need to draw AE or BE. You can pick x and find y or else vice-versa.

O

A

B

E

ab O ab

Exercise Fig. 2.5 Ellipse construction
Ellipse coordinates (xE=a·cos σ, yE=b·sin σ) are rescaled base and altitude (xr=r·cos σ, yr=r·sin σ) of Fig. 
1.4.

O

A

B

E

ab
σ

yE=bsinσb

xE=acosσ

σ

yE=bsinσ

xE=acosσ

σ
xE=acosσ

Exercise Fig. 2.6  Complimentary analytic ellipse geometry
 Verify that the values (x =a·cos σ, y =b·sin σ) satisfy an ellipse equation (3.7b). 
A dual or complimentary (gray) ellipse results if compliment angle σc=π/2−σ is used so x and y values 
switch.
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Chapter 3. Dynamics and geometry of successive collisions
One-dimensional two-mass (1D-2-body) collisions occupy Ch. 2-3. Now they become more dangerous. 
Introducing the X2-super bouncer from Project Ball, a 1969 pre-med class project at the university of 
Southern California published in Am. J. Phys. 39, 656 (1971). See product liability disclaimer in Fig. 3.1.

Caution: Product Liablility Disclaimer

This ballpoint pen could be hazardous to your health!

The experiments which are the subject of this discussion are

both spectacular and potentially dangerous, and care to

protect one’s eyes should be taken. The simplest experiment

involves sticking a ball point pen into a superball or other

hard rubber ball and dropping the two onto a hard floor.

If done correctly the pen will eject the ball with such force

it may stick in the ceiling of the room. Obviously you want

to be careful with this weapon. And, this goes doubly and triply

for the more advanced models that may be developed in the

course of studying this stuff. It is recommended that

experimenters wear safety glasses when doing these experiments

with pens. (We could just say don’t use pens, but that‘s an easy

way to do this experiment and probably the way most people

will go about it.) Some of the tangential experiments associated

with this development are less hazardous. To measure the

potential force function of a ball one may simply paint the ball

and measure the spot size as a function of drop height h.

The saggital approximation d=r2/2R allows one to
quickly convert spot radius r to penetration depth x for a
superball of radius R as shown in the figure. Equating this
to Mgh gives the ball potential energy function V(x).

M1=70gmM1=70gm

M0=10kgM0=10kg
bounce
plate
bounce
plate

RR
rr
d

Superball
penetration
depth
r2
2Rd=

SuperballSuperball

ballpoint
pen

M2=10gm

ballpoint
pen

M2=10gm

The X-2
pen-

launcher

The X-2
pen-

launcher

Fig. 3.1 The X2-pen launcher with product liability disclaimer. 

 At first, X2 looks like a 2-body device. A mass M1 =70gm superball(©™Whammo Corp.) launches 
a ballpoint pen of mass M2 =10gm. But, bounce plate mass-MO=10kg (the rectangle in Fig. 3.1) is a 3rd 
body sitting on a 4th body, good old Mother Earth of mass M⊕=6·10

24kg . Earth mass M⊕and solar mass

 M=2·10
30kg  are 2-figure approximations to M⊕=5.9742·10

24kg and  M=1.9891·10
30kg . 

 Collisions of tiny masses with huge ones can be simple. Mass ratio M1/ M⊕ is momentum P-line 
slope -ΔV1/ΔV⊕ in (V1,V⊕)-space. It drops to quasi-horizontal for large M⊕ in Fig. 3.2a where that slope 
is -1/100. Fig. 3.2b has quasi-vertical slope ΔV⊕/ΔV2=-M⊕/M2=-100 in (V⊕,V2)-space. (Compare to Fig. 2.2.)

To find VFIN for an elastic collision in Fig. 3.2a we do a (nearly) horizontal reflection of VIN thru 
the COM point (VCOM) along the P-line. It is a (nearly) vertical reflection in Fig. 3.2b with M⊕=100 M2. 
(Inset sketches exaggerate P-line slopes beyond the 100:1 ratios barely showing in their exact plots.)

Let us see how a large mass M⊕ may give large momentum to a smaller M1 but have KE loss be 
tiny or none. In COM frame view Fig. 3.2a, M1=1 is bounced from (approximately) V1

IN =-1 to V1
FIN

 =+1 
(approximately) off a plate of mass M⊕=100 rising slowly at speed V1

FIN M1/M⊕= 1/100. M⊕ then recoils 
just as slowly. Now M1 in its frame (whereV1

IN is initially zero) sees a big M⊕ plate rising at full speed 
+1 (approximately) and knocking M1 up to (approximately) twice that speed while velocity lost by M⊕ is 
(approximately) zero. Now if the plate is the Earth with much greater massM⊕=6·10

24kg then all our 
(approximately) modifiers may be replaced by (exactly) for all practical purposes. 
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V1

(a) 1st bang of M1 off 
 floor plate M! =100 M1 along
(V1,V!)-momentum line of slope
        -M1/M! =-1/100
from IN-end to COM to FIN-end
of ( a/b =!M!/!M1=10 ) ellipse  

V2

V!

V!

(b) 3rd bang of M2 off 
 ceiling plate M! =100 M2 along
 (V!, V2)-momentum line of slope
        -M!/M2 =-100
from IN-end to COM to FIN-end
of ( a/b =!M2/!M!=1/10 ) ellipse  

+1

5

10

-5

-1

-1

+1

+2

5
10

-5

+1

-1

-1

+1 +2

Fig. 3.2 Extreme mass-ratio collisions (a) M1/ M2 approaches infinity. (b) M1/ M2 approaches zero.

Fig. 3.2a reflects our common ideal of a bouncy ball of mass M1 hitting the Earth of mass M⊕with 

velocity VIN=-1 and being reflected to velocity VFIN=+1. By standing in the Earth frame, one is very 
nearly in the COM frame since Earth’s COM velocity is a tiny fraction M 2 /M⊕ of ball speed |VIN|. For 

super-balls of mass M2=60gm, the fraction M 2 /M⊕  is 0.06/(6·1024)=10-26  or 1/(100 Trillion trillion)!

Bounce momentum absorbed by Earth is 2M2V0 (or M2V0 if the ball goes“Ka-runch!”), but Earth 
absorbs at most a tiny KE of 2

1M⊕(V
INM 2 /M⊕)

2 , a fraction 10-26 of ball KE 2
1M 2(V

IN)2 . Ma-Earth returns 

virtually all KE to M2 in elastic (ka-Bong!) collisions all while absorbing double momentum P=2M2V0. So 
our common ideal of balls with 100% rebound off of Earth has a solid logical and quantitative basis.

However, common experience does not prepare us for the amazing X-2 in Fig. 3.3. As shown in 
Fig. 3.3a the X-2 experiments from Project Ball can (as in 1997 movie Flubber or 1961 Absent-Minded 
Professor) easily rebound mass M2 with more than twice its drop velocity. As we’ll see that means M2 
may rise to more than four times its drop height! Later we will also reveal X-3 and X-4 experiments that 
do many times that. If you are looking for an appealing and spectacular way to teach classical 
momentum and energy physics, it’s hard to beat the discoveries from Project Ball.
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M1

m2
BANG!
M1

(Bigger
BANG!)

(Still
Bigger
BANG!)

m2

M1
M1

m2

Bang1!

Bang2!
M1

m2

(a) Super-elastic 2nd-body bounce (b) 2-Bang Model (c) n-Body
Supernova
Superballs

m2

Fig. 3.3 n-Body collision experiments. (a) X-2 drop. (b) Independent collision model. (c) Ball towers.

Independent bang models (IBM)
To compute final velocities of M1 and M2 it helps to idealize the collision of three bodies M1, M2, and 
M⊕ as a sequence of two separate 2-body collisions that are completely determined by P and KE 

conservation. First M1 bounces off EarthM⊕ . Only then does M1 knock M2 to a faster speed as in Fig. 

3.3b. The first collision is labeled Bang-1(01) in Fig. 3.4a followed by Bang-2(12) in Fig. 3.4b. The first 
Bang-1(01) between Earth M⊕  and M1 has a horizontal line like the IN-FIN line in Fig. 3.2a. The second 

Bang-2(12) between mass M1 and M2 has a line of slope -M1/ M2 =-7 for a M1 =70gm and M2 =10gm (that  
of a superball and pen, respectively). The Bang-2(12) line is like the IF lines in Fig. 3.1 or Fig. 3.2.
 This approximation is called an independent bang model (IBM) and is one secret to analyzing 
such a 1D-3-body bang-up that otherwise has too many unknown velocities to be solved by just two 
equations ΔP=0 and ΔKE=0 alone. IBM is exactly true if we initially separate M1 and M2 so three M1, M2, 
and M⊕ never collectively bargain for available momentum and energy. IBM also applies to n-ball 

towers in Fig. 3.3c. They give very high-energy ejections and serve as classical models for supernovae. 
(N-body bangs will be treated later in Ch.8.) 
 Velocity geometry suggests a family of X2 solutions as shown in Fig. 3.5 for a range of mass 
ratio M1/M2. This is an advantage of geometric solutions. Just a few points in Fig. 3.5a show all elastic 
(V1-V2) points lie on the 45°-line CPL. Extreme or optimal cases are located in Fig. 3.5b. 

Extreme and optimal cases
An upper limit for elastic final velocity is V2=3·V0 at pt-I for infinite mass ratio M1/M2→∞ . A 

particle of dust on a superball may be ejected three times as fast as the ball hits the floor and, it could go 
nine (9=32) times the drop height. However, elastic IBM models usually fail for tiny M2 due to friction 
and/or molecular forces so bouncing balls don’t put dust in ceilings. (Fortunately! But in a vacuum...?)
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m2 Velocity axis
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(0,0) (0,0)
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(01)

INIT point at

(-1.0,-1.0)
-1.0

Bang-2
(12)

INIT point at

(+1.0,-1.0)

Bang-2
(12)

FINAL point

(0.5,2.5)

(a)
Bang-1(01)

(b)
Bang-2(12)

Bang-1
(01)

FINAL point

(+1.0,-1.0)

Fig. 3.4 (V1-V2)-plot of 2-Bang collision. (a) M1 bounces off floor. (b) M1 hits M2 head-on.
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Fig. 3.5 X2-Final (V1,V2) (a) Final point locus. (b) Infinite ratio pt. I and maximum transfer pt. M.
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An optimal performance case is at pt-M in Fig. 3.5b where the collision achieves a 100% transfer 
of energy to projectile M2. The M-point is the intersection of the CPL line with the V2-axis on which the 
M1-ball velocity is zero. (V1=0) There mass ratio and (-)slope of the M-line is M1/M2=3.0.
 Another interesting point U is for unit ratio M1/M2=1, a familiar ratio for players of billiards or 
pool. U undergoes inversion of velocities (+1,-1)-> (-1,+1). (Its COM point lies at origin.) If the U-line 
is boosted by (-1) to (0,-2)-> (-2,0) it is like a straight elastic pool shot. A 100% of KE transfers from a 
moving ball to an equal sized ball that was stationary. The same process at half that speed is (0,-1)-> 

(-1,0) shown by the Galileo-shifted line U1-> U2 in the lower left hand side of Fig. 3.5b.
 Points D between U and M have ball M1 knocked to negative velocity by the down-coming M2. 
Then M1 hits the floor (Earth) at velocity –v to rebound at +v. For unit ratio case U, M1 and M2 rebound 
quite like a rigid body. Below U, ball M1 rebounds at a speed faster than M2 to hit M2 again. In cases of 
low mass ratio, (M1/M2<<1) mass M1 must hit M2 many times to turn it around as will be seen later.

Integrating velocity plots to find position
It is important to see how velocity values of Fig. 3.4b are turned into space-time position plot lines. 
Consider the first collision (Bang-1(10)) in Fig. 3.6a and corresponding space-time paths in Fig. 3.6b. 
Initial velocity Vy1(0)=-1.0 gives a slope (distance)/(time) of an M1 path but doesn’t tell where is the 
path or particle. The same for velocity Vy2(0)=-1 of M2 in Fig. 3.6a. The paths need to be positioned.

Initial position values such as (y1(0)=1, y2(0)=3) locate the paths as shown in Fig. 3.6b. Each 
path keeps its slope until a collision (Bang-1(10)) between M1 and the floor occurs at y1(t=1) where its 
path and the floor intersect. Then, as seen in Fig. 3.6a, M1 bounces its slope from Vy1=-1 up to Vy1=+1. 
Meanwhile, upper path (M2) maintains its down slope of Vy2=-1 until it intersects rising M1’s path. 

Bang-2(12)

position

Ceiling at y=7

Time

t-axis

Height

y-axis

slope

-1

slope

+1

Bang-1(01)

position

y
2
(0)=3

Vy1

Vy2

1.0

-1.0

0.5

(V
y1
,V
y2
)=(+1.0,-1.0)

y

(a) V
y2
vs. V

y1
Plot of Bang-1

(01) (b) y vs. t Plot of Bang-1
(01)

Bang-1(01) Bounces (-1,-1) to (+1,-1)

(V
y1
,V
y2
)=(-1.0,-1.0)

(y=1,t=2)(y=0,t=1)

y
1
(0)=1

0.5

-1.0 -0.5

-0.5

??

??Floor at y=0

Fig. 3.6 Plots of 1st collision (Bang-1(10)). (a) Velocity-velocity plot. (b) Space-time plot.

 At time (t=2) there is an intersection of paths and the 2nd collision (Bang-2(12)) between M1 and 
M2 at space-time point (y1(2)=1, y2(2)=3). This gives Vy1=0.5 and Vy2=2.5 in Fig. 3.4b or in Fig. 3.7a-b 
below. Then to keep M2 from flying away we install an elastic ceiling at y=7.
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 The game becomes interesting as Bang-3(20) between the ceiling (part of Earth M⊕ ) is shown in 

Fig. 3.7b by a vertical arrow (like an IF line in Fig. 3.2b) reflecting M2 to speed Vy2=-2.5. Then M2 has 
Bang-4(12) between M1 and itself that sends it back to the ceiling at a blistering speed of Vy2=+2.7  as M1 
descends toward the floor with a more modest velocity Vy1=-0.5.

The high speed of M2 lets it go to the ceiling for Bang-5(20) and return to knock M1 down once 
more (Bang-6(12)) before M1 hits the floor at Vy1=-0.9. (Bang-7(10)) Then M2 having lost speed to Vy2=
+1.5 hits the ceiling (Bang-8(02)) and returns for Bang-9(12) with M1 rising at Vy1=+0.9.

Masses are treated as point-masses moving along straight lines between collisions in space-time 
plots. This is an ideal gravity-free IBM approximation with only straight lines in (V1,V2)-plots. It lets us 
derive motion without integrating kinetic equations (2.1) thru (2.2) as BounceIt does in Fig. 2.4. If the 
masses have finite size, say a minimum center-to-center separation radius r12, then the M2 position graph 
is drawn that much higher than that of M1.

Fig. 3.7c and BounceIt V1-V2 simulations in Fig. 2.4 build an ellipse out of multiple IN-FIN line 

endpoints.  Ellipse radii (a,b) follow from KE conservation equation (3.7b). 

KE(unitV1,V2 ) =2
1M11

2+2
1M 21

2 =2
1 ·8 

M1=7
M 2 =1

⎧
⎨
⎪

⎩⎪

minor radius a = 2·KE /M1 = 8 = 2.828

major radius b = 2·KE /M 2 = 8 / 7 = 1.069
 

(This is a quite non-traditional ellipse construction! A more traditional construction is given in the 

exercise section at end of the preceding Chapter 2.)
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Fig. 3.7 X-2 (M1=70gm,M2=10gm)Collision sequence. (a-b) Up to Bang-4(12). (c-d) Up to Bang-9(12).
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Using vector notation in space-space plots
Balance equation (2.2) concisely sums up preceding constructions or plots of elastic collisions. 

 
V1

FIN +V1
IN( ) / 2 =VCOM

V2
FIN +V2

IN( ) / 2 =VCOM
 or:

V1
FIN = 2VCOM −V1

IN

V2
FIN = 2VCOM −V2

IN
   (2.2)redone   or: (3.0)

This a more concise notation uses vector equations or column arrays. 

 
v1
FIN = 2VCOM − v1

IN

v2
FIN = 2VCOM − v2

IN
  is written: 

v1
FIN

v2
FIN

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

2VCOM − v1
IN

2VCOM − v2
IN

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2 VCOM

VCOM

⎛

⎝
⎜

⎞

⎠
⎟ −

v1
IN

v2
IN

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (3.1)

It saves writing two (=)’s and two (-)’s. Also, each column vector may be labeled by a “fat” letter.

 
 
vFIN = 

v1
FIN

v2
FIN

⎛

⎝⎜
⎞

⎠⎟
=vFIN ,        VCOM = VCOM

VCOM

⎛
⎝⎜

⎞
⎠⎟

=

VCOM  ,        vIN = 

v1
IN

v2
IN

⎛

⎝⎜
⎞

⎠⎟
=vIN  .   (3.2)

The Gibbs vector form of equation (3.4) or (4.1) uses fat-v and/or over-arrow-  

� 

 v for column vectors. 

   vFIN = 2 VCOM – vIN ,    or:      VCOM =
vIN + vFIN

2
.   (3.3)

Note vector VCOM bisecting the (vIN+ vFIN)-parallelogram diagonal as per T-symmetry relation 

from (2.2) and Fig. 2.1. Here vectors v=(v1, v2) denote two particles each in one-dimension. More 

common is vector v=(vx, vy) (or v=(vx, vy, vz)) for one particle in two-dimensions (or three dimensions).

Fig. 3.8 shows how velocity v(n) vectors find results of Bang-1(01) and Bang-2(12) collisions in 

Fig. 3.7. What’s new is a space-space y2 vs. y1 or position-vector y(n)-plot whose paths are spatial-

trajectories or just plain trajectories. Space-time paths are found in Fig. 3.6 and Fig. 3.7 by transferring 

velocity slopes over to the space-space or space-time plot, but vectors in Fig. 3.8 simplify this process. 

Again, ideally small masses called point masses are assumed.

