
Relawavity: Quantizing wave variables of phase and amplitude   

Lecture 31 Relawavity-Dynamics 
Tuesday 5.03.2016

Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg Δυ·Δt~1~Δκ·Δx analogous to ΔN·Δphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields

(Unit 3  p.45-64 )
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Lucky coincidences??
...Try exact  υphase and κphase... 

Einstein (1905)

DeBroglie (1921)

hB
c2

Rescale υphase by h   so: M=               or:hB = Mc2

So attach scale factor h (or hN) 
to match units.

υphase and κphase resemble
formulae for Newton’s kinetic
energy   Mu2 and momentum Mu.1

2

Cheap trick??
ExpensiveNatural wave conspiracy

Using (some) wave parameters to develop relativistic quantum theory 

Planck (1900)

(The famous Mc2

shows up here!)

Max Planck
1858-1947

Louis DeBroglie
1892-1987

Need to replace
h with hN to match
e.m. energy density
ε0E•E =hNυphase

This motivates the
“particle” normalization
∫  Ψ Ψ dV=N* Ψ= ε

0

hυ
E

*

(old-fashioned
notation)

Lect. 30
p. 3 to 29 

Energy density, photon number N,
and normalization discussed p.74-81 
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Some details concerning 
Lect. 30 - slide 31

RelaWavity Web Simulation
Relativistic Terms - Einstein-Plank Dispersion
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Group velocity u=Vgroup       is a differential quantity unaffected by origin shift. 

But, Phase velocity     =Vphase is greatly reduced by deleting Mc2 from E=ω. 

It slows from super-luminal Vphase=c2/u to a sedate sub-luminal speed of Vgroup/2. 
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Bohr - Schrodinger Dispersion
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This affects wave phase dynamics only:

RelaWavity Web Simulation
Relativistic Terms - Einstein-Plank Dispersion
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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Here is a rare but important case where dω (k)
dk

 equals Δω
Δk

. (Usually not so unless limit Δk→ 0 exists.) 

PP
Δω

c Δk

BB ssiinnhh ρ

BB ccoosshh ρ

ω

ω2=Be
-ρ

ω1=Be
+ρ

ck1ck2

Here the exact discrete value is:  

Vgroup =
Δω
Δk

= ω (k1)−ω (k2 )
k1 − k2

        = Be+ρ − Be−ρ

Be+ρ − (−Be−ρ )

        = e+ρ − e−ρ

e+ρ + Be−ρ
= sinhρ

coshρ
= tanhρ

This time it matches calculus value:  

Vgroup =
dω (k)
dk

= d(coshρ)
d(sinhρ)

        = sinhρ
coshρ

= tanhρ

Standard formula for classical group velocity is Vgroup=
dω (k)
dk

But this may fail if ω (k) is quantized and thus discrete ω (km ). 

Then we need to use an exact quantum form:     Vgroup=
Δω
Δk

=ω (k1)-ω (k2 )
k1-k2

http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html

Review per-space-time

Text
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers n are called quantum numbers.
OK box quantum numbers: n=1 n=2 n=3 n=4

(+ integers only)

NOT OK numbers: n=0.67 n=1.7 n=2.59 n=4

:-(

:-) :-) :-) :-)

:-( :-(

too fat! too thin!

:-(

wrong color again!

misfits... ...not tolerated !

Rings tolerate a zero (kinkless) quantum wave but require ±integral wave number.
OK ring quantum numbers: m=0 m=±1 m=±2 m=3

(± integral number

of wavelengths)

Bohr’s models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics
built on Planck-Einstein (1900-1905) relation E=hυ. DeBroglie relation p=h/λ comes around 1923.

NOTE: We’re using “false-color” here.

Some

This doesn’t mean a system’s energy can’t vary continuously between “OK” values E1, E2, E3, E4,…

1 half-wave 2 half-waves 3 half-waves 4 half-wave

http://www.uark.edu/ua/pirelli/html/quantized_0.html
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If everything is made of waves then we expect quantization of everything because
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wrong color again!
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Rings tolerate a zero (kinkless) quantum wave but require ±integral wave number.
OK ring quantum numbers: m=0 m=±1 m=±2 m=3

(± integral number

of wavelengths)

Bohr’s models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics
built on Planck-Einstein (1900-1905) relation E=hυ. DeBroglie relation p=h/λ comes around 1923.

NOTE: We’re using “false-color” here.

Some

This doesn’t mean a system’s energy can’t vary continuously between “OK” values E1, E2, E3, E4,…
 In fact its state can be a linear combination of any of the “OK” waves |E1>, |E2>, |E3>, |E4>,…

1 half-wave 2 half-waves 3 half-waves 4 half-wave

http://www.uark.edu/ua/pirelli/html/quantized_0.html
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers n are called quantum numbers.
OK box quantum numbers: n=1 n=2 n=3 n=4

(+ integers only)

NOT OK numbers: n=0.67 n=1.7 n=2.59 n=4

:-(

:-) :-) :-) :-)

:-( :-(

too fat! too thin!

:-(

wrong color again!

misfits... ...not tolerated !

Rings tolerate a zero (kinkless) quantum wave but require ±integral wave number.
OK ring quantum numbers: m=0 m=±1 m=±2 m=3

(± integral number

of wavelengths)

Bohr’s models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics
built on Planck-Einstein (1900-1905) relation E=hυ. DeBroglie relation p=h/λ comes around 1923.

NOTE: We’re using “false-color” here.

Some

This doesn’t mean a system’s energy can’t vary continuously between “OK” values E1, E2, E3, E4,…
 In fact its state can be a linear combination of any of the “OK” waves |E1>, |E2>, |E3>, |E4>,… 
That’s the only way you get any light in or out of the system to “see” it.

|E1>
|E2>

|E3>
|E4>

1 half-wave 2 half-waves 3 half-waves 4 half-wave

frequency ω21 = (E2-E1)/

frequency ω32 = (E3-E2)/
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Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers n are called quantum numbers.
OK box quantum numbers: n=1 n=2 n=3 n=4

(+ integers only)
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too fat! too thin!

:-(

wrong color again!

misfits... ...not tolerated !

Rings tolerate a zero (kinkless) quantum wave but require ±integral wave number.
OK ring quantum numbers: m=0 m=±1 m=±2 m=3

(± integral number

of wavelengths)

Bohr’s models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics
built on Planck-Einstein (1900-1905) relation E=hυ. DeBroglie relation p=h/λ comes around 1923.

NOTE: We’re using “false-color” here.

Some

|E1>
|E2>

|E3>
|E4>

frequency ω21 = (E2-E1)/

frequency ω32 = (E3-E2)/

These eigenstates are just the ways
the wavy system can “play dead”…

1 half-wave 2 half-waves 3 half-waves 4 half-wave

This doesn’t mean a system’s energy can’t vary continuously between “OK” values E1, E2, E3, E4,…
 In fact its state can be a linear combination of any of the “OK” waves |E1>, |E2>, |E3>, |E4>,… 
That’s the only way you get any light in or out of the system to “see” it.

http://www.uark.edu/ua/pirelli/html/quantized_0.html
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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Consider two lowest E-states by themselves

|E1〉

|E2〉
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Consider two lowest E-states by themselves in time

e-iω1t|E1〉

e-iω2t|E2〉
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Consider two lowest E-states by themselves in time Now combine (add) them

e-iω1t|E1〉

e-iω2t|E2〉

(|E1〉+|E2〉)/√2

27Tuesday, May 3, 2016



Consider two lowest E-states by themselves in time Now combine (add) them and let time roll!

e-iω1t|E1〉

e-iω2t|E2〉 (e-iω1t|E1〉 +e-iω2t|E2〉)/√2

]/√2

(|E1〉+|E2〉)/√2
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies
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Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
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Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers n are called quantum numbers.
OK box quantum numbers: n=1 n=2 n=3 n=4

(+ integers only)

NOT OK numbers: n=0.67 n=1.7 n=2.59 n=4

:-(

:-) :-) :-) :-)

:-( :-(

too fat! too thin!

:-(

wrong color again!

misfits... ...not tolerated !

Rings tolerate a zero (kinkless) quantum wave but require ±integral wave number.
OK ring quantum numbers: m=0 m=±1 m=±2 m=3

(± integral number

of wavelengths)

Bohr’s models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics
built on Planck-Einstein (1900-1905) relation E=hυ. DeBroglie relation p=h/λ comes around 1923.

NOTE: We’re using “false-color” here.

Some

1 half-wave 2 half-waves 3 half-waves 4 half-wave

0 waves 1 waves 2 waves 3 waves

www.uark.edu/ua/pirelli/html/quantized_0.html

32Tuesday, May 3, 2016



Consider two lowest E-states by themselves

|Em=0〉

|Em=+1〉
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Consider two lowest E-states by themselves

|Em=0〉

|Em=+1〉

Now combine (add) them and let time roll!
(e-iω0t|E0〉 +e-iω+1t|E+1〉)/√2
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Consider two lowest E-states by themselves

|Em=0〉

|Em=+1〉

Now combine (add) them and let time roll!
(e-iω0t|E0〉 +e-iω+1t|E+1〉)/√2

(Just moves forward rigidly)
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Consider two degenerate E-states by themselves

|Em=+1〉

|Em=-1〉
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Consider two degenerate E-states by themselves

|Em=+1〉

|Em=-1〉

Now combine (add) them and let time roll!

(e-iω-1t|E-1〉 +e-iω+1t|E+1〉)/
√2

Group wave is stationary if  ω-1=ω+1 but
phase can move or“gallop” faster than light! 

Nothing CAN go faster than light

If  ω-1<ω+1 then Vgroup<0 

If  ω-1>ω+1 then Vgroup>0 
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)
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2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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2-CW dynamics has two 1-CW amplitudes  A→and A←  that may be unmatched. (A→≠A← )

  A→e
i(k→x−ω→t ) + A←e

i(k←x−ω←t ) = ei(kΣ x−ωΣ t )[A→e
i(kΔx−ωΔt ) + A←e

−i(kΔx−ωΔt ) ]

Waves have half-sum mean-phase rates (kΣ ,ωΣ )  and half-difference group rates  (kΔ ,ωΔ ) .
                     kΣ =  (k→ +  k← ) / 2                     kΔ =  (k→ −  k← ) / 2
                     ωΣ = (ω→ +ω← ) / 2                     ωΔ = (ω→ −ω← ) / 2   

Galloping waves due to unmatched 2-CW amplitudes 
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2-CW dynamics has two 1-CW amplitudes  A→and A←  that may be unmatched. (A→≠A← )

  A→e
i(k→x−ω→t ) + A←e

i(k←x−ω←t ) = ei(kΣ x−ωΣ t )[A→e
i(kΔx−ωΔt ) + A←e

−i(kΔx−ωΔt ) ]

Waves have half-sum mean-phase rates (kΣ ,ωΣ )  and half-difference group rates  (kΔ ,ωΔ ) .
                     kΣ =  (k→ +  k← ) / 2                     kΔ =  (k→ −  k← ) / 2
                     ωΣ = (ω→ +ω← ) / 2                     ωΔ = (ω→ −ω← ) / 2
Now consider  amplitude mean AΣ =  (A→ +  A← ) / 2   and amplitude half-difference AΔ =  (A→ −  A← ) / 2.      

Galloping waves due to unmatched 2-CW amplitudes 
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2-CW dynamics has two 1-CW amplitudes  A→and A←  that may be unmatched. (A→≠A← )

  A→e
i(k→x−ω→t ) + A←e

i(k←x−ω←t ) = ei(kΣ x−ωΣ t )[A→e
i(kΔx−ωΔt ) + A←e

−i(kΔx−ωΔt ) ]

Waves have half-sum mean-phase rates (kΣ ,ωΣ )  and half-difference group rates  (kΔ ,ωΔ ) .
                     kΣ =  (k→ +  k← ) / 2                     kΔ =  (k→ −  k← ) / 2
                     ωΣ = (ω→ +ω← ) / 2                     ωΔ = (ω→ −ω← ) / 2
Now consider  amplitude mean AΣ =  (A→ +  A← ) / 2   and amplitude half-difference AΔ =  (A→ −  A← ) / 2.

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ. 

 Envelope−Min.
Envelope−Max.

