Relawavity: Relativistic wave mechanics V. Velocity geometry

A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area σ

- Complimentary functions (... cosine, and cotangent, cosecant)

- Hyper-trigonometry of (tanh ρ, sinh ρ, and cosh ρ, sech ρ, and csch ρ, coth ρ)

- Functions of hyper-angular sector area ρ related to functions of σ

- Each circular trig function has a hyperbolic “country-cousin” function

- ...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry

- Relating velocity parameters $\beta = \frac{u}{c}$ to rapidity ρ to k-angle σ to u/c-angle ν

- Relating wave dimensional parameters of phase wave and group wave

- Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ

- Review of proper time relations and basis of Epstein’s cosmic speedometer

- Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)$ transformation
A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area σ

Complimentary functions (... cosine, and cotangent, cosecant)

Hyper-trigonometry of (tanh ρ, sinh ρ, and cosh ρ, sech ρ, and csch ρ, coth ρ)

Functions of hyper-angular sector area ρ related to functions of σ

Each circular trig function has a hyperbolic “country-cousin” function

...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry

Relating velocity parameters $\beta=u/c$ to rapidity ρ to k-angle σ to u/c-angle ν

Relating wave dimensional parameters of phase wave and group wave

Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ

Review of proper time relations and basis of Epstein’s cosmic speedometer

Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)$ transformation
A neo-liberal trigonometry lesson (sine, tangent, and secant) (\(\sin\sigma, \tan\sigma, \text{ and } \sec\sigma\))

Circular Functions
- \(m\angle(\sigma) = 0.4805\)
- Length(\(\sigma\)) = 0.4805
- Area(\(\sigma\)) = 0.4805

\[
\sin(\sigma) = 0.4622 \\
\tan(\sigma) = 0.5212 \\
\sec(\sigma) = 1.1277
\]

For unit circle \(OA = 1\)

Angle \(\sigma = 0.48\) radians

\[
\text{Arc}AB \cdot 1 = 0.48 \text{ cm}
\]

Total Area \(ABOA'B'\)

\[
\sigma \cdot 1^2 = 0.48 \text{ cm}^2
\]

RelaWavity Web Simulation

Unit Circle

Thursday, April 21, 2016
A neo-liberal trigonometry lesson (sine, tangent, and secant)
(\sin \sigma, \tan \sigma, \text{ and } \sec \sigma)

A One-Radian angle \(\sigma \) has arc-length equal to radius
\(\sigma = 1 \Leftrightarrow OA = AB = OB \)

A One-Radian angle \(\sigma \) also has a diameter-swept area equal to its radius squared
\(\sigma = 1 \Leftrightarrow (OA)^2 = (AB)^2 = (OB)^2 \)

For unit circle \(OA = 1 \)

Angle \(\sigma = 1.00 \) radians
Arc \(AB \) \(\sigma \cdot 1 = 1.00 \) cm
Total Area \(ABOA'B' \) \(\sigma \cdot l^2 = 1.00 \) cm\(^2\)
A neo-liberal trigonometry lesson (sine, tangent, and secant)
(sinσ, tanσ, and secσ)

For unit circle $OA=1$

Angle $\sigma = 1.19$ radians
$ArcAB \sigma \cdot 1 = 1.19$ cm
Total Area $ABOA'B'$
$\sigma \cdot 1^2 = 1.19$ cm2
A neo-liberal trigonometry lesson \((\text{sine}, \tan, \text{ and } \sec)\)

\(\sin \sigma, \tan \sigma, \text{ and } \sec \sigma\)

For unit circle \(OA = 1\)

- Angle \(\sigma = 2.60 \text{ radians}\)
- \(\text{Arc} AB \cdot 1 = 2.60 \text{ cm}\)
- Total Area \(ABOA'B'\)
 \(\sigma \cdot l^2 = 2.60 \text{ cm}^2\)

\(\text{RelaWavity Web Simulation}\)

\(\text{Unit Circle}\)
A neo-liberal trigonometry lesson (sine, tangent, and secant)

\(\sin \sigma, \tan \sigma, \text{ and } \sec \sigma \)

For unit circle \(OA = 1 \)

Angle \(\sigma = 3.14 \) radians

\(\text{Arc} AB \cdot 1 = 3.14 \) cm

Total Area \(ABOA'B' \)

\(\sigma \cdot l^2 = 3.14 \) cm²
A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area σ

- Complimentary functions (... cosine, and cotangent, cosecant)
- Hyper-trigonometry of (tanhρ, sinhρ, and coshρ, sechρ, and cschρ, cothρ)

Functions of hyper-angular sector area ρ related to functions of σ

Each circular trig function has a hyperbolic “country-cousin” function

... and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry

- Relating velocity parameters $\beta = u/c$ to rapidity ρ to k-angle σ to u/c-angle ν
- Relating wave dimensional parameters of phase wave and group wave
- Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ

- Review of proper time relations and basis of Epstein’s cosmic speedometer
- Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)$ transformation
A neo-liberal trigonometry (*sine*, *tangent*, and *secant*, *cosine*)

Circular Functions
- $m\angle(\sigma) = 0.8541$
- Length(\(\sigma\)) = 0.8541
- Area(\(\sigma\)) = 0.8541
- $\sin(\sigma) = 0.7540$
- $\tan(\sigma) = 1.1477$
- $\sec(\sigma) = 1.5223$
- $\cos(\sigma) = 0.6569$

RelaWavity Web Simulation

Unit Circle
A neo-liberal trigonometry (sine, tangent, and secant, cosine, and cotangent)

Circular Functions
mL(σ) = 0.8541
Length(σ) = 0.8541
Area(σ) = 0.8541
sin(σ) = 0.7540
tan(σ) = 1.1477
sec(σ) = 1.5223
cos(σ) = 0.6569
cot(σ) = 0.8713

RelaWavity Web Simulation
6 Fundamental Trigonometric Functions

Thursday, April 21, 2016
A neo-liberal trigonometry (sine, tangent, and secant, cosine, and cotangent, cosecant)

Circular Functions
m∠(σ) = 0.8534
Length(σ) = 0.8534
Area(σ) = 0.8534
sin(σ) = 0.7535
tan(σ) = 1.1461
sec(σ) = 1.5210
cos(σ) = 0.6575
cot(σ) = 0.8725
csc(σ) = 1.3271

RelaWavity Web Simulation
6 Fundamental Trigonometric Functions
A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area σ
Complimentary functions (... cosine, and cotangent, cosecant)

Hyper-trigonometry of ($\tanh \rho$, $\sinh \rho$, and $\cosh \rho$, $\sech \rho$, and $\csch \rho$, $\coth \rho$)
Functions of hyper-angular sector area ρ related to functions of σ

Each circular trig function has a hyperbolic “country-cousin” function
...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry
Relating velocity parameters $\beta = u/c$ to rapidity ρ to k-angle σ to u/c-angle ν
Relating wave dimensional parameters of phase wave and group wave
Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ
Review of proper time relations and basis of Epstein’s cosmic speedometer
Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)$ transformation
A Hyper-trigonometry

