Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations).

2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device

Ship frame: time dilation \(\Delta = \cosh \rho = 1.15\) of Lighthouse blinks

Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame

Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies

Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time

Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho\)

Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

“Occam-sword” geometry: A pattern recognition aid

Relating velocity parameter \(\beta = u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)

Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)

Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
Simple 2005 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots.
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations).

2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device

Ship frame: time dilation \(\Delta = \cosh \rho\) of Lighthouse blinks

Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame

Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies

Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time

Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho\)

Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

“Occam-sword” geometry: A pattern recognition aid

Relating velocity parameter \(\beta = u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)

Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)

Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

RelativIt Web Simulation

Relativistic Events in Main Lighthouse’s Frame

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>Lighthouse (space)</th>
<th>Lighthouse (time)</th>
<th>Ship (space)</th>
<th>Ship (time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event 0:</td>
<td>Ship passes Main Lighthouse.</td>
<td>(x = 0)</td>
<td>(ct = 0)</td>
<td>(x' = 0)</td>
<td>(ct' = 0)</td>
</tr>
<tr>
<td>Event 1:</td>
<td>Ship gets hit by first blink from Main Lighthouse.</td>
<td>(x = \frac{1}{\sqrt{3}})</td>
<td>(ct = 0)</td>
<td>(x' = \frac{1}{\sqrt{3}})</td>
<td>(ct' = 0)</td>
</tr>
<tr>
<td>Event 2:</td>
<td>Main Lighthouse blinks second time.</td>
<td>(x = \frac{1}{\sqrt{3}})</td>
<td></td>
<td>(x' = \frac{1}{\sqrt{3}})</td>
<td></td>
</tr>
</tbody>
</table>

To check whether to use matrix \(\begin{pmatrix} \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{pmatrix}\) or else \(\begin{pmatrix} \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{pmatrix}\) just check that \(x' = 0 = 2x + 1ct\) or: \(x = -ct/2\) gives correct path.

\[
\begin{pmatrix} x' \\ ct' \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \frac{2}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} 1.155 \\ 0.577 \end{pmatrix} \]
2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix}
x' \\
ct'
\end{pmatrix} = \begin{pmatrix}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
x \\
ct
\end{pmatrix} = \begin{pmatrix}
\frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
\frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix} \begin{pmatrix}
x \\
ct
\end{pmatrix} = \begin{pmatrix}
\frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}}
\end{pmatrix} \begin{pmatrix}
x \\
ct
\end{pmatrix} = \begin{pmatrix}
1.155 & 0.577 \\
0.577 & 1.155
\end{pmatrix} \begin{pmatrix}
x \\
ct
\end{pmatrix}
\]

Lighthouse Graph
Ref time \(t = 0.25\) sec. \(v/c = -0.50\) litesec/sec.

\(\beta = \frac{1}{2}\) \(e^\rho = \sqrt{3}\)
\[\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta\]
\[\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577\]

Click & Drag at bottom to control animation position

Event 0: Ship passes Main Lighthouse.
Event 1: Ship gets hit by first blink from Main Lighthouse.
Event 2: Main Lighthouse blinks second time.

\[
\text{(Main Lighthouse space)} \quad x = 0 \\
\text{(Main Lighthouse time)} \quad ct = 0
\]

\[
\text{(Ship space)} \quad x' = 0 \\
\text{(Ship time)} \quad ct' = 0
\]

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=101
2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix}
=
\begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
=
\begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} \frac{1}{\sqrt{1-\beta^2}} \\
 \frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
=
\begin{pmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

\[
(x') = \left(\frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} \right) (x) = \left(\frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} \right) \left(\frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} \right) (x)
\]

for:

\[
\beta = \frac{1}{2} \quad \text{or:} \quad e^\rho = \sqrt{3}
\]

\[
\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta
\]

\[
\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577
\]

Event 0:
Ship passes Main Lighthouse.

\[
\begin{align*}
(x & = 0) \\
(ct & = 0)
\end{align*}
\]

Event 1: Ship gets hit by first blink from Main Lighthouse.

\[
\begin{align*}
(x & = -1.00) \\
(ct & = 2.00)
\end{align*}
\]

Event 2: Main Lighthouse blinks second time.

\[
\begin{align*}
(x & = 0) \\
(ct & = 2.00)
\end{align*}
\]

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=101
2015 animations of lighthouses and ships in (x,y) scenarios and Minkowski (x,ct) plots

RelativIt Web Simulation
Relativistic Events in
Main Lighthouse’s Frame

$\left(\begin{array}{c} x' \\ ct' \end{array} \right) = \left(\begin{array}{cc} \cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho \end{array} \right) \left(\begin{array}{c} x \\ ct \end{array} \right) = \left(\begin{array}{c} \frac{1}{\sqrt{1-\beta^2}} \frac{\beta}{\sqrt{1-\beta^2}} \\ \frac{\beta}{\sqrt{1-\beta^2}} \frac{2}{\sqrt{1-\beta^2}} \end{array} \right) \left(\begin{array}{c} x \\ ct \end{array} \right) = \left(\begin{array}{c} 1.155 \\ 0.577 \end{array} \right) \left(\begin{array}{c} x \\ ct \end{array} \right)$

RelativIt Web Simulation
Relativistic Events in
Main Lighthouse’s Frame

Lighthouse time t = 0.756

Ship v/c (Rel.to Lthse.)= -0.500
Ship v/c (Rel.to Obs.)= -0.500
Lthse v/c (Rel.to Obs.)= 0.000

Event 0: Ship passes Main Lighthouse.
Event 1: Ship gets hit by first blink from Main Lighthouse.
Event 2: Main Lighthouse blinks second time.

(Lighthouse space) $x = 0$
(Lighthouse time) $ct = 0$
(Ship space) $x' = 0$
(Ship time) $ct' = 0$

$cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta$
$\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577$

Click & Drag at bottom to control animation position

Caution: May be confusing

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=101
http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=102
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations).

2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots.

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device.

- Ship frame: time dilation \(\Delta = \cosh \rho = 1.15\) of Lighthouse blinks.

 Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame.

 Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots.

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies.

- Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time.

 Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho\).

 Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\).

Per-spacetime 4-vector \((\omega_0,\omega_x,\omega_y,\omega_z) = (\omega,ck_x,ck_y,ck_z)\) transformation.

- “Occam-sword” geometry: A pattern recognition aid.

 Relating velocity parameter \(\beta = u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\).

 Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\).

 Each circular trig function has a hyperbolic “country-cousin” function.

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\).
Two Famous-Name Coefficients

This number is called an: Einstein time-dilation
(dilated by 25% here)

This number is called a: Lorentz length-contraction
(contractied by 20% here)

Old-Fashioned Notation

Relativistic Terms (Dual plot w/expanded table)
Space-time grid intersections mark Lorentz contraction and Einstein time dilation.
2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

RelativIt Web Simulation

Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix}
= \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
= \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}}
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
= \begin{pmatrix}
 \frac{2}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}
 0.577 \\
 1.155
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix}
= \begin{pmatrix}
 \frac{2}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}
 1.003 \\
 0
\end{pmatrix}
= \begin{pmatrix}
 1.155 \\
 0.577
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

Lighthouse Graph

Ref time \(t = 1.00\) sec.