= SWR = (A→ −  A← )
(A→ +  A← )

                                                              SWQ = (A→ +  A← )
(A→ −  A← )

= 1
SWR

          

Galloping waves due to unmatched 2-CW amplitudes 
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2-CW dynamics has two 1-CW amplitudes  A→and A←  that may be unmatched. (A→≠A← )

  A→e
i(k→x−ω→t ) + A←e

i(k←x−ω←t ) = ei(kΣ x−ωΣ t )[A→e
i(kΔx−ωΔt ) + A←e

−i(kΔx−ωΔt ) ]

Waves have half-sum mean-phase rates (kΣ ,ωΣ )  and half-difference group rates  (kΔ ,ωΔ ) .
                     kΣ =  (k→ +  k← ) / 2                     kΔ =  (k→ −  k← ) / 2
                     ωΣ = (ω→ +ω← ) / 2                     ωΔ = (ω→ −ω← ) / 2
Now consider  amplitude mean AΣ =  (A→ +  A← ) / 2   and amplitude half-difference AΔ =  (A→ −  A← ) / 2.

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ. 

 Envelope−Min.
Envelope−Max.

= SWR = (A→ −  A← )
(A→ +  A← )

                                                              SWQ = (A→ +  A← )
(A→ −  A← )

= 1
SWR

          

Galloping waves due to unmatched 2-CW amplitudes 

Vphase =
ωΣ
kΣ

= (ω→ +ω← )
(k→ +  k← )

= c (ω→ +ω← )
(ω→ −  ω← )

Vgroup
c

== c
Vphase

Envelope Maximum
2AΣ =  (A→ +  A← )

Envelope Minimum
2AΔ =  (A→ −  A← )
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2-CW dynamics has two 1-CW amplitudes  A→and A←  that may be unmatched. (A→≠A← )

  A→e
i(k→x−ω→t ) + A←e

i(k←x−ω←t ) = ei(kΣ x−ωΣ t )[A→e
i(kΔx−ωΔt ) + A←e

−i(kΔx−ωΔt ) ]

Waves have half-sum mean-phase rates (kΣ ,ωΣ )  and half-difference group rates  (kΔ ,ωΔ ) .
                     kΣ =  (k→ +  k← ) / 2                     kΔ =  (k→ −  k← ) / 2
                     ωΣ = (ω→ +ω← ) / 2                     ωΔ = (ω→ −ω← ) / 2
Now consider  amplitude mean AΣ =  (A→ +  A← ) / 2   and amplitude half-difference AΔ =  (A→ −  A← ) / 2.

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ. 
 

    Envelope−Min.
Envelope−Max.

= SWR = (A→ −  A← )
(A→ +  A← )

                                                              SWQ = (A→ +  A← )
(A→ −  A← )

= 1
SWR

They’re analogous to group velocity Vgroup <c frequency ratios and inverse phase velocity Vphase >c ratios.

                     Vgroup =
ωΔ
kΔ

= (ω→ −ω← )
(k→ −  k← )

= c (ω→ −ω← )
(ω→ +  ω← )

Vphase =
ωΣ
kΣ

= (ω→ +ω← )
(k→ +  k← )

= c (ω→ +ω← )
(ω→ −  ω← )

Galloping waves due to unmatched 2-CW amplitudes 
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2-CW dynamics has two 1-CW amplitudes  A→and A←  that may be unmatched. (A→≠A← )

  A→e
i(k→x−ω→t ) + A←e

i(k←x−ω←t ) = ei(kΣ x−ωΣ t )[A→e
i(kΔx−ωΔt ) + A←e

−i(kΔx−ωΔt ) ]

Waves have half-sum mean-phase rates (kΣ ,ωΣ )  and half-difference group rates  (kΔ ,ωΔ ) .
                     kΣ =  (k→ +  k← ) / 2                     kΔ =  (k→ −  k← ) / 2
                     ωΣ = (ω→ +ω← ) / 2                     ωΔ = (ω→ −ω← ) / 2
Now consider  amplitude mean AΣ =  (A→ +  A← ) / 2   and amplitude half-difference AΔ =  (A→ −  A← ) / 2.

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ. 
 

    Envelope−Min.
Envelope−Max.

= SWR = (A→ −  A← )
(A→ +  A← )

                                                              SWQ = (A→ +  A← )
(A→ −  A← )

= 1
SWR

They’re analogous to group velocity Vgroup <c frequency ratios and inverse phase velocity Vphase >c ratios.

                     Vgroup =
ωΔ
kΔ

= (ω→ −ω← )
(k→ −  k← )

= c (ω→ −ω← )
(ω→ +  ω← )

Vphase =
ωΣ
kΣ

= (ω→ +ω← )
(k→ +  k← )

= c (ω→ +ω← )
(ω→ −  ω← )

Vgroup
c

= ωΔ
ckΔ

= (ω→ −ω← )
c(k→ −  k← )

= (ω→ −ω← )
(ω→ +  ω← )

Vphase
c

= ωΣ
ckΣ

= (ω→ +ω← )
c(k→ +  k← )

= (ω→ +ω← )
(ω→ −  ω← )

= c
Vgroup

Galloping waves due to unmatched 2-CW amplitudes 
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2-CW dynamics has two 1-CW amplitudes  A→and A←  that may be unmatched. (A→≠A← )

  A→e
i(k→x−ω→t ) + A←e

i(k←x−ω←t ) = ei(kΣ x−ωΣ t )[A→e
i(kΔx−ωΔt ) + A←e

−i(kΔx−ωΔt ) ]

Waves have half-sum mean-phase rates (kΣ ,ωΣ )  and half-difference group rates  (kΔ ,ωΔ ) .
                     kΣ =  (k→ +  k← ) / 2                     kΔ =  (k→ −  k← ) / 2
                     ωΣ = (ω→ +ω← ) / 2                     ωΔ = (ω→ −ω← ) / 2
Now consider  amplitude mean AΣ =  (A→ +  A← ) / 2   and amplitude half-difference AΔ =  (A→ −  A← ) / 2.

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ. 
 

    Envelope−Min.
Envelope−Max.

= SWR = (A→ −  A← )
(A→ +  A← )

                                                              SWQ = (A→ +  A← )
(A→ −  A← )

= 1
SWR

They’re analogous to group velocity Vgroup <c frequency ratios and inverse phase velocity Vphase >c ratios.

                     Vgroup =
ωΔ
kΔ

= (ω→ −ω← )
(k→ −  k← )

= c (ω→ −ω← )
(ω→ +  ω← )

Vphase =
ωΣ
kΣ

= (ω→ +ω← )
(k→ +  k← )

= c (ω→ +ω← )
(ω→ −  ω← )

Vgroup
c

= ωΔ
ckΔ

= (ω→ −ω← )
c(k→ −  k← )

= (ω→ −ω← )
(ω→ +  ω← )

Vphase
c

= ωΣ
ckΣ

= (ω→ +ω← )
c(k→ +  k← )

= (ω→ +ω← )
(ω→ −  ω← )

= c
Vgroup

Vgroup
c

= c
Vphase

is analogous to: SWR = 1
SWQ

Galloping waves due to unmatched 2-CW amplitudes 
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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SWR=1
Two extremes for Standing 
Wave Ratio
SWR=0
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Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.
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Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.
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RelaWavity Web Simulation
Elliptical Orbit

http://www.uark.edu/ua/modphys/markup/BoxItWeb.html?AU2=1.0&BU2=0.0&CU2=0.0&DU2=1.0&xInitial=1.0&yInitial=0.0&pxInitial=0.0&pyInitial=0.4&wantBoxLines=1

Elliptic Polarization animation

With C-type rotation
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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Brief faster-than-
light travel

Happening 1

Happening 2
Before

x-axis

ct-axis

Fig. 2.B.10 Lighthouse plot of two Happenings

Super-luminal speeds and Feynman-Wheeler switchbacks
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Brief faster-than-
light travel

Happening 1

Happening 2
Before

x-axis

ct-axis

Happening 1

Happening 2
Before

x'-axis

ct'-axis

(annihilation)

(creation)

Brief  travel
back-in-time

Fig. 2.B.10 Lighthouse plot of two Happenings

Fig. 2.B.11 Ship plot of two Happenings

Super-luminal speeds and Feynman-Wheeler switchbacks
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SWR=-1/5

Group zero
speed limit
uGROUP+SWR
1+uGROUP·SWR
=5c/11 Phase

“anti-zero”
going
“back-in-time”
Phase zero
speed limit
uPHASE+SWR
1+uPHASE·SWR
=11c/5

E←=0.6, E→=0.4

SWR=0

E←=0.5, E→=0.5

ω→=4c ω←=1c

k→=4, k←=-1

uGROUP=c3/5 uPHASE=c5/3

Minkowski Zero-Grids are
Spacetime Switchbacks for
-uGROUP<SWR<0

Wave zero-anti-zero
annihilation and creation occur together at
the same spacetime point for SWR=0

Wave zero-anti-zero
annihilation and creation occur separately at
different spacetime points for -uGROUP<SWR<0

Group-zero speed
uGROUP=c3/5

Phase
zero
speed
uPHASE
=c5/3

c2

c2

3
5
+ −1
5

1+ 3
5
−1
5

=

2
5
22
25

= 5
11

5
3
+ −1
5

1+ 5
3
−1
5

=

22
15
10
25

= 11
5

Waves that go back in time - The Feynman-Wheeler Switchback
www.uark.edu/ua/pirelli/html/amplitude_probability_4. html
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg Δυ·Δt~1~Δκ·Δx analogous to ΔN·Δphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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N
1
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red photons

Quantized Amplitude Counting “photon” number
Planck’s relation E=Nhυ began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study it.

m=1 m=2 m=3 m=4

A current view is that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.
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Quantum field definitions have been called
“2nd quantization” or “wave-waves”

NOTE: We’re using “false-color” here.

These are the fundamental “zero-point” or “vacuum” levels
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www.uark.edu/ua/pirelli/html/quantized_1. html
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red photons

Quantized Amplitude Counting “photon” number
Planck’s relation E=Nhυ began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study it.

m=1 m=2 m=3 m=4

A current view is that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.
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Quantum field definitions have been called
“2nd quantization” or “wave-waves”

NOTE: We’re using “false-color” here.

These are the fundamental “zero-point” or “vacuum” levels
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red photons

Quantized Amplitude Counting “photon” number
Planck’s relation E=Nhυ began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study it.

m=1 m=2 m=3 m=4

A current view is that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.
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Quantum field definitions have been called
“2nd quantization” or “wave-waves”

NOTE: We’re using “false-color” here.

These are the fundamental “zero-point” or “vacuum” levels

These are the 1st excited or fu
ndamental tra

nsitio
n levels

These
 are t

he 2
nd ex

cite
d lev

els

(2nd-Quantization)
2n
d

Q
ua

nt
iz

at
io

n

1st
Quantization

www.uark.edu/ua/pirelli/html/quantized_1. html

60Tuesday, May 3, 2016



N
1
=2

red photons

Quantized Amplitude Counting “photon” number
Planck’s relation E=Nhυ began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study it.

m=1 m=2 m=3 m=4

A current view is that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.
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Quantum field definitions have been called
“2nd quantization” or “wave-waves”

NOTE: We’re using “false-color” here.

These are the fundamental “zero-point” or “vacuum” levels
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Quantized Amplitude Counting “photon” number
Planck’s relation E=Nhυ began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study it.

m=1 m=2 m=3 m=4

A current view is that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.
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Quantum field definitions have been called
“2nd quantization” or “wave-waves”

NOTE: We’re using “false-color” here.
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Quantum numbers N of field or n, m,.. of modes are invariants and not changed by boosting velocity.

Each mode fundamental frequency υ
n
=nυ

1
and its N-photon multiples belong to invariant hyperbolas.

Boosted observers see distorted frequencies and lengths, but

will agree on the numbers n and N of mode nodes and photons.

This is how light waves can “fake” some of the properties of

classical “things” such as invariance or object permanence.

It takes at least TWO CW’s to achieve such invariance. One CW

is not enough and cannot have non-zero invariant N . Invariance

is an interference effect that needs at least two-to-tango!
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg Δυ·Δt~1~Δκ·Δx analogous to ΔN·Δphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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We saw how adding CW’s (Continuous Waves m=1,2,3...) can make PW (Pulse Wave) or WP (Wave Packet)
that is more like a classical “thing” with more localization in space x and time t.

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

|m=1〉 PLUS |m=2〉 PLUS |m=3〉 etc. EQUALS |PW〉

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator
Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

|N=0〉 PLUS |N=1〉 PLUS |N=2〉 etc. EQUALS |OAP〉

Time t

Field Amplitude E

Space x

Time t

Zero-photon state

(Vacuum state)

1-photon state

(Fundamental)

2-photon state

(1st overtone)

Oscillating Amplitude Packet

Zero-point uncertainty

Pure photon states have localized (certain) N but delocalized (uncertain) amplitude and phase.
OAP states have delocalized (uncertain) N but more localized (certain) amplitude and phase.