Hyper-(sine, tangent, and secant, cosine, and cotangent, cosecant)

\(\sin \sigma, \tan \sigma, \text{ and } \sec \sigma, \cos \sigma, \text{ and } \cot \sigma, \csc \sigma\)

\(\tanh \rho, \sinh \rho, \text{ and } \cosh \rho, \text{sech} \rho, \text{ and } \csch \rho, \coth \rho\)

Circular Functions

\(m \angle (\sigma) = 0.8534\)
\(\text{Length}(\sigma) = 0.8534\)
\(\text{Area}(\sigma) = 0.8534\)

\(\sin(\sigma) = 0.7535\)
\(\tan(\sigma) = 1.1461\)
\(\sec(\sigma) = 1.5210\)

\(\cos(\sigma) = 0.6575\)
\(\cot(\sigma) = 0.8725\)
\(\csc(\sigma) = 1.3271\)

RelaWavity Web Simulation

Transition to Hyperbolic Functions
A Hyper-trigonometry Hyper-\((\sin, \tan, \text{ and secant}, \cos, \text{ and cotangent}, \csc)\) \((\sin_\sigma, \tan_\sigma, \text{ and sec}_\sigma, \cos_\sigma, \text{ and cot}_\sigma, \csc_\sigma)\) \((\tanh_\rho, \sinh_\rho, \text{ and cosh}_\rho, \text{ sech}_\rho, \text{ and csch}_\rho, \coth_\rho)\)

<table>
<thead>
<tr>
<th>Circular Functions</th>
<th>Hyperbolic Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mL(\sigma) = 0.8534)</td>
<td>(\varrho = 0.9810)</td>
</tr>
<tr>
<td>Length((\sigma) = 0.8534)</td>
<td>Area((\varrho) = 0.9810)</td>
</tr>
<tr>
<td>Area((\sigma) = 0.8534)</td>
<td>(\sin(\varrho) = 0.7535)</td>
</tr>
<tr>
<td>(\sin(\sigma) = 0.7535)</td>
<td>(\tan(\varrho) = 0.7535)</td>
</tr>
<tr>
<td>(\tan(\sigma) = 1.1461)</td>
<td>(\sin(\rho) = 1.1461)</td>
</tr>
<tr>
<td>(\sec(\sigma) = 1.5210)</td>
<td>(\cos(\rho) = 1.5210)</td>
</tr>
<tr>
<td>(\cos(\sigma) = 0.6575)</td>
<td>(\sech(\varrho) = 0.6575)</td>
</tr>
<tr>
<td>(\cot(\sigma) = 0.8725)</td>
<td>(\csch(\varrho) = 0.8725)</td>
</tr>
<tr>
<td>(\csc(\sigma) = 1.3271)</td>
<td>(\coth(\varrho) = 1.3271)</td>
</tr>
</tbody>
</table>
A Hyper-trigonometry

Hyper-(sine, tangent, and secant, cosine, and cotangent, cosecant)

\[
\begin{align*}
\sin(\sigma), \tan(\sigma), \text{ and } \sec(\sigma), \\
\cos(\sigma), \text{ and } \cot(\sigma), \\
\csc(\sigma)
\end{align*}
\]

RelaWavity Web Simulation

Dual parameterization - ρ and σ
A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area σ

Complimentary functions (... cosine, and cotangent, cosecant)

Hyper-trigonometry of (tanhρ, sinhρ, and coshρ, sechρ, and cschρ, cothρ)

 Directorate Functions of hyper-angular sector area ρ related to functions of σ

Each circular trig function has a hyperbolic “country-cousin” function

...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry

Relating velocity parameters $\beta=\frac{u}{c}$ to rapidity ρ to k-angle σ to $\frac{u}{c}$-angle ν

Relating wave dimensional parameters of phase wave and group wave

Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ

Review of proper time relations and basis of Epstein’s cosmic speedometer

Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)$ transformation
The straight scoop on “hyper-angle” and “rapidity” (They’re area!)

\[y/x = \tanh \theta = \frac{v}{c} \]

\[y = \sinh \rho \]

\[x = \cosh \rho \]

\[A = \frac{1}{2} \text{base} \times \text{altitude} - \text{area under curve} = \frac{1}{2} xy - \int y \, dx \]

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line.
The straight scoop on “hyper-angle” and “rapidity” (They’re area!)

The “Area” being calculated is the **total** Gray Area between **hyperbola** pairs, X axis, and sloping u-line

Useful hyperbolic identities

\[
\sinh^2 \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right)^2 = \frac{1}{4} \left(e^{2\rho} + e^{-2\rho} - 2 \right) = \frac{\cosh 2\rho - 1}{2}
\]

\[
\sinh \rho \cosh \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right) \left(\frac{e^\rho + e^{-\rho}}{2} \right) = \frac{1}{4} \left(e^{2\rho} - e^{-2\rho} \right) = \frac{1}{2} \sinh 2\rho
\]
The straight scoop on “hyper-angle” and “rapidity” (They’re area!)

Useful hyperbolic identities

\[\sinh^2 \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right)^2 = \frac{1}{4} (e^{2\rho} + e^{-2\rho} - 2) = \frac{\cosh 2\rho - 1}{2} \]

\[\sinh \theta \cosh \theta = \left(\frac{e^\theta - e^{-\theta}}{2} \right) \left(\frac{e^\theta + e^{-\theta}}{2} \right) = \frac{1}{4} (e^{2\theta} - e^{-2\theta}) = \frac{1}{2} \sinh 2\theta \]

\[\int \cosh a\rho \, d\rho = \frac{1}{a} \sinh a\rho \]

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

The straight scoop on “hyper-angle” and “rapidity” (They’re area!)

Useful hyperbolic identities

\[\sinh^2 \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right)^2 = \frac{1}{4} (e^{2\rho} + e^{-2\rho} - 2) = \frac{\cosh 2\rho - 1}{2} \]

\[\sinh \theta \cosh \theta = \left(\frac{e^\theta - e^{-\theta}}{2} \right) \left(\frac{e^\theta + e^{-\theta}}{2} \right) = \frac{1}{4} (e^{2\theta} - e^{-2\theta}) = \frac{1}{2} \sinh 2\theta \]

\[\int \cosh a\rho \, d\rho = \frac{1}{a} \sinh a\rho \]
The straight scoop on “hyper-angle” and “rapidity” (They’re area!)