Construction steps in Fig. 3.8 show how to transfer direction of each velocity vector v(n) from 

the V2 vs.V1 plot so it points away from start point y(n) in the y2 vs. y1 plot. Step-0 does this by drawing 

initial velocity v(0)=(-1,-1)  to point away from our given initial position y(0)=(1,3). Then you extend 

that v-vector until it hits the floor (as v(0) does at y(1)=(0,2)), or else hits the collision line (y2=y1) (as v

(1) does at y(2)=(1,1)), or else hits the ceiling (as v(2) does at y(3)=(2.2,7).). Each such “hit” is a Bang, 

Bang-1(01) at y(1), Bang-2(12) at y(2), or Bang-3(20) at y(3). Then from each Bang-n position point y(n) is 

drawn the next v(n)-velocity vector from the V2 vs.V1 plots. This process continues in exercises that lead 

to Fig. 3.9 and beyond.
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Fig. 3.8 Vector collision velocity diagrams with Velocity-Velocity space and space-space.

Help! Iʼm trapped in a triangle.
Trajectories in (y1, y2)-plots are confined to the triangle above the 45°-collision line. Our model 

keeps m2 above m1. The right-hand “ceiling” in the figures never is hit because m1 always is knocked 

down by m2 before it touches the ceiling, and m2 never sees the floor because m1 is in the way. Modern 

physicists beware! Quantum theory doesn’t encourage this feature. Quantum objects are wavelike and 

may, depending on inter-particle potentials, pass right through each other! 
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Fig. 3.9 Vector collision diagrams continued with velocity-time and space-time plots added.
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Two balls in 1D vs. one ball in 2D
For ball-Earth collisions involving ceiling or floor, the paths bounce in the space-space plot like 

they’re inside a box. One component V1 or V2 changes each time by changing ±sign. Off the floor: 

(V1 ,V2) changes to (-V1,V2) , off ceiling: (V1,V2) changes to (V1,-V2). It is like a single particle bouncing 

around a pool table. Here (V1,V2) acts like (VX ,VY) in two dimensions, so two particles in one-dimension 
use graphs similar to one particle in two dimensions, an interesting analogy for quantum theory.

Angle of incidence=Angle of reflection (or NOT)
When paths bounce off the floor and ceiling in the space-space plot, the angle of incidence equals the 

angle of reflection just as light rays reflect off mirrors. (Newton imagined little light corpuscles 

bouncing around.) It is customary to measure path angles from the normal or perpendicular to a mirror 

so a normal bisects the angle between the incident and reflected paths. 

For m1-m2 Bangs off the 45°-collision line, the bisecting line has the slope -M1/M2=-7. It is like 

having mirror facets at slope M2/M1=1/7 along the 45°-collision line. For equal-mass-(M1=M2) balls, or 

one ball in two dimensions, the bisector line slope at the 45°-collision line is –1 or -45° and the collision 

line acts like a unit-slope mirror on a triangular billiard table. It is not quite that simple if M1 /M 2 ≠ 1 . 

Consider the two collisions Bang-3(20) and Bang-4(12) in Fig. 4.12. Velocity v(2) bounces off the 

ceiling in Bang-3(20) into v(3), whose velocity slope is close to the mass-ratio M1/M2 which is 7:1 here. 

So the next collision Bang-4(12) bounces v(3) off the diagonal into v(4) which is close to –v(3). It’s 

followed by another ceiling bounce Bang-5(20) into v(5) heading down for another collision Bang-6(12).

Bang force
Lower Fig. 3.9 has a velocity vs. time plot next to a space-time plot. (A y-t plot in gray is by the V-t plot.) 

Each Bang means a change in velocity for any particle involved in the collision. By Newton’s 2nd law  

each change in momentum, mv to m(v+Δv), requires a force impulse F·Δt= m(Δv) on each mass that 

changes. Shortly, we study ways to deal with this F.

Kinematics versus Dynamics
The velocity-velocity (v1,v2) plots, such as the left side of Fig. 4.12, fall in a category known as 

kinematics, or momentum analysis, which is concerned with how things are going, where they’re 

headed, or what is their velocity or momentum and energy. (kinos means movement.)

In contrast, the space-time plots, such as the right side of Fig. 4.12, fall in a category known as 

dynamics, or coordinate analysis, which is concerned with how things are located, where they are, or 

what are their coordinate or position and time schedules. (dynos means change.) We introduced the 

space-space (x1,x2) plot, another geometric or trajectory representation of dynamics.
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Before going on, let’s compare how kinos and dynos play out in classical Newtonian physics 

versus their corresponding roles in quantum physics. This is a preview for later Units. 

Dynos and Kinos: Classical  vs. quantum theory
In Newtonian physics, a precise position plot (yk vs. time) lets you find a precise velocity plot, 

too, and, a velocity plot (Vk vs. time) lets you find a position plot if you know starting position values. 

(We did just that in Fig. 4.7 and Fig. 4.11.) In calculus, finding position from velocity values is called 

integration, and finding velocity from position values is called differentiation. Of the two, the latter is 

formally easier but numerically and experimentally more sensitive to imprecision and noise.

In quantum physics, having a precise velocity plot renders a position plot meaningless and vice-

versa! Werner Heisenberg was first to state this quantum idea, now known as Heisenberg’s Principle. If 

you know momentum exactly, that means a uniform wave is everywhere, and all positions are equally 

possible. If you know position exactly, that means every momentum is possible, implying a “wave-

bomb” about to blow up the universe! 

All this sounds crazy to most of us who are born-and-bred Aristotelean-to-Newtonian students. It  

is difficult enough to go from Aristotle’s what-you-see-is-what-you-get (WYSIWYG) universe to 

Newton’s corpuscular one. A quantum universe is yet another step removed on the WYSIWYG scale.

A way to see the quantum universe (Perhaps, it is the way.) is to learn about wave kinematics and 

dynamics without Newtonian corpuscles and see how waves mimic corpuscles and do so quite cleverly. 

The quantum universe is a WYDAWYG (waves-you-don’t see-are-what-you-get) world!

So our plan is to cast classical Newtonian kinematics and dynamics in a form that carries over 

into vibration and wave kinematics or dynamics. It is done by analogy with classical waves such as 

sound waves, water waves, and (most important) light waves. Many classical wave analyses invoke 

corpuscles (including, for Newton, light waves) so these analogies, like any analogy, need critical use of 

a well sharpened Occam’s razor. Above all, symmetry (and same-try) principles must be taken seriously.

 IF-ellipse geometry of Ch. 2 related velocity, momentum and energy, and Ch. 4 derived space-

time paths. This relates Lagrangian and Hamiltonian mechanics and leads to geometries of relativity and 

quantum mechanics where space-space and space-time plots relate to modern physics in subtle ways 

involving inverse space-time.
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Exercise 1.4.1: Construct a history of a 4:1 mass ratio bounce. x1(0)=1.5, x2(0)=3.0, v1(0)=-1, v2(0)=-1

Ceiling height=7.0.(For bottom row: Ceiling height=6.0 ) The 4:1 mass ratio case is surprisingly 

periodic. Note, position y(n)-vectors of the Bang-n points in Fig. 3.9 are not drawn to reduce clutter.

Exercise 1.4.2: Continue Fig. 3.7 and Fig. 3.8 with more steps using same ceiling height=7.0. 
Continue until you reach the “gameover” point of last possible M1-M2 collision assuming the floor is 
open after Bang-1 so both masses fall thru indefinitely. When and where do they last collide? 
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Chapter 4 Matrix operator analysis of collisions
Analysis of collision chain dynamics can be done by matrix algebra and symmetry operator 

geometry that is used in quantum theory. This provides an opportunity to learn about these techniques in 
a more “down-to-Earth” setting of classical bang physics while discovering some surprising effects.  
Doing collisions with matrix products

Fig. 4.1 shows a big mass m1=49 hittting a little mass m2=1 about ten times off the ceiling before 
being halted. This tests our collision precision! To check our results we use our previous vector equation 
(3.1) to make a matrix equation in (4.1) with 

� 

V COM = m1v1 + m2v2( ) /M  and total mass M = m1+ m2.
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(Let v1
IN =v1 and v2

IN =v2 here.) Vector equation (4.1a) is converted to matrix equation  vFIN =Miv in (4.1b).

      v1
FIN

v2
FIN

⎛

⎝⎜
⎞

⎠⎟
= 1
M

m1 − m2 2m2

2m1 m2 − m1

⎛

⎝⎜
⎞

⎠⎟
v1
v2

⎛

⎝⎜
⎞

⎠⎟
   (4.1b)

Each IN-to-FIN bang is a  vFIN =Miv IN operation (4.2a). Matrix product  MiN (4.2b) is bang-M after bang-N.
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Matrix M acts column-by-column on another matrix N as it does on vector v. Off-ceiling bang matrix  C 
= ( 0

1  -1
0 ) changes (v1, v2) to (v1, -v2).  CiM  is a ceiling bang C following a 2-ball collision matrix M. 

   

C iM = 1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
1
M

m1 − m2 2m2

2m1 m2 − m1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1

M
m1 − m2 2m2

−2m1 m1 − m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 −1
⎛

⎝⎜
⎞

⎠⎟
0.96 0.04
1.96 −0.96

⎛

⎝⎜
⎞

⎠⎟
= 0.96 0.04

−1.96 0.96

⎛

⎝⎜
⎞

⎠⎟
 (4.3)

A chain of p factors acts on vIN to give  v
FIN − p = (CiM)p iv = (CiM)i(CiM)i(CiM)i…(CiM)iv in (4.4) with (p=5) 

double-bangs 
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Even after 9 bangs, the larger m1 is still rising at velocity v1=0.2925. V after Bang-11(02) is in (4.5). Now 
big m1 is nearly stopped and little m2 is coming down at v2=-7.071 with practically all the initial energy!
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Look out below! As m1 is turned back it crosses v2-axis (where v1=0) in Fig. 4.1a. The greatest curvature 

(acceleration or force) for the path of m1 is between Bang-8 or 9 and Bang-14 or 15 in Fig. 5.1b because 

that is when m2 is busiest in its apparently furious effort to beat back poor old m1.
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Fig. 4.1 Multiple Bangs of the m1=49 and m2=1 superball system. (a) V vs V plot. (b) Y vs time.
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Big m1 is repelled down by repeated m2 hits and gains speed as m2 loses it. If no floor intervenes 

to rebound m1 there comes a final bang that leaves m2 slower than m1 who falls away so m2 can’t hit it 

again.  (Exercises 4.1 and 4.2, ask you to find this a game-over point for various cases.)

However, if a floor intervenes, then a 2nd floor-bounce matrix F= ( 0
−1  +1

0 ) bangs (v1, v2) to (-v1, v2) 

and bounces ball-m1 back up to start the whole process over again. Ball-m1 does a similar up-down trip 

but not exactly the one shown in Fig. 4.1. Next we see how to predict the periodicity of such processes.  

Except for floor bounces, the m1-ball in Fig. 4.1 experiences a smoother flight than in Fig. 3.9 

where a more massive m2-ball jerks it quite severely. A smaller mass m2 has less momentum-per-bang 

and gives a quasi-continuous force field for m1. Later we will use this to derive a funny kind of force and 

potential field theory from this.
Rotating in velocity space: Ticking around the collision clock

Here is an example of geometry of slope ratios. If you view the ellipse in Fig. 4.1a lower-edge-

on (After exercise to finish it!) you may see it as a circular clock with each double-bang (odd-bangs 

1,3,5,…) rotating the v-vector like a clock hand ticking equal-angle jumps around a dial. 

You can make an energy ellipse (2E=m1v12+ m2v22) like Fig. 4.1(a) or Fig. 4.2(a) into an energy 

circle (2E =V12+V22) like Fig. 4.2(b) by rescaling velocity (v1, v2) to (V1 = v1·√m1, V2 = v2·√m2).

 V1=v1·√m1,   V2=v2·√m2    where: 2E=m1v12+ m2v22=V12+V22      (4.6)
Big-V variables replace little-v’s by setting (v1 =V1/√m1, v2 =V2/√m2) in matrix relation (4.1).
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V2
FIN1 / m2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

1
M

m1 −m2 2m2
2m1 m2 −m1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

V1 / m1
V2 / m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
(5.7)

Clearing scale factors √mk gives the following big-V matrix relations to replace (4.1) above.

   
 

VFIN1 =
V1
FIN1

V2
FIN1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1
M

m1 −m2 2 m1m2
2 m1m2 m2 −m1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

V1
V2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=M iV  (4.8) 

 

VFIN2 =
V1
FIN2

V2
FIN2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1
M

m1 − m2 2 m1m2
−2 m1m2 m1 − m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ = CiMiV  (4.9)

The trick is to notice a Pythagorean relation x2+y2=1 for the circular bang-matrix components. 

    m1 −m2

M
⎛
⎝⎜

⎞
⎠⎟

2

+
2 m1m2

M
⎛

⎝⎜
⎞

⎠⎟

2

= m1 +m2

m1 +m2

= 1       (4.10a)

The matrix is defined using sinθ and cosθ shown for m1=49 and m2=1 and angle θ =16.26° in Fig. 4.2(c).

     Define :  cosθ ≡ m1 −m2

M
⎛
⎝⎜

⎞
⎠⎟    and :  sinθ ≡

2 m1m2

M
⎛

⎝⎜
⎞

⎠⎟
    (4.10b)     

A 1-Bang matrix is a V space reflection at θ. A 2-Bang matrix is clockwise rotation by angle -θ =-16.26°.

V1
FIN1

V2
FIN1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= cosθ sinθ

sinθ −cosθ
⎛

⎝⎜
⎞

⎠⎟
V1
V2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(4.11)   V1
FIN2

V2
FIN2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosθ sinθ
− sinθ cosθ

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ =

0.96 0.04
−1.96 0.96

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ (4.12)
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Fig. 4.2 Velocity-velocity clocks. (a) Energy ellipse (As in Fig. 5.1) (b-c) Energy bang-clock angles
(d) Velocity-squared E-plot.  (e) Mass-scaled V-squared E-plot.  (f) Integral right triangles

Matrix (4.12) reduces N-double-bang chains like (4.4) to one formula! If θ =16.26° in (4.12) is replaced 

by Nθ =81.30° (for N=5 double-bangs) then (4.13a) results. Relation (V1=v1√m1,V2=v2√m2) gives (4.13b).

  
 

V1
FIN2N

V2
FIN2N

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= (CiM)N iV =

cosNθ sinNθ
− sinNθ cosNθ

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ =

cos5θ sin5θ
− sin5θ cos5θ

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ =

0.1512 0.9885
−0.9885 0.1512

⎛
⎝⎜

⎞
⎠⎟
V1
V2

⎛

⎝
⎜

⎞

⎠
⎟ ( for : N = 5)     (4.13a)

Then we see that (4.13b) easily gives (4.5). Recall:  (CiM)N follows initial floor F reflection (v1, v2)=(1,-1).

v1
FIN2N

v2
FIN2N

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

cosNθ
m

2

m
1

sin Nθ

−
m

1

m
2

sin Nθ cosNθ

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

v1

v2

⎛

⎝
⎜

⎞

⎠
⎟ =

cos5θ 1
7

sin5θ

−7sin5θ cos5θ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
v1

v2

⎛

⎝
⎜

⎞

⎠
⎟ =

0.1512 0.1412
−6.9194 0.1512

⎛
⎝⎜

⎞
⎠⎟

1
−1

⎛
⎝⎜

⎞
⎠⎟
=

0.010
−7.071

⎛
⎝⎜

⎞
⎠⎟
for :

N = 5
m1
m2

= 49

⎧

⎨
⎪

⎩
⎪

    (4.13b)

Without a 2nd floor-bounce-back operation F, this sequence ends at the “game-over” point near 

bang-21. (See exercise 5.1.) Matrix group products allow us to “engineer” collision sequences. 

Statistical mechanics: Average energy
If two balls of mass m2=1 and m1=7 do many bangs it happens that the small ball goes faster on 

the average than the bigger one. How much faster? The arrows on the scaled velocity clock in Fig. 4.2(b) 

are uniformly distributed around its circle, and after another floor bounce will be uniformly distributed 

again. (Fig. 5.2(b) shows only m1-m2-bounce arrows. m2-ceiling-bounce-arrows fill up the upper half.) A 

ball’s velocity and momentum must sum and average to zero otherwise it is not remaining bounded in 

the region between the floor and the ceiling. But, what is average squared-velocity v2 of each ball?
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An energy plot in the space (V1)2 vs (V2)2 of scaled velocity-squared helps to answer this. The 

result is a 45° line shown in Fig. 4.2(e) that corresponds to total kinetic energy conservation (KE=E). 

Points on the circle in Fig. 4.2(b) get mapped onto that 45° line in Fig. 4.2(e) by KE conservation.

                                  (V1)2 + (V2)2 = 2 KE = m1(v1)2 + m2(v2)2     (4.14)

The average of all points on the 45° line is its bisector.

    (V1)2 = KE = (V2)2   or:   m1(v1)2 = KE = m2(v2)2    
This gives the average velocities or root-mean-square-speeds v1rms and v1rms of m1 and m2.

  v1
rms = KE /m1     v2

rms = KE /m2     (4.15)

Each ball, regardless of mass, averages an equal share (50% if there are just two) of the total energy. So, 

if m1 is 7 times m2 then the mean speed of m2 is √7=2.65 times faster than that of m1. The 1st bang in Fig. 

3.4b has m2 only 2.5 times faster than m1 was before collision. But after that v1=0.5 so then v2/v1=5.0 and 

root ratio is v2 v1 = 5 = 2.236. .

Bonus: Rational right triangles
Geometry often offers interesting numerics. In this case, the general right triangle in Fig. 4.2(c) 

makes integer or rational fraction solutions to the Pythagorean sum a2+b2=c2 such as the famous 

(a=3,b=4,c=5) right triangle. Perfect-square mass values (m1 and m2=1, 4, 9, 16, 25, 36, 49, 81, 100,…) 

give integral valued right triangle altitude a=√(4 m1·m2), base m1-m2, and hypotenuse m1+m2. Examples in 

Fig. 4.2 are (a=14,b=48,c=50) for (m1=49, m2=1) and (a=12,b=5,c=13) for (m1=9, m2=4).

Reflections about rotations: It’s all done with mirrors
In 1843 Hamilton discovered his quaternion algebra {1,i,j,k}, a mathematical jewel. In 1930 Pauli used 
related spinor matrices {1,σX, σY, σZ}. We label Pauli matrix σZ as sigma-A=σA (A for Asymmetric) and σX as 

sigma-B=σB (B for Balanced). They are Hamilton’s k and i with an imaginary factor i= −1 attached.