N

uncertaintyN=2

N=1

N=0

1-point uncertainty

2-point uncertainty

Analogy:

www.uark.edu/ua/pirelli/html/coherent_vs_photon_1. html

http://www.uark.edu/ua/pirelli/html/head_on_3.html
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg Δυ·Δt~1~Δκ·Δx analogous to ΔN·Δphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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We saw how adding CW’s (Continuous Waves m=1,2,3...) can make PW (Pulse Wave) or WP (Wave Packet)
that is more like a classical “thing” with more localization in space x and time t.

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

|m=1〉 PLUS |m=2〉 PLUS |m=3〉 etc. EQUALS |PW〉

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator
Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

|N=0〉 PLUS |N=1〉 PLUS |N=2〉 etc. EQUALS |OAP〉

Time t

Field Amplitude E

Space x

Time t

Zero-photon state

(Vacuum state)

1-photon state

(Fundamental)

2-photon state

(1st overtone)

Oscillating Amplitude Packet

Zero-point uncertainty

Pure photon states have localized (certain) N but delocalized (uncertain) amplitude and phase.
OAP states have delocalized (uncertain) N but more localized (certain) amplitude and phase.

N

uncertaintyN=2

N=1

N=0

1-point uncertainty

2-point uncertainty

Analogy:

www.uark.edu/ua/pirelli/html/coherent_vs_photon_1. html
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We saw how adding CW’s (Continuous Waves m=1,2,3...) can make PW (Pulse Wave) or WP (Wave Packet)
that is more like a classical “thing” with more localization in space x and time t.

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

|m=1〉 PLUS |m=2〉 PLUS |m=3〉 etc. EQUALS |PW〉

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator
Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

|N=0〉 PLUS |N=1〉 PLUS |N=2〉 etc. EQUALS |OAP〉

Time t

Field Amplitude E

Space x

Time t

Zero-photon state

(Vacuum state)

1-photon state

(Fundamental)

2-photon state

(1st overtone)

Oscillating Amplitude Packet

Zero-point uncertainty

Pure photon states have localized (certain) N but delocalized (uncertain) amplitude and phase.
OAP states have delocalized (uncertain) N but more localized (certain) amplitude and phase.
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N=1

N=0

1-point uncertainty

2-point uncertainty

Analogy:
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg Δυ·Δt~1~Δκ·Δx analogous to ΔN·Δphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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Pure photon number N-states would make useless spacetime coordinates

|α=105〉|α=103〉|α=101〉

|N=1010〉
Photon number N-state

Quantum field coherentα-states

Coherent-α-states are defined by continuous amplitude-packet parameter α whose square is average
photon number N=|α|2. Coherent-states make better spacetime coordinates for larger N=|α|2.

Total uncertainty of amplitude and phase makes the count pattern a wash.
To see grids some N-uncertainty is necessary!

Classical limit

Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter ΔN~α~√N so
a coherent state with N=|α|2 =106 only has a 1-in-1000 uncertainty ΔN~α~√N=1000.

Time t

Space x

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

N=100
ΔN=10

N=106
ΔN=103

N=1010
ΔN=105

www.uark.edu/ua/pirelli/html/coherent_vs_photon_2.html
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Pure photon number N-states would make useless spacetime coordinates

|α=105〉|α=103〉|α=101〉

|N=1010〉
Photon number N-state

Quantum field coherentα-states

Coherent-α-states are defined by continuous amplitude-packet parameter α whose square is average
photon number N=|α|2. Coherent-states make better spacetime coordinates for larger N=|α|2.

Total uncertainty of amplitude and phase makes the count pattern a wash.
To see grids some N-uncertainty is necessary!

Classical limit

Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter ΔN~α~√N so
a coherent state with N=|α|2 =106 only has a 1-in-1000 uncertainty ΔN~α~√N=1000.

Time t

Space x

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

N=100
ΔN=10

N=106
ΔN=103

N=1010
ΔN=105

www.uark.edu/ua/pirelli/html/coherent_vs_photon_2.html
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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Electromagnetic wave mode energy: Maxwell vs Planck-Einstein  

Vector potential of standing wave mode : A= e12 a sin k⋅r-ωt+φ( )
E = − ∂A

∂t
 (Electric field)

= e1E0 cos k⋅r-ωt+φ( )
E0e1 = 2 aω e1

ω
k
=c= 1

ε0µ0

    

ε0 = (8.854)⋅10−7 Nm2

C 2

µ0 = 4π10−7 N

A2

              

e1

e2
B

E

E

k̂
Maxwell 
equations

Speed of Light:
2.99792458 m/sec.=

B = ∇×A  (Magnetic field)

B0 k×e1( ) = e2 2 ak
= k×e1( )B0 cos k⋅r-ωt+φ( )

 
wavevector :2πκ =kn=

2π
λn

=n 2π


,        frequency : 2πυ=ω n=ckn=cn
2π


1st Quantization conditions for wave phase variables (mode-fits-cavity )
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Electromagnetic wave mode energy: Maxwell vs Planck-Einstein  

Vector potential of standing wave mode : A= e12 a sin k⋅r-ωt+φ( )
E = − ∂A

∂t
 (Electric field)

= e1E0 cos k⋅r-ωt+φ( )
E0e1 = 2 aω e1

U V= ε0

2
E ⋅E+ 1

2µ0

B⋅B V=V ε0

2
A 2ω 2+

A 2

2µ0

k2⎛

⎝⎜
⎞

⎠⎟
cos2 k⋅r-ωt+φ( )

= ε0

2
ω 2 A 2V = 1

2µ0

k2 A 2V          given: cos2 k⋅r-ωt+φ( ) = 1
2

 

Electromagnetic mean energy density U and total Energy in volume V

ω
k
=c= 1

ε0µ0

    

ε0 = (8.854)⋅10−7 Nm2

C 2

µ0 = 4π10−7 N

A2

              

e1

e2
B

E

E

k̂
Maxwell 
equations

Speed of Light:
2.99792458 m/sec.=

B = ∇×A  (Magnetic field)

B0 k×e1( ) = e2 2 ak
= k×e1( )B0 cos k⋅r-ωt+φ( )

 
wavevector :2πκ =kn=

2π
λn

=n 2π


,        frequency : 2πυ=ω n=ckn=cn
2π


1st Quantization conditions for wave phase variables (mode-fits-cavity )

E-energy=B-energy
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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Electromagnetic wave mode energy: Maxwell vs Planck-Einstein  

Vector potential of standing wave mode : A= e12 a sin k⋅r-ωt+φ( )
E = − ∂A

∂t
 (Electric field)

= e1E0 cos k⋅r-ωt+φ( )
E0e1 = 2 aω e1

U V= ε0

2
E ⋅E+ 1

2µ0

B⋅B V=V ε0

2
A 2ω 2+

A 2

2µ0

k2⎛

⎝⎜
⎞

⎠⎟
cos2 k⋅r-ωt+φ( )

= ε0

2
ω 2 A 2V = 1

2µ0

k2 A 2V          given: cos2 k⋅r-ωt+φ( ) = 1
2

 

Electromagnetic mean energy density U and total Energy in volume V

 
U V = Nω = ε0

2
ω 2 A 2V=ε0

2
E 2V

Equating total Energy 〈U〉V to Planck’s EN(ω)=Nω axiom gives mean square field amplitudes

ω
k
=c= 1

ε0µ0

    

ε0 = (8.854)⋅10−7 Nm2

C 2

µ0 = 4π10−7 N

A2

              

e1

e2
B

E

E

k̂
Maxwell 
equations

Speed of Light:
2.99792458 m/sec.=

B = ∇×A  (Magnetic field)

B0 k×e1( ) = e2 2 ak
= k×e1( )B0 cos k⋅r-ωt+φ( )

 
wavevector :2πκ =kn=

2π
λn

=n 2π


,        frequency : 2πυ=ω n=ckn=cn
2π


1st Quantization conditions for wave phase variables (mode-fits-cavity )

2nd Quantization conditions for wave amplitudes (action fits HO phase space)

E-energy=B-energy
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Electromagnetic wave mode energy: Maxwell vs Planck-Einstein  

Vector potential of standing wave mode : A= e12 a sin k⋅r-ωt+φ( )
E = − ∂A

∂t
 (Electric field)

= e1E0 cos k⋅r-ωt+φ( )
E0e1 = 2 aω e1

U V= ε0

2
E ⋅E+ 1

2µ0

B⋅B V=V ε0

2
A 2ω 2+

A 2

2µ0

k2⎛

⎝⎜
⎞

⎠⎟
cos2 k⋅r-ωt+φ( )

= ε0

2
ω 2 A 2V = 1

2µ0

k2 A 2V          given: cos2 k⋅r-ωt+φ( ) = 1
2

 

Electromagnetic mean energy density U and total Energy in volume V

 
U V = Nω = ε0

2
ω 2 A 2V=ε0

2
E 2V

Equating total Energy 〈U〉V to Planck’s EN(ω)=Nω axiom gives mean square field amplitudes

ω
k
=c= 1

ε0µ0

 
A = 2N

ε0ωV
  , E =ω A = 2Nω

ε0V

 
A 2= 2N

ε0ωV
  , ω 2A 2= E 2= 2Nω

ε0V

    

ε0 = (8.854)⋅10−7 Nm2

C 2

µ0 = 4π10−7 N

A2

              

e1

e2
B

E

E

k̂
Maxwell 
equations

Speed of Light:
2.99792458 m/sec.=

QUANTITY
photon counts per sec.
QUALITY
cycles per sec.

B = ∇×A  (Magnetic field)

B0 k×e1( ) = e2 2 ak
= k×e1( )B0 cos k⋅r-ωt+φ( )

 
wavevector :2πκ =kn=

2π
λn

=n 2π


,        frequency : 2πυ=ω n=ckn=cn
2π


1st Quantization conditions for wave phase variables (mode-fits-cavity )

2nd Quantization conditions for wave amplitudes (action fits HO phase space)

E-energy=B-energy
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Electromagnetic wave mode energy: Maxwell vs Planck-Einstein  

Vector potential of standing wave mode : A= e12 a sin k⋅r-ωt+φ( )
E = − ∂A

∂t
 (Electric field)

= e1E0 cos k⋅r-ωt+φ( )
E0e1 = 2 aω e1

U V= ε0

2
E ⋅E+ 1

2µ0

B⋅B V=V ε0

2
A 2ω 2+

A 2

2µ0

k2⎛

⎝⎜
⎞

⎠⎟
cos2 k⋅r-ωt+φ( )

= ε0

2
ω 2 A 2V = 1

2µ0

k2 A 2V          given: cos2 k⋅r-ωt+φ( ) = 1
2

 

Electromagnetic mean energy density U and total Energy in volume V

 
U V = Nω = ε0

2
ω 2 A 2V=ε0

2
E 2V

Equating total Energy 〈U〉V to Planck’s EN(ω)=Nω axiom gives mean square field amplitudes

ω
k
=c= 1

ε0µ0

 
A = 2N

ε0ωV
  , E =ω A = 2Nω

ε0V

 
A 2= 2N

ε0ωV
  , ω 2A 2= E 2= 2Nω

ε0V

    

ε0 = (8.854)⋅10−7 Nm2

C 2

µ0 = 4π10−7 N

A2

N and ω are both frequencies for quantum wave so
E-field has Doppler e±ρ-shifts just like N and ω

Now we see how Planck’s EN(ω)=Nω axiom has the classical quadratic ω2|A|2 oscillator energy 

              

e1

e2
B

E

E

k̂
Maxwell 
equations

Speed of Light:
2.99792458 m/sec.=

QUANTITY
photon counts per sec.
QUALITY
cycles per sec.