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

Useful hyperbolic identities

\[
\sinh^2 \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right)^2 = \frac{1}{4} \left(e^{2\rho} + e^{-2\rho} - 2 \right) = \frac{1}{2} \cosh 2\rho - 1
\]

\[
\int \cosh a\theta \, d\theta = \frac{1}{a} \sinh a\theta
\]

Amazing result: \(\text{Area} = \rho \) is rapidity
A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area \(\sigma \)
Complimentary functions (... cosine, and cotangent, cosecant)
Hyper-trigonometry of (\(tanh \rho, sinh \rho, \) and \(cosh \rho, sech \rho, \) and \(csch \rho, coth \rho \))
Functions of hyper-angular sector area \(\rho \) related to functions of \(\sigma \)

Each circular trig function has a hyperbolic “country-cousin” function
...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry
Relating velocity parameters \(\beta = u/c \) to rapidity \(\rho \) to k-angle \(\sigma \) to u/c-angle \(\nu \)
Relating wave dimensional parameters of phase wave and group wave
Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle \(\sigma \)
Review of proper time relations and basis of Epstein’s cosmic speedometer
Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z) \) transformation
A Hyper-trigonometry

Hyper- (sine, tangent, and secant, cosine, and cotangent, cosecant)

\[
(sin_\sigma, tan_\sigma, sec_\sigma, cos_\sigma, cot_\sigma, csc_\sigma)
\]

(tanh_\rho, sinh_\rho, cosh_\rho, sech_\rho, csch_\rho, coth_\rho)

Circular \(\sigma \) versus Hyperbolic \(\rho \)

Circular Functions
- \(m_L(\sigma) = 0.8534 \)
- \(\text{Length}(\sigma) = 0.8534 \)
- \(\text{Area}(\sigma) = 0.8534 \)
- \(\sin(\sigma) = 0.7535 \)
- \(\tan(\sigma) = 1.1461 \)
- \(\sec(\sigma) = 1.5210 \)
- \(\cos(\sigma) = 0.6575 \)
- \(\cot(\sigma) = 0.8725 \)
- \(\csc(\sigma) = 1.3271 \)

Hyperbolic Functions
- \(q = 0.9810 \)
- \(\text{Area}(q) = 0.9810 \)
- \(\tanh(q) = 0.7535 \)
- \(\sinh(q) = 1.1461 \)
- \(\cosh(q) = 1.5210 \)
- \(\sech(q) = 0.6575 \)
- \(\csch(q) = 0.8725 \)
- \(\coth(q) = 1.3271 \)

Dual parameterization - \(q \) and \(\rho \)

RelaWavity Web Simulation

Thursday, April 21, 2016
A Hyper-trigonometry

Hyper-\((\sin, \tan, \text{and } \sec, \cos, \text{and } \cot, \csc)\)

\((\sin_{\sigma}, \tan_{\sigma}, \text{and } \sec_{\sigma}, \cos_{\sigma}, \text{and } \cot_{\sigma}, \csc_{\sigma})\)

Circular \(\sigma\) versus Hyperbolic \(\rho\)

Circular Functions
- \(mL(\sigma) = 0.8541\)
- \(\text{Length}(\sigma) = 0.8541\)
- \(\text{Area}(\sigma) = 0.8541\)
- \(\sin(\sigma) = 0.7540\)
- \(\tan(\sigma) = 1.1477\)
- \(\sec(\sigma) = 1.5223\)
- \(\cos(\sigma) = 0.6569\)
- \(\cot(\sigma) = 0.8713\)
- \(\csc(\sigma) = 1.3263\)

Hyperbolic Functions
- \(q = 0.9821\)
- \(\text{Area}(q) = 0.9821\)
- \(\tanh(q) = 0.7540\)
- \(\sinh(q) = 1.1477\)
- \(\cosh(q) = 1.5223\)
- \(\sech(q) = 0.6569\)
- \(\csch(q) = 0.8713\)
- \(\coth(q) = 1.3263\)

RelaWavity Web Simulation

\(\sigma\) Relations

Thursday, April 21, 2016
A Hyper-trigonometry Hyper-(sine, tangent, and secant, cosine, and cotangent, cosecant)

(sinσ, tanσ, and secσ, cosσ, and cotσ, cscσ)

(tanhρ, sinhρ, and coshρ, sechρ, and cschρ, cothρ)

Circular σ versus Hyperbolic ρ

RelaWavity Web Simulation ρ Relations
A Hyper-trigonometry

Hyper-(sine, tangent, and secant, cosine, and cotangent, cosecant)

\((\sin\sigma, \tan\sigma, \text{ and } \sec\sigma, \cos\sigma, \text{ and } \cot\sigma, \csc\sigma)\)

\((\tanh\rho, \sinh\rho, \text{ and } \cosh\rho, \sech\rho, \text{ and } \csch\rho, \coth\rho)\)

Circular Functions

- \(mL(\sigma) = 0.8541\)
- \(\text{Length}(\sigma) = 0.8541\)
- \(\text{Area}(\sigma) = 0.8541\)

- \(\sin(\sigma) = 0.7540\)
- \(\tan(\sigma) = 1.1477\)
- \(\sec(\sigma) = 1.5223\)
- \(\cos(\sigma) = 0.6569\)
- \(\cot(\sigma) = 0.8713\)
- \(\csc(\sigma) = 1.3263\)

Hyperbolic Functions

- \(\text{Area}(\rho) = 0.9821\)
- \(\text{Area}(\rho) = 0.9821\)
- \(\tanh(\rho) = 0.7540\)
- \(\sinh(\rho) = 1.1477\)
- \(\cosh(\rho) = 1.5223\)
- \(\sech(\rho) = 0.6569\)
- \(\csch(\rho) = 0.8713\)
- \(\coth(\rho) = 1.3263\)

RelaWavity Web Simulation

Occam’s Swords

Thursday, April 21, 2016
A Hyper-trigonometry

Hyper-(sine, tangent, and secant, cosine, and cotangent, cosecant)

\((\sin \sigma, \tan \sigma, \text{ and } \sec \sigma, \cos \sigma, \text{ and } \cot \sigma, \csc \sigma)\)

\((\tanh \rho, \sinh \rho, \text{ and } \cosh \rho, \sech \rho, \text{ and } \csch \rho, \coth \rho)\)
A Hyper-trigonometry

Hyper-(sine, tangent, and secant, cosine, and cotangent, cosecant)

Circular σ versus Hyperbolic ρ

Circular Functions
- $mL(\sigma) = 1.2089$
- $\text{Length}(\sigma) = 1.2089$
- $\text{Area}(\sigma) = 1.2089$
- $\sin(\sigma) = 0.9352$
- $\tan(\sigma) = 2.6418$
- $\sec(\sigma) = 2.8247$
- $\cos(\sigma) = 0.3540$
- $\cot(\sigma) = 0.3785$
- $\csc(\sigma) = 1.0692$

Hyperbolic Functions
- $q = 1.6986$
- $\text{Area}(q) = 1.6986$
- $\tanh(q) = 0.9352$
- $\sinh(q) = 2.6418$
- $\cosh(q) = 2.8247$
- $\sech(q) = 0.3540$
- $\csch(q) = 0.3785$
- $\coth(q) = 1.0692$
Circular Functions
- $\sin(\sigma) = 0.9999$
- $\tan(\sigma) = 71.4639$
- $\sec(\sigma) = 71.4709$
- $\cos(\sigma) = 0.0140$
- $\cot(\sigma) = 0.0140$
- $\csc(\sigma) = 1.0001$