  σ A =
1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
=σ Z =ik   (4.15a)   σB =

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
=σX =ii  (4.15b) 

Other matrices, sigma-C=σC (C for Circular) and sigma-0=σ0  (0 for“Origin”) are products like σAσB or σA2.

   σ AσB =
1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
⋅
0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
=

0 1
−1 0

⎛
⎝⎜

⎞
⎠⎟
=iσC =iσY =− j  (4.15c)       σ Aσ A = σBσB = σCσC =

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟
= σ0 =1=1    (4.15d)

Hamilton’s {i,j,k} square to -1. (i2=j2=k2=-1) That is like i 2= −1 . But, Pauli-σ’s square to +1. (1=σX2=σY2=σZ2.) 

We now relate σ-matrices to simple super-ball collision reflections and rotations shown in Fig. 
4.2. For example, the σA is our “ceiling bounce” C in (4.3) and our “floor bounce” F in (4.3) is just - σA. 

σ A =
1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

= C   (4.15e)   −σ A =
−1 0
0 1

⎛
⎝⎜

⎞
⎠⎟
= F  (4.15f)   
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A geometric view of σA (or - σA) is mirror reflection thru Cartesian x (or y) axes in Fig. 4.3a while σB (or 

- σB) is reflection thru mirror planes tilted at angle π/4 (or −π/4) between x-y axes in Fig. 4.3b. General 

reflection σφ thru a mirror plane tilted at angle φ/2 (Fig. 4.3c) is a sum (4.15c) of σA cosφ and σB sinφ. 

  
  
σφ = σ A cosφ + σB sinφ =

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

cosφ +
0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

sinφ =
cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟

  (4.15c)

Like all reflections, σφ must square-to-one. (σφ2=1) It does so because σA2=1=σB2 and σAσB =-σBσA. We 

test σφ on unit vectors x̂ = 0
1( )  and ŷ = 1

0( )  and see that matrix algebra checks with geometry in Fig.4.3c.

 
   
σφ ix̂ =

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
i

1
0

⎛
⎝⎜

⎞
⎠⎟
=

cosφ
sinφ

⎛
⎝⎜

⎞
⎠⎟

  (4.16a) 
   
σφ iŷ =

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
i

0
1

⎛
⎝⎜

⎞
⎠⎟
=

sinφ
− cosφ

⎛
⎝⎜

⎞
⎠⎟

   (4.16b)

Fig. 4.3d geometry shows a product σ2σ1 of any two reflection matrices is a rotation matrix R. In Fig. 

4.3d  σφσA is right-hand rotation R+φ but σAσφ=R−φ in Fig. 4.3e is left-handed. Rotation angle φ is twice 

the angle φ/2 between mirrors. Direction of rotation σ2σ1 is from 1st mirror (of σ1) to 2nd mirror (of σ2).

   
 
σφ iσ A =

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
i

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
=

cosφ   - sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟

    (4.17a) 
 
σ A iσφ =

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟
i

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
=

cosφ   sinφ
-sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
  (4.17a)

For example, rotation σBσA is by +90° and σAσB is by -90°. Rotation σA(-σA)=(-σA) σA is by ±180°.

Through the clothing store looking glass
The rotation in V1 vs V2 space of Fig. 4.2b is a product of ceiling bounce and m1-m2 collision that are each 

a reflection. An even simpler example of paired-reflection rotation is a clothing store mirror in Fig. 4.4a. 

It lets you swing two mirrors like doors to view multiple images of yourself. If you set the angle 

between mirrors to φ/2=30° as in Fig. 4.3 d-e or to 60° as in Fig. 4.4a then you see yourself rotated by 

twice that angle. Images are turned 120° counter-clockwise in the right mirror and clockwise (-120°) in 

the left mirror of the latter. 

 The sketches in Fig. 4.4a oversimplify the actual images shown by photos of a real mirror pair. 

The single reflections for σA are not shown in the sketch but clearly visible in photos where the σA and σφ 

images both have backwards text and a left hand image of the original right hand. This is corrected in 

the (-120°)-rotated σAσφ image and the (+120°)-rotated σφσA image. 

 A special case is rotation σA(-σA)=(-σA) σA by ±180° due to setting mirrors at exactly φ/2=90° as in 

Fig. 5.4b. The result is known as a corner-reflector image. Wherever you stand while viewing a 90° 

corner you see your image centered and rotated±180° to face you but it is not reflected. A 90° corner 

image is as others see you, complete with a readable monogram on your jacket and your right hand on 

the right side. 
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Fig. 5.3 Mirror geometry (a)±σA, (b) ±σB, (c) σφ. Right-vs-left-handed rotation (e) σφσA (f) σAσφ.

How fundamental are reflections?
A product of two reflections is a rotation Rφ=σ2σ1, but two rotations just give another rotation Rφ+θ= RφRθ 

and never a reflection. This makes reflections more basic and productive than rotations. On the other 

hand, you cannot do a reflection of a real solid object without entering an Alice-in-Wonderland looking-

glass-world. Moving every atom in a classical object to a reflected position (without destroying it) is 

unthinkable! Yet, we easily rotate semi-solid objects (like your eyeballs while reading this).

 Waves, on the other hand, are very un-solid and do reflection effortlessly. Rotation takes twice 

the effort as seen in the looking glass images of Fig. 4.4. This is one reason reflection operations are so 

basic to the study of wave mechanics, quantum theory, and relativistic symmetry as we will see later. 

They are elementary symmetry generators in a 1D world. A 1D translation by distance a is two 

reflections by 1D mirrors separated by distance a/2.
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Fig. 5.4 Mirror reflections and rotations with relative angle: (a) 60° (b) 90° (corner reflector images).

Symmetry operation R or σ is defined by what it does to unit vectors x̂ = 0
1( ) and ŷ = 1

0( )as σφ (4.16) is done 
in Fig. 5.3c. That matrix does that same operation to any and all vectors v = v2

v1( ) = v1x̂ + v2ŷ  in the space.

  
 
σφ iv = v1σφ ix̂ + v2σφ iŷ = v1

cosφ
sinφ

⎛
⎝⎜

⎞
⎠⎟
+ v2

sinφ
− cosφ

⎛
⎝⎜

⎞
⎠⎟
=

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
v1

v2

⎛

⎝
⎜

⎞

⎠
⎟   (4.18)

A way to distinguish rotation and reflection operators is by the determinant det|M| of their matrices.

  det |M|= det a b
c d

⎛
⎝⎜

⎞
⎠⎟
= a·d − b·c    det

ux vx
uy vy

⎛

⎝
⎜

⎞

⎠
⎟ = ux ·vy − vx ·uy = u v sin∠u

v

A determinant of matrix M quantifies the space (area in this case) enclosed by vectors in M‘s rows or 
columns (u and v enclose a parallelogram in this case).  
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 Determinant of a rotation (or reflection) is +1 (or –1). Reflected area or angle in Fig. 1.3 is 

negative. 

  det Rφ = det
cosφ sinφ
− sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
= cos2 φ + sin2 φ = +1    det σφ = det

cosφ   sinφ
sinφ − cosφ

⎛
⎝⎜

⎞
⎠⎟
= − cos2 φ − sin2 φ = −1

Determinants track matrix multiplication. The determinant of a product is a product of determinants.

     det|M·N|= (det|M|)(det|N|)= det|N·M|

Thus, two reflections each with det|σ|=-1 form a product of det|σ1 σ2|=(-1)(-1)=+1, that of a rotation. This 

also shows a product of rotations cannot make a negative-det-matrix and so cannot be a reflection.
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Chapter 5 Introducing Force, Potential Energy, and Action
Analysis of force is one of the trickier parts of Newtonian mechanics and one that Aristotle 

seems to have not done so well. We, like Aristotle, feel we know force after being pushed and pulled 

around by it most of our conscious lives. Aristotle related force directly to mass and its motion. If he 

ever wrote equations then, perhaps, Aristotle’s equation would be F=MV. 

NOT! MV is momentum, not force. Galileo and Newton may be the first to realize that force 

should be equated to a change in momentum. A famous equation F=Ma equates force to mass or inertia 

M times acceleration a, the rate of change of velocity. It is called Newton’s 2nd law or NEWTON-TWO. 

    F =dt
dP= Mdt

dV = M ⋅a                     (5.0)

m
1

Low energy

“Cool“

(a) Uncompressed

(Large Y-space)

Yy
1
=H-Y

mm
22

High energy

“Hot“

(b) Compressed

(Small Y-space)

Y

mm
22mm

22mm
22mm

22mm
22m

1
mm
22

mm
22

mm
22

mm
22

Small momentum transfer

“Low pressure“

Big momentum transfer

“High pressure“

V2 small V2 large

Fig. 5.1 Big mass m1  feels “force field” or “pressure” of small ball rapidly bouncing to and fro.

MBM force fields and potentials
Motion of m1 in Fig. 4.1b suggests a kinetic model and a potential force field. Boltzman uses this 

to derive gas force laws for volume, temperature, and pressure. As a big m1-ball squeezes space (volume) 

for a tiny m2-ball in Fig. 5.1, the speed v2 and energy 1/2 m2v22 of m2 increases. So does the momentum 

transfer rate or bang-force on m1. Energy is related to temperature and bang-force is related to pressure. 

A madly bouncing m2 is like a 1-atom gas getting hot when its Y-space is compressed as in Fig. 5.1b.

A “double-whammy” hits the m1-ball as it closes in with velocity v1 toward m2 and wall (Y=0): 

(1) Bang rate B with m2 increases with shrinking distance 2Y traveled by m2 between m1 and wall. 

(2) Increased velocity v2 (due to v1) increases momentum m2v2 and ΔP transferred to m1 by each bang.

(3) Increased velocity v2 (due to v1) increases bang rate even more. It’s really a triple whammy!
 If m1 is huge (say 1kg) compared to atom or molecule m2 (say (2/3)·10-27kg for an H-atom), the 

speed v1 of the macro-mass m1 may be negligible compared to typical atomic speeds v2 of 103 m/s. Then 

we ignore (2) and (3) due to tiny v1 in a so-called isothermal model. An adiabatic model includes them.
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Isothermal model force laws
For each bang of m1, atom m2 travels distance 2Y back & forth between m1 and ceiling at Y. If v1 is slow, 

the time Δt between bangs is 2Y divided by velocity v2 of m2. Bang rate B is the inverse: B=1/ Δt.

 Δt = 2Y /v2 (seconds per bang)  (5.1a)   B =1/Δt = v2 /2Y (bangs per sec)  (5.1b)

Each head-on bang of big m1 on small m2 changes velocity of m2 from −v2 to +v2FIN as shown in Fig. 5.2.

 (for: m1>>m2):   v2FIN = v2+2v1   (≈ v2 for: v2>>v1)  (5.2) 

Added speed for m2 is 2v1, twice that of incoming m1. (V-V-plot Fig. 5.2 assumes large-m1.) The change 

ΔP of momentum m2v2 is the difference between FIN value +m2v2FIN and IN value −m2v2.

   ΔP = (+m2v2FIN)–(−m2v2)=2m2v2+2m2v1  (≈ 2m2v2 for: v2>>v1)  (5.3)

So, if “atomic” velocity v2 is large compared to v1 it gives a bang-force F=B· ΔP = ΔP/Δt on m1.

     BP= ΔP/Δt =F = 2m2v2(v2 /2Y) = m2v22/Y    (5.4) 

So a force field F=2·KE/Y on m1 due to m2 is proportional to KE=1/2m2v22 or temperature T of m2. 

Boltzman’s constant k of proportionality (KE=kT) gives an isothermal force law FY=2kT. It is a 1-D 

version of Boyle’s ideal gas law: PV=2kT. Here a ceiling tries to keep energy or “temperature” of m2 

constant in spite of m1 constantly trying to anger poor little m2.

Start at
(+v1,-v1)

(a) After 2 Bangs

Start at
(+v1,-v1)

v(1)

v(2)

(b) After 4 Bangs

v(3)

v(4)

V1 axis

V2
axis v(2)

v(1)

Increase
by

≈2 v1

Increase
by

≈2 v1

Double-Bang Sequences
for m1 >>m2

V1 axis

V2
axis

Fig. 5.2 Large mass-ratio (m1/m2>>1) bounce sequence. (Compare to Fig. 3.2a.)
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 Adiabatic model force laws
An elastic ceiling can’t give or take energy so each m1 bang adds velocity 2v1 to v2 at rate B=v2 /2Y (5.1). 

As m1 closes at speed v1 it reduces distance 2Y that m2 travels. Rate B grows due to more v2 and less Y.

   
dv2
dt

= 2v1B                        = 2v1
v2
2Y

,      y =v1t=H-Y,        dy
dt

= v1 = −
dY
dt

      (5.5a)

We cancel time and v1 to show this force is inverse-Y- cubed, a lot “harder” than inverse-Y in (5.4).

   
dv2
dt

=
dY
dt

dv2
dY

= −v1
dv2
dY

⎛

⎝⎜
⎞

⎠⎟
= 2v1

v2
2Y

,  
dv2
v2

= −
dY
Y

,   v2 =
const.
Y

=
v2
INY (t=0)
Y

,   F=
m2v2

2

Y
=m2

const.( )2
Y 3

(5.5b)

This is an adiabatic or “fast” force law. Collisions are so fast that an isothermal-seeking “Robin 

Hood” in the ceiling hasn’t time to steal m2’s energy if it’s judged too energy-rich or give energy back if 

m2 becomes energy-poor. So m2 can get hotter and hit m1 harder and more often as gap Y shrinks.

Conservative forces and potential energy functions
Either force law (5.4) and (5.5b) actually conserves the energy of the big-m1 ball in the long run. 

By that we mean that m1 will come out with practically the same energy that it had when it went in. 

The adiabatic case is easier to see. Each bang conserves energy as demanded by the kinetic 

energy (KE) conservation relation (3.5a). Little-ball velocity v2=const./Y from (5.5b) is used here.

  
  
E = 1

2
m1v1

2 + 1
2

m2v2
2 = 1

2
m1v1

2 + 1
2

m2
const.

Y
⎛
⎝⎜

⎞
⎠⎟

2
=const.   (5.6)

The first term is m1’s kinetic energy KE1. The second term, which is really m2’s kinetic energy, is called 

m1’s potential energy PE1 or just plain PE. It is labeled U(Y) and varies only according to height Y of m1.

 

� 

E = KE1 + PE =
1
2m1v1

2 + U (Y )      where:   PE =U (Y ) =
1
2 m2

const.
Y

⎛ 
⎝ 

⎞ 
⎠ 

2
  (5.7)

The PE is energy that m1 lends to m2 each time m1 moves a distance ΔY closer so m1 does a little 

bit of work ΔW on m2. Work is defined as force times distance. (ΔW=F·ΔY) Power, the rate of work done, 

is defined as force times velocity. Here distance is a small ΔY and the force F in (5.5b) is m2 const.2/Y3. 

But “work” force might be plus-or-minus (±)m2 const.2/Y3. Which sign? (+) or (−)? Conflicting sign 

conventions make force-physics confusing. The sign depends on how force and direction are defined. 

(It’s all relative!)
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Is it +or-? Physicist vs. mathematician and the 3rd law
A physicist’s force Fphys is what is felt by a free object (Here that’s m1.) whose motion is driven 

by force field F=Fphys. A mathematician’s force Fmath is what is needed to hold back that object in the 

force field. (How apropos! A physicist lets it go but a constipated mathematician holds it back!) They 

differ by (±) sign only, that is, Fmath =-Fphys, and Fmath is the equal-but-opposite force by an object (m1 

here) on its field or force agent(s) (m2 here). (This is essentially Newton’s 3rd law. (NEWTON-THREE) )

Force is momentum flow. Momentum is stuff that’s conserved, so the flow rate Fphys of this stuff 

into an object m1 must be balanced by an equal-but-opposite negative flow, Fmath =-Fphys, out of the 

forcing agent(s) (m2 here), and, vice versa, whatever flows out of m1 flows into m2. Momentum p=mv 

and force F are both vector quantities and a ±sign gives direction to-or-fro, another confusing (±) sign to 

bother us. But, whatever the flow rate Fphys seen by m1, then m2 sees the opposite rate Fmath =-Fphys.

Let’s define positive Y and F direction to be away from the wall in Fig. 5.1. So incoming m1 has 

negative velocity v1=-ΔY/Δ t , but after m1 reverses V=ΔY/Δ t is positive. Positive V=-v1 (increasing Y) and 

positive Fphys means both momentum and energy of m1 are being increased by force Fphys. Each bit of 

energy or work ΔW=FphysΔY gained by m1 is energy lost by the force-field’s potential “bank” that is m2. 

(ΔU=- ΔW)

 ΔW=F phys ⋅ΔY=-ΔU      where:  F phys= F(Y )=m2
const.( )2
Y 3

      (5.8)

In other words, power Π =Fphys.V into m1 is power (- ΔU/Δ t ) out of the field. (V=ΔY/Δ t is velocity of m1.)

 

� 

Π = F phys ⋅V = - ΔU
Δt = -ΔU

ΔY
ΔY
Δt = -ΔU

ΔY V     where:  F phys = -ΔU
ΔY     (5.9)

But is this consistent? Does force Fphys in (5.8) really equal minus the slope of potential (5.7)? 

� 

F phys = m2
const.( )2

Y3       
consistent

with:
      F phys = -ΔU

ΔY = - d
dY

1
2 m2

const.
Y

⎛ 
⎝ 

⎞ 
⎠ 

2
= m2

const.( )2

Y 3  (5.10)

It checks!! Note that F=- ΔU/Δ Y needs that 1/2 on kinetic energy 1/2 m2v22. (Recall discussion of (3.5).)

Isothermal “Robin Hood”and “Fed rules”
The isothermal case is a weird one. The little “force-field agent” m2 maintains it kinetic energy at 

around the same initial value 1/2 m2v22 no matter how much the big mass m1 loses or gains kinetic 

energy.
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It’s as though a “Robin-Hood” in the ceiling acts like a big Federal Reserve Bank. (“The Fed.”) 

Whatever energy m2 earns from m1 is taken and stored away if its over initial deposit 2
1 (m2v22)=T, but if 

m2 deposits falls below that value, the Fed makes up the difference. This energy or deposit limit is 

determined by a prevailing allowed “temperature” of the ceiling or the current money supply. (I’m not 

making this up. It’s what happens in nature and very roughly what happens in our economy. It becomes 

a problem if the Fed stops being a Robin Hood and becomes a robbing hood!) 