\(v/c = -0.50\) lites/sec.

Ship registers 1\(^{st}\) Lighthouse Blink

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix}
= \begin{pmatrix}
 \frac{2}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}
 0 \\
 0
\end{pmatrix}
= \begin{pmatrix}
 \frac{1}{\sqrt{3}} \\
 \frac{2}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}
 0.577 \\
 1.155
\end{pmatrix}
\begin{pmatrix}
 \sinh \rho \\
 \cosh \rho
\end{pmatrix}
\]

\[
\frac{c}{\sqrt{1-\beta^2}} = \sqrt{3} = \Delta
\]

\[
\sinh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155
\]

\[
\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577
\]

Event 0:
Ship passes Main Lighthouse.

\[(\text{Lighthouse space}) \quad x = 0 \quad (\text{Lighthouse time}) \quad ct = 0\]

Event 1: Ship gets hit by first blink from Main Lighthouse.

\[(\text{Ship space}) \quad x' = 0 \quad (\text{Ship time}) \quad ct' = 0\]

\[
\begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

Event 2: Main Lighthouse blinks second time.

\[(\text{Lighthouse space}) \quad x = 0 \quad (\text{Lighthouse time}) \quad ct = 0\]

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix}
\]

Caution: May be confusing

\[http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=101\]

\[http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=102\]
Ship frame: time dilation $\Delta = \cosh \rho = 1.155$ of Lighthouse blinks

Ref time $t = 1.0$ sec.

Event 1
Event 2

Ship registers 1st Lighthouse Blink
at its position

\[
\begin{pmatrix} x' \\ ct' \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{3}} & 1 \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} 0.577 \\ 1.155 \end{pmatrix} = \begin{pmatrix} \sinh \rho \\ \cosh \rho \end{pmatrix}
\]
Ship frame: time dilation $\Delta = \cosh \rho = 1.155$ of Lighthouse blinks

RelativIt Web Simulation
Relativistic Events in Main Lighthouse's Frame

$$\begin{pmatrix} x' \\ ct' \end{pmatrix} = \begin{pmatrix} \cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\ \frac{-\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}} \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \frac{2}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 1.155 \\ 0.577 \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix}$$

For:
$$\beta = \frac{1}{2} \quad e^\rho = \sqrt{3}$$

$cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta$

$\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577$

Event 0:
Ship passes Main Lighthouse.

(Lighthouse space) $x = 0$
(Lighthouse time) $ct = 0$
(Ship space) $x' = 0$
(Ship time) $ct' = 0$

Event 1: Ship gets hit by first blink from Main Lighthouse.

$Lighthouse Graph$
Ref time $t = 1.25$ sec.
$v/c = 0.5$ litesec/sec.

Event 2: Main Lighthouse blinks second time.

$Lighthouse Graph$
Ship 1
$Lighthouse Graph$
Main Lighthouse

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=101
http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=102

Caution: May be confusing

Tuesday, April 19, 2016
2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

RelativIt Web Simulation

Relativistic Events in Main Lighthouse’s Frame

\[
\begin{bmatrix}
 x' \\ ct'
\end{bmatrix} = \begin{bmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{bmatrix} \begin{bmatrix}
 x \\ ct
\end{bmatrix} = \begin{bmatrix}
 \frac{1}{\sqrt{1-\beta^2}} \frac{1}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{bmatrix} \begin{bmatrix}
 x \\ ct
\end{bmatrix} = \begin{bmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{bmatrix} \begin{bmatrix}
 x \\ ct
\end{bmatrix}
\]

Lighthouse Graph

Ref time \(t = 1.50\) sec.

\(v/c = -0.50\) litesecs/sec.

Event 0:
Ship passes Main Lighthouse.

\(\beta = \frac{1}{2}\)
\(\rho = \sqrt{3}\)

\(\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta\)
\(\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577\)

Event 1: Ship gets hit by first blink from Main Lighthouse.

\(\text{(Lighthouse space)} \quad x = 0\)
\(\text{(Lighthouse time)} \quad ct = 0\)

Event 2: Main Lighthouse blinks second time.

\(\text{(Ship space)} \quad x' = 0\)
\(\text{(Ship time)} \quad ct' = 0\)

Click & Drag at bottom to control animation position.
2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}} \frac{2}{\sqrt{3}}
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

RelativIt Web Simulation
Relativistic Events in Main Lighthouse’s Frame

\(\text{Lighthouse time } t = 1.753 \)
\(\text{Ship v/c (Rel. to Lhse.)} = -0.500 \)
\(\text{Ship v/c (Rel. to Obs.)} = -0.500 \)
\(\text{Lhse v/c (Rel. to Obs.)} = 0.000 \)

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}} \frac{2}{\sqrt{3}}
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

\[\text{for:} \quad \beta = \frac{1}{2} \quad \text{or:} \quad e^\rho = \sqrt{3}\]
\[\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta\]
\[\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577\]

<table>
<thead>
<tr>
<th>Event 0: Ship passes Main Lighthouse.</th>
<th>Event 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Event 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) (x = 0)</td>
<td>(x =)</td>
<td>(x =)</td>
</tr>
<tr>
<td>(Lighthouse time) (ct = 0)</td>
<td>(ct =)</td>
<td>(ct =)</td>
</tr>
<tr>
<td>(Ship space) (x' = 0)</td>
<td>(x' =)</td>
<td>(x' =)</td>
</tr>
<tr>
<td>(Ship time) (ct' = 0)</td>
<td>(ct' =)</td>
<td>(ct' =)</td>
</tr>
</tbody>
</table>
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations).

2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device

Ship frame: time dilation \(\Delta = \cosh \rho = 1.15\) of Lighthouse blinks

Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame

Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies

Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time

Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho\)

Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0,\omega_x,\omega_y,\omega_z) = (\omega,ck_x,ck_y,ck_z)\) transformation

“Occam-sword” geometry: A pattern recognition aid

Relating velocity parameter \(\beta = u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)

Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)

Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame

\[
\begin{pmatrix}
 x' \\
 c't'
\end{pmatrix} = \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
 x \\
 c't
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix} \begin{pmatrix}
 x \\
 c't
\end{pmatrix} = \begin{pmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{pmatrix} \begin{pmatrix}
 x \\
 c't
\end{pmatrix}
\]

Lighthouse time \(t = 2.003\)

Ship v/c (Rel to Lhse.) = -0.500

Ship v/c (Rel to Obs.) = -0.500

Lhse v/c (Rel to Obs.) = 0.000

Lighthouse Graph

Ref time \(t = 2.00\) sec.

\(v/c = -0.50\) litesec/sec.

Event 0:
Ship passes Main Lighthouse.

<table>
<thead>
<tr>
<th>Lighthouse space</th>
<th>(x = 0)</th>
<th>(x' = 0)</th>
<th>(x' = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighthouse time</td>
<td>(ct = 0)</td>
<td>(ct = 2.00)</td>
<td>(ct = 2.00)</td>
</tr>
</tbody>
</table>

Event 1: Ship gets hit by first blink from Main Lighthouse.