Hyperbolic Functions
- $\sinh(\rho) = 71.4639$
- $\cosh(\rho) = 71.4709$
- $\tanh(\rho) = 0.9999$
- $\coth(\rho) = 1.0001$
- $\sech(\rho) = 0.0140$
- $\csch(\rho) = 0.0140$

$u/c = \tanh(\rho) = 0.999901$
for $\rho = 4.96$
A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area σ
Complimentary functions (... cosine, and cotangent, cosecant)
Hyper-trigonometry of (tanhρ, sinhρ, and coshρ, sechρ, and cschρ, cothρ)
Functions of hyper-angular sector area ρ related to functions of σ
Each circular trig function has a hyperbolic “country-cousin” function
...and big-party fun was had by all!
Pattern recognition aids and “Occam-sword” geometry
Relating velocity parameters $\beta=u/c$ to rapidity ρ to k-angle σ to u/c-angle ν
Relating wave dimensional parameters of phase wave and group wave
Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ
Review of proper time relations and basis of Epstein’s cosmic speedometer
Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)$ transformation
A Hyper-trigonometry Hyper-(sine, tangent, and secant, cosine, and cotangent, cosecant)
(sine, tangent, and secant, cosine, and cotangent, cosecant)
(tangent, sine, and cosine, and cotangential, cosecant)
A neo-liberal trigonometry lesson (*sine, tangent, and secant*) functions of angular sector area σ
Complimentary functions (... *cosine, and cotangent, cosecant*)
Hyper-trigonometry of (*tanh ρ, sinh ρ, and cosh ρ, sech ρ, and csch ρ, coth ρ*)
Functions of hyper-angular sector area ρ related to functions of σ
Each circular trig function has a hyperbolic “country-cousin” function
...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry
Relating velocity parameters $\beta=u/c$ to *rapidity ρ* to **k-angle σ** to u/c-angle ν
Relating wave dimensional parameters of phase wave and group wave
Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses **stellar aberration k-angle σ**
Review of proper time relations and basis of Epstein’s cosmic speedometer
Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)$ transformation
Pattern recognition: “Occam’s Sword”

Fig. 5.10 CW cosmic speedometer.
Geometry of Lorentz boost of counter-propagating waves.
Pattern recognition aid: “Occam’s Sword”

\[\sinh \rho = \tan \sigma \]

\[\tanh \rho = \sin \sigma = \frac{u}{c} = \tan \nu \]

Fig. 5.10 CW cosmic speedometer. Geometry of Lorentz boost of counter-propagating waves.
Pattern recognition aid: “Occam’s Sword”

Fig. 5.5
Relativistic wave mechanics geometry.
(a) Overview.
(b-d) Details of contacting tangents.

(c) Basic construction given \(u/c = 45/53 \)

(d) \(u/c = 3/5 \)

\[H = \frac{53}{28} \]

\[H = \frac{5}{4} \]

\[e^\rho = 2/7 \]

\[e^\rho = 1/2 \]

\[\sigma \]

\[\sigma \]
A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area σ
Complimentary functions (... cosine, and cotangent, cosecant)
Hyper-trigonometry of (tanhρ, sinhρ, and coshρ, sechρ, and cschρ, cothρ)
Functions of hyper-angular sector area ρ related to functions of σ
Each circular trig function has a hyperbolic “country-cousin” function
...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry

Relating velocity parameters $\beta=\frac{u}{c}$ to rapidity ρ to k-angle σ to u/c-angle ν
Relating wave dimensional parameters of phase wave and group wave
Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ
Review of proper time relations and basis of Epstein’s cosmic speedometer
Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0,\omega_x,\omega_y,\omega_z) = (\omega,ck_x,ck_y,ck_z)$ transformation
Relating **Longitudinal** relativity parameter: Rapidity $\rho = \log_e(\text{Doppler Shift})$

to **Transverse** relativity parameter: Stellar aberration angle σ

(a) Circular Functions

$\sin(\sigma) = 0.6000$
$\tan(\sigma) = 0.7500$
$\sec(\sigma) = 1.2500$

Relativity Web Simulation

Geometry of Stellar Aberration Angle
Relating **Longitudinal** relativity parameter: Rapidity \(\rho = \log_e(\text{Doppler Shift}) \)

to **Transverse** relativity parameter: Stellar aberration angle \(\sigma \)

\[
\sinh \rho = \tan \sigma
\]

\[
\tanh \rho = \sin \sigma = \frac{u}{c} = \tan \nu
\]
Relating **Longitudinal** relativity parameter: Rapidity \(\rho = \log_e(\text{Doppler Shift}) \)

to **Transverse** relativity parameter: Stellar aberration angle \(\sigma \)

\[
\sinh \rho = \tan \sigma \\
\tanh \rho = \sin \sigma = \frac{u}{c} = \beta = \tan \nu
\]
A neo-liberal trigonometry lesson \((\text{sine, tangent, and secant})\) functions of angular sector area \(\sigma\).
Complimentary functions \(...) \text{cosine, and cotangent, cosecant}\)
Hyper-trigonometry of \((\text{tanh}\,\rho, \text{sinh}\,\rho, \text{and cosh}\,\rho, \text{sech}\,\rho, \text{and csch}\,\rho, \text{coth}\,\rho)\)
Functions of hyper-angular sector area \(\rho\) related to functions of \(\sigma\).
Each \text{circular} trig function has a \text{hyperbolic} “country-cousin” function.
...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry
Relating velocity parameters \(\beta = u/c\) to \text{rapidity} \(\rho\) to \text{k-angle} \(\sigma\) to \text{u/c-angle} \(\nu\)

Relating wave dimensional parameters of phase wave and group wave
Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses \text{stellar aberration} \text{k-angle} \(\sigma\)
Review of proper time relations and basis of Epstein’s cosmic speedometer
Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation
Summary of optical wave parameters for relativity and QM

...and their geometry

\[v' = \frac{\omega'}{2\pi} \]

axis

(Units of 300THz)

An aid to pattern recognition:

Occam's Sword

\((u/c=3/5) \)

RelaWavity Web Simulation

{perSpace - perTime All}
$v' = \omega'/2\pi$

axis

(Units of 300THz)

Table of 12 wave parameters
(includes inverses) for relativity
...and values for $u/c=3/5$

RelaWavity Web Simulation
Relativistic Terms (Dual plot w/expanded table)
A neo-liberal trigonometry lesson (*sine*, *tangent*, and *secant*) functions of angular sector area σ

Complimentary functions (... *cosine*, *and* *cotangent*, *cosecant*)

Hyper-trigonometry of (*tanh* ρ, *sinh* ρ, *and* *cosh* ρ, *sech* ρ, *and* *csch* ρ, *coth* ρ)

Functions of hyper-angular sector area ρ related to functions of σ

Each **circular** trig function has a **hyperbolic** “country-cousin” function...