Under ideal conditions, force agent m2 makes a much “softer” 1/Y force field F=m2v22/Y given 

by (5.9). Definition (5.9) of force F as negative-U-slope -ΔU/Δ Y then gives a logeY=lnY potential. 

� 

F phys = m2
v2

2

Y = -ΔU
ΔY            implies:          U = -m2v2

2 ln Y( )   (5.11)

It may seem weird that we can define a useful potential while energy-funds are being siphoned in 

and out. Nevertheless, the ceiling “Robin Hood” is true to his word. (Analogy with “The Fed” ends 

here!) He puts back all the energy that m1 gave up to m2 (the potential U) on the way in, so that, except 

for small-change or “tips” left with m2 after the final parting collision, m1 recovers the energy it 

originally had. Such a force field, if determined by such a reliable potential, is also a conservative one. 

We discuss later the details of what is needed for general multi-dimensional fields to be labeled 

“conservative.”
Oscillator force field and potential
 Consider a mass m1 between two walls and two little speeding m2 masses as in Fig. 5.5. m1 feels 

a force like that of an oscillator. As m1 moves distance x off center the left wall space expands to Y+x 

and the right wall space shrinks to Y-x. Two opposing forces (5.11) then are unbalanced. (Only x2, x4,… 

terms cancel.)

     Ftotal =
f

1+ x
−

f
1− x

= f 1− x + x2 − x3...⎡⎣ ⎤⎦ − f 1+ x + x2 + x3...⎡⎣ ⎤⎦ = −2 f ·x − 2 f ·x3 −  

Here we let Y=1 be a unit interval and assume an isothermal kinetic constant k ≡ 2 f = 2m2v2
2  for each 

side. For small x (x<<1) the force Ftotal has a linear or Hooke’s law form, and the potential Utotal is 

quadratic. 

 
 
Ftotal  −k·x = −

∂Utotal

∂x
    

 
Utotal 

1
2
k·x2 = − Ftotaldx∫    (5.12)

 Harmonic oscillator (HO) linear forces and quadratic potentials are, perhaps, the most useful 

ones in AMO physics because they approximate any stable system. Normally, they are analogized by a 

mass on a spring, rubber band, or pendulum, only rarely (if ever) in a context like Fig. 5.3. HO motion is 

sinusoidal y(t)=Asin(ωt +ϕ )  with angular frequency ω = k /m1 and period τ =2π /ω independent of 

the oscillator amplitude A or phase ϕ . The calculation of period for Fig. 5.3c is left as an exercise.
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Fig. 5.3 Oscillator potential (a) Off center with (-)force (b) On center at equilibrium. (c) M=50 Quasi-

harmonic oscillation of in adiabatic force of two m=0.1 masses of speed v0=20 and range Y0=3.
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The 2nd most useful field is probably the Coulomb potential U=-k/r and force F=k/r2. (See Ch. 7 for 

electrostatics and Earth gravity, which also have 2D HO potentials at their cores.) After that, the 2D 

Coulomb U=k·ln(r) and F=k/r is an important field shown in Unit 10. (The latter is like (5.11). A pair of 

them underlies Fig. 5.3 for the isothermal case.)

You should be warned that an oscillator like Fig. 5.3 is not as simple as it might appear, and as 

we will see, neither are springs, rubber bands, or pendulums. Also, balls bouncing against moving 

objects are particularly dicey devices. A simple model with one ball and one oscillating wall is called a 

Fermi oscillator, and is quite chaotic.  The thing in Fig. 5.3 can be even more devilish if m2 is not very 

small. Caveat emptor!

The simplest force field F=const.
We have mentioned power-law forces Fadiab=k/y3=ky-3 (5.5), FCoul=k/y2=ky-2, FisoT=k/y=ky-1 (5.4), 

and lastly Fosc=-ky (5.12), but have forgotten the simplest, namely zero power law Fconst=k =ky0. This last 

one is like a constant near-Earth-surface gravity force 
  
F=

 
−∂y
∂U =mg =-m|g| on a mass m. ( (-) sign  for 

downward.) Acceleration of gravity at Earth’s surface is nearly -10 meters per second per second or very 

nearly –9.8. (g=-9.7997m/s2) Terrestrial objects experience this whether bundled together or not. 

All power-law forces F=kyp have power-law potentials U=-∫F·dy=-kyp/(p+1), except for p=-1 

where FisoT=k/y has a logarithmic UisoT=-k ln(y). (5.11) Earth-surface potential 
  
U = mgh  is linear in 

height y=h. This we use to compute height of a superball toss by equating its floor level KE=1/2mV2 to 

maximum PE=mgh.

 
  
ghmax =2

1 V floor
2  (5.13a)    

  
V floor = 2ghmax   (5.13b)

Ejection height goes as square of ejection velocity. A 3-fold velocity gain means 32=9-fold height gain. 
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Introducing Action. It’s conserved (sort of)

It is remarkable that a bouncing mass has a physical property called action   S = P�dx∫  that is more 

or less constant even if its position x momentum P and kinetic energy KE are not. Action is defined by 

the area of a one-cycle loop swept out in a momentum vs position phase-plot (P vs x). That is analogous 

to an energy or power-plot of force vs position (F vs x) whose loop area   F�dx∫  is work per cycle.

Conservation of momentum and conservation of energy are each a rigorously obeyed axiom or 

theorem for an isolated classical system. However, conservation of action is “more or less” or “sort of” 

and “it depends” for a driven system. The concept of action is both subtle and deep and it lies at the heart 

of quantum theory and accounts for a lot of how we affect and are affected by the world around us.

Here we use a geometric construction of a bouncing ball trajectory to quantify action 

conservation or lack thereof. We suppose the little mass m2 is caught as before in Fig. 5.1 and Fig. 5.2 

between a rock and a hard place, that is, bouncing between a big mass m1 (moving in at a constant 

velocity v1= 1 from the left) and a hard elastic wall. The big ball path is indicated in Fig. 5.4 by a line of 

slope=1= v1 that hits an initially fixed m2 following a vertical line (slope=0=v2) that then gets knocked 

up to a line of slope=2=v2 (after Bang(1)). Throughout the imagined collision sequence we suppose the 

big ball is so much more massive that its change in velocity is not noticeable. This is in spite of the fact 

that it is absorbing more and more momentum from the little ball with each bang. (Surely, something in 

it is going to break eventually!)

Each time the small ball is banged elastically by the big one it picks up two more units of 

velocity v1 that it maintains, apart from change in sign, through its subsequent bang with the elastic wall. 

Each time it returns for more, is banged again, and increases its speed by two units. (Recall Fig. 5.2.)

The horizontal dashed lines in Fig. 5.4 indicate the range Δx available to the small ball at each 

instant of its bang with the wall. Note that the product of the range Δx and the speed v2 is a constant 

three units even as spatial range Δx rapidly decreases and the velocity range Δv=2|v2| increases just as 

rapidly.

    Δx v2 =3.0 = Δx Δv/2       (5.14)
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This is an example of conservation of action mentioned before. If we define the small ball’s 

“range of velocity” by Δv=2|v2| then this relation takes the form of a weird kind of uncertainty relation, 

that is, it looks like Heisenberg’s famous minimum uncertainty relation Δx Δp ==(constant) for position 

and momentum. It happens that the two are related even though the constant used by Heisenberg is an 

unimaginably tiny Planck constant (~10-34Js) compared to a constant 3.0 appearing above. (Ours has 

gadzillions of wave quanta!)
The geometry behind this relation is exposed in Fig. 5.4 (b). It is obtained by considering 

intersections between lines of integral speeds or slopes v2 =±1, ±2, ±3, ±4, ±5, ±6, ±7,… that are 

relevant to the bang sequence. They are also relevant to quantum theory where the speeds of a particle in 

a box are indeed quantized to integers times a tiny number. (This is where that tiny  comes in.) That is 

simply a reflection (pun intended) of the fact that mutually reflecting waves require that an integral (or 

half-integral) number of the wavelengths fit perfectly between mirroring containment walls or cavities.

Now we might ask if the action area Δx Δv in Fig. 5.4c-e stays the same if the big-ball speed v1 

varies. Action variance was argued hotly by Einstein and the “quantum gang” at the1920 Solvay 

Conference. They imagined a hotel chandelier being dragged up or down by a clerk holding its support 

cable upstairs. They concluded that if the clerk could not detect the swinging pendulum phase or 

frequency, then he would seldom be able to change its action. However, if he could synchronize his 

oscillations then he could drive the chandelier exponentially to destruction. We shall review this 

important and explosive process known as parametric resonance in later units. It is fundamental to 

mechanics and particularly quantum wave mechanics. Action and its wiggly antics deserve our attention.

Monster mass M1 and Galilean symmetry (It’s deja vu all over, again.)
 “Monster mass” M1 bongs hapless m2-atoms in Fig. 5.4 using Galilean symmetry. To show symmetry we 

imagine two head-on monster M1‘s going at ±V1=±1 in Fig. 5.5. A mirror image of Fig. 5.4 lies in 

extended m2-path lines. The red paths of even integral velocity v2=0, ±2, ±4,… are copies of Fig. 5.4 

paths. Odd integral velocity v2=±1, ±3,… paths mesh with even ones to make a full grid. Any initial v2 

between ±V1 has a path on the grid. A blue path is drawn thru a series of bongs with 

v2=-0.2,+2.2,-4.2,+6.2,...in Fig. 5.5.
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Fig. 5.4 Bang sequence for small ball between big ball and wall. (a) Spacetime paths. (b-c) Geometry of 
constant product Y·VY of velocity and coordinate ranges. 
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Fig. 5.5 Symmetric pair of head-on V1=±1 monster-m1-masses pong tiny-m2-atoms to higher speeds. 

 Monster M1/m2-ratios have simple V1-v2-plots shown in Fig. 5.6a. (Recall Fig. 5.2.) Wall M1 

simply adds twice its speed (2V1) to incoming speed v2 of atom m2 as M1 bounces m2 out at that speed 

vFIN2=vIN2+2V1. Monster M1 is the COM so its path bisects in-and-out paths as it balances vIN and vFIN 

paths of atom m2. (In its COM frame each bong is simply a change of sign for velocity. Recall balance in 

Fig. 2.6.) 

 The geometry of adding slope 2V1 to speed v2 is shown if Fig. 5.6a. It is based on the unit square 

and unit velocity V1=1. Incoming -vIN2 is an altitude of a right triangle with vertical base V1=1, and it is 

reflected thru the square diagonal to +vIN2 then added to 2V1 to give sum vFIN2=vIN2+2V1 as long side of 

the triangle  with right side vertical base V1=1 in Fig. 5.6a. The hypotenuse is the final path with final 

slope vFIN2. Each m2-path and slope originates or terminates at base pt-B− or else pt-B+ . These are ends of 

the double-unit square bisected by unit slope path of M1 terminating at B0. Fig. 5.6.c shows quadrilateral 

B−B+A+A− bisected by M1 path B0CA0. Similar triangles explain multiple coincidences.
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Fig. 5.6 Bisection geometry of Fig. 5.5. 

Fig. 5.7 contains time plots for paths in different Galilean reference frames. An excerpt plot in Fig. 5.7a 

shows how Fig. 5.4 (copied in Fig. 5.7b) appears to a frame traveling at V=1 with each velocity in Fig. 

5.7b reduced by V=1 in Fig. 5.7a. Also shown in Fig. 5.7a is the extension of lines connecting the two 

plots and this highlights this remarkable symmetry. All collision times in Fig. 5.7a match perfectly with 

ones in Fig. 5.7b though all velocities are shifted. Galileo’s symmetry wouldn’t have it any other way. 
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Fig. 5.7 (a) Galilean frame shift by frame velocity V=1 of collision sequence in Fig. 5.4 (shown in (b)). 
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Exercise 1.5.1 Suppose Fig. 5.3 shows a mass m1=1kg ball trapped between two smaller mass m2=1gm 
balls of high speed (v2(0)=1000m/s for x=0) that provide m1 with an effective force law F(x) based on 
isothermal approximation (5.11) while assuming m1 moves only moderately far or fast from equilibrium 
at x=0. 

(a) A further approximation is the one-Dimensional Harmonic Oscillator (1D-HO) force and PE in 
(5.12). If each mass m2 start in an interval Y0=1m, derive approximate 1D-HO frequency and period for 
mass m1.

(b) What if the adiabatic approximation is used instead? Does the frequency decrease, increase, or just 
become anharmonic? Compare isothermal and adiabatic quantitative results for m1=1kg ball being hit by 
two m2=1gm balls each having speed of v2(0)=1000m/s as each starts bouncing in a space of Y0=1m on 
either side of the equilibrium point x=0 for the 1kg ball. 

(c) How does the frequency decrease or increase in isothermal case versus the adiabatic case if we 
shorten the run interval Y0=1m to one-quarter meter?…What if we reduce the mass ratio m1/ m2 by one-
quarter?

(d) Derive the adiabatic frequency for the case M=50kg in adiabatic force of two m=0.1kg masses of 
initial speed v0=20m/s and range Y0=3m. Compare with Fig. 1.5.3c.

Exercise 1.5.2 The moving ballwall-trapped-ball constructions in Fig. 5.4 involves a plot of a ballwall 
coming in with unit slope (velocity). Consider a construction where it has a velocity of 1/2 and 
intercepts a trapped ball of velocity –1 at space-time point (x=-2, t=4) that is 2 units from the fixed wall. 
Construct five or more back-and-forth collisions and comment on what, if any, differences exist with 
Fig. 5.4. If you can, also construct one or two prior collisions (before t=4).
Evaluate approximate or average action values as described in class or after Fig. 5.4 in Unit 1.
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Chapter 6 Interaction Forces and Potentials in Collisions
 Derivation of force field potentials in Ch. 5 used elementary bangs by tiny m2’s on a big M1. We 
predicted elementary bangs between a ball and floor, ceiling, or another ball without knowing potentials. 
However, three (or more) objects having a ménage a trois may involve 3-body interactions that depend 
even more sensitively on whatever interaction potential or force law couples the participants.
Geometry of superball force law
 When a superball or any elastic sphere hits the floor or ceiling it dents itself and, maybe it dents 
the surface it’s hitting a little bit, too. But, if the floor, wall, or ceiling is much harder than the ball, we 
might assume only the ball develops a “flat-tire” as shown in the Figure 6.1a below.

x 2R - x

R

r

(a) (b)

Fig. 6.1 Superball collides with solid wall. (a) “flat” (b) Saggital (“Bow”) mean geometry

 The radius r of the ball’s “flat” is indicated by an altitude in Fig. 6.1b and is the geometric mean 
of the depression distance x and the remainder 2R-x of the ball diameter. This is Thales geometry.

     r = x 2R − x)( )     ≈ 2Rx    for :   x << R( )    (6.1a)

Solving approximately for depression x gives the Saggital (“bow”) formula. (It’s used for thin lense arc.)

     

� 

x ≈ r2

2R        for:   x << R      (6.1b)

How much force F(x) is needed to depress the ball by distance x?
 Well, “It depends.” A hollow rubber ball or balloon with pressure P pushes back with force equal 
to product P·A of pressure and area of contact A=πr2. It‘s a linear (Hooke) force law like an ideal spring.
    Fballoon(x) = P·A = P πr2 ≈ 2πPRx      (6.2)
(Recall (5.12) and Fig. 5.3.) Another example is gravity inside the Earth. (See later Chapter 8.)
 However, the pressure and force in a solid ball varies non-linearly with x. Even if force varies 
only linearly with volume of the x-dent in Fig. 6.1b, it’s still non-linear in x. As seen in (6.4) below, 
sector volume varies roughly as quadratic x2 function. Superballs involve even higher power laws. 
(Superpower!)
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Volume(X) = πr2dx0
X∫ = πx 2R − x( )dx0

X∫

                 = 2Rπxdx0
X∫ − πx2dx0

X∫ = RπX 2 −
πX3

3
≈

RπX 2    for : X << R( )
4
3
πR3    for : X = 2R( )

⎧

⎨
⎪

⎩
⎪

 (6.4)

(Here we check that our integral gives the whole ball volume 4πr3/3 for x=2R. That’s the equivalent of 
crushing the superball into a black hole (or black spot). It’s likely to complain before we get that far!)
Dynamics of superball force: The Project-Ball story
 One of the interesting things to come out of Project Ball was the superball’s peculiar force law 
behavior. The USC mechanical engineering department took an interest in this crazy project when it 
showed up on NBC News “Ray Duncan Reports.” They offered to measure the superball force curve on 
a precise tension meter. But, that curve never worked. It didn’t predict the bounces the students were 
observing. Nothing was making any sense even though we had a big analog computer working it all out. 
 That was a low point in the project. Even with all this fancy experiment, computers, and theory, I 
looked like I didn’t know what the heck I was doing. So, what’s new? That’s science most of the time! 
But, to make things worse we got kicked out of the Project Ballroom, the old basement Lab 69 that we’d 
squatted in. It was up to be repainted so we had to drag all our stuff out and store it down the hall.
 Well,  after that I had to do something with the students so I arranged for a visit to Whammo 
Mfg. Co. in San Gabriel, California, where superballs and other goofy stuff was made. The Whammo 
man said maybe we could talk business about selling our super-elastic toy. So, a day or so later, with $$-
signs in our eyes, we piled into our cars and drove down to the plant. 

The trip to Whammo
 By the time we got there, the inventors were on an all-day “alpha-wave break.” That’s a 60’s fad 
where you try to increase your creativity by looking at your brain waves. I said, “Maybe, I could use 
some of that stuff!” But, the company lawyer wanted to show us around. After awhile, he said our 
invention was cool, but its product liability potential looked too high to make a commercial toy. 
 We all must have looked pretty sad after hearing that. So he went in a back room and dragged out 
a big collection of superballs that had been rejected for one reason or another. “Here, take as many as 
you want!” We thanked him and loaded the balls into some boxes and headed back to USC.
 When we got back to Rm 69, the painters were done but the paint wasn’t quite dry. So I said, 
”Let’s drop off our new balls so we’re ready for tomorrow.” The students took “drop” to mean literally 
and dumped them out of the boxes into the empty room. Right away the balls bounced into the wet paint 
and made lots of little polka-dot spots all over the floor and wall. What fun! What a mess.