<table>
<thead>
<tr>
<th>Ship space</th>
<th>(x = -1.00)</th>
<th>(x' = 0)</th>
<th>(x' = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship time</td>
<td>(ct = 2.00)</td>
<td>(ct' = 1.73)</td>
<td>(ct' = 1.73)</td>
</tr>
</tbody>
</table>

Event 2: Main Lighthouse blinks second time.

<table>
<thead>
<tr>
<th>Ship space</th>
<th>(x = 0)</th>
<th>(x' = 0)</th>
<th>(x' = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship time</td>
<td>(ct = 0)</td>
<td>(ct = 2.00)</td>
<td>(ct = 2.00)</td>
</tr>
</tbody>
</table>

Caution: May be confusing

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=101

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=102
2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Relativistic Events in Main Lighthouse’s Frame

\[
\begin{align*}
\begin{pmatrix} x' \\ ct' \end{pmatrix} &= \begin{pmatrix} \cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\
&= \frac{1}{\sqrt{1-\beta^2}} \begin{pmatrix} 1 & -\beta \\ \beta & 1 \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} \\
&= \begin{pmatrix} \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 1.155 \\ 0.577 \end{pmatrix} \\
&= \begin{pmatrix} 0.577 \\ 1.155 \end{pmatrix}
\end{align*}
\]

Lighthouse Graph
Ref time \(t = 2.00\) sec.
\(v/c = -0.50\) litesec/sec.

Key point: Any event happening to you has your \(x\)-value set to zero!

Event 0:
Ship passes Main Lighthouse.

Event 1: Ship gets hit by first blink from Main Lighthouse.
(Lighthouse space) \(x = 0\)
(Lighthouse time) \(ct = 0\)
(Ship space) \(x' = 0\)
(Ship time) \(ct' = 0\)

Event 2: Main Lighthouse blinks second time.
\(x = 0\)
\(ct = 2.00\)
\(x' = \)
\(ct' = 1.73\)

RelativIt Web Simulation
Relativistic Events in Main Lighthouse’s Frame

Lighthouse time \(t = 2.003\)
Ship \(v/c\) (Rel.to Lhse.)\(=0.500\)
Ship \(v/c\) (Rel.to Obs.)\(=-0.500\)
Lhse \(v/c\) (Rel.to Obs.)\(=0.000\)

Click & Drag at bottom to control animation position

\(\beta = \frac{1}{2}\)
\(e^\rho = \sqrt{3}\)

\(\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = 1.155 = \Delta\)

\(\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = 0.577\)
2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

RelativIt Web Simulation
Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix} x' \\ ct' \end{pmatrix} = \begin{pmatrix} \cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{1-\beta^2}} - \frac{\beta}{\sqrt{1-\beta^2}} \\ \frac{\beta}{\sqrt{1-\beta^2}} \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} 1.155 \\ 0.577 \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} 0.577 \\ 1.155 \end{pmatrix}
\]

Lighthouse Graph
Ref time \(t = 2.00\) sec.
\(v/c = -0.50\) litesec/sec.

\(\Delta = 2.30\)

Lighthouse time \(t = 2.003\)
Ship \(v/c (Rel.\ Lhse.) = -0.500\)
Ship \(v/c (Rel.\ Obs.) = -0.500\)
Lhse \(v/c (Rel.\ Obs.) = 0.000\)

Event 1: Ship passes Main Lighthouse.
Event 1: Ship gets hit by first blink from Main Lighthouse.
Event 2: Main Lighthouse blinks second time.

\[
\begin{pmatrix} x' \\ ct' \end{pmatrix} = \begin{pmatrix} 2 \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} 2 \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} 1.15 \\ 2.30 \end{pmatrix}
\]

\(\Delta = 2.30\)

\(\beta = \frac{1}{2}\)
\(e^\rho = \sqrt{3}\)

\[
\begin{align*}
\cosh \rho &= \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta \\
\sinh \rho &= \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577
\end{align*}
\]

Event 0:
Ship passes Main Lighthouse.

\[
\begin{align*}
\text{(Lighthouse space)} & \quad x = 0 \\
\text{(Lighthouse time)} & \quad ct = 0
\end{align*}
\]

Event 1: Ship gets hit by first blink from Main Lighthouse.

\[
\begin{align*}
\text{(Lighthouse space)} & \quad x = -1.00 \\
\text{(Lighthouse time)} & \quad ct = 2.00
\end{align*}
\]

Event 2: Main Lighthouse blinks second time.

\[
\begin{align*}
\text{(Ship space)} & \quad x' = 0 \\
\text{(Ship time)} & \quad ct' = 1.73
\end{align*}
\]

\[
\begin{align*}
\text{(Ship space)} & \quad x' = x - \frac{1}{\sqrt{3}} \\
\text{(Ship time)} & \quad ct' = \frac{2}{\sqrt{3}}
\end{align*}
\]

Tuesday, April 19, 2016
2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{1}{\sqrt{1-\beta^2}} \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}}
\end{pmatrix} \begin{pmatrix}
 0 \\
 2
\end{pmatrix} = \begin{pmatrix}
 2 \frac{1}{\sqrt{3}} \\
 \frac{2}{\sqrt{3}}
\end{pmatrix} = \begin{pmatrix}
 2 \\
 \frac{1}{\sqrt{3}}
\end{pmatrix} = \begin{pmatrix}
 1.15 \\
 2.30
\end{pmatrix}
\]

Event 0:
Ship passes Main Lighthouse.

\[
\begin{align*}
\beta &= \frac{1}{2}, & e^\rho &= \sqrt{3} \\
\cosh \rho &= \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta \\
\sinh \rho &= \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577
\end{align*}
\]

<table>
<thead>
<tr>
<th>Event 0: Ship passes Main Lighthouse.</th>
<th>Event 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Event 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) (x = 0)</td>
<td>(Lighthouse time) (ct = 0)</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>(Ship space) (x' = 0)</td>
<td>(Ship time) (ct' = 0)</td>
<td>(x' = c \Delta)</td>
</tr>
<tr>
<td>(x = -1.00)</td>
<td>(ct = 2.00)</td>
<td>(ct' = 2\Delta = 2.30)</td>
</tr>
</tbody>
</table>
RelativIt Web Simulation
Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix}
= \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

15 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Event 0:
Ship passes Main Lighthouse.

\[(Lighthouse \, space) \quad x = 0\]
\[(Lighthouse \, time) \quad ct = 0\]

\[x' = 0 \quad \text{for:} \quad \beta = \frac{1}{2} \quad \eta^2 = \sqrt{3}\]
\[
cosh \rho = \frac{1}{\sqrt{1 - \beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta
\]
\[
\sinh \rho = \frac{\beta}{\sqrt{1 - \beta^2}} = \frac{1}{\sqrt{3}} = 0.577
\]

Event 1: Ship gets hit by first blink from Main Lighthouse.

\[(Lighthouse \, space) \quad x = -1.00\]
\[(Lighthouse \, time) \quad ct = 2.00\]

\[x' = 0 \quad \Delta = 2.30\]

Event 2: Main Lighthouse blinks second time.

\[(Lighthouse \, space) \quad x = 0\]
\[(Lighthouse \, time) \quad ct = 2.00\]

Caution: May be confusing
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations).