...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry

Relating velocity parameters $\beta=u/c$ to *rapidity* ρ to *k-angle* σ to *u/c-angle* ν

Relating wave dimensional parameters of phase wave and group wave

→ Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses **stellar aberration** *k-angle* σ

Review of proper time relations and basis of Epstein’s cosmic speedometer

Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)$ transformation
Parameter-space symmetry points

Hyper-function values

<table>
<thead>
<tr>
<th>group</th>
<th>$b_{Doppler}^{Doppler}$</th>
<th>V_{group}/c</th>
<th>v_{group}/v_A</th>
<th>$\lambda_{group}/\lambda_A$</th>
<th>κ_{group}/κ_A</th>
<th>τ_{group}/τ_A</th>
<th>c/V_{phase}</th>
<th>$b_{Doppler}^{Doppler}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>phase</td>
<td>$1/V_{phase}$</td>
<td>κ_{phase}/κ_A</td>
<td>τ_{phase}/τ_A</td>
<td>v_{phase}/v_A</td>
<td>$\lambda_{phase}/\lambda_A$</td>
<td>V_{phase}/c</td>
<td>$1/V_{phase}$</td>
<td></td>
</tr>
<tr>
<td>rapidity ρ</td>
<td>$e^{-\rho}$</td>
<td>$\tanh \rho$</td>
<td>$\sinh \rho$</td>
<td>$\sech \rho$</td>
<td>$\cosh \rho$</td>
<td>$\csch \rho$</td>
<td>$\coth \rho$</td>
<td>e^{ρ}</td>
</tr>
<tr>
<td>stellar V angle σ</td>
<td>$1/e^{-\rho}$</td>
<td>$\sin \sigma$</td>
<td>$\tan \sigma$</td>
<td>$\cos \sigma$</td>
<td>$\sec \sigma$</td>
<td>$\cot \sigma$</td>
<td>$\csc \sigma$</td>
<td>$1/e^{-\rho}$</td>
</tr>
<tr>
<td>$\beta = \frac{u}{c}$</td>
<td>$\frac{1-\beta}{1+\beta}$</td>
<td>$\frac{\beta}{1}$</td>
<td>$\frac{1}{\sqrt{\beta^2 - 1}}$</td>
<td>$\frac{1}{1}$</td>
<td>$\frac{1}{\sqrt{\beta^2 - 1}}$</td>
<td>$\frac{1}{1}$</td>
<td>$\frac{1}{\beta}$</td>
<td>$\frac{1+\beta}{1-\beta}$</td>
</tr>
</tbody>
</table>
| value for $\beta < 1$ | $\frac{1}{2}$ | 0.5 | $\frac{3}{5}$ | 0.6 | $\frac{3}{4}$ | 0.75 | $\frac{4}{5}$ | 0.80 | $\frac{5}{4}$ | 1.25 | $\frac{4}{3}$ | 1.33 | $\frac{5}{3}$ | 1.67 | $\frac{2}{1}$ | 2.0

Group velocity $w/c = \sin(\sigma)$

Golden ratio $G = (\sqrt{5} - 1)/2 = 0.618..$

$\sqrt{2}/2 = 0.707..$
A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area σ

Complimentary functions (... cosine, and cotangent, cosecant)

Hyper-trigonometry of (tanh ρ, sinh ρ, and cosh ρ, sech ρ, and csch ρ, coth ρ)

Functions of hyper-angular sector area ρ related to functions of σ

Each circular trig function has a hyperbolic “country-cousin” function

...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry

Relating velocity parameters $\beta = u/c$ to rapidity ρ to k-angle σ to u/c-angle ν

Relating wave dimensional parameters of phase wave and group wave

Parameter-space symmetry points

 Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ

Review of proper time relations and basis of Epstein’s cosmic speedometer

Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)$ transformation
Comparing **Longitudinal** relativity parameter: Rapidity $\rho = \log_e(\text{Doppler Shift})$

to a **Transverse** relativity parameter: Stellar aberration angle σ^*

We used notion σ for stellar-ab-angle, (a “flipped-out” ρ).

Epstein seemed resistent to ρ analysis or relations between σ and ρ.

Purchase at:

Thursday, April 21, 2016
Comparing **Longitudinal relativity parameter:** Rapidity $\rho = \log_e(\text{Doppler Shift})$

to a **Transverse relativity parameter:** Stellar aberration angle σ*

Observer fixed below star sees it directly overhead.
Observer going u sees star at angle σ in u direction.

Stellar aberration angle σ:

$$c \tanh \rho = u = c \sin \sigma$$

Epstein seemed resistant to ρ analysis or relations between σ and ρ.

We used notion σ for stellar-ab-angle, (a “flipped-out” ρ).

Purchase at:
A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area σ
Complimentary functions (... cosine, and cotangent, cosecant)
Hyper-trigonometry of (tanh ρ, sinh ρ, and cosh ρ, sech ρ, and csch ρ, coth ρ)
Functions of hyper-angular sector area ρ related to functions of σ
Each circular trig function has a hyperbolic “country-cousin” function
...and big-party fun was had by all!
Pattern recognition aids and “Occam-sword” geometry
Relating velocity parameters $\beta = u/c$ to rapidity ρ to k-angle σ to u/c-angle ν
Relating wave dimensional parameters of phase wave and group wave
Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ
Review of proper time relations and basis of Epstein’s cosmic speedometer
Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, c k_x, c k_y, c k_z)$ transformation
Review of Proper time τ_0 and proper frequency ω_0

\[
\begin{pmatrix}
 ck \\
 c \tau_0
\end{pmatrix}
= \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix}
\begin{pmatrix}
 ck' \\
 x'
\end{pmatrix}
\]

\[
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
= \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix}
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix}
\]

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant:

\[
\omega_0^2 = \omega^2 - (ck)^2 = \omega'^2 - (ck')^2
\]

ω_0 is called “proper frequency” or rate of “aging”

\[
\omega_0 = \omega \sqrt{1 - \frac{c^2k^2}{\omega^2}} = \omega' \sqrt{1 - \frac{c^2k'^2}{\omega'^2}}
\]

\[
= \omega \sqrt{1 - \frac{c^2}{V_{\text{phase}}^2}} = \omega' \sqrt{1 - \frac{c^2}{V'_{\text{phase}}^2}}
\]

\[
\omega = \frac{\omega_0}{\sqrt{1 - \frac{k^2}{(c\omega)^2}}}
\]

\[
\omega' = \frac{\omega_0}{\sqrt{1 - \frac{k'^2}{(c\omega')^2}}}
\]

Space-time invariant:

\[
(c\tau_0)^2 = (ct)^2 - x^2 = (ct')^2 - (x')^2
\]

τ_0 is called “proper time” or “age”:

\[
\tau_0 = t \sqrt{1 - \frac{x^2}{(ct)^2}} = t' \sqrt{1 - \frac{x'^2}{(ct')^2}}
\]

\[
= t \sqrt{1 - \frac{u^2}{c^2}} = t' \sqrt{1 - \frac{u'^2}{c^2}}
\]

Coordinate time t dilates to greater than τ_0
Comparing **Longitudinal relativity parameter:** Rapidity $\rho = \log_e($Doppler Shift$)$ to a **Transverse relativity parameter:** Stellar aberration angle σ^*

Observer fixed below star sees it directly overhead.
Observer going u sees star at angle σ in u direction.