Eureka! Polka-dots save Project Ball
 But, suddenly, it occurred to me what was wrong with our force analysis and how we might fix 
it. The engineers had carefully and slowly produced a static or isothermal force curve, but what we 
really needed was a fast-response or adiabatic force curve. I thought, “Maybe that force law can be told 
by the polka-dots!” 
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 From a polka-dot radius r made by a superball of mass M and radius R dropped from a height h 
we could relate gravitational potential energy Mgh to an adiabatic superball potential energy U,  and 
then find a U(x) curve for each value of x=r2/2R in formula (6.1b) by plotting height h against x given 
by dot radius r. Then the adiabatic force curve F(x) can be found from the slope dU(x)/dx of a U(x) 
curve. 
 Just as the adiabatic F=1/Y3 in (6.5) force curve is steeper and curvier than the isothermal F=1/Y 
in (5.4) so was the polka-dot bounce curve steeper than what we had been using. We stuck our new F(x) 
on the analog computer’s diode function generator and started getting good predictions. Now we could 
work out the deadly Model-X3, a 3-ball super tower! (This is described later in Chapter 7.)

The “polka-dot” potential
 First, let’s look carefully at this “polka-dot” potential theory. What we did, like most of physics, 
was an approximation. Using gravitational potential to estimate superball U(x) is a neat trick only if the 
superball forces are large and quick compared to the gravitational force or weight mg of the ball. 
 Fig. 6.2a shows a massive (Bowling-ball sized) superball at its (V=0) drop point h, where 
potential energy is mgh. Kinetic energy rises from zero as the ball falls and flattens on the floor until it 
passes a point where the upward floor force cancels the ball’s downward weight mg. That point-xstatic of 
static equilibrium is at the bottom of the total potential energy curve in Fig. 6.2b. The ball would sit still 
if put gently at xstatic with no kinetic energy. It’s a point of zero slope since total force F(xstatic) is zero 
there.
 After passing xstatic the ball slows down due to upward force. (That’s positive F(x) for x<xstatic.) 
Finally it stops at its maximum penetration point xmax where the total energy line intersects the total 
potential line in Fig. 6.2c. Now the ball’s initial gravity potential mgh0 has been converted completely 
into potential energy U(xmax)  due to compressing rubber a distance xmax. (We’re ignoring tiny frictional 
heat.)
 In the example, the ball’s weight is almost as large as the inertial bang-force driving the ball into 
the floor. An indication of this is how flat the ball is in Fig. 6.2 b when its weight and compressive force 
are equal. A standard superball sits stiffly on a table with no noticeable depression, and mg is a tiny part 
of the total force. It’s so stiff that its bang force is several times its weight and lasts only a tiny fraction 
of a second. Very stiff rebounding potentials are shown in the later Fig. 6.3 and Fig. 6.4 b in which 
gravity is a negligible force and stiff rebound forces dominate during the collision.

By comparison, the ball in Fig. 6.2 is heavy and its potential is not so stiff. Instead it is so soft it 
has a big “flat” if sits still with zero KE at xstatic just as it does when passing that point in Fig. 6.2 b. The 
collision shown in Fig. 6.2 a-c is less like a bang and more like a lingering smooch! Similarly soft 
collision energy for a linear rebound force and quadratic potential is shown in parts (d) and (e) of Fig. 
6.4.
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Fig. 6.2 Geometry of ball hitting floor (a) Ball is dropped. (b) Ball at max speed. (c) Ball at low point.
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Force geometry: Work and impulse vs. energy and momentum
 TV daredevils jump off 30-meter towers and belly-flop into kiddy-pools that are less than 1 
meter deep. What a way to earn a buck! And, how do they ever survive such stunts? 
 Two important physical quantities tell about survival chances. The first is the product F˙x of 
force-times-distance, or, more precisely, the integral ∫Fdx of force over distance. The second is the 
product F˙t of force-times-time, or, more precisely, the integral ∫Fdt of force over time. These are the 
fundamental Galileo-Newton relations. 
 The first quantity ∫Fdx is work done or energy -U(x) acquired. U(x) is area under an -F vs. x plot.

  

� 

Work = W = F (x)dx∫ = Energy acquired = Area of F (x) = −U (x)  (6.5a)

If energy is stored as potential energy U(x), then force -F(x) is the slope of a U(x) plot at point x. 

     

� 

F(x) = −
dU (x)
dx

      (6.5b)

(Recall the discussion of force and potential leading up to (6.10).)
 A second quantity ∫Fdt is impulse done or momentum P(t) acquired and area under an F vs.t plot.

  

� 

Impulse = P = F (t)dt∫ = Momentum acquired = Area of F(t) = P( t)  (6.5c)

If momentum is stored in kinetic velocity V(t)= P(t)/M then force F(t) is slope of the P(t) plot at time t. 

     

� 

F(t) =
dP(t)
dt

      (6.5d)

The time equation (6.5c-d) is just Newton’s 2nd law. The space force law (6.5a-b) is just the slope rule 
first stated (with the physicist’s minus-sign) in (5.9). Both laws deal with conserved stuff. If you, a 
daredevil, acquire x of this stuff (energy or momentum) sooner or later you are going to have to find 
something or someone help you get rid of x. Or else!
 A daredevil falling 30 meters acquires energy equal to gravity force (body weight Mg) times 
thirty meters. Fig. 6.3a-b plots a constant F=-Mg and a linear potential U(y)=Mg y from y=30 to y=0. 
The 1m kiddy-pool must get rid of the 30Mg (Newton meters) of energy in one meter, by applying a 
force of 30Mg (Newtons) steadily over the entire meter from y=0 to y=-1. (That’s a 30g~300ms-2 
deceleration. Human survivability is somewhere around 50g.) An alternative is to get rid of that energy 
in the concrete below the pool in about 1millimeter, a 30 thousand g deceleration. (That is not 
survivable!)

Kiddy-pool versus trampoline
 Suppose the daredevil falls onto a special trampoline that applies exactly the same constant force 
as the kiddy-pool, but stores the energy as potential instead of dissipating it all by dousing the audience 
with a huge splash. (Recall Ka-Bong! versus Ka-Runch!  in Ch. 1.) The trampoline could then toss the 
daredevil back up to the 30 m tower to do the fall over again. (My gosh! What a daredevil has to do to 
satisfy a sated TV audience these days!) Such a potential is plotted by a steep-slope line U(y)=-30y in 
Fig. 6.3b.
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Fig. 6.3 Force and potential plots. (a-b) Strong (30g) deceleration. (c-d) Medium (6g) deceleration.

 Suppose the Americans for Humane Daredevilry (AHD) demand that the deceleration distance 
be increased from 1 meter to 5 meters. (That’s what Olympic divers get for a 10 m fall.) As shown in 
Fig. 6.3c this reduces the deceleration by a factor of 5 from 30g to only 6g. (A walk in the park!)  The 
sloping U(x) lines are tallying the area-accumulation under the F(x) lines. Starting on the right hand side, 
U(x) drops by 30 units in 30 meters in Fig. 6.3b to correspond to the –30 units of area under the 
gravitational F=-1 unit line for the same distance in Fig. 6.3a. The daredevil’s kinetic energy must 
increase by 30 units to conserve total energy. So trampoline or pool is hit at 24 meters per sec. or 55 
mph. (Recall (5.13).)
     1/2 M V2=30 Mg  or:  V=√(60g) = √588=24.2m/sec. 

Getting rid of this 30 J potential deficit means climbing a steep 30 J high slope between y=0 and -1 in 
Fig. 6.3b or a medium slope of the same height between y=0 and –5 in Fig. 6.3d. Both cases have the 
same +30 J area under a force line, but having 5 meters instead of just one reduces the force to 30/5=6. 
 Time functions F(t) and MV(t)=P(t) relate to F(x) and U(x) using Newton II: F=MdV/dt in (6.5d).

     

� 

−U (x) = F(x)dx∫ = M
dV
dt

dx∫ = M
dx
dt
dV = MVdV =∫∫ M

V 2

2
− const.  or: 

� 

M
V 2

2
+U(x) = const.   (6.6a)

        P(t) = F(t)dt∫ = M dV
dt

dt∫ = MdV =∫ MV + const.                    or: P(t)−MV (t) = const.   (6.6b)

The first relation is total energy conservation (KE+PE=const.) first stated in (5.6) and (5.7).
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Linear force law, again (But, with constant gravity, too)
Let’s imagine the AHD demands further protection of daredevils from themselves by outlawing 
constant-force targets that turn on a full force suddenly upon entry. Claiming that “high-jerk” is bad, the 
AHD requires linear-force targets, instead. Physicists like this since a harmonic-oscillator linear-force-
quadratic-potential (5.12) is a favorite force law that is also the inside-Earth potential. (Later in Ch.8.)
 Plots of linear-force-quadratic-potentials are shown in Fig. 6.4. Just like the preceding Fig. 6.3, a 
constant gravitational force Fgrav=-Mg is present both in and out of the (y<0)-region where the linear 
F=-ky force and the U(y)=1/2ky2 potential exist as a sum of constant and linear forces for (y<0).

  FTotal = Fgrav + Ftarget = −Mg       
−Mg − ky

y ≥ 0( )
y < 0( )

⎧
⎨
⎪

⎩⎪
 UTotal =Ugrav +Utarget =

Mg y            

Mg y + 1
2
ky2

y ≥ 0( )
y < 0( )

⎧
⎨
⎪

⎩⎪

     (6.7a)      (6.7b)
If a linear potential b·y is added to a quadratic a·y2 potential we get the same parabolic curve U=a·y2, but 
that curve is shifted to the left by yshift=-b/2a and down by Ushift=-b2/4a as follows.

  

� 

UTotal (y) = ay2 + by = a y +
b
2a

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2
−
b2

4a
= a y − yshift( )2 +Ushift   (6.8a)

  

� 

yshift = −
b
2a

,         Ushift = −
b2

4a
= −a

b
2a

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2
= −U yshift( )   (6.8b)

The nose or tip of the parabola, which is the equilibrium resting point, follows an upside-down copy of 
the U-parabola itself! This important geometric fact is shown in Fig. 6.4. The geometry does not reveal 
itself until we look in Fig. 6.4e at a “soft ball” that is soft enough to clearly show its gravitational shifts. 
A hard superball is more like Fig. 6.4b that barely shows such a small shift. 
 Hardball total potential is u(y)=8y2+y with a total force function f(y)=-16y-1 in graph units of 
Fig. 6.4(a-b). A medium total potential is u(y)=y2+y with a total force function f(y)=-2y-1 is plotted in 
Fig. 6.4(c-d). The latter clearly shows the equilibrium or lowest “sag” point of zero force. The softball 
total potential is u(y)=(1/4)y2+y with a total force function f(y)=-(1/2)y-1 in Fig. 6.4e. The hardball 
potential requires about 6 meters (Y=-6 or y=-0.6) to cancel the energy from the 30 meter fall (from 
Y=30 or y=3) and maximum force of about F=10. This is much more than the constant F=6 that 
stopped the same daredevil in 5 meters in Fig. 6.3c because a linear force has only the area under a 
triangle which has a factor of 1/2. Here 1/2(F=10)(Y=-6) gives the necessary energy of 30 Joules. So the 
AHD ruling has actually increased the maximum force on the daredevil! (But, only during the final 
milliseconds is F large.)
 Note that the focus of the U(y) parabola is on the y-axis because we plot gravity with slope=1. 
Can you find a geometrical a way to locate that focus given some allowed stopping distance?
 Parabolic geometry of an oscillator potential subject to a uniform (or nearly uniform) force field 
is an important one in physics. Electronic charges pinned to an atomic potential well behave like 
oscillators in an electric field of a passing light wave. Generally the light wavelength of 0.5 micron 
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(0.5E-6m) is many thousand times as long as the atomic radius of a few Angstrom (1E-10m). So the 
effective potential is a rigid parabola Fig. 6.4e going both to-fro and up-down at optical frequency.
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Fig. 6.4 Linear deceleration force after constant falling force. (a-b) Hard (c-d) Medium (e)Soft

 As we mentioned, superball force function is non-linear; approximately Fball(y)~y4 plotted in Fig. 
6.2 and Fig. 6.5 below. Compare this to the linear balloon-like force curve Fballoon(y)~y1 in Fig. 6.4e 
above. (Recall (6.2).) Fballoon(y) is a pair of straight lines bent at contact point y=0, while Fball(y) has a 
long flat region below y=0. For either case, the force integrals ∫Ftotal(y)dy and the areas they represent 
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cancel between any two points y=h and y=ymax that have the same potential energy U(h)=E=U(ymax). If 
that energy is the total energy E then these points y=h and y=ymax are classical turning points. The mass 
M stops with zero KE (no speed) to turn around and fall backward or forward, respectively, into the 
potential valley lying between h and ymax. PE curve Utotal(y) near bottom (ystatic) in Fig. 6.2-5 is nearly 
parabolic as is U(x) in Fig. 6.3. The difference for Fig. 6.4 is that all of the Utotal(y) curves are perfectly 
parabolic for y<0. (See exercise 1.6.1.)
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 Fig. 6.5 Force and potential for soft nonlinear (F=ky4) superball dropped from height h
 
Why super-elastic bounce?
 Super-elastic bounce involving two balls was introduced way back in Fig. 4.5 and “explained” 
by the 2-Bang model sketched there. Is that the only explanation? Certainly not! Is it even right? Well, 
yes and no. Here is a chance to discuss how science works or doesn’t work. It is, after all, a human 
endeavor. (To err is…)

RumpCo vs Crap Corp

 Let’s imagine a big scientific fight between two research groups something like real ones I’ve 
seen. We’ll imagine it’s about superball dynamics. On one side is a small but creative group working for 
the Rumpany Company® that first discovers the effect and explains it with the 2-Bang model. But their 
small budget limits them to things you can do cheaply with a ruler and compass. 

On the other side is the huge Crap Corporation®. With unlimited military contracts, CrapCorp can 
afford any kind of computer or lab equipment. They hear about RumpCo’s discovery and decide to 
develop and sell it to the Army as a bomb detonation system. 
 I hope you’ll excuse a scatological nomenclature and contempt for shortsighted and mindless 
goals often associated with post-modern cash-flow-science. My allegorical objective is to encourage 
curiosity-driven-science that is now becoming regarded as quaint. I do believe that humans are capable 
of creating much more than fertilizer and should be strongly encouraged to do better. If earning gets in 
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the way of learning, then humans do poorly. I have watched big labs in government, industry, and 
university die of a pernicious groupthink fueled by the acquisitive rather than the inquisitive human 
drives. People lose their ability to reflect and become happy to merely genuflect. A novel Radiance by 
Carter Scholz (Picador 2002) is a “Star Wars” romaine a’clef exposing foibles of scientists at Livermore 
and Los Alamos.
 On one side of our allegory is poor but resourceful little RumpCo full of ideas but nowhere to go. 
Their 2-Bang model of super-elastic bounce is simple, elegant, but appears wrong. The powerful 
CrapCorp, on the other hand, knows where it’s going and what’s right. It has every resource imaginable. 
Except wisdom.
 CrapCorp’s first move is to discredit RumpCo’s work. They set up a computer that uses lab 
observed potential functions to fully analyze a 2-ball bounce. Let’s compare two competing vu-graphs 
side-by-side.
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Fig. 6.6 RumpCo theory versus CrapCorp’s simulation. (RumpCo) Finite initial gap (CrapCorp) NO gap

 One thing is clear. CrapCorp does fancy-schmancy vu-graphs! They resemble wedding invitations. 
And, while CrapCorp’s 10-figure precision is dubious, we note their V1=0.62  and V2=2.29  disagree with 
RumpCo’s predictions (Recall Fig. 3.4.) of final V1=0.5 and V2=2.5 by a little. Furthermore, RumpCo 
uses an independent 2-ball bang model. They assume or idealize an initial gap separating mass m1 from 
m2 so Bang-1 of m1 with the floor is independent of Bang-2 between m1 and m2. So V1 and V2 result 
from 2-body energy-momentum conservation. RumpCo’s results are not sensitive to force functions.
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 CrapCorp can compute the difficult 3-body collision between m2 , m1, and m0 (the Earth) all 
together just like what’s really happening on the floor. CrapCorp ‘s curvy V1 vs. V2 plot in Fig. 6.6 is very 
sensitive to each force function F(y) between each pair of colliding bodies. When (and if) CrapCorp 
values check out with experiment, they’ll happily sneer at the primitive pair of straight lines in the 
RumpCo velocity plot.

Does RumpCo have nearly the right (V1,V2) for wrong reasons? Not entirely. The reason a 2-
Bang model works at all is that the force function for these balls is highly non-linear. A quartic function 
F(y)=y4 has a flat bottom as noted before Fig. 6.5. That allows the floor-m1 collision to nearly finish 
before the m1-m2 bang really gets going even though the balls are in contact all during the collision. 
 Realizing this, the RumpCo researchers suggest that CrapCorp try a linear force F(y)=y1 simulation 
to see if super-elastic bounce disappears. They do, it does, and the rest is history. As seen in Fig. 6.7, m1 
and m2 bounce up in unison. It’s a pax de deux. Super-elastic bounce goes away!

Cra RumpanyLtd
Linear Force Field

Simulation

m1

m2

m1

m2

m1

m2

ContinuousBounce
Sequence

m2

m2

m2

m1

m2

m1

Velocity 1

Velocity 2
m2

m1

V2 = 1.03

V1 = 0.996

m1

m1

F(y)=y2

y

y

F(y)=y1

F(y)=y4

y

Quartic

Quadratic

Linear
Force

Fig. 6.7 Linear force kills super-elastic bounce. (Collaborative effort.)