2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device

Ship frame: time dilation \(\Delta = \cosh \rho = 1.15\) of Lighthouse blinks

Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame

\(\rightarrow\) Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies

Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time

Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho\)

Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

“Occam-sword” geometry: A pattern recognition aid

Relating velocity parameter \(\beta = u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)

Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)

Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

RelativIt Web Simulation

Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix}
=
\begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
=
\begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
=
\begin{pmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

Ship time \(t' = 0.006\)

Ship v/c (Rel. to Lthse.) = 0.500

Ship v/c (Rel. to Obs.) = 0.000

Lthse v/c (Rel. to Obs.) = 0.500

Ship Graph

Ref time \(t = 0.01\) sec.

\(v/c = -0.50\) litesec/sec.

Event 0: Ship passes Main Lighthouse.

Event 1: Ship gets hit by first blink from Main Lighthouse.

Event 2: Main Lighthouse blinks second time.

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix}
=
\begin{pmatrix}
 \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}
 0 \\
 2
\end{pmatrix}
=
\begin{pmatrix}
 2 & \frac{1}{\sqrt{3}} \\
 \frac{2}{\sqrt{3}} & 2
\end{pmatrix}
\begin{pmatrix}
 \frac{2}{4} \\
 \frac{1}{\sqrt{3}}
\end{pmatrix}
=
\begin{pmatrix}
 1.15 \\
 2.30
\end{pmatrix}
\]

for: \(\beta = \frac{1}{2}\)

\(e^\rho = \sqrt{3}\)

\[\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta\]

\[\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577\]

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=104
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Relativistic Events in
Main Lighthouse’s Frame

\[
\begin{align*}
\begin{pmatrix} x' \\ ct' \end{pmatrix} &= \begin{pmatrix} \cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{1-\beta^2}} \frac{\beta}{\sqrt{1-\beta^2}} \\ \frac{\beta}{\sqrt{1-\beta^2}} \frac{1}{\sqrt{1-\beta^2}} \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} \frac{2}{\sqrt{3}} \\ \frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 1.155 \\ 0.577 \end{pmatrix} = \begin{pmatrix} 1.155 \\ 0.577 \end{pmatrix}, \\
\end{align*}
\]

for: \(\beta = \frac{1}{2}\) \(e^\rho = \sqrt{3}\)

\[
\begin{align*}
\cosh \rho &= \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta \\
\sinh \rho &= \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577
\end{align*}
\]

Ship time \(t' = 0.256\)
Ship \(v/c\) (Rel. to Lhse.) = 0.500
Ship \(v/c\) (Rel. to Obs.) = 0.000
Lhse \(v/c\) (Rel. to Obs.) = 0.500

Ship Graph
Ref time \(t = 0.26\) sec.
\(v/c = -0.50\) litesec/sec.

Event 0:
Ship passes Main Lighthouse.
Event 1: Ship gets hit by first blink from Main Lighthouse.
Event 2: Main Lighthouse blinks second time.

<table>
<thead>
<tr>
<th>Event 0: Ship passes Main Lighthouse.</th>
<th>Event 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Event 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) (x = 0)</td>
<td>(x = -1.00)</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>(Lighthouse time) (ct = 0)</td>
<td>(ct = 2.00)</td>
<td>(ct = 2.00)</td>
</tr>
<tr>
<td>(Ship space) (x' = 0)</td>
<td>(x' = 0)</td>
<td>(x' = c \Delta)</td>
</tr>
<tr>
<td>(Ship time) (ct' = 0)</td>
<td>(ct' = 1.73)</td>
<td>(ct' = 2\Delta = 2.30)</td>
</tr>
</tbody>
</table>

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=104
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

RelativIt Web Simulation

Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

Ship time \(t' = 0.506\)

Ship \(v/c\) (Rel. to Lhse.) = 0.500

Ship \(v/c\) (Rel. to Obs.) = 0.000

Lhse \(v/c\) (Rel. to Obs.) = 0.500

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}}
\end{pmatrix} \begin{pmatrix}
 0 \\
 2
\end{pmatrix} = \begin{pmatrix}
 2 \frac{1}{\sqrt{3}} \\
 2 \frac{2}{\sqrt{3}}
\end{pmatrix} = \left(\frac{2}{4} \right) \frac{1}{\sqrt{3}} = \left(1.15 \right) \frac{2.30}{2}
\]

For: \(\beta = \frac{1}{2}\)

\(e^\rho = \sqrt{3}\)

\(\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta\)

\(\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577\)

Event 0: Ship passes Main Lighthouse.

Event 1: Ship gets hit by first blink from Main Lighthouse.

Event 2: Main Lighthouse blinks second time.

\[
\begin{array}{c|c|c}
\text{(Lighthouse space)} & x = 0 & x = -1.00 \\
\text{(Lighthouse time)} & ct = 0 & ct = 2.00 \\
\text{(Ship space)} & x' = 0 & x' = 0 \\
\text{(Ship time)} & ct' = 0 & ct' = 1.73 \\
\end{array}
\]

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=104

Tuesday, April 19, 2016
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{-\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix} \begin{pmatrix}
 1.155 \\
 0.577
\end{pmatrix}
\]

RelativIt Web Simulation

Relativistic Events in Main Lighthouse’s Frame

Event 0:
Ship passes Main Lighthouse.

Event 1: Ship gets hit by first blink from Main Lighthouse.

Event 2: Main Lighthouse blinks second time.

(Lighthouse space) \(x = 0\)

(Lighthouse time) \(ct = 0\)

(Ship space) \(x' = 0\)

(Ship time) \(ct' = 0\)

\(\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta\)

\(\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577\)

\(\beta = \frac{1}{2}\)

\(e^\rho = \sqrt{3}\)

\(\text{http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=104}\)

Click & Drag at bottom to control animation speed

Click & Drag at bottom to control animation speed

for:
\(e^\rho = \sqrt{3}\)

or:
\(\beta = \frac{1}{2}\)

\(\cosh \rho = \frac{2}{\sqrt{3}} = 1.155 = \Delta\)

\(\sinh \rho = \frac{1}{\sqrt{3}} = 0.577\)

Ship Graph

Ref time \(t = 0.76\) sec.

\(v/c = -0.50\) litesec/sec.

\(\Delta = 2.30\)

\(\text{http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=104}\)
Simple 2015 animations of lighthouses and ships in (x,y) scenarios and Minkowski (x,ct) plots

RelativIt Web Simulation
Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}}
\end{pmatrix} \begin{pmatrix}
 1.155 \\
 0.577
\end{pmatrix} = \begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

Event 0: Ship passes Main Lighthouse.