B = ∇×A  (Magnetic field)

B0 k×e1( ) = e2 2 ak
= k×e1( )B0 cos k⋅r-ωt+φ( )

 
wavevector :2πκ =kn=

2π
λn

=n 2π


,        frequency : 2πυ=ω n=ckn=cn
2π


1st Quantization conditions for wave phase variables (mode-fits-cavity )

2nd Quantization conditions for wave amplitudes (action fits HO phase space)

E-energy=B-energy
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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U = Nω

V
= ε0
2
ω 2 A 2 =ε0

2
E 2

 
A = 2N

ε0ωV
  , E =ω A = 2Nω

ε0V

Previous equations for energy U per volume 

 
U V = Nω = ε0

2
ω 2 A 2V=ε0

2
E 2V

 

U
ω

= N
V

= ε0
2

ω A 2 = ε0
2ω

E 2

Making electromagnetic E-waves have quantum cavity Ψ-wave and ψ-wave properties
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U = Nω

V
= ε0
2
ω 2 A 2 =ε0

2
E 2

      
Rescale E by s =

ε0
2ω

 to get x  and y  component wave function 

 


Ψ =

Ψ x

Ψ y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= sE = ε0

2ω
E

whose volume integral dV
V
∫∫∫


Ψ*i

Ψ = dV

V
∫∫∫ Ψ x

2+ Ψ y

2( )∝ dV N
VV

∫∫∫ = N

is  dV
V
∫∫∫ Ψ x

2+ Ψ y

2( ) = N          (It is normalized to particle number N .) 

 
A = 2N

ε0ωV
  , E =ω A = 2Nω

ε0V

 S = cU = cε0 E
2 = nω where: n = Nc/V (per m2per sec.)

  Poynting flux S  is scaled to get counts per area·second. 

Previous equations for energy U per volume 

 
U V = Nω = ε0

2
ω 2 A 2V=ε0

2
E 2V

 

U
ω

= N
V

= ε0
2

ω A 2 = ε0
2ω

E 2

Making electromagnetic E-waves have quantum cavity Ψ-wave and ψ-wave properties
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Review of wave parameters used to develop relativistic quantum theory
Bohr-Schrodinger (BS) approximation throws out Mc2 (Is frequency really relative?)

Effect on group velocity (None) and phase velocity (Absurd)
1st Quantization: Quantizing phase variables km and ω(km) 

Understanding how quantum dynamics and transitions involve “mixed” states
Square well example of mixing unequal frequencies
Circle well or ring example of mixing equal or unequal frequencies

Mixing unequal amplitudes makes “Galloping” wave: Analogy of (SWR, SWQ) to (Vgroup,Vphase)
Analogy with optical polarization geometry and Kepler orbits

Super-luminal speed and Feynman-Wheeler pair-creation switchbacks
2nd Quantization: Quantizing wave amplitudes AN and invariance of photon number

Analogy 1: Many CW (Continuous Waves) add up to make PW (Pulse Waves)
Analogy 2: Many Photon-Number-Modes add up to make Coherent-Laser-Modes
Heisenberg ΔυΔt~1~ΔκΔx analogous to ΔNΔphase~1 uncertainty relations

Electromagnetic wave mode energy: Maxwell vs. Planck-Einstein
1st quantization for wave phase variables and classical energy of E, B , and A fields 
2nd quantization for wave and Planck quantum energy of E, B , and A fields 

Scaling E-waves to mime quantum Ψ-waves and ψ-waves 

Relativistic effects on charge, current, and Maxwell Fields
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Relativistic effects on charge, current, and Maxwell Fields

(+) Charge fixed (-) Charge moving to right (Negative current density)
(+) Charge density is Equal to the (-) Charge density  

Observer velocity 
is zero relative to 
(+) line of charge

wire appears 
neutral
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(+) Charge fixed (-) Charge moving to right (Negative current density         )
(+) Charge density is Equal to the (-) Charge density          (Zero  ρ(x,t)=0)

Observer velocity 
is zero relative to 
(+) line of charge

wire appears 
neutral

Relativistic effects on charge, current, and Maxwell Fields

 

j(x,t)
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(+) Charge fixed (-) Charge moving to right (Negative current density         )
(+) Charge density is Greater than (-) Charge density          (Positive  ρ(x,t)>0)  

Observer velocity 
is +v relative to 
(+) line of charge

wire appears 
postive (+)
(repulsive to 
observer q[+])

observer has
q[+] 

 “test-charge”

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony

 

j(x,t)

Asynchronyduetooff-diagonal sinhρ   (a 1st-order effect)

in Lorentz tranform :
coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

~
1 v/c
v/c 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

asynchrony 
       in PAST

asynchrony
 in FUTURE
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Observer velocity 
is +v relative to 
(+) line of charge

wire appears 
postive (+)
(repulsive to 
observer q[+])

observer has
q[+] 

 “test-charge”

(+) Charge fixed (-) Charge moving to right (Negative current density         )
(+) Charge density is Greater than (-) Charge density          (Positive  ρ(x,t)>0)  

 

j(x,t)

asynchrony 
       in PAST

asynchrony
 in FUTURE

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Asynchronyduetooff-diagonal sinhρ   (a 1st-order effect)

in Lorentz tranform :
coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

~
1 v/c
v/c 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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observer has
q[+] 

 “test-charge”

Observer velocity 
is -v relative to 
(+) line of charge

wire appears 
negative (-)
(attractive to 
observer q[+])

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Asynchronyduetooff-diagonal sinhρ   (a 1st-order effect)

in Lorentz tranform :
coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

~
1 v/c
v/c 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

asynchrony 
       in PAST

asynchrony
 in FUTURE

(+) Charge fixed (-) Charge moving to right (Negative current density         )
(+) Charge density is Less than (-) Charge density               (Negative  ρ(x,t)<0)  

 

j(x,t)
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observer has
q[+] 

 “test-charge”

Observer velocity 
is -v relative to 
(+) line of charge

wire appears 
negative (-)
(attractive to 
observer q[+])

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Asynchronyduetooff-diagonal sinhρ   (a 1st-order effect)

in Lorentz tranform :
coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

~
1 v/c
v/c 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

asynchrony 
       in PAST

asynchrony
 in FUTURE

(+) Charge fixed (-) Charge moving to right (Negative current density         )
(+) Charge density is Less than (-) Charge density               (Negative  ρ(x,t)<0)  

 

j(x,t)
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If Black is moving to Left
Before red starts moving to right
     Black sees same number of red and blue
After red starts moving to right
     Black sees more red than blue

Before

After

Before

After

If Black is moving to Right
Before red starts moving to right
     Black sees same number of red and blue
After red starts moving to right
     Black sees more blue than red

Simple 1st-order relativistic geometry of magnetism
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(-)Trajectory

(+)

(+)

(+)

(-)

(-)

(-)

(-)

(-)

(+)Trajectory

u/c

x(-)

y=x(-) v/c
v/c

x(+)=y u/c
=x(-) uv/c2

(-)

(+)

x(+)

(+) charge
separation

(-) charge
separation

Unit square: (u/c) /1 = x(+)/y
                     (v/c) /1 = y/x(-)

  

ρ(−)
ρ(+)

= (+) charge separation
(−) charge separation

= x(+)+ x(−)
x(−)

  

ρ(−)
ρ(+)

= x(+)
x(−)

+1= uv
c2 +1

  
ρ(+)− ρ(−) = ρ(+) 1− ρ(−)

ρ(+)
⎛
⎝⎜

⎞
⎠⎟
= − uv

c2 ρ(+)

Magnetic B-field is relativistic sinhρ 1st order-effect
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Using 4-vectors to EL Transform (charge-current)=(cρ, j)

c ′ρ
j ′x

j ′y

j ′z

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

coshρ sinhρ ⋅ ⋅
sinhρ coshρ ⋅ ⋅

⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

cρ
jx
jy
jz

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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Iρ<0 F

F (repels)
Iq>0

+

Iρ<0 F

F (attracts)

Iq<0
+

  
F = qE = q 1

4πε0

2ρ
r

⎡

⎣
⎢

⎤

⎦
⎥ , where: 1

4πε0
= 9×109 N ⋅m2

Coul.

The electric force field E of a charged line varies inversely with radius.  The Gauss formula for force in mks units :

  
F = qE = q 1

4πε0

2
r

− uv
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⎞
⎠⎟
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+
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+

1/4πε0 =9·109

c2=9·10-16

1/(4πε0 c2)=10-7

+ + + + + + + + +
- - - - - - - - -

+ + + + + + + + +
- - - - - - - - -

Magnetic B-field is relativistic sinhρ 1st order-effect
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+
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Magnetic B-field is relativistic sinhρ 1st order-effect
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Relating photons to Maxwell energy density and Poynting flux
Relativistic variation and invariance of frequency (ω,k) and amplitudes
How probability ψ-waves and flux ψ-waves evolved

Properties of amplitude ψ*ψ-squares 
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

2005 Pirelli treatments 
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What if head-on CW’s υ
A
=1200THz and υ

B
=300THz pair-up in a 2-CW-light beam?

They form a rest frame going u=c =3c/5 with a mean or base color υ0=√(υA υ
B
)

(υ0=B=600THz is green here. Neither has this singly.) All observers agree on υ0 since
all shift-products bυ

A
rυ
B
equal (υ0)2 due to Doppler-time-symmetry (b=1/r). Single

CW’s get invariant properties if they pair-up. The υ
A
-υ
B
pairing above makes a

number N of invariant mass quanta M
1
=hhυ0/c

2
=4.42·10

-36
kg where the number N is

invariant, too. N is Planck’s photon number for the cavity rest energy E=Nhhυ0.
Relating Planck’s E to Maxwell’s Density U=E/V

Maxwell field energy E, a product of mean-square electric field 〈E2〉, volume of
cavity V, and constant ε

0
=8.854·10

-12
C
2
/N·m

2, approximates Planck’s energy Nhhυ0.
E= 〈E2〉Vε

0
= Nhhυ0 Maxwell-Planck Energy U= 〈E2〉ε

0
= Nhhυ0/V Maxwell-Planck Density

Example: Let a µm-cube cavity (Half-wave at 600Thz) have N=1010 photons in volume V=( 10-6m)3.
Energy per photon: hhυ0=4·10

-19J=2.5 eV Energy of N photons: Nhhυ0=4·10
-9J=25GeV

E-field per photon: E1=√(hhυ0/Vε0)=7.6·103V/m E-field of N photons: EN=7.6·1013V/m

Light Energy and Flux 2-CW vs 1-CW-light

(Near Infrared 300THz)

υ
B(Ultraviolet 1200THz)

υ
A

Green 600THz=

Group velocity

u=c =c
υ
A
−υ
B

υ
A
+υ

B

3

5

υ
0
=√(υ

A
υ
B
)

υ
A
−υ
B

υ
A
+υ

B

1

4

1

4

www.uark.edu/ua/pirelli/html/light_energy_flux_1.html
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www.uark.edu/ua/pirelli/html/light_energy_flux_1.html
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= Nhhυ0 Maxwell-Planck Energy U= 〈E2〉ε
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= Nhhυ0/V Maxwell-Planck Density
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Group velocity

u=c =c
υ
A
−υ
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υ
A
+υ
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3

5

υ
0
=√(υ

A
υ
B
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υ
A
−υ
B

υ
A
+υ

B

1

4

1

4

Field Energy =|E|2ε0      1/4πε0 =9·109

www.uark.edu/ua/pirelli/html/light_energy_flux_1.html
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What if head-on CW’s υ
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www.uark.edu/ua/pirelli/html/light_energy_flux_1.html
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Relating Poynting’s Intensity S=cU to Planck’s Flux

Poynting intensity S is a product of c=2.99792458m/s and density U. It approximates
Planck’s energy E=Nhhυ times c and divided by cavity volume V.

S=cU=(Nc/V)hhυ = n hhυ Poynting-Planck Flux (Watts per square meter)

The photon-count rate is n=Nc/V (per square meter per second) and hhυ is energy (per count).

Planck E=Nhhυ relation allows us to interpret our N-quantized 2-CW mode as
a box or cavity of N(more-or-less†)photons where N is invariant to speed u of box.

N/2

N photons

cpcpcp

E=hNυ (still N photons
up here) N photons

(still N photons..
...but angrier)

If we open the box our 2-CW mode “divorces” into two separate 1-CW beams of
N/2(more-or-less)photons. Each beam has NO rest frame and NO numbers invariant to u.

N/2
cp

N/2
cp

click!
click!
click!

cleek!
cleek!
cleek!
cleek!

click!
click!
click!

Fixed photon counters
see similar count rates

Departing counter sees
fewer and “softer” counts

Approaching counter sees
more and “harder” counts

thud
......
thud

† depends on how
we set the mode’s
coherent state.

mass
dispersion

gone

Energy and Flux (contd) 2-CW- vs 1-CW-light
www.uark.edu/ua/pirelli/html/amplitude_probability_5. html
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Relating Poynting’s Intensity S=cU to Planck’s Flux

Poynting intensity S is a product of c=2.99792458m/s and density U. It approximates
Planck’s energy E=Nhhυ times c and divided by cavity volume V.