The two groups decide to stop feuding and join forces. A corporate merger results in a multi-national 
conglomerate Carumpany Ltd. based in the Caymans. They lived happily ever after. (Well, sort of.)
Seatbelts and buckboards
Another important physics lesson from this section is, “Fasten your seatbelts…tightly!” To avoid great 
and damaging force you need to avoid non-linear force functions and fasten yourself with linear ones 
that can start working off your kinetic energy and momentum most immediately after a collision. The 
non-linear force with its “flat” region applies little or no force at first but then has to make up for its 
procrastination with deadly high force after it’s too late. Note how nonlinear force in Fig. 6.5 finishes 
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much higher than the linear force in Fig. 6.4. Even worse is having no seatbelt at all. That’s like a very 
non-linear force of, say, F(x)=kx100. It’s a flat gap with a practically vertical wall waiting to crush you!
 One of the most dangerous vehicles in the Wild West of the early US was the buckboard, a 
wagon with no suspension except for a set of springs right under the rider’s seat. When the buckboard 
hit a bump it generally lived up to its name. Unfortunate riders ended up like a little m1 superball 
knocked skyward by a big m2 wagon. A safer and more comfortable ride is had in a car with a body as 
much heavier than the wheels and suspension as possible. So-called “Monster trucks” have the worst 
kind of ratio possible for stability.
Friction and all that “dirty” stuff
 Slowly we have put back some of the “real-world” features of the superball collisions that our 
idealized “Bang-Bang” models of Ch.4 ignored in order to make the problems more easily solvable. The 
effects of gravity during collision have been introduced and applied to interacting zero-gap superballs.
More such effects will be studied in what follows since interacting linear forces are very common in 
nature and there are ways to make them easily solvable, too. An oscillating neutron star (Later Ch. 8) 
provides a taste of what is to come in the study of waves and oscillation. 
 But even the neutron star model neglects what is the bane of the purist physicist, the dreaded 
frictional forces. These are among the most neglected and poorly treated physical effects in physics. If 
anything goes wrong with a theory, we just blame it on friction! Often we have little choice in this 
matter.
 Friction is a result of having more particles than we’d like to admit. Consider one m1=72 gram 
superball. That’s about a mole of Carbon C6 rings and a mole has 6.02E23 (That’s Avogodro’s number.) 
of these C6 molecules. So we’re dealing with not one mass m1 particle but an enormous heap with an 
unimaginably huge number 60,200,000,000,0000,000,000,000 of particles that individually are (mostly) 
friction-free and well behaved, but their mob-behavior is just plain abominable! 

You’ve got to get down to at least the individual molecular level before “internal-friction” is 
pretty much a non-existent phenomena and pure quantum wave mechanics rules. So what we call 
“frictional loss” is simply the best accounting we can do of 60.2 gazillion chiseling thieves stealing bits 
of energy that turn up later as “heat.” In conservative economics the effect is known as “supply side” or 
“trickle-down.” Let’s see if we can account for energy chiseled by just three thieves. (And, then we’ll 
hire more thieves until we bankrupt the whole operation!)

Important atomic and molecular force geometry
6.1 A most important mechanics problems is that of atomic oscillators affected by electric fields since it is basic to all 
spectroscopy. A useful approximate model is potential Vatom(x)=k x2/2 function of center x of charge Q where k is a spring 
constant of atomic polarizability. A uniform electric field E is assumed to apply a force F=Q·E to the charge by adding a 
potential VE(x) to Vatom(x). (Give VE(x)=______ and FE(x)=_____)
Consider the resulting potential Vtotal(x) for an atom for unit constants k=1 and Q=1. Derive and plot the new values for 
equilibrium position xequil(E), energy Vequil(E), dipole moment pequil(E). Plot Vtotal(x) for field values of E=-2,-1, 0, 1, and 2.
Does charge oscillation frequency ωequil(E) change? If so express in terms of ωequil(0) and E?
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Chapter 7 N-Body Collisions: Two’s company but three’s a crowd
 Without knowing force and potential effects on superball collisions, it is often impossible to even 
approximately predict the outcome for N=3, 4, or more balls. But, if all N masses have independent one-
on-one collisions with the floor, the ceiling, and each other, prediction can be done “Bang-by-Bang” as 
in Ch.4. Difficulty arises when three or more collide at once. Then prediction may need precise and 
detailed treatment of their interactive force laws. Elastic binary or one-on-one collisions in one 
dimension are solved completely by momentum conservation alone as we’ve done since Ch. 3. But, as 
we’ll see, anything more complicated may require more work, and often it requires a lot more work!
The X3: Three-ball towers
 One of the goals of Project Ball at USC was to optimize final velocity for superball towers with 
three or more balls stacked up like a pyramid as in a multi-stage rocket. One dumb idea was a cheap 
satellite launcher. It’s dumb because, even if you could achieve 8 km/s (See discussion in Ch. 9.), you’d 
burn it up in the atmosphere. (Well, OK, but on the moon…?)
 Actually we were happy just to break the theoretical 2-ball limit of 3.0-times-initial. (Recall 
discussion of the INF limit in and after Fig. 3.5.) As seen in Fig. 7.1a that is done quite easily by a 3-
stage tower which achieves a velocity that is V3=3.41 times initial drop-speed (Vn(0)=1 for n=1,2,3).
 An even better final speed of V3=3.62 is had in independent collisions caused by setting initial 
gaps between the falling balls as shown in Fig. 7.1(b) so each collision can be completed before the next 
one begins. Then the result becomes independent of the force law governing the detailed trajectory 
within each collision, and a geometric construction in Fig. 7.1(b), based on momentum conservation, 
finds velocity accurately if collisions are independent. This requires force non-linearity or large initial 
gaps that are enough to reduce or eliminate N-body contact effects for N>2.
 Conversely, zero initial gaps often reduce the final velocity maximum below independent 
collision values. This is particularly true if the force law is linear as shown in Fig. 7.1(c). The 3-ball 
linear case comes out very much like the linear case for a 2-ball tower in Fig. 6.7. No single mass gains 
much speed over its neighbors. Super-elastic bounce is essentially squelched. 
 The American Journal of Physics† paper produced by Project Ball contains a discussion of 
attempts to optimize super-elastic bounce in towers of 3 or 4 balls. Progress was made but the theory 
needs work. As we will see later, this dynamics is somewhat analogous to wave motion in a varying 
channel. An early AJP paper†† has an analogy between a trumpet and a chain of sliding balls whose 
masses increase geometrically. It’s also analogous to tsunami wave build-up. A rule-of-thumb is that 
optimum-velocity chains satisfy a geometric-mean mass relation m2=√( m1 m3) as is approximately so in 
Fig. 7.1. Later on, some of this technology was developed into a toy by Stirling Colgate (astrophysicist 
and toothpaste heir) and his company that got a patent in 1990 for an idea published in 1971! 
† Class of WGH, Am. J. Phys. 39, 656 (1971).
†† J. B. Hart and R. B. Herrmann Am. J. Phys. 36, 46 (1968).
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Fig. 7.1 Dropped 3-ball tower. (a) Quartic force (b) Independent (Finite gap) (c) Linear force.

©2016  W. G. Harter Unit 1 A geometric view of classical physics         66

66



Geometric properties of N-stage collisions
 The 3-stage collision construction in Fig. 7.1b uses earlier construction of Fig. 3.4. It begins after 
the lowest mass m1=100 has rebounded from the floor to the Bang(2)12 START point (V1=1,V2=-1) 
where it meets mass m2=30 and bangs up to Bang(2)12 END point (V1=0.77,V2=2.1) on a slope 100/30 
line.
The second velocity (V2=2.1) of mass m2=30 is then transferred (See gray arrows.) to the first 
component of Bang(3)23 START point (V2=2.1,V3=-1). There m2 meets mass m3=10 and bangs it up to 
Bang(3)23 END point (V2=0.54,V3=3.62) on a slope 30/10 line, giving final top m3 velocity V3=3.62.
 A 4-stage collision tower sequence with nearly the same mass ratios is constructed in Fig. 7.2(a). 
Here each mass m1, m2, and m3, is exactly 3-times the one above it, and the top mass m4 gets the biggest 
boost of nearly 5.8. Recall Maximum Energy Transfer (MET) case in Fig. 3.5 where a mass ratio of three 
(m1/m2=3) leaves the lowest ball stopped (V1=0). In Fig. 7.1b m1 is nearly stopped. (V1=0.077). 
 The same arrangement with a higher mass ratio mk/mk+1=7 is constructed in Fig. 7.2b. Here the 
top mass m4 gets a boost of over 9.0. That is a kinetic energy boost factor of (V4)2=81 and an altitude 
bounce of four or five hundred feet if dropped from arm’s length. (Friction is being seriously neglected!)
Supernovae super-duper-elastic bounce (SSDEB)
 Imagine dropping two towers like the ones in Fig. 7.2a-b from either side of a tunnel through the 
Earth so the two lowest m1-masses run into each other at the center. If the resulting collisions were 
elastic, they could send the other masses to infinity with energy to spare! Later we see escape from 
Earth’s surface takes only three times the energy it takes to sit there. (Starlet escapes!) Energy factors 
for a conservative 3:1-tower are 22=4, 3.52=12.3, and 5.82=34.8 and more than enough for a free ride to 
kingdom come. Astrophysical modeling of Type-II supernovae reveals just such a high speed SSDEB 
when a star, like a spherical layer-cake with lighter elements above heavier ones, collapses. Boom! It 
appears that most of our Earth and bodily stuff has come along on such a ride! As Carl Sagan remarked, 
we are of blown-up stars.

Newtonʼs balls
 Novelty stores have simple examples of multistage collisions made by hanging identical ball 
bearings in line as sketched in Fig. 7.2c-d. These are also common lecture demos, and they have been 
called “Newton’s balls.” That can at least elicit some giggles from otherwise boring lectures.
 Few teachers explain the details of the cool pop-up-single in Fig. 7.2d. In fact, it won’t work 
unless all the collisions are independent, and this requires non-linearity of the sphere-on-sphere force 
function, as we saw in Fig. 7.1. Cooler still, is an elastic 4-ball column-bounce in Fig. 7.3c. N-balls need 
N(N+1)/2(=10 if N=4) independent bangs to get all N balls back with the same speed. Given this, it 
seems a wonder that solid objects can bounce elastically. (In fact, they cannot, quite!)

©2016  W. G. Harter Chapter 7. N-Body Collisions 67

67



68

(a)
mk/mk+1=3

(b)
mk/mk+1=7

(c) Bouncing
column

(d) Single
pop-up

(+1,-1)

(-1,+1)

(1,0)

(0,1)

mk/mk+1=1

Bang!

Bang!

Bang!

Bang!

Bang!

Bang!

Bang!

Bang!

Bang!

Bang!

Bang!

Bang!

Bang!

-1 0 1 2 3

-1

1

2

3

4

5

6

-1 0 1 2 3

-1

1

2

3

4

5

6

4

Bang(2)12

Bang(3)23

Bang(4)34

Bang(2)12

Bang(3)23

Bang(4)34

Bang(1)01 Bang(1)01

Fig. 7.2  4-ball towers. Mass-ratios mk/mk+1 (a) 3, (b) 7,  (c-d) 1. Independent bangs used for all.
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Friction, again: Inelastic energy-momentum quadratic equations
 Perhaps, you noticed that FINAL velocity values could be found from INITIAL values by two 
different ways. Back in Fig. 2.1 we noted an easy way using a momentum conserving straight line and a 
circle through VCOM from vIN to the answer vFIN. But, Fig. 3.1 showed another way using an energy-
conserving ellipse to connect vIN to the answer vFIN. The first way uses simple linear equations and the 
second way uses more complex quadratic equations.
 Why are there two ways? Often this means that situations exist where both are needed. Here 
friction or inelastic collisions make total kinetic energy decrease. (Recall our 60.2-gazillion thieves? 
They’re baa-ck!) Such a situation is plotted in Fig. 7.3b with the energy decrease indicated by a smaller 
ellipse inside the initial ellipse in Fig. 7.3a. This similar to an earlier Fig. 2.2 or Fig. 2.3. 
 The idea is that momentum conservation is still true even if the two masses are exerting sticky, 
energy-wasteful, forces on each other. No matter how wasteful those inter-particle forces may be, they 
still must obey Newton’s 3rd axiom demanding equal-and-opposite forces on each other. So the final 
answer for vFIN must be at an intersection of the old momentum line with a new and smaller ellipse.
 However, intersecting an ellipse and a line uses a quadratic equation. And, in Fig. 7.3, there 
appear two solutions to the quadratic equation. One uFIN we want is near the old energy-conserving vFIN. 
But, the other one that we now don’t want is a uIN, which is nearer to the old vIN.
 Let’s look at a quadratic equation for u1FIN. There are two given constants KE(u) and MVCOM.

      

� 

m1u1 + m2u2 = MVCOM = pu = const . (7.1)  

� 

1
2
m1u1

2 +
1
2
m2u2

2 = KE (u) = ku  (7.2)

The COM momentum pu in (7.1) is a constant during the entire collision. Not so for the kinetic energy ku 
in (7.2). It’s just a given loss parameter that is quite difficult to predict. We first solve pu for u2.

    

� 

u2 =
pu − m1u1

m2
       (7.4a)

Then we insert the u2 result into ku equation (7.2) to get the needed quadratic equation for just u1. 
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m2
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⎝ ⎜ 

⎞ 
⎠ ⎟ u1
2 − 2pu

m1
m2

u1 +
pu2

m2
− 2ku = 0   (7.4b)

The solution isn’t pretty but its ± gives both u1FIN and u1IN shown in Fig. 7.3b. 

  
u1 =

2 pu m1 / m2( ) ± 2 pu( )2 − 4 m1 / m2( ) m1 + m2( ) pu
2 / m2( ) − 2ku

⎡
⎣⎢

⎤
⎦⎥

2 m1 / m2( ) m1 + m2( ) = V COM ±
pu

2 − m1 / m2( ) m1 + m2( ) pu
2 / m2( ) − 2ku

⎡
⎣⎢

⎤
⎦⎥

m1 / m2( ) m1 + m2( )
      (7.5a)     (7.5b)
The unwanted (+) solution u1IN (given that we started with v1IN) means the two balls “wiffle” through 
each other. In classical physics, only u1FIN makes sense starting with v1IN and only u1IN makes sense 
starting with v1FIN. In quantum theory, masses can “wiffle.” Then both solutions make sense (sort of).
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Geometric derivation of elastic and inelastic energy ellipses
 Can you do quadratic solutions (7.5) with a ruler and compass? At first it seems hard, but energy 
ellipse construction in Fig. 2.5 and Thales geo-mean square root construction in Fig. 6.1 are used. 
 As shown in Fig. 2.6, an ellipse has two radii, a major radius a giving x-coordinate x=acosθ, and 
a minor radius b giving y-coordinate y=bsinθ. The Cartesian ellipse equation (2.3) is satisfied by these x 
and y, and polar angle parameter θ is eliminated. (x and y may switch places.)

   

� 

x2

a2
+
y2

b2
= 1 =

m1
2 ⋅ KE

V1( )2 +
m2

2 ⋅ KE
V2( )2    (2.3)repeated

Velocity values x=V1 and y=V2 have equal magnitude for initial Bang(0) (V1=-VIN, V2=-VIN) or Bang(1) (VIN,-

VIN), and for a totally inelastic final state (V1=VCOM, V2=VCOM). The geometry needed to solve for the initial 
elliptic radii (aIN, bIN) in Fig. 7.3a or totally inelastic radii (aCOM, bCOM) in Fig 7.3c is described in Fig. 7.4. 
Then an energy ellipse in (V1, V2)–space such as in Fig. 7.3b may be derived for any radii (aFIN√R, bFIN√R) 
where the energy retention ratio R= KEFIN/ KEIN ranges from R=1 down to Rmin=(aCOM/a)2=(bCOM/b)2 as 
(aFIN, bFIN) range from initial radii (aIN, bIN) to totally inelastic (aCOM, bCOM) at minimum KE allowed by 
momentum conservation.

The roots (7.5) are two points where energy ellipse and momentum line intersect. For totally 
inelastic collision they coalesce and the momentum line is tangent at (VCOM, VCOM) as in Fig. 7.3c. The 
slope m1/m2=a2/b2 of the momentum line is fixed no matter how much energy is wasted. So is ellipse 
aspect ratio a/b=√(m1/m2). Square root construction (from Thales) finds a/b from a2/b2 in Fig. 7.4a-c. 

The construction begins by boxing the momentum line in the 1st quadrant and doubling it using a 
semi-circular arc around its upper left hand corner. An extended box including the arc is drawn in Fig. 
7.4b. The center of the extended box is the center of a second arc that finds the square root √(m1/m2) of 
the momentum line slope in Fig. 7.4c that is the desired ellipse aspect ratio a/b of all possible energy 
ellipses for the masses m1 and m2. The basis of this construction is the mean geometry of Fig. 6.1a.

Location of radii aCOM and bCOM in Fig. 7.4d uses vertical and horizontal projections of pt-(VCOM, 

VCOM) to the (√(m1/m2)=a/b)-line. This is helped by the fact that pt-(VCOM, VCOM) lies on the ellipse and on the 
45° line so that its x-coordinate (x=acosθ) and y-coordinate (y=bsinθ) are equal. Thus angle parameter is 
tan-1a/b= θ, the a/b line slope. So x and y projections of (VCOM, VCOM) onto the θ−line yield hypotenuse 
lengths aCOM and bCOM in Fig. 7.4d. Concentric circles of radii aCOM and bCOM let us construct the ellipse 
as in Fig. 3.7.

Initial pt-(VIN, VIN) gives initial elliptic radii aIN and bIN in Fig. 7.4e. Square-radii ratio (aCOM/ aIN)2=

(bCOM/bIN)2 or ratio (aCOMbCOM)/(aIN bIN) of the two ellipse areas lets us find the lowest possible kinetic 
energy retention ratio Rmin. You should prove (geometrically and algebraically) that minimum ratio is 
given as follows. 

Rmin =
VCOM

V IN
=
m1 −m2
m1 +m2

 (7.6a)    
m2
m1

=
V IN −VCOM

V IN +VCOM
=

1− Rmin
1+ Rmin

 (7.6b)
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Ka-Runch-Ka-Runch-Ka-Runch-Ka-Runch-…:Inelastic pile-ups

N-body collisions described so far have been mostly elastic. That’s not true for California freeway pile-

ups. California pile-up chains start when a cell-phony driver enters a fog at 60 mph and rear-ends a 

vehicle or vehicles that have slowed down or stopped. Cars drive bumper-to-bumper so dozens may be 

involved.

 Pile-up mass grows with each car added to it by a series of inelastic “Ka-runch” collisions like 

Fig. 1.1 of Ch. 1. Cars may be added to a pile-up’s rear or to its front or even to both ends. Fig. 7.5 

shows a single 60 mph car piling up a line of five stationary cars and, vice versa, Fig. 7.6 shows a line of 

five 60 mph cars piling up on a single stationary car. Each pile-up collision loses as much energy as it 

can while keeping momentum constant. It makes the smallest ellipse that touches the momentum line in 

Fig. 3.2c and Fig. 7.3c.

 In each case the sequence of velocity-velocity slopes is an arithmetic progression 1:1, 2:1, 3:1, 

4:1,… similar to velocity sequences in Fig. 6.4 and Fig. 6.5. Both have lines that intersect on a single 

point and inverse or complimentary slope sequence 1/1, 1/2, 1/3, 1/4,…, known as a harmonic 

progression.