- **Lighthouse space:** $x = 0$
- **Lighthouse time:** $ct = 0$

Event 1: Ship gets hit by first blink from Main Lighthouse.

- **Ship space:** $x' = 0$
- **Ship time:** $ct' = 0$
- **Main Lighthouse:** $x = -1.00$ $ct = 2.00$

Event 2: Main Lighthouse blinks second time.

- **Ship space:** $x' = c \Delta$
- **Ship time:** $ct' = 2\Delta = 2.30$

For: $\beta = \frac{1}{2}$ $e^\rho = \sqrt{3}$

\[
cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta
\]

\[
\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577
\]

\[\text{http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=104}\]
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations).
2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots
Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device
 Ship frame: time dilation \(\Delta=\cosh \rho = 1.15\) of Lighthouse blinks
 Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame
Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots
Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies

\[\rightarrow\] Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time
 Pythagorean derivation of time-dilation factor \(\Delta=\cosh \rho\)
 Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0,\omega_x,\omega_y,\omega_z) = (\omega,ck_x,ck_y,ck_z)\) transformation
 “Occam-sword” geometry: A pattern recognition aid
 Relating velocity parameter \(\beta=u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)
 Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)
 Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

RelativIt Web Simulation
Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix}\begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix}\begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{pmatrix}\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

Ship time \(t' = 1.006\)
Ship \(v/c\) (Rel. to Lhsc.) = -0.500
Ship \(v/c\) (Rel. to Obs.) = 0.000
Lhsc \(v/c\) (Rel. to Obs.) = 0.500

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}}
\end{pmatrix}\begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 -\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} \\
 -\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}
\end{pmatrix} = \begin{pmatrix}
 0 \\
 \sqrt{3}
\end{pmatrix}
\]

for: \(\beta = \frac{1}{2}\) or: \(e^\rho = \sqrt{3}\)
\(\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta\)
\(\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577\)

Event 0:
Ship passes Main Lighthouse.

<table>
<thead>
<tr>
<th>(Lighthouse space)</th>
<th>(x = 0)</th>
<th>(x = -1.00)</th>
<th>(x = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse time)</td>
<td>(ct = 0)</td>
<td>(ct = 2.00)</td>
<td>(ct = 2.00)</td>
</tr>
</tbody>
</table>

Event 1: Ship gets hit by first blink from Main Lighthouse.

<table>
<thead>
<tr>
<th>(Ship space)</th>
<th>(x' = 0)</th>
<th>(x' = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ship time)</td>
<td>(ct' = 0)</td>
<td>(ct' = 1.73)</td>
</tr>
</tbody>
</table>

Event 2: Main Lighthouse blinks second time.

<table>
<thead>
<tr>
<th>(Ship space)</th>
<th>(x' = c \Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ship time)</td>
<td>(ct' = 2\Delta = 2.30)</td>
</tr>
</tbody>
</table>

Caution: May be confusing
http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=103

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=104

Tuesday, April 19, 2016
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

\[
\begin{align*}
(x') &= \left(\cosh \rho \sinh \rho \right) (x) \\
(\ct') &= \left(\frac{\beta - 1}{\sqrt{1 - \beta^2}} \right) (\ct)
\end{align*}
\]

RelativIt Web Simulation
Relativistic Events in Main Lighthouse’s Frame

For:
\[\beta = \frac{1}{2} \]
\[e^\rho = \sqrt{3} \]

\[
\begin{align*}
\cosh \rho &= \frac{1}{\sqrt{1 - \beta^2}} = 1.155 = \Delta \\
\sinh \rho &= \frac{\beta}{\sqrt{1 - \beta^2}} = 0.577
\end{align*}
\]

Ship Graph
Ref time \(t = 1.15 \) sec.
\(v/c = -0.50 \) litesec/sec.

Ship time \(t' = 1.153 \)
Ship \(v/c \) (Rel.to Lthse.) = -0.500
Ship \(v/c \) (Rel.to Obs.) = 0.000
Lthse \(v/c \) (Rel.to Obs.) = 0.500

\[
\begin{align*}
\left(\begin{array}{c} x' \\ \ct' \end{array} \right) &= \left(\frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} \right) \left(\begin{array}{c} x \\ \ct \end{array} \right) = \left(\begin{array}{c} 0 \\ \sqrt{3} \end{array} \right)
\end{align*}
\]

Event 0:
Ship passes Main Lighthouse.

Event 1: Ship gets hit by first blink from Main Lighthouse.

Event 2: Main Lighthouse blinks second time.

<table>
<thead>
<tr>
<th>Event 0: Ship passes Main Lighthouse.</th>
<th>Event 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Event 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) (x = 0)</td>
<td>(x = -1.00)</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>(Lighthouse time) (ct = 0)</td>
<td>(ct = 2.00)</td>
<td>(ct = 2.00)</td>
</tr>
<tr>
<td>(Ship space) (x' = 0)</td>
<td>(x' = 0)</td>
<td>(x' = c \Delta)</td>
</tr>
<tr>
<td>(Ship time) (ct' = 0)</td>
<td>(ct' = 1.73)</td>
<td>(ct' = 2 \Delta = 2.30)</td>
</tr>
</tbody>
</table>

Click & Drag at bottom to control animation speed

\[
\begin{align*}
\left(\begin{array}{c} x' \\ \ct' \end{array} \right) &= \left(\begin{array}{c} 2 \\ 4 \end{array} \right) \frac{1}{\sqrt{3}} = \left(\begin{array}{c} 1.15 \\ 2.30 \end{array} \right)
\end{align*}
\]
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

RelativIt Web Simulation

Relativistic Events in Main Lighthouse’s Frame

\[
\left(x', ct' \right) = \left(\cosh \rho \sinh \rho, \sinh \rho \cosh \rho \right) \left(x, ct \right) = \left(\frac{1 - \beta^2}{\sqrt{1 - \beta^2} \sqrt{1 - \beta^2}}, \frac{\beta}{\sqrt{1 - \beta^2}} \right) \left(x, ct \right) = \left(\frac{2 \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}, \frac{2 \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}} \right) \left(1.155, 0.577 \right) \left(x, ct \right)
\]

Ship Graph

Ref time \(t = 1.51 \) sec.

\(v/c = -0.50 \) litesec/sec.

Ship time \(t' = 1.506 \)

Ship \(v/c \) (Rel.to Lthse.) \(= -0.500 \)

Ship \(v/c \) (Rel.to Obs.) \(= 0.000 \)

Lthse \(v/c \) (Rel.to Obs.) \(= 0.500 \)

Event 0:

Ship passes Main Lighthouse.

(Lighthouse space) \(x = 0 \)

(Lighthouse time) \(ct = 0 \)

Event 1: Ship gets hit by first blink from Main Lighthouse.