S=cU=(Nc/V)hhυ = n hhυ Poynting-Planck Flux (Watts per square meter)

The photon-count rate is n=Nc/V (per square meter per second) and hhυ is energy (per count).

Planck E=Nhhυ relation allows us to interpret our N-quantized 2-CW mode as
a box or cavity of N(more-or-less†)photons where N is invariant to speed u of box.

N/2

N photons

cpcpcp

E=hNυ (still N photons
up here) N photons

(still N photons..
...but angrier)

If we open the box our 2-CW mode “divorces” into two separate 1-CW beams of
N/2(more-or-less)photons. Each beam has NO rest frame and NO numbers invariant to u.

N/2
cp

N/2
cp

click!
click!
click!

cleek!
cleek!
cleek!
cleek!

click!
click!
click!

Fixed photon counters
see similar count rates

Departing counter sees
fewer and “softer” counts

Approaching counter sees
more and “harder” counts

thud
......
thud

† depends on how
we set the mode’s
coherent state.

mass
dispersion

gone

Energy and Flux (contd) 2-CW- vs 1-CW-light
www.uark.edu/ua/pirelli/html/amplitude_probability_5.html
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Relating Poynting’s Intensity S=cU to Planck’s Flux

Poynting intensity S is a product of c=2.99792458m/s and density U. It approximates
Planck’s energy E=Nhhυ times c and divided by cavity volume V.

S=cU=(Nc/V)hhυ = n hhυ Poynting-Planck Flux (Watts per square meter)

The photon-count rate is n=Nc/V (per square meter per second) and hhυ is energy (per count).

Planck E=Nhhυ relation allows us to interpret our N-quantized 2-CW mode as
a box or cavity of N(more-or-less†)photons where N is invariant to speed u of box.

N/2

N photons

cpcpcp

E=hNυ (still N photons
up here) N photons

(still N photons..
...but angrier)

If we open the box our 2-CW mode “divorces” into two separate 1-CW beams of
N/2(more-or-less)photons. Each beam has NO rest frame and NO numbers invariant to u.

N/2
cp

N/2
cp

click!
click!
click!

cleek!
cleek!
cleek!
cleek!

click!
click!
click!

Fixed photon counters
see similar count rates

Departing counter sees
fewer and “softer” counts

Approaching counter sees
more and “harder” counts

thud
......
thud

† depends on how
we set the mode’s
coherent state.

mass
dispersion

gone

Energy and Flux (contd) 2-CW- vs 1-CW-light
www.uark.edu/ua/pirelli/html/light_energy_flux_2. html
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Relating photons to Maxwell energy density and Poynting flux
Relativistic variation and invariance of frequency (ω,k) and amplitudes
How probability ψ-waves and flux ψ-waves evolved

Properties of amplitude ψ*ψ-squares 
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta
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Frequency and Amplitude Variance 2-CW-light vs 1-CW-light
2-CW modes have invariance
Maxwell-Planck energy E is photon number N(m-3) times 2-CW-frequency υ1.

E=〈U〉·V=ε0〈E
2〉·V=ε0〈E2-CW*E2-CW〉·V=hhNυ1=hhυΝ

Photon number N and rest-frame frequencies υ1...υΝ are invariant
to rapidity ρ and occupy (ω,ck)-hyperbolas in per-spacetime.

1-CW beams lack invariance (have “variance” ala′ Doppler)
Planck-Poynting flux S is count rate n=Nc/V(m-2s-1) times 1-CW-frequency υ←or υ→.
Count rate n and frequency υ Doppler shift
by b=e±ρ factors and occupy (ω=±ck)-baselines.

S→=cU→=cε0〈E
2〉=cε0〈E1-CW*E1-CW〉=hhn→υ→

S←=cU←=cε0〈E
2〉=cε0〈E1-CW*E1-CW〉=hhn←υ←

υN=Nυ1

υ1

υ2

υ3

ck

Nυ
→

υ
→

2υ
→

3υ
→

ck

Nυ
←

υ
←

2υ
←

3υ
←

ck

→ →

← ←

Shifts by b=e+2ρ Each blue shifts by b=e+ρ

Shifts by r=e−2ρ Each red shifts by r=e−ρ

Invariant to ρ Each is ρ-invariant

υ′
→
=e+ρυ

→

υ′
←
=e−ρυ

←
↔Note: E1-CW√(cε0/hh)=√(n↔υ↔

) is geometric mean of amplitude frequency n
↔
and phase frequency υ

↔
.

www.uark.edu/ua/pirelli/html/light_energy_flux_3. html
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www.uark.edu/ua/pirelli/html/light_energy_flux_3. html
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Frequency and Amplitude Variance 2-CW-light vs 1-CW-light
2-CW modes have invariance
Maxwell-Planck energy E is photon number N(m-3) times 2-CW-frequency υ1.

E=〈U〉·V=ε0〈E
2〉·V=ε0〈E2-CW*E2-CW〉·V=hhNυ1=hhυΝ

Photon number N and rest-frame frequencies υ1...υΝ are invariant
to rapidity ρ and occupy (ω,ck)-hyperbolas in per-spacetime.

1-CW beams lack invariance (have “variance” ala′ Doppler)
Planck-Poynting flux S is count rate n=Nc/V(m-2s-1) times 1-CW-frequency υ←or υ→.
Count rate n and frequency υ Doppler shift
by b=e±ρ factors and occupy (ω=±ck)-baselines.

S→=cU→=cε0〈E
2〉=cε0〈E1-CW*E1-CW〉=hhn→υ→

S←=cU←=cε0〈E
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υ1

υ2

υ3

ck

Nυ
→

υ
→

2υ
→

3υ
→

ck

Nυ
←

υ
←

2υ
←

3υ
←

ck

→ →

← ←

Shifts by b=e+2ρ Each blue shifts by b=e+ρ

Shifts by r=e−2ρ Each red shifts by r=e−ρ

Invariant to ρ Each is ρ-invariant

υ′
→
=e+ρυ

→

υ′
←
=e−ρυ

←
↔Note: E1-CW√(cε0/hh)=√(n↔υ↔

) is geometric mean of amplitude frequency n
↔
and phase frequency υ

↔
.

Important result below: 

Amplitudes of 1-CW “exponentiate” just like frequency,
and intensity does at twice the rate
  (A double-double whammy!)
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Relating photons to Maxwell energy density and Poynting flux
Relativistic variation and invariance of frequency (ω,k) and amplitudes
How probability ψ-waves and flux ψ-waves evolved

Properties of amplitude ψ*ψ-squares 
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta
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How Probability Amplitudes ψ or ψ Come About (An optical view)
Maxwell-Planck-Poynting flux S=cU=cε

0
|E|2=cε

0
E*E=nhhυ has count rate n=Nc/V(m-2s-1)

If each E-field amplitude factor is scaled by a factor = the result is a

flux probability amplitude ψ= E whose square equals flux count rate n(m-2s-1).

ψ*ψ = n (m
-2
s
-1
)

A fixed probability amplitude ψ= E has square equal to N/V (particles per volume).

ψ*ψ = N/V (m
-3
)

Probability Waves ψ(x,t) (More optical views)
Optical E-field amplitudes like E(x,t)=E0ei(kx-ωt) vary with space x and time t. So
do scaled ψ(x,t) ampliudes whose sum-Σ (integral-∫) over cells ΔV (or dV) must be
particle number N. For 1-particle systems (N=1) this is the unit norm rule.

Σ
j
ψ(x

j
,t)*ψ(x

j
,t)ΔV

j
=N or: ∫ψ(x,t)*ψ(x,t)dV=N

Born interpreted ψ(x,t)*ψ(x,t) as probable expectation of particle count. Schrodinger
objected to the probability wave interpretation that is now accepted and called the

Schrodinger theory. A relativistic wave view lends merit to his objections.

cε0
hhυ

cε0
hhυ

ε0
hhκ

ε0
hhυ
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How Probability Amplitudes ψ or ψ Come About (An optical view)
Maxwell-Planck-Poynting flux S=cU=cε

0
|E|2=cε

0
E*E=nhhυ has count rate n=Nc/V(m-2s-1)

If each E-field amplitude factor is scaled by a factor = the result is a

flux probability amplitude ψ= E whose square equals flux count rate n(m-2s-1).

ψ*ψ = n (m
-2
s
-1
)

A fixed probability amplitude ψ= E has square equal to N/V (particles per volume).

ψ*ψ = N/V (m
-3
)

Probability Waves ψ(x,t) (More optical views)
Optical E-field amplitudes like E(x,t)=E0ei(kx-ωt) vary with space x and time t. So
do scaled ψ(x,t) ampliudes whose sum-Σ (integral-∫) over cells ΔV (or dV) must be
particle number N. For 1-particle systems (N=1) this is the unit norm rule.

Σ
j
ψ(x

j
,t)*ψ(x

j
,t)ΔV

j
=N or: ∫ψ(x,t)*ψ(x,t)dV=N

Born interpreted ψ(x,t)*ψ(x,t) as probable expectation of particle count. Schrodinger
objected to the probability wave interpretation that is now accepted and called the

Schrodinger theory. A relativistic wave view lends merit to his objections.

cε0
hhυ

cε0
hhυ

ε0
hhκ

ε0
hhυ

Here’s how to answer Planck’s worry about photons
Q: How can classical oscillator energy (Amplitude)2(frequency)2 jive with linear Planck law S=nhυ?

 A: Let amplitude ψ or ψ  contain inverse square root of frequency:                   the “quantum amplitude”              ψ = E cε0
hυ

Energy ~ A 2υ 2  where vector potential A defines electric field: E= ∂A
∂t

= iωA = 2π iυA

Energy ~ A 2υ 2 = A υ
2
υ = E

2πυ
υ

2

υ = E
2π υ

2

υ ~ E cε0

hυ

2

= nhυ

www.uark.edu/ua/pirelli/html/amplitude_probability_1.html
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How Probability Amplitudes ψ or ψ Come About (An optical view)
Maxwell-Planck-Poynting flux S=cU=cε

0
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0
E*E=nhhυ has count rate n=Nc/V(m-2s-1)

If each E-field amplitude factor is scaled by a factor = the result is a

flux probability amplitude ψ= E whose square equals flux count rate n(m-2s-1).

ψ*ψ = n (m
-2
s
-1
)

A fixed probability amplitude ψ= E has square equal to N/V (particles per volume).

ψ*ψ = N/V (m
-3
)

Probability Waves ψ(x,t) (More optical views)
Optical E-field amplitudes like E(x,t)=E0ei(kx-ωt) vary with space x and time t. So
do scaled ψ(x,t) ampliudes whose sum-Σ (integral-∫) over cells ΔV (or dV) must be
particle number N. For 1-particle systems (N=1) this is the unit norm rule.

Σ
j
ψ(x

j
,t)*ψ(x

j
,t)ΔV

j
=N or: ∫ψ(x,t)*ψ(x,t)dV=N

Born interpreted ψ(x,t)*ψ(x,t) as probable expectation of particle count. Schrodinger
objected to the probability wave interpretation that is now accepted and called the

Schrodinger theory. A relativistic wave view lends merit to his objections.

cε0
hhυ

cε0
hhυ

ε0
hhκ

ε0
hhυ
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How Probability Amplitudes ψ or ψ Come About (An optical view)
Maxwell-Planck-Poynting flux S=cU=cε

0
|E|2=cε

0
E*E=nhhυ has count rate n=Nc/V(m-2s-1)

If each E-field amplitude factor is scaled by a factor = the result is a

flux probability amplitude ψ= E whose square equals flux count rate n(m-2s-1).

ψ*ψ = n (m
-2
s
-1
)

A fixed probability amplitude ψ= E has square equal to N/V (particles per volume).

ψ*ψ = N/V (m
-3
)

Probability Waves ψ(x,t) (More optical views)
Optical E-field amplitudes like E(x,t)=E0ei(kx-ωt) vary with space x and time t. So
do scaled ψ(x,t) ampliudes whose sum-Σ (integral-∫) over cells ΔV (or dV) must be
particle number N. For 1-particle systems (N=1) this is the unit norm rule.