 The incoming car in Fig. 7.5 has momentum PIN=mv=60 and energy KEIN= 2
1 mv2=1800 with 

v=vIN=60. The final pile-up mass M=6 has the same momentum PFIN=MV=60 but reduced velocity 

V=vFIN=10 and energy KEFIN= 2
1 MV2=300 down by 1500 units. (These are (very) Old English units with 

unit mass (m=1 ton) cars.)

 The incoming cars in Fig. 7.6 together have momentum PIN=5mv=300 and energy KEIN=5 2
1

mv2=9000. The final pile-up mass M=6 has the same momentum PFIN=MV=300 with increased velocity 

V=vFIN=50 but reduced energy KEIN= 2
1 MV2=7500. The same energy deficit of 1500 units is seen in Fig. 

7.5 and Fig. 7.6.

 Of these two equal-energy-loss nightmares the latter is worse since it began with five times the 

kinetic energy and still has 7500 units to dissipate. Worse nightmares combine the two as shown in Fig. 

7.7. This a particularly troubling set of nightmares since there are many possible outcomes that have 

different orders of combination with differing results.

 How would you like to be an insurance adjustor for that one? 
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Fig. 7.7 A worse nightmare: Line of five 60 mph cars hitting five stationary cars.
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Ka-pow-Ka-pow-Ka-pow-Ka-pow-…:Rocket science
An N-body model of rocket propulsion is made by “time-reversing” pile-ups. Let us imagine a line of 
N=11 equal (m=1)-masses separated by explosive charges (“pow!” ) to blow one fuel-pellet at a time 
backwards off the rear end of a rocket and propel the remaining rocket mass forward.
 Fig. 7.8 is a velocity-velocity plot of seven such “pow!”-blasts after which a rocket with just 
three masses numbered 8, 9, and 10 speeds off the page to the right. The payload of this rocket is the ball 
labeled 10 at the head of the line. For N=11 balls, there are ten pow(b)-blasts numbered by b=0 to 9.
 The velocity unit in Fig. 7.8 is the relative exhaust velocity Δve=-1 of each pow(b)-blast. The 0th-
blast at the bottom of Fig. 7.8a starts with eleven stationary balls and blows ball-0 off the line of ten 
balls 1-2-3…8-9-10. To conserve momentum (initially 0) the 10-ball rocket of mass (M=10m=10) has final 
velocity ΔVM=+1/10 to cancel momentum ΔP0=m·Δv0=-1 of fuel-pellet ball-0 in a zero-sum pow(0)-blast.

m·Δv0+10m·ΔVM(0)=0       (7.7a)
The 0th-blast line begins at the origin (VM=0,ve=0) of the VM-ve-plot in Fig. 7.8b and extends one 

unit down and 1/10th unit right to point (VM(0)=1/10,ve=-1). Pow(0)-line slope is mass ratio (-m/M=-1/10). 
It is a COM line of a time reversed totally inelastic collision. (You might call it a super-elastic collision.)
 The 0th,1st,2nd,3rd,…, or 9th blast blows off fuel pellet-ball b=0, 1, 2, 3…, or 9, respectively. Each 
blast gives a larger rocket velocity boost ΔVM(1)=1/9, ΔVM(2)=1/8, ΔVM(3)=1/7…ΔVM(b)=1/(10-b) since 
rocket mass is less by m=1 after each blast but exhaust momentum impulse m·Δve=-1 is equal each time. 
  m·Δv1+9m·ΔVM(1)=0  m·Δv2+8m·ΔVM(2)=0 …   m·Δvb+(10-b)m·ΔVM(b)=0 (7.7b)
 The harmonic progression 1/10,1/9,1/8…1/5,1/4,1/3,1/2,1 in Fig. 7.8a contains momentum 
impulse terms ΔVM(b) in a 10-term harmonic series 1/10+1/9+1/8…1/5+1/4+1/3+1/2+1. Rocket velocity 
after bth pow(b)-blast is a partial sum of the first b+1 harmonic terms. (VM ,ve)-plots in Fig. 7.8b show this.
 0th: V(0)=1/10=0.1   1st: V(1)=1/10+1/9=0.211  2nd: V(2)=1/10+1/9+1/8=0.336
 3rd: V(3)=V(2)+1/7=0.478 4th: V(4)=V(3)+1/6=0.646 5th: V(5)=V(4)+1/5=0.846
 6th: V(6)=V(5)+1/4=1.096 7th: V(7)= V(6)+1/3=1.429 8th: V(8)=V(7)+1/2=1.929

On its 9th and final pow(9) the rocket is boosted by a whole unit exhaust velocity to V(9)=V(8)+1=2.929. 
A 10-blast rocket exceeds exhaust velocity (|ve|=1) on its 6th pow(6)-blast with V(6)=1.096. This is 

labeled in extreme lower right hand side of Fig. 7.8b. In COM frame, exhaust mass 6 thru 9 end up 
moving forward but in rocket frame each exhaust mass leaves moving backward at exactly ve=-1 until 
another blast-boost hits the rocket. Exhaust masses numbered 0-9 separate from each other and from 
payload mass-10. Total COM momentum stays zero. All eleven balls “balance” at COM origin.

N-blast velocity is a logarithm function if N is large. Momentum is still conserved for each blast.

  M·ΔV=-ve·ΔM     becomes:   M·dV=-ve·dM  or:  dV = −ve  M
dM   (7.8a)

We integrate this from initial rocket mass MIN to final payload MFIN and from rocket VIN to final VFIN.

  dVVIN

VFIN∫ = −ve  M
dM

VIN

MFIN∫   becomes:   VFIN −VIN = −ve lnMFIN − lnMIN⎡⎣ ⎤⎦=ve lnMFIN

MIN⎡
⎣⎢

⎤
⎦⎥

 (7.8b)

This is the famous rocket equation. (Its predictions discourage interstellar travel. See exercises.)
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Fig. 7.8 Rocket science by harmonic series geometry.

©2016  W. G. Harter Unit 1 A geometric view of classical physics         76

76



Exercise 1.7.1 Maximum Energy Transfer (MET Limit)
Suppose each ball has just the right mass ratio with the one above it to pass on all its energy to the next in line. Construct v-v 
diagrams, velocity at each stage, and mass values for
(a) N=2, (b) N=3, (c) N=4, (d) Give algebraic formulas for general N.

Exercise 1.7.2 Absolute Maximum Velocity Limit (INF Limit)
Suppose each ball is very much larger than the one above so as to approach upper limit. Construct v-v diagrams , limiting 
intermediate velocity values and limiting top value for (a) N=2, (b) N=3, (c) N=4, (d) Give algebraic formulas for general N.

Exercise 1.7.3 Rocket Science and Backside of exponentials
 Compare discrete-blast rocketry in eq.(7.7) or Fig. 7.8 with continuous-blast “rocket science” of eq.(7.8) and study 
logarithmic-exponential geometry of the latter. 
(a) In particular, when do blasted exhaust particles end up going in the same direction as the rocket in the initial (lab) frame 
where the rocket starts out with zero velocity?
(b) Plot exponential y=ex and y=logex functions on same graph and draw tangent-triangle whose hypotenuse is tangent to a 
curves and intercepts x or y axes at -2, -1, 0, 1, 2,.. Give the base and altitude coordinates of the tangent point in each case.
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Chapter 8 Geometry and physics of common potential fields
Physical and geometric aspects of elementary force and potential fields are introduced in this section. 
Most important are oscillator and Coulomb fields that are so important for resonance and orbit theory. 
Geometric multiplication and power sequences

The most common power-law potentials are U(x) = Ax2 (Oscillator potential) in Fig. 8.1, U(x) = 

Ax (Uniform field potential) , and U(x) = Ax-1 (Coulomb potential) Fig. 8.5. Power-law potentials and 

force laws have exact geometric constructions, exponential or logarithmic fields only approximately. 

Multiplicative power operations are done using a staircase of similar triangles as shown in Fig. 

8.2. A geometric progression {1=s0, s=s1, s2, s3,…} and an inverse progression {1=s0, 1/s=s-1, s-2, s-3,…} lie 

on either side of the unit stair step 1=s0. A slope or scale factor s=2 or s=1/2 is used in Fig. 8.2a or Fig. 

8.2b. They resemble perspective drawings of school hallways. (Elementary School is (a) and High 

School is (b).) Each stair zigzags between slope-1 line-(y=x) and slope-s line-(y=s·x) or between line-(y=-

x) and line-(y=x/s). The line-(y=s·x) and line-( y=x/s) are perpendicular or normal to each other. So are line-

(y=x) and line-(y=-x).

A two-step triangle in Fig. 8.1a gives each point on the oscillator potential, a parabola y=x2. To 

find where the parabola hits vertical line-(x=2.2), for example, we go up that line to the 45° line-(y=x) and 

then go across to vertical line-(x=1). A dashed blue line is drawn from origin thru that point to an arrow 

intersecting line-(x=2.2) at pt-(x=2.2, y=2.22) on parabola-(y=x2). A similar zigzag gives pt-(x=-2, y=4) or 

any point on the parabola (y=U(x)=x2) below.

1

y = x

(a) Oscillator potential U(x)=x2

F(-1.5)

(b)Hooke-Law FFoorrccee FF((xx)) ==--22xx
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Fig. 8.1 Geometric construction of U(x)=x2 potential and Hooke’s force law F(x)=-2x. 
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80
The physicist Force =-Slope rule (5.9) is drawn using force triangles in Fig. 8.1a. Force is linear in 

x, that is, F=-2x, and that is minus the slope of x2. A line of slope –2 in Fig. 8.1b plots F(x). Force vector 

F scaled by 1/2 gives a force vector in Fig. 8.1a equal and opposite to coordinate x. Each force triangle 

has base F/2, an altitude that is constant 1/2, and a hypotenuse normal to the parabola tangent. It is like 

the tangent triangle with base ΔU and altitude Δx (center of Fig.8.1) that shows force=-slope (  F(x)=−Δx
ΔU ).

y=2x

y=− x12

y=−2x
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y=x
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Fig. 8.2 Geometric sequences and “staircases” for slope or scale factor (a) s=2, and (b) s=1/2 . 
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Parabolic geometry
A parabola U(x)=Ax2 has a focal point at y=U=A/4 where vertical rays meet if reflected by 

parabola tangents in Fig. 8.3b. A parabolic radius is its half-width λ at the focus. For y=x2 it is λ=1/2. 

(Note F(±0.5) vectors point at focus in Fig. 8.1a.) An old name for λ is latus rectum. A circle through the 

focus about any parabolic point will be tangent to a line called the directrix located at a distance λ from 

the focus. Focus and directrix define a parabola that passes midway between them thru the tip-point M of 

the parabola where its focal radius and equal distance-to-directrix both reach their minimum value λ/2.

 

(a) Parabolic Reflector y=x2

y=1

y=2

y=3

y=4

y=5

(b)Parabolic geometry

λ

λ

Directrix

Latus
rectum

reflects
into
focus

Vertical
incoming
ray

Distance
to
Focus

Distance =
to

directrix

M
λ/2
λ/2

Fig. 8.3 Parabola and geometry (a) Rays converging on focus. (b) λ-geometry of tangent reflection.

Directrix is a so named because it “directs” both the rays and wave phase of an optical reflector. 
Since the focal radius (length of each sloping ray line in Fig. 8.3a) equals the perpendicular directrix 
distance (length of corresponding dashed vertical line), waves are guaranteed to be plane waves. Also, 
the equality of angle of incidence and reflection off the parabola bisecting the dashed and solid lines, 
guarantees vertical parallel rays for all which leave the focus and bounce off the inside of the parabola. It  
also guarantees that parallel vertical rays bouncing off the outside will go away from the focus. Either 
side of a parabolic surface converts plane waves to spherical ones or vice-versa.
 Parabolic geometric optics suggests the tangent-kite for varying tangent slope values. A blue kite 
of slope=2 in Fig. 8.4a and yellow kite of slope=5/2 in Fig. 8.4b have equal focal radius equal to normal 
distance-to-directrix forming the major iscosoles triangle of the kite. A minor iscosoles triangle (upside 
down in Fig. 8.4) shares a base with the major one. Their perpendicular bisector is the tangent line. The 
bisection point is slope

  dx
dy=λ

x =2 p
 x in units of λ as indicated by vertical arrows.
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Fig. 8.4 Parabola and geometry of curvature and slope of tangent-kites.

 A singular case is the red kite of slope=1 that is square. Lesser slope=1/2 gives a rhomboidal 
green kite with one side on the vertical parabolic axis instead of on the horizontal directrix. Points of 
slope=±1 on the (4py=x2=2λy)-parabola lie on either side of its focus at distance λ=2p from it. λ=2p is 
also the (minimum) radius of curvature of the parabola at its tip (minimum y at x=0) that lies a distance  
λ/2=p below the focus.
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Coulomb and oscillator force fields
Our atoms and molecules depend on the electrostatic Coulomb field to have stable chemistry and 
biology. Like charges repel and opposites attract with a force that varies inversely with the square of 
distance r between them. A simple version of the electric Coulomb force law (axiom) is: 

 F(r) = 1
4πε0

qQ
r 2   where : 1

4πε0

= 9,000,000,000 Newtons ⋅meter ⋅ square
per square Coulomb

  (8.1)

Units are standard mks but magnitudes are mind boggling. It’s nine billion Newtons for just two charge-

units a meter apart. (To be precise: 8.99·109 Nm2/C2.) Now 1N is only about  4
1 lb, but imagine a billion 

sticks of butter? Also, you have thousands of Coulomb charge units in each fingertip with only a 
centimeter separation so add another factor of (100)-squared. Make that ninety trillion Newtons for each 
Coulomb or about a million trillion Newtons trying their darndest to blow your pinkie to bits!

But, still we’re underestimating this monster force. Most of the electronic charge in the world is 
crammed into atoms and molecules with at most a nanometer (10-9 meter) across and some are an 
Angstrom (10-10 meter) or a tenth of a nano. So put on another factor of (10-9)-squared or million-billion 
trying to undo your pinkie, that’s a trillion-trillion-billion. Does your manicurist know about this? 

These forces get loose in a TNT blast, but usually, tiny nuclei with an equal positive charge hold 
down potentially rebellious electrons. Still, what’s holding nuclei together? Nuclear radii are femto-
meters (10-15 meter) or Fermi. (Note: both fm and Fm are abbreviations for 10-15m=10-13cm.)

Oops! That’s a factor of (10-15)2 or million-trillion-trillion to increase our stress level. Nuclear 
charge is 105 times more pent-up than its atomic electronic counterpart , a grand total of about a trillion-
trillion-trillion-trillion Newtons hankering to blow up your fingertip nuclei. Cancel the manicure!

When nuclei do blow up, the result is more than 105 times more devastating than TNT bangs. We 
don’t use force to estimate the devastation of a nuclear fission bomb or the yield of nuclear fuel. Rather 
we use electric potential energy, that varies as 1/r not 1/r2. (Slope of a U(r)=1/r-curve is F(r)=1/r2.)

   

� 

U(r) =
1

4πε0

qQ
r   where: 1

4πε0
= 9,000,000,000 Joule

per square Coulomb  (8.2a)

Energy or (Force)-times-(distance)-unit is Joule or Newton. meter (N·m). Like superball PE field U(r) in 
(5.9), force F(r) (8.1) is a (-)derivative of potential U(r) that in turn is (-)integral of force F(r) in (6.5)

   F(r) = −
dU(r)
dr

= −
qQ
4πε0

d
dr
r −1 = qQ

4πε0
r −2      (8.2b) 

U(R)=− F(r)
∞

R

∫ ·dr= qQ
4πε0

r −1 ∞
R =

qQ
4πε0

R−1      (8.2c)

Nuclear PE yield is about a million times greater than for the same number of chemical PE sources since 
femto-meter nuclei are a million times smaller (RNUC~10-15) than nano-meter molecules (RMOL~10-9). 
Nuclear forces would then be a trillion times greater than typical atomic and molecular forces.

Fig. 8.5 plots attractive Coulomb force F(r)=-1/r2 and potential U(r)=-1/r of negative charge -q to 
a positve +Q nucleus. (Negative force points toward the +Q origin (x=0).) It uses the zigzags of Fig. 8.4.
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Fig. 8.5 Attractive Coulomb force F(x) and potential U(x) curves. (F(x) vectors drawn at 1/4-scale.)

Could the Coulomb F(r)~1/r2 force field be derived like the superball force F(Y)~1/Y3 in (6.10) 
by counting momentum bangs? Indeed, if a charge ejected a cloud of little “bang-balls” then the number 
of bangs scored at distance r would vary inversely with area 4πr2 of a radius r sphere. But, this doesn’t 
explain so well attraction of a charge +Q to a –q or of a mass M to a mass m in Newton’s gravity law.
   Fgrav(r) = -GMm / r2 , where: G=0.000000000067 N m/kg2     (8.3)
Gravity is universally attractive (no “negative” matter readily available) but much weaker than electric 

pull since G constant 6.672E-11 ( 3
2 ·10−10 in mks units) is smaller (by 1020 times!) than the 9·10+9  in (8.2). 

As of this writing it is still a mystery why these are so different. We really do not yet understand 
either of these forces at a fundamental level. They are still very much in the axiom box.
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Tunneling to Australia: Earth gravity inside and out
 Imagine x=1 in Fig. 8.5 is the Earth radius R⊕=6.4E6m. The F(r) plot shows gravity falling off 
for r>R⊕or x>1. But it’s wrong for subterranean radii (r<R⊕) unless Earth is compressed. F(r)=-1/r2 is 
not true everywhere unless Earth is crushed to a 10 millimeter radius black hole.(More on this later.)
 If you could be at sub-R⊕ levels all Earth mass at radii above your radius r may be ignored in 
figuring your weight! It is easy to see you’re weightless at the center (r=0) since the pull of all Earth’s 
mass exactly cancels there. But, so also does your attraction to a spherical mass shell cancel anywhere 
inside it. One could float weightlessly anywhere therein regardless of the shell’s size or weight.
 Such cancellation is a geometric peculiarity of inverse square law. (It also underlies a Gauss law 
explanation of why you’re safe inside a car struck by lightning.) Any direction you look inside a uniform 
mass shell has a mass element m whose force is cancelled by another element M behind. (See Fig. 8.6.) 