(Ship space) \(x' = 0 \)

(Ship time) \(ct' = 0 \)

\(x = 0 \)

(Ship space) \(x' = 0 \)

(Ship time) \(ct' = 1.73 \)

\(c \Delta = 1.155 \)

\[\frac{2}{\sqrt{3}} = \frac{3}{2} \]

\(\frac{\beta}{\sqrt{1 - \beta^2}} = 0.577 \)

\(\cosh \rho \frac{1}{\sqrt{1 - \beta^2}} = 1.155 \)

\[\frac{\beta}{\sqrt{1 - \beta^2}} = 0.577 \]

\(e^\rho = \sqrt{3} \)

\(\beta = \frac{1}{2} \)

(for: or:)

\[
\left(\frac{2 \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}, \frac{2 \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}} \right) \left(\frac{0}{2} \right) = \left(\frac{2 \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}, \frac{2 \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}} \right) = \left(\frac{2}{4} \right) \frac{1}{\sqrt{3}} = \left(1.15 \right)
\]

Event 2: Main Lighthouse blinks second time.

(Ship space) \(x' = c \Delta \)

(Ship time) \(ct' = 2 \Delta = 2.30 \)

Event 1: Ship gets hit by first blink from Main Lighthouse.

(Lighthouse space) \(x = 0 \)

(Lighthouse time) \(ct = 2.00 \)

Event 2: Main Lighthouse blinks second time.

(Ship space) \(x' = 0 \)

(Ship time) \(ct' = 1.73 \)

\(x' = c \Delta \)

\(ct' = 2 \Delta = 2.30 \)
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

RelativIt Web Simulation
Relativistic Events in
Main Lighthouse’s Frame

\[
\begin{align*}
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} &=\begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix}\begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix}\begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 1.155 \\
 0.577
\end{pmatrix} = \begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\end{align*}
\]

Ship time \(t' = 1.733\)
Ship v/c (Rel. to Lhsse.) = -0.500
Ship v/c (Rel. to Obs.) = 0.000
Lhsse v/c (Rel. to Obs.) = 0.500

Ship Graph
Ref time \(t = 1.733\) sec.
v/c = -0.50 litesec/sec.

\[
\begin{align*}
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} &=\begin{pmatrix}
 \frac{2}{3} & \frac{1}{3} \\
 \frac{1}{3} & \frac{2}{3}
\end{pmatrix}\begin{pmatrix}
 0 \\
 2
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{3} \\
 \frac{2}{3}
\end{pmatrix} = \begin{pmatrix}
 0.667 \\
 0.667
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{3} \\
 \frac{2}{3}
\end{pmatrix} = \begin{pmatrix}
 1.15 \\
 2.30
\end{pmatrix}
\end{align*}
\]

for: \(\beta = \frac{1}{2}\) \(\ e^\rho = \sqrt{3}\)
\[
\begin{align*}
\cosh \rho &= \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta \\
\sinh \rho &= \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577
\end{align*}
\]

Event 0:
Ship passes Main Lighthouse.
(Lighthouse space) \(x = 0\)
(Lighthouse time) \(ct = 0\)
(Ship space) \(x' = 0\)
(Ship time) \(ct' = 0\)

Event 1: Ship gets hit by first blink from Main Lighthouse.
(Lighthouse space) \(x = -1.00\)
(Lighthouse time) \(ct = 2.00\)
(Ship space) \(x' = 0\)
(Ship time) \(ct' = 1.73\)

Event 2: Main Lighthouse blinks second time.
(Lighthouse space) \(x = 0\)
(Lighthouse time) \(ct = 2.00\)
(Space) \(x' = c \Delta\)
(Ship time) \(ct' = 2\Delta = 2.30\)

Click & Drag at bottom to control animation speed.
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix}
= \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
= \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
= \begin{pmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{pmatrix}
\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

Relativistic Events in Main Lighthouse’s Frame

Ship time \(t' = 2.006\)

Ship \(v/c\) (Rel. to Lhse.) = 0.500
Ship \(v/c\) (Rel. to Obs.) = 0.000
Lhse \(v/c\) (Rel. to Obs.) = 0.500

Ship Graph
Ref time \(t = 2.01\) sec.
\(v/c = -0.50\) litesec/sec.

for:
\[\beta = \frac{1}{2}\]
\[e^\rho = \sqrt{3}\]

\[
cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 1.155 = \Delta
\]

\[
sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577
\]

Event 0:
Ship passes Main Lighthouse.

Event 1:
Ship gets hit by first blink from Main Lighthouse.

Event 2:
Main Lighthouse blinks second time.

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
<th>(Lighthouse space)</th>
<th>(Lighthouse time)</th>
<th>(Ship space)</th>
<th>(Ship time)</th>
<th>(Ship space)</th>
<th>(Ship time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ship passes Main Lighthouse.</td>
<td>(x = 0)</td>
<td>(ct = 0)</td>
<td>(x' = 0)</td>
<td>(ct' = 0)</td>
<td>(x = 0)</td>
<td>(ct = 2.00)</td>
</tr>
<tr>
<td>1</td>
<td>Ship gets hit by first blink from Main Lighthouse.</td>
<td>(x = -1.00)</td>
<td>(ct = 2.00)</td>
<td>(x' = 0)</td>
<td>(ct' = 1.73)</td>
<td>(x' = c \Delta)</td>
<td>(ct' = 2\Delta = 2.30)</td>
</tr>
<tr>
<td>2</td>
<td>Main Lighthouse blinks second time.</td>
<td>(x = 0)</td>
<td>(ct = 2.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix}\begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix}\begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{pmatrix}\begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

\(\text{Ship time } t' = 2.256\)

\((\text{Ship space})\)
\[x' = 0\]
\((\text{Ship time})\)
\[ct' = 0\]

\(\text{Ship v/c (Rel. to Lighthouse) } = -0.500\)
\(\text{Ship v/c (Rel. to Obs.) } = 0.000\)
\(\text{Lighthouse v/c (Rel. to Obs.) } = 0.500\)

\(\beta = \frac{1}{2}\)
\(\rho = \sqrt{3}\)
\(\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta\)
\(\sinh \rho = \frac{\rho}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577\)

\(\text{Event 0: Ship passes Main Lighthouse.}\)
\(\text{Event 1: Ship gets hit by first blink from Main Lighthouse.}\)
\(\text{Event 2: Main Lighthouse blinks second time.}\)

\[
\begin{pmatrix}
 \frac{-2}{\sqrt{3}} \\
 \frac{1}{\sqrt{3}}
\end{pmatrix}\begin{pmatrix}
 0 \\
 2
\end{pmatrix} = \begin{pmatrix}
 \frac{2}{\sqrt{3}} \\
 \frac{2}{\sqrt{3}}
\end{pmatrix} = \begin{pmatrix}
 2 \\
 2\Delta
\end{pmatrix} = \begin{pmatrix}
 1.15 \\
 2.30
\end{pmatrix}
\]

\[\text{Caution: May be confusing}\]

\[\text{http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=104}\]

\[\text{http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=103}\]
Simple 2015 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

RelativIt Web Simulation

Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix} x' \\ ct' \end{pmatrix} = \begin{pmatrix} \cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\ \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}} \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix} = \begin{pmatrix} 1.155 & 0.577 \\ 0.577 & 1.155 \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix}
\]

Click & Drag at bottom to control animation speed

Ship time \(t' = 2.316\)

Ship v/c (Rel.to Lhse.) = -0.500
Ship v/c (Rel.to Obs.) = 0.000
Lhse v/c (Rel.to Obs.) = 0.500

Ship Graph

Ref time \(t = 2.32\) sec.
\(v/c = -0.50\) litesec/sec.

\[
\begin{pmatrix} x' \\ ct' \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \frac{1}{\sqrt{3}} \\ 2 \frac{2}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \frac{1}{\sqrt{3}} = \begin{pmatrix} 1.15 \\ 2.30 \end{pmatrix}
\]

for:
\(\beta = \frac{1}{2}\)
\(e^\rho = \sqrt{3}\)

\[
\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = \frac{2}{\sqrt{3}} = 1.155 = \Delta
\]

\[
\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = \frac{1}{\sqrt{3}} = 0.577
\]

Event 0:
Ship passes Main Lighthouse.