Σ
j
ψ(x

j
,t)*ψ(x

j
,t)ΔV

j
=N or: ∫ψ(x,t)*ψ(x,t)dV=N

Born interpreted ψ(x,t)*ψ(x,t) as probable expectation of particle count. Schrodinger
objected to the probability wave interpretation that is now accepted and called the

Schrodinger theory. A relativistic wave view lends merit to his objections.

cε0
hhυ

cε0
hhυ

ε0
hhκ

ε0
hhυ
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Doppler Transformation of 2-CW Modes
Doppler shift of opposite-k 1-CW beams. As derived before phases are invariant: (k′x′-ω′t′=kx-ωt)
E-wave:E=E→e

i(k→x-ω→t)+E←e
i(k←x-ω←t) Ψ-wave: Ψ=ψ→e

i(k→x-ω→t)+ψ←e
i(k←x-ω←t)

blue shift red shift scaled blue shift scaled red shift

E′→= b E→ E′←= r E← ψ= E ψ′→=√b ψ→ ψ′←=√r ψ←

=e+ρE→ =e−ρE← =e+ρ/2ψ→ =e−ρ/2ψ←

Parameters related to relative velocity u:

ε0
hhυ

cosh ρ e+ρ+e−ρ b2+1
e+ρ−e−ρ b2 -1β=u/c=tanh ρ=sinh ρ = = b2= =1+β 1+tanhρ

1−β 1−tanhρ

Transformation of SWR (or SWQ) and uGROUP (or uPHASE ) is a non-linear transformation
E′→−E′← b2E→−E← (1+β)E→−(1−β)E← (E→−E←)+β(E→+E←)
E′→+E′← b2E→+E← (1+β)E→+(1−β)E← (E→+E←)+β(E→−E←)

SWR′= = = = =

SWR′= =1+SWR·β 1+SWR·u/c
SWR+β SWR+u/c

1+β·SWR
SWR+β

u′GROUP/c= =1+uGROUP·β/c 1+uGROUP·u/c2
uGROUP/c+β (uGROUP+u)/c

SWR (or SWQ) Transformation uGROUP (or uPHASE ) Transformation

Both are restatements of hyperbolic trig identity: tanh(a+b)= tanh(a)+tanh(b)1+tanh(a)·tanh(b) last term is ignorable if
both a and b are small

Velocity addition is non-linear but rapidity addition is always linear: ρa+b=ρa+ρb
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Doppler Transformation of 2-CW Modes
Doppler shift of opposite-k 1-CW beams. As derived before phases are invariant: (k′x′-ω′t′=kx-ωt)
E-wave:E=E→e

i(k→x-ω→t)+E←e
i(k←x-ω←t) Ψ-wave: Ψ=ψ→e

i(k→x-ω→t)+ψ←e
i(k←x-ω←t)

blue shift red shift scaled blue shift scaled red shift

E′→= b E→ E′←= r E← ψ= E ψ′→=√b ψ→ ψ′←=√r ψ←

=e+ρE→ =e−ρE← =e+ρ/2ψ→ =e−ρ/2ψ←

Parameters related to relative velocity u:

ε0
hhυ

cosh ρ e+ρ+e−ρ b2+1
e+ρ−e−ρ b2 -1β=u/c=tanh ρ=sinh ρ = = b2= =1+β 1+tanhρ

1−β 1−tanhρ

Transformation of SWR (or SWQ) and uGROUP (or uPHASE ) is a non-linear transformation
E′→−E′← b2E→−E← (1+β)E→−(1−β)E← (E→−E←)+β(E→+E←)
E′→+E′← b2E→+E← (1+β)E→+(1−β)E← (E→+E←)+β(E→−E←)
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SWR′= =1+SWR·β 1+SWR·u/c
SWR+β SWR+u/c

1+β·SWR
SWR+β

u′GROUP/c= =1+uGROUP·β/c 1+uGROUP·u/c2
uGROUP/c+β (uGROUP+u)/c

SWR (or SWQ) Transformation uGROUP (or uPHASE ) Transformation

Both are restatements of hyperbolic trig identity: tanh(a+b)= tanh(a)+tanh(b)1+tanh(a)·tanh(b) last term is ignorable if
both a and b are small

Velocity addition is non-linear but rapidity addition is always linear: ρa+b=ρa+ρb
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Doppler Transformation of 2-CW Modes
Doppler shift of opposite-k 1-CW beams. As derived before phases are invariant: (k′x′-ω′t′=kx-ωt)
E-wave:E=E→e

i(k→x-ω→t)+E←e
i(k←x-ω←t) Ψ-wave: Ψ=ψ→e

i(k→x-ω→t)+ψ←e
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blue shift red shift scaled blue shift scaled red shift

E′→= b E→ E′←= r E← ψ= E ψ′→=√b ψ→ ψ′←=√r ψ←
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e+ρ−e−ρ b2 -1β=u/c=tanh ρ=sinh ρ = = b2= =1+β 1+tanhρ
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Transformation of SWR (or SWQ) and uGROUP (or uPHASE ) is a non-linear transformation
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1+β·SWR
SWR+β

u′GROUP/c= =1+uGROUP·β/c 1+uGROUP·u/c2
uGROUP/c+β (uGROUP+u)/c

SWR (or SWQ) Transformation uGROUP (or uPHASE ) Transformation

Both are restatements of hyperbolic trig identity: tanh(a+b)= tanh(a)+tanh(b)1+tanh(a)·tanh(b) last term is ignorable if
both a and b are small

Velocity addition is non-linear but rapidity addition is always linear: ρa+b=ρa+ρb
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Doppler Transformation of 2-CW Modes
Doppler shift of opposite-k 1-CW beams. As derived before phases are invariant: (k′x′-ω′t′=kx-ωt)
E-wave:E=E→e

i(k→x-ω→t)+E←e
i(k←x-ω←t) Ψ-wave: Ψ=ψ→e

i(k→x-ω→t)+ψ←e
i(k←x-ω←t)

blue shift red shift scaled blue shift scaled red shift

E′→= b E→ E′←= r E← ψ= E ψ′→=√b ψ→ ψ′←=√r ψ←

=e+ρE→ =e−ρE← =e+ρ/2ψ→ =e−ρ/2ψ←

Parameters related to relative velocity u:

ε0
hhυ

cosh ρ e+ρ+e−ρ b2+1
e+ρ−e−ρ b2 -1β=u/c=tanh ρ=sinh ρ = = b2= =1+β 1+tanhρ

1−β 1−tanhρ

Transformation of SWR (or SWQ) and uGROUP (or uPHASE ) is a non-linear transformation
E′→−E′← b2E→−E← (1+β)E→−(1−β)E← (E→−E←)+β(E→+E←)
E′→+E′← b2E→+E← (1+β)E→+(1−β)E← (E→+E←)+β(E→−E←)

SWR′= = = = =

SWR′= =1+SWR·β 1+SWR·u/c
SWR+β SWR+u/c

1+β·SWR
SWR+β

u′GROUP/c= =1+uGROUP·β/c 1+uGROUP·u/c2
uGROUP/c+β (uGROUP+u)/c

SWR (or SWQ) Transformation uGROUP (or uPHASE ) Transformation

Both are restatements of hyperbolic trig identity: tanh(a+b)= tanh(a)+tanh(b)1+tanh(a)·tanh(b) last term is ignorable if
both a and b are small

Velocity addition is non-linear but rapidity addition is always linear: ρa+b=ρa+ρb
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Thales of
Miletus
624-543 BCE

Thales showed a circle diameter subtends a right angle with any circle point P

This leads to a convenient
construction of geometric means
and relativistic hyperbolas.

equ
ila

ter
al 

hyp
erb

ola
 

r·b
=2

= 4 !1
4 +1

Thales Mean Geometry (600BCE) helps “Relawavity” I

Minkowski-Lorentz Grid 
in terms of P’, G’

2015 DAMOP

Special Relativity and Quantum Mechanics by Ruler and Compass I.
The simplest “molecule”: 2 CW Lasers form Minkowski Space-time (and Reciprocally-related) Frame Coordinates

Harter-Soft Educational Tools
Heyoka Technical Consulting

Special relativity and quantum mechanics
are very much a story of 

the geometry of light-wave motion

Per-space Per-space Geometry

1564-1642

looks worried?

Galilei Galileo

First of all it’s
Complicated

..though comforting to the
“A Place for everything and

everything in its place”
crowd.

It’s going c.
It’s going c.
(Of course)

It’s going c.
FFLLAASSHH!!

It’s going -c. PPuullssee
WWaavvee

It’s going -c.

It’s going -c.
(Of course)

!

PW peaks precisely locate places where wave is.

Pulse wave (PW) train

Einstein Pulse Wave (PW) Axiom: PW speed seen by all observers is c

It’s going c.
It looks blue!

It’s going c.
It looks green.
(Of course)

It’s going -c.
It looks blue!

It’s going -c.
It looks red! It’s going -c.

It looks green.
(Of course)

It’s going c.
It looks red!

660000 TTHHzz
((ggrreeeenn))

LLaasseerr
ssoouurrccee

Sees Doppler blue shift Sees Doppler red shift

!

CW zeros precisely locate places where wave is not.Continuous wave (CW) train

Evenson Continuous Wave (CW) axiom: CW speed for all colors is c

Using
Occam’s
Razor

A “road-runner” axiom
is a “show-stopper”

Can be made
more self-evident
and productive

Simpler1CW coherenceAcos "t

A1cos "t+A2cos 2"t+A3cos 3"t+A4cos 4"t+...

FFLLAASSHH!!
1879-1955

Albert Einstein

1285-1349

William of Ockham

1929-2002
c=299,792,458 m/s

Kenneth Evenson

(and Evenson’s lasers)

beep-meep!

It’s “Zen-like”

1CW is affected by
1st-order Doppler
Blue shifts b =e+!

and
Red shifts  r =e-!

of frequency !
and wavenumber "

SPEED
LIMIT
c=

299,792,458
m/s

Making sense of light-wave           axiom(s).

Jean-Baptiste
Joseph Fourier
1768-1830

A

Greek “t” 
for time

Greek “n” for numberHeinreich
Kayser
1853-1940
1Kayser=1cm-1

of waves per second
or Hertz (Hz)

Heinreich
Hertz
1857-1894
1Hz=1sec-1

Greek “k” 
for Kayser

(or “kinks”)

How does space-time and/or per-space-per-time carry light-waves?

              (wavelength ! _ period ")    and/or      (wavenumber # _ frequency $)
         (       ! =1/#       and    " =1/$  )                      (     # =1/!        and                $ =1/" )
(! = meters per wave and " = seconds per wave)     (# = waves per meter and $ = waves per second)    

B

=!A

1-1

1

2

-! !

!

"-"

-"

#-#
2

SPACETIME 
(c!, ")-graph

x-space wavelength "x
(units: !µm)

c·time period c!
(units: !µm)

!µm #µm 1µm!="µm

"=5/6fs

"=5/3fs

"=5/4fs

"=10/3fs

1-1

1

2

-! !

!

"-"

-"

#-#
2

per-SPACETIME 
(!,c!)-graph

c·wavenumber c!x
(units: 600THz)

frequency !
(units: 600THz)

!=300THz

"=106/m 2·106/m 3·106/m 4·106/m

600THz

900THz

1200THz

1800THz

!
=
1·!

A

c! =1·c! A ! = 1·!A

c!
=1
·c!

A

c! A="A

=!A

Doppler Shift in per-space-per-time

Atom traveling along wave
sees less wave “hits” /sec. 
(that is: Doppler red-shift)

"hit"

"hit"

"hit"

"hit"

"hit"

"hit"

Atom traveling against wave
sees more wave “hits” /sec. 
(that is: Doppler blue-shift)

"hit"

"hit"

"hit"

"hit"

"hit"

"hit"

"hit"

Christian
Doppler
1803-1853

(c#,$)-graph (!,c")-graph

Moving against a 600 THz 1CW could Doppler blue shift it to 1200 THz

Move fast enough this way then the
“green” wave gets bluer and bluer

until YOU die

Move fast enough this way then the
“green” wave gets redder and redder

until it dies
Frequency AND Amplitude

decrease exponentially
Frequency AND Amplitude

increase exponentially

C

Space x!

2CW Minkowski-spacetime grid

PP=KKphase

Time
ct!

GG=KKgroup

RR=KK44

LL=KK--11

0 0.5 1 1.5 2-0.5-1

0.5

1

1.5

2

Frequency
!"