Stellar aberration angle σ:

$$c \tanh \rho = u = \frac{c}{\sin \sigma}$$

Epstein seemed resistant to ρ analysis or relations between σ and ρ.

We used notion σ for stellar-ab-angle, (a “flipped-out” ρ).

Purchase at: Amazon
Comparing **Longitudinal relativity parameter:** Rapidity $\rho = \log_e(\text{Doppler Shift})$

to a **Transverse relativity parameter:** Stellar aberration angle σ*

Observer fixed below star sees it directly overhead.
Observer going \mathbf{u} sees star at angle σ in \mathbf{u} direction.

We used notion σ for stellar-ab-angle, (a “flipped-out” ρ).

Epstein’s trick is to turn a hyperbolic form into a circular form:

$c \sqrt{1-u^2/c^2} = c/cosh \rho$

$= c \ sech \rho = c \ cos \sigma$

$|c'| = |c| = c$

$\sqrt{(c\tau)^2 + (x')^2} = (ct')$

(for Proper time)
Comparing **Longitudinal** relativity parameter: Rapidity $\rho = \log_e(\text{Doppler Shift})$

to a **Transverse** relativity parameter: Stellar aberration angle σ^*

Observer fixed below star sees it directly overhead.
Observer going u sees star at angle σ in u direction.

Stellar aberration angle σ:

$$c \tanh \rho = u = c \sin \sigma$$

We used notion σ for stellar-observation angle (a “flipped-out” ρ).

Epstein’s trick is to turn a hyperbolic form $c \tau = \sqrt{(ct')^2 - (x')^2}$ (for Proper time)
into a circular form: $\sqrt{(c\tau)^2 + (x')^2} = (ct')$

Then everything (and everybody) always goes speed c through $(x', c\tau)$ space! *Purchase at:*
A neo-liberal trigonometry lesson (*sine*, *tangent*, and *secant*) functions of angular sector area σ

Complimentary functions (… *cosine*, and *cotangent*, *cosecant*)

Hyper-trigonometry of (*tanhρ, sinhρ, and coshρ, sechρ, and cschρ, cothρ)

Functions of hyper-angular sector area ρ related to functions of σ

Each *circular* trig function has a *hyperbolic* “country-cousin” function

...and big-party fun was had by all!

Pattern recognition aids and “Occam-sword” geometry

Relating velocity parameters $\beta=u/c$ to *rapidity* ρ to *k-angle* σ to *u/c-angle* υ

Relating wave dimensional parameters of phase wave and group wave

Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses *stellar aberration* *k-angle* σ

Review of proper time relations and basis of Epstein’s cosmic speedometer

⇒ Epstein geometry for relativistic parameters

Spectral details of per-spacetime 4-vector $(\omega_0,\omega_x,\omega_y,\omega_z)=(\omega,ck_x,ck_y,ck_z)$ transformation
Relating **Longitudinal** relativity parameter: Rapidity \(\rho = \log_e(\text{Doppler Shift}) \)

to **Transverse** relativity parameter: Stellar aberration angle \(\sigma \)

Proper time \(c\tau \) vs. **coordinate space** \(x \) - (L. C. Epstein’s “Cosmic Speedometer”)

Particles \(P \) and \(P' \) have speed \(u \) in \((x', ct')\) and speed \(c \) in \((x, c\tau)\)

Proper time \(c\tau \)

\[
ct = \sqrt{(ct')^2 - (x')^2}
\]

Coordinate \(x' = (u/c)ct' = ut' \)

Einstein time dilation:

\[
ct' = c\tau \sec \sigma = c\tau \cosh \rho = c\tau / \sqrt{1-u^2/c^2}
\]

Lorentz length contraction:

\[
L' = L \operatorname{sech} \rho = L \cos \sigma = L \cdot \sqrt{1-u^2/c^2}
\]

Proper Time asimultaneity:

\[
c\Delta\tau = L' \sinh \rho = L \cos \sigma \sinh \rho = L \cos \sigma \tan \sigma = L \sin \sigma = L / \sqrt{c^2/u^2-1} \sim L \ u/c
\]

Epstein’s trick is to turn a hyperbolic form \(c\tau = \sqrt{(ct')^2 - (x')^2} \) into a circular form: \(\sqrt{(c\tau)^2 + (x')^2} = (ct') \)

Then everything (and everybody) always goes speed \(c \) through \((x', c\tau)\) space!
Relating **Longitudinal** relativity parameter: \(\rho = \log_e(\text{Doppler Shift}) \)

to **Transverse** relativity parameter: Stellar aberration angle \(\sigma \)

Proper time \(c\tau \) **vs. coordinate space** \(x \) - (L. C. Epstein’s “Cosmic Speedometer”)

Particles \(P \) and \(P' \) have speed \(u \) in \((x', c\tau')\) and speed \(c \) in \((x, c\tau)\)

Proper time \(C\tau \)

\[
c\tau = \sqrt{(c\tau')^2 - (x')^2}
\]

Coordinate \(x' = (u/c)c\tau' = u' \)

Einstein time dilation:

\[
ct' = c\tau \sec \sigma = c\tau \cosh \rho = c\tau / \sqrt{1-u^2/c^2}
\]

Lorentz length contraction:

\[
L' = L \sech \rho = L \cos \sigma = L \sqrt{1-u^2/c^2}
\]

Proper Time simultaneity:

\[
c \Delta \tau = L' \sinh \rho = L \cos \sigma \sinh \rho
\]

\[
= L \cos \sigma \tan \sigma
\]

\[
= L \sin \sigma = L / \sqrt{\cosh^2 \rho - 1} \sim L u/c
\]

Epstein’s trick is to turn a hyperbolic form \(c\tau = \sqrt{(c\tau')^2 - (x')^2} \) (for Proper time)

into a circular form: \(\sqrt{(c\tau)^2 + (x')^2} = (c\tau') \)

Then everything (and everybody) always goes speed \(c \) through \((x', c\tau)\) space!

RelativIt Epstein Plots

In development!