The shell tangent to the m-point you’re facing intersects the tangent to the M-point behind you to 
make an isosceles triangle whose sides make an angle Θ with your line of sight along the base. This 
means a narrow cone of sight will include shell mass m=Ad2 at a distance d in front of you and shell 
mass M=AD2 at a distance D directly behind you, where the angular factor A~1/sinΘ is the same for 
both giving perfect cancellation of gravity m/d2 in front with -M/D2 behind youfor all directions.

d

D

You are
Here!

Shell mass element

Shell mass element
M =(soid-angle factor A)D2

Gravity at r
due to shell mass elements
G M - G m
D2 d2

D2 - d2

D2 d2
( )A = 0

B

Θ

Θ

r

m =(solid-angle factor A) d2

M

m

=
(...and
weightless!)

You are
Here!

O
dΩ
sinΘ

A=

Fig. 8.6 Equal-opposite attraction. Geometry for you floating weightless inside a spherical shell. 

A mass m at radius r inside Earth feels gravity attraction GmM</r2 where M< is Earth mass inside the 
radius r indicated by the dashed circle in Fig. 8.6. If Earth is uniform density ρ, then that inside-mass is 
M<=4 ρπr3/3. Force law r-2 cancels all but one r of the r3 in mass M<. We then get a linear force law. 
     Finside(r)=GmM</r2=m(G4πρ /3) r=mg(r/R⊕)=mgx   (8.4a)

(Earth surface gravity: g= G R⊕4πρ /3=9.8ms-2)   (8.4b)
The linear force law (8.4) is like that of a harmonic oscillator in Fig. 8.1b and so the inside-Earth 
potential must be a parabola like Fig. 8.1a. Force F(1)=-1 is continuous as we cross x=1 and so must be 
the slope of potential U(x) as U changes from –1/x2 to parabola. Terrestrial beings such as ourselves live 
in a nearly-constant-field ( dx

dF 0 )-region near x=1. In Fig. 8.7 we find the potential parabola 

geometrically by its focal point and directrix using the tangent at x=1. Recall a tangent at x=λ=2p in Fig. 
8.4a has slope=1 or 45°. So does the parabola at x=1 in Fig. 8.7 below have a slope of (+1) and a force 
of (-1) (That’s –mg in mks units.)
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Example of contacting line
and contact point

directrix
distance

Directrix

Sub-directrix

focal distance =

2.00.5 x=1(0,0)

-1

-2

UU((xx))==--11//xx

FF((11..00))

FF((xx))==--11//xx22
((oouuttssiiddee EEaarrtthh))

FF((xx))==-- xx
((iinnssiiddee EEaarrtthh))

FF((11..44))
FF((22..00))

FF((22..88))

FF((00..88))

FF((00..44))

FF((--11..00))
FF((--11..44))

FF((--22..00))

FF((--00..88))

FF((--00..44))

-0.5-1.5

Directrix

Latus
rectum

λ

Focus

UU((xx))==((xx22--33))//22

Parabolic potential
inside Earth

Fig. 8.7 Construction of Earth gravitational fields inside and outside.( units of x: R⊕,; F: mg; U: mgR⊕)

A parabola tangent bisects the angle between the line to the focus and the directrix drop-line as in 

Fig. 8.4. Twice 45° gives 90°. The focus is λ=1.0 units straight across and the directrix is λ=1.0 units 

below as shown in Fig. 8.7 (lower-left). Using this we may construct the parabola by rotating a square 

corner of a piece of graph paper around the focus so the corner touches a line halfway to the directrix. 

(We can call this half-way line the sub-directrix. It is the line of tangent intersections indicated by 

arrows in Fig. 8.4.) 

The parabola so constructed is y=x2/2 –3/2. That is the interior potential UIN(x) (-1<x<1). It meets 

the curve y=-1/x that is the exterior potential UEX(x) (1<x<∞) at x=1 where they are equal (UIN(1)

=-1=UEX(1)) as is slope, which is the force (FIN(1)=-1=FEX(1)). (However, the slope of the force curve 

takes a big jump!)

Adding a constant to a potential won’t alter slope or force. We added    2
−3  to   2

x2 to make it equal    x
−1  at x=1. 
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To catch a falling neutron starlet

The “glue” that holds in the rebellious nuclear proton charge is called nuclear matter, a mix of 

neutrons, mesons, and their ingredients. Let’s imagine a fingertip (1cc) of neutrons as densely packed as 

they are in a nucleus or neutron star and estimate how such a neutron starlet might travel through Earth.  

First, we find the density of nuclear matter. Let’s say a nucleus of atomic weight 50 has a radius of 3 fm, 

so it has 50 nucleons each with a mass 2·10-27kg. (It’s actually more like 1.67·10-27, but roughly 2·10-27.) 

That is 100·10-27=10-25 kg packed into a volume of 4π/3r3= 4π/3 (3·10-15)3 m3 or about 10-43 m3. 

That gives a huge density of 10-25+43 = 1018kg per m3 or a trillion kilograms in the size of a fingertip. 

That’s a weighty fingertip! mg is ten trillion Newtons. (Well, actually 8.8 trillion Newtons. No 

need to exaggerate here!) In spite of this, its gravitational attraction to nearby rocks on the Earth is 

comparatively moderate. A (10cm)3 1kg rock would cling to the starlet with a force of about 

Frock=Gm(1kg)/r2= 100Gm = 100(6.7E-11)1E12 = 6,700 N,  (m=Mstarlet=1012kg)

or less than a ton that is tiny for a starlet weighing billions of tons and cutting into the Earth like a bullet 

going through cotton candy. Let’s see what speed it might gain falling from the surface.

Starlet energy is assumed constant since friction would be tiny compared to its enormous weight.

  E = KE + PE = 1/2 m v2 + U(x) =1/2 m v2 + 1/2 mg (x2 –3)=const.     (8.5)

Let it be released at Earth surface (x=1) with zero velocity. This sets the energy constant. 

  E =1/2 m02 + 1/2 mg (12 –3)=const.=- mg        (8.6)

At Earth center (x=0) we solve for the velocity there. (The starlet mass m cancels out.)

  E =1/2 mv2 + 1/2 mg (02 –3)=const.=- mg   or: v2 = g ,     (8.7a)

   v = √g   (In mks units: v2 = gR⊕ ,  or : v0 = √(g R⊕)=8 km/s)   (8.7b)

v0 = 8 km/s is also Earth’s minimum orbital insertion speed. A mass dropped down the tunnel flies with 

the same x-coordinate as one shot with the speed v0 into circular orbit. One flies above the other and they 

meet each other on the other side 42 minutes later as shown in Fig. 8.8. We now show this synchrony of 

orbital timing holds for all pairs of starlets sent from anywhere inside the Earth!

v0
v0

θ

θ=π/2

θ=π

v0

v0

v0 42
minutes
later...

Fig. 8.8 Neutron starlet penetrates Earth as satellite orbits to meet 1/2-way around in 42 minutes. 
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This synchrony involves a physicist’s most favored type of potential energy U=1/2kx2. When 

PE=U is a square like kinetic energy KE=1/2mv2 it has a symmetry between position x and velocity v.

     E=KE +PE= const. = 1/2mv2 + 1/2kx2 

We make any constant-sum-of-squares into a Pythagorian relation 1=sin2θ+cos2 θ as we did to analyze 

the sum (4.10) of super-ball KE. Here (8.5) is a sum E=KE+PE and the constant k is starlet weight mg.

1=(m v2/2E) + (k x2/2E) =sin2θ+cos2 θ     (8.8a)

Position x and velocity v are then expressed in terms sine and cosine of a phase angle θ .

     x= √(2E/k) sinθ  (8.8b)     v= √(2E/m) cos θ  .  (8.8c)

Velocity v is proportional to cosθ and θ has a constant angular velocity ω= dt
dθ  so that θ=ω·t+α. (α=θ0=const.)

v= dx
dt
= dx
dθ

dθ
dt
= dx
dθ

ω=ω 2E
k
cosθ= 2E

m
cosθ  (8.9a)    where: ω =

dθ
dt

=
k
m

  (8.9)

Angle θ is polar angle in (x,v/ω)-phasor-space of Fig. 8.10a. (x,v/ω)-orbits are circular-clockwise (ω=−|ω|) 

if positive phasor v-axis is up and positive-x axis is to the right. Earth xy-orbits may be elliptical with a 

polar angle φ that can orbit ± in Fig. 8.10. Each spatial dimension x and y has a constant sub-total energy.

     KETotal=ey+ey    where:   ex=const.= 1/2mvx2 + 1/2kx2 and: ey=const.= 1/2mvy2 + 1/2ky2 (8.10)

Equal constants (ex=ey) give a circular orbit in Fig. 8.8. Frequency ω (8.9) is independent of energy 

value ex or ey and orbit and x-tunnel motion share frequency ω=√g. Tunnel motion with same ex but zero 

ey, has half the energy. All motions of the starlet inside the Earth have the same 84-minute period. That 

is a fundamental harmonic period of a uniform Earth and approximates behavior of the real Earth. 

To depict the force vector F on the starlet simply draw an arrow from it to origin as in Fig. 8.9a 

since F is proportional to coordinate vector -r. (In Fig. 8.7, F is equal to –r.) It’s projection on x or y-

axes are the forces components driving the 84-minute oscillations along x or y-axes. Perhaps, there is a 

starlet deep below us swishing out 84-minute elliptical orbits as in Fig. 8.9b.

 

Fx

v0
Fy

F=-r
(a) (b)

Fig. 8.9 Force and orbits inside Earth. (a) F is minus the coordinate vector (b) Typical orbits.
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 Starlet escapes! (In 3 equal steps)
Imagine starlet-m has decayed to the bottom of the U(x)=1/2mg(x2–3) curve in Fig. 8.7. How much 

energy E∞ does it take for it to escape from Earth center and go back home to ∞? The plot of U(x) in Fig. 

8.7 suggest three equal steps of ½E? that bring energy -3/2E∞ at x=0 up to zero at x=∞ 

Step-1 is to drag or shoot the starlet-m to the Earth’s surface. That takes energy ΔE1=1/2. (That’s 
1/2mgR⊕ in mks units.) Shooting radially at velocity v0 = √(gR⊕) given by (8.7b) would do this first step. It 

would then come to rest (momentarily) at the Earth surface at r=R⊕.

Step-2 is to launch starlet-m into a minimal circular orbit from the Earth’s surface. That takes 

dollop of energy ΔE2=1/2 equal to the first. (Again, that’s 1/2mgR⊕ in mks units.) Shooting tangentially 

with minimum orbital insertion velocity v0 = √(gR⊕) given by (8.7b) does this second step.

Step-3 involves a final energy jump ΔE3=1/2 equal to each of the first two by increasing from the 

orbital insertion velocity v0 = √ (gR⊕) to the escape velocity Ve from Earth’s surface r=R⊕. 

    Ve = v0√2= √ (2gR⊕) =11.3 km/s=7 mile/s   (8.11a)

In terms of fundamental potential Ugrav(R⊕)= -GMm /R⊕ at a planets surface r=R⊕ the escape velocity is

    Ve = v0√2=√ (2GM/R⊕) .    (8.11b)

Orbital threshold velocity v0 of radius R⊕ is √2=0.707 or about 71% of the escape velocity Ve from there.

No escape: A black-hole Earth!
By uniformly compressing Earth, we imagine extending the region of the Coulomb potential –1/r in Fig. 

8.5 to lower values of r while making the harmonic potential U(r)= 1/2kr2 inside the body occupy a 

smaller and smaller radius R⊕ and take on narrower, deeper, and more negative energy values. 

The plot in Fig. 8.5 maintains its shape but we rescale to accommodate a squashed Earth. The 

escape velocity in (8.11b) grows as we consider a decreasing squashed-planet radius R⊗. Finally there 

comes a particular radius R⊗ where the escape velocity (8.11b) is the speed c of light.

     c =√ (2GM/R⊗)     (8.12a)

That radius is called the Schwarschild radius or “black hole” radius since light cannot escape.

     R⊗ = 2GM/c2      (8.12b)

For the earth of mass M⊕ = 6·1024 kg the radius R⊗ is about nine mm, or the size of a fingertip. It 

is hard to imagine our world so squashed! Things may be collapsing all around, but please, not that 

much. 
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Oscillator phasor plots and elliptic orbits

Oscillator functions in (8.8) suggest a coordinate-velocity plot or phase-space plot. By (8.9) the 

phase angle θ=ω·t+α is a product of angular frequency ω and time. A circle starting on +x-axis has initial 

phase to α=θ0=π/2 and plot (x= X cos ωt, v/ω= -X sin ωt) for its “clock” or phasor plot in Fig. 8.10a.

So that positive v versus x defines its 1st quadrant, a phasor rotates clockwise like a clock hand so 

angle θ=−|ω|t has a minus sign. (This is quite apropos since our clocks now are waves and harmonic 

oscillators. Each dimension x and y has its phasor plot as indicated by Fig. 8.10b. In other words there 

are four phase-space or phasor dimensions (x , vx/ω , y , vy/ω) being plotted. Here the frequency ω for 

each dimension x and y is identical due to symmetry or isotropy of the Earth model. But, initial phases αx 

and αy of x and y are independent. In Fig. 8.10b we set x-oscillator phase to 2 o’clock (on a 16-hour 

clock) and y-oscillator 2 hours ahead to 4 o’clock so the ellipse orbit is clockwise and have a left-handed 

symmetry. Setting x to be 2 hours ahead of y makes the same orbit but it will go counter-clockwise and 

have a right-handed symmetry.

The x versus y plot with x always two hours or 45° behind y, is an inclined elliptical xy-orbit path 

in Fig. 8.10b. It might represent a typical neutron starlet path in the Earth. Or else, it might represent an 

optical polarization ellipse described later. Below is a discussion of some special cases of orbit ellipses.
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Fig. 8.10 Oscillator plots. (a) 1D-HO phasor plot. (b) Isotropic 2D-oscillator phasors and xy-path.
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First we verify that orbits in Fig. 8.10-11 are ellipses. Fig. 8.11a has x running 90° behind y with 

a relative phase lag Δα=αx−αy=π/2 that is 4 hours or 1/4-period behind in phase on a 16-hour clock. We 

say such a 90°-lagging-x-motion is in-quadrature to y-motion. It gives an un-tilted ellipse with a left-

handed orbit, and if ex=a=b=ey then it gives a circular orbit or left-circular polarization. (See Fig. 8.11a 

on right.) For right-handed orbits x-motion and x-motion switch leads to Δα=αx−αy=−π/2.

In-quadrature xy -motion is a cosine and sine projection on a-side and b-side of an ellipse, 

respectively, based on expressions (8.8).

x = a cos ω t ,   (8.13a)    y = b cos(π/2-ω t) = b sin ω t . (8.13b)

Squaring and adding cosine and sine expressions gives a standard xy-ellipse equation.

� 

x 2 / a2 + y2 /b2 =1      (8.13c)

Zero phase lag Δα =0 or in-phase motion gives linear polarization in Fig. 8.11b. In the case of 

Fig. 8.11b where x and y-motions are in-phase we have

x = a cos ω·t ,   (8.14a)     y = b cos ω·t .   (8.14b)

Combining these two gives a trajectory that follows a straight line of slope (b/a) seen in the figure.

       y = (b/a) x      (8.14c)

Lag Δα =±π or pi-out-of-phase is a linear polarized motion, too. 

x = a cos ω·t ,   (8.15a)     y = -b cos ω·t .  (8.15b)

It is simply a horizontal mirror reflection of the in-phase path. 

       y =-(b/a) x      (8.15c)

In each of the figures we could imagine three starlets going in unison. The first starlet obeys the 

y-equation (8.13b) with x=0. The second starlet obeys the x-equation (8.13a) with y=0 and tunnels as in 

Fig. 8.8. A third starlet obeys both the x and y equations like the starlet orbiting above tunneling one(s). 

In a linear force field F=-kr all Cartesian components oscillate sinusoidally at the same frequency.
   F=-kr  implies : Fx=-kx ,    Fy=-ky ,    Fz=-kz           (8.15)

Neither the coulomb field F=-kr/r3 nor any other power-law field F=-krrp is so convenient! 

As shown later, negative energy orbits in Coulomb fields are also elliptic, and elegant ruler & 

compass geometry applies to them, as well. However, Coulomb ellipses are symmetric about origin only  

for circular orbits. All other Coulomb orbits are eccentric since they orbit about an off-center focal point 

instead of the on-center ellipse point of symmetry that lies at origin (r=0) for any Hooke’s law oscillator 

orbit of a starlet.
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Fig. 9.11Fig. 8.11 Two 1-D oscillator phasor plots combine to give 2D-oscillator xy-trajectory.
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Exercise 1.8.3.  Tunnels to UK (5600 miles away as an earthworm crawls) are shown below. One high-
road is a direct route. The other low-road turns around at the Earth center. Travel and turn-around are 
assumed frictionless and survivable. (a) How long is each trip? Discuss. 

ArkUK High-road tunnel

Low-road tunnel

(a) Hi-road & low-road (b) Lot s o f roads

AB A

B1B2B3
B4

(b) A network of subways leaving Ark. at time t=0. What curve (like the dots) describe each moment? 

Exercise 1.8.4.  Consider competing tunnels between points A-to-B separated by R√2~ 5600 miles (thru 
Earth) or Δφ=90° of longitude and 6 Time Zones. The preceding problem asked you to compare the 
high-road or direct-route to the low-road or via-Earth-center-and-back-route. Here we consider middle-
road routes such as in Fig (a) below.  (a) Find the fastest 2-straight-section middle road A-to-B by 
geometry or algebra. How much faster is it?  (Give answer for local travel:Δφ=1°, long distance:Δφ=90° 
and for general Δφ.) 
(b) How long does it take to go from A-to-B on slow-roads (“V”-road and “U”-road) in Fig. (b).  

Exercise 1.8.5. Construct 24-point neutron-starlet orbits (One point for every hour assuming a 24-hour 
orbital period.) inside a uniform asteroid with x-component oscillation amplitude exactly equal to that of 
y and the x-component phase fixed relative to that of y as follows:
(a) x is in phase with y. (b) x is behind y by 1 hour. (c) 2 hours. (d) 3 hours. (e) 4 hours. (f) 5 hours. (g) 6 
hours. (h) 7 hours.
Do the orbits change if we replace behind by ahead in (a) to (h)? Discuss or describe.
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