(units of
!A=600THz)

0 Wavevector c#"
(units of c#A=2·10

6/m)

300
THz

600
THz

900
THz

1200
THz

1500
THz

0.5

1

1.5

2

2.5

+106 +2·106 +3·106 +4·106-1-2

GG
LL=KK--11

RR=KK++44

PP

0.5 1 1.5 2-0.5-1

Im!4Re!4Re!4

Ti
m
e
ct
"

CW green-laser
600 THz

# 4= 4ck4= +4
Right-directed 1CW ei(k x-# t)

Space x"

4 4

Wavelength $=2%/k=1/&
(1/4µm=0.25·10-6m)

Im!'1 Re!'1Re!'1

Space x"

Ti
m
e
ct
"

CW green-laser
600 THz

k-1 = -1 # -1= 1c
Left-directed 1CW ei( k x-# t)

Wavelength $=2%/k=1/&
(1µm=10-6m)

-1 -1

Doppler blue shifted
to 1200THz

Doppler red shifted
to 300THz

Kphase=PP=
RR++LL
2

Kgroup=GG=
RR--LL
2

Phase vector P
1/2-sum vector 

Group vector G
1/2-diff vector 

2CW per-Spacetime Plot
2CW Minkowski-Spacetime Grid

Im!4Re!4Re!4

Ti
m
e
ct
"

CW green-laser
600 THz

# 4= 4ck4= +4
Right-directed 1CW ei(k x-# t)

Space x"

4 4

Wavelength $=2%/k=1/&
(1/4µm=0.25·10-6m)

Im!'1 Re!'1Re!'1

Space x"

Ti
m
e
ct
"

CW green-laser
600 THz

k-1 = -1 # -1= 1c
Left-directed 1CW ei( k x-# t)

Wavelength $=2%/k=1/&
(1µm=10-6m)

-1 -1

Doppler blue shifted
to 1200THz

Doppler red shifted
to 300THz

Bob: The spacetime 
wave-zeros replicate

the same pattern. 

(Except P#-phase and
G#-group indicators
get switched again.)

Letʼs measure these 
in careful detail! 

2 Doppler shifted CWs Interfering in Space-TimeH

R S = !RECEIVER

!SOURCE

B A = !B

!A

= 1200
600

= 2
1

C A = !C

!A

= 400
600

= 2
3

!RS = loge R S !BA = loge B A = loge
2
1

!CA = loge C A = loge
2
3

!BA = 0.69 !CA = "0.41

Bob-Alice Doppler ratio: Carla-Alice Doppler ratio: 

Bob-Alice rapidity: Carla-Alice rapidity: 

Doppler ratio: 

rapidity: 

Carla-Bob Doppler ratio: 

Carla-Bob rapidity: 

C B = !C

!B

= !C

!A

!A

!B

= C A A B

e!CB = e!CAe!AB implies: !CB = !CA + !AB
= !0.41! 0.69 = !1.10

Galileo’s Revenge (part 1)
    Rapidity adds just like
        Galilean velocity

(so:!AB="0.69)R S = e!RS
 or: 

Easy Doppler-shift and Rapidity calculation

Definition of Rapidity

B A = !B

!Ais time-reversed 
A B = !A

!B

!A=600THz

RECEIVERRECEIVER

SOURCESOURCE

RECEIVERRECEIVER
!B=1200THz !C=400THz

!A=600THz

!A=600THz

Bob: I see Doppler
Blue shift to 1200THz 

Carla: I see Doppler
Red shift to 400THz 

Alice: Hey, Bob and Carla! Read off your Doppler
shift ratios !B"A# and !C"A# to my 600THz beam.

Also, rapidity %BA and  %CA  relative to me.
I got !B"A#=2,
    and %BA =ln(2)
                 =+0.69

I got !C"A#=2/3,
    and %CA =ln(2/3)
                 =-0.41

Now, Carla, whatʼs your rapidity %CB relative to Bob?

I got !C"B#=!C"A#!A"B#=(2/3)(1/2)=1/3,
    and %CB = %CA+%AB =-1.10
           Weʼre in Splitsville!ALICE’S

LASER
GAUNTLET

E

Geometry applies to (x,y)   space-space
                             to (kx,ky) per-space-per-space
                             to (x,ct)  space-time

Bsinh !

stellar
angle "

Btanh !

Bcsch !
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Transformed Per-Space     
                         

     
     

c! A 
- axis

Bcoth !

b-cir
cle

B=2

g-circle

C $

C

S

S$

A$

A

L$

YQ
c!"
axis

#"= $"⁄2%

Be-!

Doppler
red-shift

Be+!

Doppler
blue-shift

kk

Occam's 
Sword
(u/c=3/5)

stellar
angle "

Btanh !

Btanh! sech!

Be-!

Doppler
red-shift

Bsinh !C $ P $

P

A$

A

Bc
os

h 
!

Bc
os

h 
!

O C

Bs
ec

h 
!

X
X

S

slope-sinh !

slo
pe

cs
ch

 !

slo
pe

co
th

 !

slope

tanh !

slope

tanh !

B

O

BB

B!

axis
(Units of 300THz) 

Table of 12 wave parameters (includes inverses) for relativity

...and values for u/c=3/5

An aid to
pattern recognition:

group bRED
Doppler Vgroup

c
!group

!A

"group

"A

# group

# A

$ group
$ A

Vphase

c
bBLUE
Doppler

phase 1
bBLUE
Doppler

c
Vphase

# phase

# A

$ phase

$ A

! phase

!A

"phase

"A

c
Vgroup

1
bRED
Doppler

     %
rapidity e&% tanh% sinh% sech% cosh% csch% coth% e+%

 angle   '
stellar   ( 1/e+% sin' tan' cos' sec' cot' csc' 1/e&%

)*u
c

1&)
1+)

)
1

1
)&2&1

1&) 2

1
1

1&) 2

)&2&1
1

1
)

1+)
1&)

)=3/5
value for 1

2
= 0.5 3

5
=0.6 3

4
=0.75 4

5
=0.80 5

4
=1.25 4

3
=1.33 5

3
=1.67 2

1
=2.0

effects bRED
Doppler Vgroup

past-future
asymmetry
Lorentz-transform )
(off -diagonal

x-contraction(Lorentz )

$ phase-contraction
t-dilation(Einstein)

! phase-dilation
Lorentz-transform )
(on-diagonal

inverse
asymmetry Vphase bBLUE

Doppler

K

Optical wave guide relativistic geometry aided by Occam’s Sword

Example of near-cut-off mode with low Vgroup=c/2 and high Vphase=2c . (High dispersion.)

Relativistic mode with near-c Vgroup=c/2 and Vphase=2c . (Low dispersion.)

L

M
*Lewis Carroll Epstein, Relativitätstheorie, Birkhäuser, (2004) Earlier English version (1985)-

Comparing Longitudinal relativity parameter: Rapidity % = loge(Doppler Shift)

           to a    Transverse*relativity parameter: Stellar aberration angle &

   We used notion & 
for stellar-ab-angle,
(a “flipped-out” % ).
Epstein not interested 
in % analysis or in
relation of & and %.

Epstein’s trick is to
turn a hyperbolic form
into a circular form:

(c! )2 + ( "x )2 = (c "t )

c! = (c "t )2 # ( "x )2

Then everything (and everybody) 
    always goes speed c through (x#,c") space!

J

• How do we measure space and time with light waves?
          Use 1CW laser-phasors for a phase-based theory
• How do we make spacetime coordinate graph with light waves?
          Use 2CW laser-phasors and wave interference geometry

Remember your algebra? Exponents of prod-
ucts add. 

So,  half-sum           plus half-diff         gives  a,   
and  half-sum        minus half-diff        gives  b.

Presto!
You factor eia+eib into    

a ! b
2

a ! b
2

e
ia+b
2 e

ia!b
2 + e

! i a!b
2

"
#$

%
&'

G 2 CWs Interfering in Space-Time

Re!

Im!

Re!

Im! Re!Re!
Im!

Re!Re!

Space x

Ti
m
e
ct

Space x

Ti
m
e
ct

Period "=2#/$=1/%
(5/3fs=1.67·10-15s)

Wavelength &=2#/k=1/'
(1/2µm=0.5·10-6m)

CW Dye-laser
600 THz

CW Dye-laser
600 THz

$ = 2ck = +2 k = -2 $ = 2c
Right-moving CW ei(kx-$t) Left-moving CW ei(-kx-$t)

Space x

Ti
m
e
ct Re(Re( Im( ((x,t)=eia + eib

kx-$ t -kx-$ t

=ei (ei +e-i )
a+b____
2

___
2
a-b___

2
a-b

=e-i$t(eikx+e-ikx)

((x,t)=e-i$t2coskx

phase
factor

group
factor

Standing CW ei(-$t)2coskx

Cool! 
You guys 
made me 

a space-time
graph out of
real zeros.

Bob:

Easy! 
You get zeros of any wave-sum eia+eib

by factoring it into phase and group parts.

Carla:

a + b
2

a + b
2

Howʼd it
do that?

B moves relative to A

PLUS

!

"
cos"

sin"

cos!

Red phasor B

EQUALS:

Green phasor A

("+!)/2

("#!)/2

("#!)/2

(b) Typical Phasor Sum:

r= 0 r= 1 r= 2 r= 3 r= 4 r= 5 r= 6 r= 7 r= 8 r= 9 r=10 r=11 r=12 r=13 r=14 r=15 r= 0

kk== 22kk== 22

kk== 33kk== 33

GGrroouupp oorr BBeeaatt:: NNooddee oorr ZZeerroo::

A moves relative to B

(c) Phasor-relative views

(a) Sum of Wave Phasor Array

A

A B

B

$A=e
i"

$B=e
i!

Sum: %A+B=$A+$B

Difference:%A#B=$A#$B

%A+B=$A+$B

("#!)

Geometry of the 
Half-sum 
Phase
and
Half-difference
Group

Galileo’s Revenge (part 2)
Phasor angular velocity 

adds just like
Galilean velocity

Happy now? 

Then Evenson’s axiom holds:
“All colors go c = !$ = $/# ”

Vacuum only makes one $ for each !.*

*for each beam and polarization orientation

Clarify Evenson’s CW Axiom (All colors go c) by Doppler effects 
Alice tries to fool Bob that she’s shining a 600THz laser. (Bob’s unaware she’s moving really fast...) 

600THz line600
500
400
300

700
800

frequency !="/2#
(Inverse period !=1/$)

wavenumber %=k/2!
(inverse wavelength %=1/&)

(" = ck)
or

(! = c%)

B C

900

&= 1.00µm 0.50µm 0.33µm
%= 1·106/m 2·106/m 3·106/m

THz

Only ONE
kind of
RED
allowed (ONE that goes c)

A

Also could be labeled :

Linear-(non)-dispersion 
axiom: $ = c#

Q1: Can Bob tell it’s a “phony”  600THz
      by measuring his received wavelength?

Answer to Q2 is C, the one with slope $/#=$·$=c.
If he sees Green 600THz then he measures $=0.5µm.
If he sees   Red  300THz then he measures $=1.0µm.
Answer to Q1is NO! 
CW Light carries no birth-certificate!

Q2:If so, what “phony” $ does Bob see?

D

The “Keyboard of the gods”

1

1

2

-! !

!

"-"

-"

#-#
2 1

1

2

-! !

!

"-"

-"

#-#
2

1

1

2

-! !

!

"-"

-"

#-#
2

per-SPACETIME 
(!,!)-graph

wavenumber !
(waves per meter)

frequency !
(waves per sec.)

SPACETIME 
(t,x)-graph

wavelength !
(meters per wave)

period "
(sec. per wave)

wavelength !
(meters per wave)

period "
(sec. per wave)

Press a key to get a wave (a 1-CW) 
“1-CW” means 

“single Continuous Wave”

...for
all

time...

(and hold)

%

...at a speed of: 

!=2/3

!=
5/
4

distance
time

=wavelength
period

 = !
"
= 2/3

5/4
= 8

15
m.
s.

= 1/!
1/"

= "
!

distance
time

=wavelength
period

= frequency
wavenumber

   Vwave  =
!
"

 = 1/#
1/$

   = $
#

  = 1/"
1/!

           = 2/3
5/4

= 4/5
3/2

            = 8
15

m.
s.

wave-velocity formula

Vlight= c =
!
"
= 1/#
1/$

= $
#
= 1/"
1/!

= 299,792,458m.
s.

Vlight
c

= !
c"

= 1/#
c/$

= $
c#

= 1/"
c /!

= 1

Dimensionless Light wave-velocity c/c=1

...in spacetime...