Litehouse-centric
Ship-centric
Non-co-moving observer
A neo-liberal trigonometry lesson (sine, tangent, and secant) functions of angular sector area σ
Complimentary functions (... cosine, and cotangent, cosecant)
Hyper-trigonometry of ($\tanh \rho$, $\sinh \rho$, and $\cosh \rho$, $\sech \rho$, and $\csch \rho$, $\coth \rho$)
Functions of hyper-angular sector area ρ related to functions of σ
Each circular trig function has a hyperbolic “country-cousin” function
...and big-party fun was had by all!
Pattern recognition aids and “Occam-sword” geometry
Relating velocity parameters $\beta = u/c$ to rapidity ρ to k-angle σ to u/c-angle ν
Relating wave dimensional parameters of phase wave and group wave
Parameter-space symmetry points

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ
Review of proper time relations and basis of Epstein’s cosmic speedometer
Epstein geometry for relativistic parameters

\Rightarrow Spectral details of per-spacetime 4-vector $(\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)$ transformation
Spectral details of Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0,\omega_x,\omega_y,\omega_z)\)

\[\sigma = 30^\circ = 0.524 \]
\[\rho = 0.549 \]
\[e^\rho = \sqrt{3} \]
\[e^{-\rho} = 1/\sqrt{3} \]

\(\omega_0\tan\sigma = \omega_0\sinh\rho = 1/\sqrt{3}\)

\(u/c = \sin \sigma = 1/2\)
\(u/c = \tanh \rho = 1/2\)

South starlight in lighthouse frame is straight down \(x\)-axis:
\[(\omega_\downarrow, ck_{\downarrow}, ck_{\downarrow}, ck_{\downarrow}) = (\omega_0, -\omega_0, 0, 0) \]

\[+ \rho_z\]-rapidity ship frame sees starlight Lorentz transformed to:
\[(\omega'_\downarrow, ck'_{\downarrow}, ck'_{\downarrow}, ck'_{\downarrow}) = (\omega_0 \cosh \rho_z, -\omega_0, 0, -\omega_0 \sinh \rho_z) \]

\[
\begin{pmatrix}
\omega'_\downarrow \\
ck'_{\downarrow} \\
ck'_{\downarrow} \\
ck'_{\downarrow}
\end{pmatrix}
= \begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
1 & 0 \\
1 & 0 \\
-\sinh \rho_z & \cosh \rho_z
\end{pmatrix}
\begin{pmatrix}
\omega_\downarrow \\
ck_{\downarrow} \\
ck_{\downarrow} \\
ck_{\downarrow}
\end{pmatrix}
= \begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
1 & 0 \\
1 & 0 \\
-\sinh \rho_z & \cosh \rho_z
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
-\omega_0 \\
0 \\
-\omega_0 \sinh \rho_z
\end{pmatrix}
= \begin{pmatrix}
\omega_0 \cosh \rho_z \\
-\omega_0 \\
0 \\
-\omega_0 \sinh \rho_z
\end{pmatrix}
= \begin{pmatrix}
\omega_0 \sec \sigma \\
-\omega_0 \\
0 \\
-\omega_0 \tan \sigma
\end{pmatrix}
\]
Lecture 27 discusses Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0, \omega_x, \omega_y, \omega_z)\)

\[
\begin{align*}
\sigma &= 30^\circ = 0.524 \\
\rho &= 0.549 \\
e^\rho &= \sqrt{3} \\
e^{-\rho} &= 1/\sqrt{3}
\end{align*}
\]

\[
\begin{align*}
u/c &= \sin \sigma = 1/2 \\
u/c &= \tanh \rho = 1/2
\end{align*}
\]

\[
\omega_0 \tan \sigma = \omega_0 \sinh \rho = \omega_0 / \sqrt{3}
\]

For ship going \(u = c \tanh \rho\) along \(z\)-axis

\[
\begin{align*}
\text{West starlight } (\omega_0, 0, 0, -\omega_0) \text{ is blue shifted by } e^\rho &= \cosh \rho + \sinh \rho \\
&= \left(\begin{array}{c} \cosh \rho_z + \sinh \rho_z \\
0 \\
0 \\
-\sinh \rho_z - \cosh \rho_z \end{array} \right) \\
&= \omega_0 e^{+\rho_z} \\
&= \left(\begin{array}{c} \omega_0 e^{+\rho_z} \\
0 \\
0 \\
-\omega_0 e^{+\rho_z} \end{array} \right)
\end{align*}
\]

\[
\text{Blue shift factor is } e^\rho = \cosh \rho + \sinh \rho = \sec \sigma + \tan \sigma
\]

\[
\begin{align*}
\text{East starlight } (\omega_0, 0, 0, +\omega_0) \text{ is red shifted by } e^{-\rho} &= \cosh \rho - \sinh \rho \\
&= \left(\begin{array}{c} \cosh \rho_z - \sinh \rho_z \\
0 \\
0 \\
-\sinh \rho_z + \cosh \rho_z \end{array} \right) \\
&= \omega_0 e^{-\rho_z} \\
&= \left(\begin{array}{c} \omega_0 e^{-\rho_z} \\
0 \\
0 \\
-\omega_0 e^{-\rho_z} \end{array} \right)
\end{align*}
\]

\[
\text{Red shift factor is } e^{-\rho} = \cosh \rho - \sinh \rho = \sec \sigma - \tan \sigma
\]
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0, \omega_x, \omega_y, \omega_z)\)

Lorentz boost by \(\sigma=60^\circ\) or \(e^\rho=2+\sqrt{3}\)

Lighthouse view \((\omega, c\mathbf{k})\) of wave-vectors

Ship-frame view \((\omega', c\mathbf{k}')\) of wave-vectors

\[u/c = \sin \sigma = \sqrt{3}/2 \]

\[u/c = \tanh \rho = \sqrt{3}/2 \]

\[\sigma = 60^\circ = 1.047 \]

\[\rho = 1.317 \]

\[e^\rho = 2+\sqrt{3} \]

\[e^{-\rho} = 2-\sqrt{3} \]
How does Lorentz boost affect vector of arbitrary \(\theta \)?

Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0, \omega_x, \omega_y, \omega_z)\)

\[\sigma = 60^\circ = 1.047 \quad \rho = 1.317 \quad e^\rho = 2 + \sqrt{3} \quad e^{-\rho} = 2 - \sqrt{3}\]

\(\omega_0 \tan \sigma = \omega_0 \sinh \rho \)

\(\omega_0 \sec \sigma = \omega_0 \cosh \rho \)

Blue shift

\(\omega_0 e^\rho = \omega_0 (2 + \sqrt{3}) \)

Red shift

\(\omega_0 e^{-\rho} = \omega_0 (2 - \sqrt{3}) \)

Lighthouse view \((\omega, c\mathbf{k})\) of wave-vectors

Ship-frame view \((\omega', c\mathbf{k}')\) of wave-vectors

\(u/c = \sin \sigma = \sqrt{3}/2 \)

\(u/c = \tanh \rho = \sqrt{3}/2 \)
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0, \omega_x, \omega_y, \omega_z)\)

Lorentz boost by \(\sigma=60^\circ\) or \(e^{i\rho} = 2 + \sqrt{3}\)

\[
\sigma = \frac{\sqrt{3}}{2}
\]

\[
u/c = \sin \sigma = \sqrt{3}/2
\]

\[
u/c = \tanh \rho = \sqrt{3}/2
\]

\[
\sigma = 60^\circ = 1.047
\]

\[
\rho = 1.317
\]

\[
e^\rho = 2 + \sqrt{3}
\]

\[
e^{-\rho} = 2 - \sqrt{3}
\]

How does Lorentz boost affect vector of arbitrary \(\theta\)?