Event 1:
Ship gets hit by first blink from Main Lighthouse.

Event 2:
Main Lighthouse blinks second time.

<table>
<thead>
<tr>
<th>Event 0: Ship passes Main Lighthouse.</th>
<th>Event 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Event 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lighthouse space) (x = 0)</td>
<td>(x = -1.00)</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>(Lighthouse time) (ct = 0)</td>
<td>(ct = 2.00)</td>
<td>(ct = 2.00)</td>
</tr>
<tr>
<td>(Ship space) (x' = 0)</td>
<td>(x' = 0)</td>
<td>(x' = c \Delta)</td>
</tr>
<tr>
<td>(Ship time) (ct' = 0)</td>
<td>(ct' = 1.73)</td>
<td>(ct' = 2 \Delta = 2.30)</td>
</tr>
</tbody>
</table>

Caution: May be confusing

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=104

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=103

Tuesday, April 19, 2016
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations).

2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device
Ship frame: time dilation \(\Delta = \cosh \rho = 1.15\) of Lighthouse blinks

Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame
Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies
Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time

➤ Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho\)
Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

“Occam-sword” geometry: A pattern recognition aid
Relating velocity parameter \(\beta = u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)
Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)
Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
RelativeIt Web Simulation
Relativistic Events in Main Lighthouse’s Frame

\[
\left(\begin{array}{c}
\Delta
\end{array}\right) = \left(\begin{array}{c}
\frac{1}{\sqrt{1 - \beta^2}} \\
\frac{\beta}{\sqrt{1 - \beta^2}}
\end{array}\right)
\left(\begin{array}{c}
\frac{1}{\sqrt{1 - \beta^2}} \\
\frac{\beta}{\sqrt{1 - \beta^2}}
\end{array}\right)
\left(\begin{array}{c}
0 \\
1
\end{array}\right) = \left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{3}}
\end{array}\right)
\left(\begin{array}{c}
1.155 \\
0.577
\end{array}\right)
\]

Ship time \(t' = 1.153 \)

Ship Graph
Ref time \(t = 1.15 \) sec.
\(\text{v/c} = -0.50 \) litesec/sec.

For:
\(\beta = \frac{1}{2} \)
\(e^\rho = \sqrt{3} \)

\begin{align*}
\cosh \rho &= \frac{1}{\sqrt{1 - \beta^2}} = 1.155 = \Delta \\
\sinh \rho &= \frac{\beta}{\sqrt{1 - \beta^2}} = 0.577
\end{align*}

Lighthouse space \(x = 0 \)
Lighthouse time \(ct = 0 \)
Ship space \(x' = 0 \)
Ship time \(ct' = 0 \)

<table>
<thead>
<tr>
<th>Event 0: Ship passes Main Lighthouse.</th>
<th>Event 1: Ship gets hit by first blink from Main Lighthouse.</th>
<th>Event 2: Main Lighthouse blinks second time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 0)</td>
<td>(x = -1.00)</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>(ct = 0)</td>
<td>(ct = 2.00)</td>
<td>(ct = 2.00)</td>
</tr>
<tr>
<td>(x' = 0)</td>
<td>(x' = 0)</td>
<td>(x' = c \Delta)</td>
</tr>
<tr>
<td>(ct' = 0)</td>
<td>(ct' = 1.73)</td>
<td>(ct' = 2 \Delta = 2.30)</td>
</tr>
</tbody>
</table>

Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho \)
Pythagorean derivation of time-dilation factor $\Delta = \cosh \rho$

RelativIt Web Simulation
Relativistic Events in
Main Lighthouse’s Frame

Ship registers 1^{st} Lighthouse Blink
at its

for: $\beta = \frac{1}{2}$
or:
$e^\rho = \sqrt{3}$

$c = \cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = 1.155 = \Delta$

$\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = 0.577$

$Lighthouse space \quad x = 0$
$Lighthouse time \quad ct = 0$

(Ship space) $x' = 0$
(Ship time) $ct' = 0$

Event 0: Ship passes Main Lighthouse.

Event 1: Ship gets hit by first blink from Main Lighthouse.

Event 2: Main Lighthouse blinks second time.

(Lighthouse space) $x = 0$
(Lighthouse time) $ct = 0$

$x = -1.00$
$ct = 2.00$

$x' = 0$
$ct' = 1.73$

$x' = c \Delta$
$ct' = 2\Delta = 2.30$

Tuesday, April 19, 2016
RelativIt Web Simulation
Relativistic Events in Main Lighthouse’s Frame

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \\
 \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{pmatrix} \begin{pmatrix}
 1.155 \\
 0.577
\end{pmatrix} = \begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

Ship time \(t' = 1.153 \)

\[
\Delta = \frac{c^2}{c^2 - v^2} = \frac{1}{\sqrt{1-v^2/c^2}} \]

\[\Delta^2 = \frac{c^2}{c^2 - v^2} = \frac{1}{1-v^2/c^2} \]

\[
\Delta = c \Delta = \frac{c^2}{c^2 - v^2} = \frac{1}{\sqrt{1-v^2/c^2}}
\]

\[
\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = 1.155 \]

\[
\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = 0.577
\]

Event 0: Ship passes Main Lighthouse.

\[
\begin{align*}
\text{(Lighthouse space)} & \quad x = 0 \\
\text{(Lighthouse time)} & \quad ct = 0 \\
\text{(Ship space)} & \quad x' = 0 \\
\text{(Ship time)} & \quad ct' = 0
\end{align*}
\]

Event 1: Ship gets hit by first blink from Main Lighthouse.

\[
\begin{align*}
\text{(Lighthouse space)} & \quad x = -1.00 \\
\text{(Lighthouse time)} & \quad ct = 2.00 \\
\text{(Ship space)} & \quad x' = 0 \\
\text{(Ship time)} & \quad ct' = 1.73
\end{align*}
\]

Event 2: Main Lighthouse blinks second time.

\[
\begin{align*}
\text{(Lighthouse space)} & \quad x = 0 \\
\text{(Lighthouse time)} & \quad ct = 2.00 \\
\text{(Ship space)} & \quad x' = c \Delta \\
\text{(Ship time)} & \quad ct' = 2 \Delta = 2.30
\end{align*}
\]
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations).
2005 and 2016 animations of lighthouses and ships in (x,y) scenarios and Minkowski (x,ct) plots