Light

...That “continues” 
             everywhere…

LightLight wave-velocity c (our main topic)

!=2/3=1/"
wavelength

! =5/4 =1/"
period

!=2/3=1/"
wavelength

! =5/4 =1/"
period

! = 4 / 5
frequency

! = 3 / 2
wavenumber

wave-speed equals slope-to-vertical in (!,")-graph 

wave-speed equals slope-to-horizontal in (#,$)-graph 

(#,$)-graph (!,")-graph

Or per-space-per-time graphs vs. space-time graphs 

2

k= ! = 1c
300 THz laser
(Infrared)

Space x

cre
st
pa
th
(ph
ase
=
0)

zer
o p
ath
(ph
ase
=
+!
/2
)

tro
ug
h p
ath
(ph
ase
=
+!
)

(1µ 10-6=m

laser-phasors

Real "=Re"

Imaginary
"=Im"

"(x,t)

Period #=2!/!=1/$
(10/3 fs=

Real "=Re"

3.33·10-15s)

+1

m)

zer
o p
ath
(ph
ase
=
+3
!/2
)

Im"Re"Re"

Wavelength %=2&/k=1/'

Time
ct

Re
al

ax
isangular 

units

1 CW Laser-phasor Wave Function
! = A"ei(kx#$t ) = A"cos(kx #$t)+ iA"sin(kx #$t)

(kx!"t )
phase-angle

Imaginary
axis

phase-angle

Amplitude
A

Amplitude
A

'

'

'

'

Clock velocity u=0
 frequency 300THz

Clock velocity u~c
frequency~0.0 THz

Two extremes give
identical phasor
clock (x,ct) array

Other Doppler versions
 "$/#$=c=$$/%$ 

must match this phasor
clock-(x,ct)-array, too.

That’s gauge invariance!
%x-$t = %$x$-$$t$

Vlight
c

= !
c"

= #
c$

= 1= %
ck

Dimensionless Light wave-velocity c/c=1
angular 

units

     angular frequency :! = 2"#
angular wavenumber : k = 2"$

“winks”
‘n

“kinks”
k =wavevector

F

1

3

4

Relawavity - Using light’s own wave-like 
nature to better understand special relativity 

and quantum mechanics

! phase =
! A +! B

2
! group =

! A "! B

2
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Low speed !phase and "phase approximations vary with u 
       like Newton’s kinetic energy   Mu2 and momentum Mu.

1
2

group bRED
Doppler Vgroup

c
!group

!A

"group

"A

# group

# A

$ group
$ A

Vphase

c
bBLUE
Doppler

phase 1
bBLUE
Doppler

c
Vphase

# phase

# A

$ phase

$ A

! phase

!A

"phase

"A

c
Vgroup

1
bRED
Doppler

     %
rapidity e&% tanh% sinh% sech% cosh% csch% coth% e+%

 angle   '
stellar   ( 1/e+% sin' tan' cos' sec' cot' csc' 1/e&%

)*u
c

1&)
1+)

)
1

1
)&2&1

1&) 2

1
1

1&) 2

)&2&1
1

1
)

1+)
1&)

)=3/5
value for 1

2
= 0.5 3

5
=0.6 3

4
=0.75 4

5
=0.80 5

4
=1.25 4

3
=1.33 5

3
=1.67 2

1
=2.0

functions Vgroup=
ctanh%

momentum
cp=Mc2sinh%

-Lagrangian
L= -Mc2sech%

Hamiltonian
H=Mc2cosh%

DeBroglie
"=+ csch%

Vphase =
ccoth%

DAMOP - 2015

Special Relativity and Quantum Mechanics by Ruler and Compass II.
The simplest “molecule”: Relativistic mechanics by optical coherence geometry

William G. Harter   and    Tyle C. Reimer
University of Arkansas - Fayetteville

 
! phase " B + 1

2
B
c2 u

2 # for (u!c)$ % phase "
B
c2 u

 
! phase = Bcosh" # B +2

1 B"2(for u!c) cosh!"1+2
1!2"1+2

1u2

c2
sinh!"!"u

c

 
h! phase"hB + 1

2
hB
c2 u

2 # for (u!c)$ h% phase"
hB
c2 u

 

u
c

= tanh! " !             (for u!c)
 
c! phase = Bsinh"  # B"          (for u!c)

Basescale :B =!A for! phase

hc! phase=hBsinh" =Mc2sinh"

Momentum: h! phase= p =
Mu

1"u2/c2

 

h! phase=hBcosh" =Mc2 cosh"

 = Total Energy: E = Mc2

1#u2/c2

!$ phase=!Bcosh" =Mc
2

2%
cosh"

1
!"2"1

=

u
c

1" u
2

c2

 
h! phase" Mc

2+ 1
2
Mu2 # for (u!c)$ h% phase" Mu Use exact  !phase and "phase 

Einstein (1905)

DeBroglie (1921)

Using wave parameters to quickly derive Planck (1900), Einstein (1905), and DeBroglie (1921) formulation

Planck (1900)

(Famous Mc2shows up here!)

Max Planck
1858-1947

Louis DeBroglie
1892-1987

Need to replace
h with hN to match
e.m. energy density
!0E•E =hN!phase

This motivates the
“particle” normalization
"  # # dV=N* != "

0

h#
E

*

(old-fashioned
notation)

cp = Muc

1!u2/c2

So attach scale factor h (or  hN) to match units

hB = Mc2
hB
c2

Rescale !phase by h  so: M=        or:  

1

2

3

A

Thales geometry of
 relativistic !#(ck) or E(cp)-space

Doppler RED factor: Doppler BLUE factor:

p-circle

g-circle

!# =E(cp)

!ck =cp

Feynman diagram of relativistic optical transition 

=!h

 =! !

 high =!h ! mid =!m

Initial stationary
 BLUE Kh thing #h=Mhic2

    transitions to
Final moving
GREEN Km thing #m=Mmc2

Kh

Km

khm

YELLOW khm

    Recoil from emitting an
oppositely c-moving

YELLOW khm “photon” #hm=c| khm |

Kh

Km

khm

Feynman
diagram

(scaled down)
of

emission
process

=#msinh$

Take-away point 0
Classical (and spectroscopic)

Energy-momentum conservation
is due to

conservation in
quantum-phase space-time 

“wiggle-count”

Thales geometry of
 relativistic !#(ck) or E(cp)-space

Doppler RED factor: Doppler BLUE factor:

p-circle

g-circle
!# =E(cp)

!ck =cp

The “Rocket Science” of relativistic optical transitions 

=!h

 =! !

 high =!h ! mid =!m ! low =! "

Key recoil relations:
!me"# = !!

#= ln M!/Mm
or:

u~ c ln M!/Mm
Photons are more
like “rockets”
than “bullets”

Take-away point 1
Emission photons
are analogous to

rocket exhaust (not “bullets”)
(Vburnout=cexhaustln[Minitial/Mfinal])

Low-urecoil approximation where: ! " urecoil
c

...and this process is reversible

Exact recoil rapidity
where:  

All-rational-fraction lattice
defined by discrete sub-group

of Lorentz Poincare Group
(Feynman path integrals defined

by group transformations)

(q,p)=
Al Bob Carl Don

0.97 lt. year

Don’s object hits Carl
Don’s object hits Bob
Don’s object hits Al

Carl’s object hits Bob
Carl’s object hits Al

Bob’s object hits Al

negative
energy

states

negative
energy

states

cp'=hck'
cctt

cctt''

Energy
E=h!

Momentum
cp=hck

Mc2

!m=49!1

76543210-1-2-3-4-4-6
m

36

25
16
9
4

(a) Exact Einstein-Planck Dispersion

(b) Bohr-Schrodinger Approximaion

E'=hw'

matter wave:
positive rest energy Mc2
E2 - c2p2 =(Mc2)2

photon:
zero µ
E =± c p

E = p2/2M

<E>= B m2

tachyon:
imaginary µ

Atom frame
Laser frame

1

Definition(s) of mass for relativity and quantum theory 

hB = h!A = Mc2 = hc" A

Rest Mass Mrest   (Einstein’s mass)          Defines invariant hyperbola(s)     

E = ± Mc2( )2+ cp( )2

Momentum Mass Mmom (Galileo’s mass) Defined by ratio p/u of relativistic momentum to group velocity.   

E =Mc2 cosh! = h" phase Given:  Energy:

cp =Mc2 sinh!= hc" phase momentum:

u =c tanh! = d"
d#

 Group velocity:
Rest 
Mass

h! phase
c2

=Mrest =
hc" phase

c2

 

Meff !
dp
du

= !dk
dVgroup

= !
d
dk

d"
dk

= !
d 2"
dk2

= Mrest

1# u2 / c2( )3/2
=Mrest cosh

3$

Mmom ! p
u
= Mrestcsinh"

c tanh"

= Mrest cosh" = Mrest

1# u2 / c2
 

Mmom u!c" !"" Mreste
# /2

Mmom u!c" !"" Mrest

Limiting cases:

Effective Mass Meff  (Newton’s mass) Defined by ratio F/a=dp/du of relativistic force to acceleration.   

Meff !
dp
du

= Mrest
ccosh"
csech2"

=Mrest cosh
3"

 

Meff u!c" !"" Mreste
3# /2

Meff u!c" !"" Mrest

Limiting cases:

That is ratio of change dp=Mc cosh$ d$ in momentum to change du=c sech2$ d$  in velocity

general wave formula

More common derivation using group velocity:  u !Vgroup=
d"
dk

= d#
d$

to accompany Vgroup=
d!
dk

Momentum 
Mass

Effective Mass

Effective Mass

B

1

2

3

Defining phase %, action S=!%, Hamiltonian, and Lagrangian 

Define Lagrangian L in terms of phase %=kx-#t=k&x&-#&t& for k=kphase and #=#phase. 

Use DeBroglie-momentum p=!k relation and Planck-energy E=!# relation
 
L=dS

dt
! ! d"

dt
= !k dx

dt
# !$

 

Use relawavity relations:Group velocity:u=dx
dt
=c tanh!,    Rest energy:!" A=Mc

2=!ckA

Momentum:   p= !ckphase=cp =!" A sinh!
Hamiltonian:H = !" phase= E =!" A cosh!

Legendre transforma-
tion

 
L=dS

dt
! ! d"

dt
= !k dx

dt
# !$ = p dx

dt
# E ! p "x # E ! pu # H = L

 
!! h

2"

L = pu ! H = (Mcsinh")(c tanh")!Mc2 cosh"

= Mc2 sinh
2! " cosh 2!
cosh!

= "Mc2sech!

C

1

2

3

4  
L = ! d!

dt
= "Mc2 1" u

2

c2     = "Mc2 sech# = "Mc2cos$

H = h! phase = Mc
2 1" u

2

c2   =   Mc2 cosh# =   Mc2sec$

H =Mc2 1+ sinh 2! =Mc2 1+(cp)25

(a) Hamiltonian

Momentum p

P
P!

P!!

-L
-L!
-L!!

L(q,q)
Velocity u=q

Q
Q!
Q!!

-H

-H!

-H!!

H
H!

H!!
L
L!
L!!H

H!

H!!

slope is
momentum p:

slope is
group velocity u:
"H
"p

= q
= u

"L
"q

= p

(b) LagrangianH(q,p)

radius = Mc2

O

O

Light cone u=1=c
has infiniteH

and zero L

#!!
#!
#

Comparing
Lagrangian       L(velocity u) 

with 
Hamiltonian H(momentum p)

 Hamiltonian Legendre transforms to Lagrangian 

e-!

co
sh
!

1

tanh!

coth!

se
ch
!

csch!

sinh!

Stellar aberration !
Realtivity angle "

si
nh
!

cosh!

e+!

u=  Vgroup    =   c tanh!  =   csin"

cp = ch! phase=Mc
2 sinh" = Mc2tan#

6%=kx-#t

Relawavity variables plotted versus Group Velocity Vgroup=c tanh $3

 
!ckphase= !Bsinh! =Mc

2

2"
sinh!

D Geometry and plots of
“Relawavity” variables
sinh $=tan ', cosh $=sec ', coth $=csc ',
tanh $=sin ', sech $=cos ', csch $=cot '.

1
Exact vs approximate
(!#) versus (c!k) plot

2
Relawavity geometry

of
(!#) versus (!ck) plot

4
Doppler geometry

of
(#) versus (ck) plot

!ck=Momentum

!#=Energy

!ck=Momentum

!#=Energy

Discrete (!#) versus (!ck) plot
of Compton scattering

Discrete time (ct) versus space (x) plot
of constant acceleration paths

E

GF

H
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