Lighthouse view \((\omega, c\mathbf{k})\) of wave-vectors

Ship-frame view \((\omega', c\mathbf{k}')\) of wave-vectors

Let lab starlight ray at polar angle \(\theta\) have \(\mathbf{k}^\uparrow \theta = \omega_0 (1, \cos \theta, 0, -\sin \theta)\). Then ship going \(\mathbf{u}\)-along z-axis sees:

\[
\begin{pmatrix}
\omega'_{\mathbf{k}} \\
ck'_{x,\mathbf{k}} \\
ck'_{y,\mathbf{k}} \\
ck'_{z,\mathbf{k}}
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
1 & 1 \\
-\sinh \rho_z & \cosh \rho_z
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
\omega_0 \cos \theta \\
0 \\
-\omega_0 \sin \theta
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z + \sinh \rho_z \sin \theta \\
\omega_0 \cos \theta \\
0 \\
-\sinh \rho_z - \cosh \rho_z \sin \theta
\end{pmatrix} =
\begin{pmatrix}
\sec \sigma + \tan \sigma \sin \theta \\
\cos \theta \\
0 \\
-\tan \sigma - \sec \sigma \sin \theta
\end{pmatrix}
\]
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega,\omega_x,\omega_y,\omega_z)\)

\[\sigma = 60^\circ \text{ or } e^{i\sigma} = 2 + \sqrt{3} \]

How does Lorentz boost affect vector of arbitrary \(\theta\)?

Lighthouse view \((\omega,ck)\) of wave-vectors

Ship-frame view \((\omega',ck')\) of wave-vectors

Let lab starlight ray at polar angle \(\theta\) have \(k^\uparrow = \omega_0 (1, \cos \theta, 0, -\sin \theta)\). Then ship going \(u\) along \(z\)-axis sees:

\[
\begin{pmatrix}
\omega'_{\theta} \\
ck'_{x \theta} \\
ck'_{y \theta} \\
ck'_{z \theta}
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z & - \sinh \rho_z \\
0 & 1 & 0 \\
- \sinh \rho_z & \cosh \rho_z \\
0 & 0 & - \omega_0 \sin \theta
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
\omega_0 \cos \theta \\
0 \\
- \omega_0 \sin \theta
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z + \sinh \rho_z \sin \theta \\
\omega_0 \cos \theta \\
0 \\
- \sinh \rho_z - \cosh \rho_z \sin \theta
\end{pmatrix} =
\begin{pmatrix}
\sec \sigma + \tan \sigma \sin \theta \\
\omega_0 \cos \theta \\
0 \\
- \tan \sigma - \sec \sigma \sin \theta
\end{pmatrix}
\]
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors ($\omega_0, \omega_x, \omega_y, \omega_z$)

Lorentz boost by $\sigma=60^\circ$ or $e^{i\rho}=2+\sqrt{3}$

How does Lorentz boost affect vector of arbitrary θ?

Lighthouse view ($\omega, c\mathbf{k}$) of wave-vectors

Ship-frame view ($\omega', c\mathbf{k}'$) of wave-vectors

Let lab starlight ray at polar angle θ have $\mathbf{k}^\uparrow \theta = \omega_0 (1, \cos \theta, 0, -\sin \theta)$. Then ship going \mathbf{u} along z-axis sees:

$$
\begin{pmatrix}
\omega'_{\theta} \\
ck'_x \theta \\
ck'_y \theta \\
ck'_z \theta
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
-1 & 0 \\
\sinh \rho_z & \cosh \rho_z
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
\omega_0 \cos \theta \\
0
\end{pmatrix} =
\omega_0
\begin{pmatrix}
\cosh \rho_z + \sinh \rho_z \sin \theta \\
\cos \theta \\
-\sinh \rho_z - \cosh \rho_z \sin \theta
\end{pmatrix} =
\omega_0
\begin{pmatrix}
\sec \sigma + \tan \sigma \sin \theta \\
\cos \theta \\
-\tan \sigma - \sec \sigma \sin \theta
\end{pmatrix}
$$
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0,\omega_x,\omega_y,\omega_z)\)

Lorentz boost by \(\sigma=60^\circ\) or \(e^{+\rho}=2+\sqrt{3}\)

How does Lorentz boost affect vector of arbitrary \(\theta\)?

Let lab starlight ray at polar angle \(\theta\) have \(k^\uparrow = \omega_0 (1,\cos \theta,0,-\sin \theta)\). Then ship going \(u\) along \(z\)-axis sees:

\[
egin{pmatrix}
\omega'_{\theta} \\
ck'_{x\theta} \\
ck'_{y\theta} \\
ck'_{z\theta}
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
0 & 1 \\
-\sinh \rho_z & \cosh \rho_z
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
\omega_0 \cos \theta \\
0
\end{pmatrix}
= \omega_0
\begin{pmatrix}
\cosh \rho_z + \sinh \rho_z \sin \theta \\
\cos \theta \\
0
\end{pmatrix} = \omega_0
\begin{pmatrix}
\sec \sigma + \tan \sigma \sin \theta \\
\cos \theta \\
0
\end{pmatrix}
= \omega_0
\begin{pmatrix}
-\tan \sigma - \sec \sigma \sin \theta \\
0 \\
-\sec \sigma \sin \theta
\end{pmatrix}
\]
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0,\omega_x,\omega_y,\omega_z) \)

Lorentz boost by \(\sigma=60^\circ \) or \(e^{i\rho}=2+\sqrt{3} \)

How does Lorentz boost affect vector of arbitrary \(\theta \) ?

Let lab starlight ray at polar angle \(\theta \) have \(k^\uparrow_{\theta} = \omega_0 (1,\cos \theta,0,-\sin \theta) \). Then ship going \(u \) along \(z \)-axis sees:

\[
\begin{pmatrix}
\omega'_{\theta}
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
1 & 1 \\
-\sinh \rho_z & \cosh \rho_z \\
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
\omega_0 \cos \theta \\
-\omega_0 \sin \theta \\
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z + \sinh \rho_z \sin \theta \\
\cos \theta \\
-\sinh \rho_z - \cosh \rho_z \sin \theta \\
\end{pmatrix} =
\begin{pmatrix}
\sec \sigma + \tan \sigma \sin \theta \\
\cos \theta \\
-\tan \sigma - \sec \sigma \sin \theta \\
\end{pmatrix}
\]

Lighthouse view \((\omega,ck) \) of wave-vectors

Ship-frame view \((\omega',ck') \) of wave-vectors
Fig. 2.B.5 Space-Space-Time plot of world lines for Lighthouses. North Lighthouse blink waves trace light cones.