Lighthouse (x,y) frame: Dual concentric circular wavefronts serve as timing device

Ship frame: time dilation $\Delta=\cosh \rho=1.15$ of Lighthouse blinks

Simultaneous events in Lighthouse (x,y) frame: Not so in Ship (x',y') frame

Lighthouse-square (x,ct) plots correlated with Ship-square (x',ct') plots

Overlapped Lighthouse (x,ct) and Ship (x',ct') frame Minkowski plots correlate inconsistencies

Ship (x',y') frame: Dual un-concentric circular wavefronts map space-time

Pythagorean derivation of time-dilation factor $\Delta=\cosh \rho$

Un-concentric derivation of stellar aberration k-angle σ

Per-spacetime 4-vector $(\omega_0,\omega_x,\omega_y,\omega_z) = (\omega,ck_x,ck_y,ck_z)$ transformation

“Occam-sword” geometry: A pattern recognition aid

Relating velocity parameter $\beta=u/c$ to rapidity ρ to k-angle σ to u/c-angle ν

Circular arc-area σ vs. hyperbolic arc-area ρ

Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration k-angle σ
Relativistic Events in Ship’s Space-Time Frame

\[
\begin{pmatrix}
 x' \\
 ct'
\end{pmatrix} = \begin{pmatrix}
 \cosh \rho & \sinh \rho \\
 \sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 \frac{1}{\sqrt{1-\beta^2}} & \frac{\beta}{\sqrt{1-\beta^2}} \\
 \frac{\beta}{\sqrt{1-\beta^2}} & \frac{1}{\sqrt{1-\beta^2}}
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix} = \begin{pmatrix}
 1.155 & 0.577 \\
 0.577 & 1.155
\end{pmatrix} \begin{pmatrix}
 x \\
 ct
\end{pmatrix}
\]

\[c' = \frac{c}{\sqrt{1-\beta^2}} = 1.577\]
\[\sinh \rho = \frac{\beta}{\sqrt{1-\beta^2}} = 0.577\]

\[\cosh \rho = \frac{1}{\sqrt{1-\beta^2}} = 1.155 = \Delta\]

Event 0:
Ship passes Main Lighthouse.

Event 1: Ship gets hit by first blink from Main Lighthouse.

Event 2: Main Lighthouse blinks second time.
RelativIt Web Simulation

Relativistic Events in Ship’s Space-Time Frame

Stellar angle σ

for: $\beta = \frac{1}{2}$

$e^\rho = \sqrt{3}$

$\cosh \rho = \frac{1}{\sqrt{1 - \beta^2}} = \frac{2}{\sqrt{3}} = 1.155$

$\sinh \rho = \frac{\beta}{\sqrt{1 - \beta^2}} = \frac{1}{\sqrt{3}} = 0.577$

$u c = \frac{1}{2} = \sin \sigma$

2015 animations of lighthouses and ships in (x,y) scenarios and Minkowski (x,ct) plots

$\sigma = 30^\circ$

$(x', ct') = \left(\frac{1}{\sqrt{1 - \beta^2}} \right) \left(\begin{array}{c} x \\ ct \end{array} \right) = \left(\begin{array}{c} \frac{2}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{array} \right) \left(\begin{array}{c} 0 \\ \sqrt{3} \end{array} \right) = \left(\frac{2}{\sqrt{3}} \right)$

Ship Graph

Ref time $t' = -0.012$ sec.

$v/c = -0.50$ litesec/sec.

Ship v/c (Rel to Lhse.) = 0.500

Ship v/c (Rel to Obs.) = 0.000

Lhse v/c (Rel to Obs.) = 0.500

(Lighthouse space) $x = 0$

(Lighthouse time) $ct = 0$

(Ship space) $x' = 0$

(Ship time) $ct' = 0$

for:

$\beta = \frac{1}{2}$

$e^\rho = \sqrt{3}$

$cosh \rho = \frac{1}{\sqrt{1 - \beta^2}} = \frac{2}{\sqrt{3}} = 1.155$

$\sinh \rho = \frac{\beta}{\sqrt{1 - \beta^2}} = \frac{1}{\sqrt{3}} = 0.577$

$u c = \frac{1}{2} = \sin \sigma$

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html?scenario=105
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations). 2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device

Ship frame: time dilation \(\Delta = \cosh \rho = 1.15\) of Lighthouse blinks

Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame

Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies

Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time

Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho\)

Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0,\omega_x,\omega_y,\omega_z) = (\omega,ck_x,ck_y,ck_z)\) transformation

“Occam-sword” geometry: A pattern recognition aid

Relating velocity parameter \(\beta = u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)

Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)

Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

(a) Laser frame \(\omega_0\)

\(k(\uparrow)\) \hspace{1cm} \(k(\rightarrow)\) \hspace{1cm} \(k(\downarrow)\)

Suppose starlight in lighthouse frame is straight down x-axis: \(\left(\omega_\downarrow, ck_{x\downarrow}, ck_{y\downarrow}, ck_{z\downarrow}\right) = (\omega_0, -\omega_0, 0, 0)\)
Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

(a) Laser frame \(\omega_0\)

\[
\begin{align*}
\mathbf{k}(\uparrow) & \quad \omega_0 \\
\mathbf{k}(\leftarrow) & \quad \omega_0 \\
\mathbf{k}(\rightarrow) & \quad \omega_0 \\
\mathbf{k}(\downarrow) & \quad \omega_0
\end{align*}
\]

along \(-z\)-axis: \((\omega_{\leftarrow}, ck_{\leftarrow x}, ck_{\leftarrow y}, ck_{\leftarrow z}) = (\omega_0, 0, 0, -\omega_0)\)

Suppose starlight in lighthouse frame is straight down \(x\)-axis: \((\omega_{\downarrow}, ck_{\downarrow x}, ck_{\downarrow y}, ck_{\downarrow z}) = (\omega_0, -\omega_0, 0, 0)\)

"South"
Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

(a) Laser frame \(\omega_0\)

Suppose starlight in lighthouse frame is straight down x-axis: \(\omega_{\downarrow}, ck_{x\downarrow}, ck_{y\downarrow}, ck_{z\downarrow}\) = \(\omega_0, -\omega_0, 0, 0\)

up +x-axis: \(\omega_{\uparrow}, ck_{x\uparrow}, ck_{y\uparrow}, ck_{z\uparrow}\) = \(\omega_0, +\omega_0, 0, 0\)

along -z-axis: \(\omega_{\leftarrow}, ck_{x\leftarrow}, ck_{y\leftarrow}, ck_{z\leftarrow}\) = \(\omega_0, 0, 0, -\omega_0\)

"North"

"West"

"South"
Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

Suppose starlight in lighthouse frame is straight down x-axis: \((\omega_\downarrow, ck_x_\downarrow, ck_y_\downarrow, ck_z_\downarrow) = (\omega_0, -\omega_0, 0, 0)\)
Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

(a) Laser frame \(\omega_0\)

\[
\begin{align*}
\omega_0 & \quad k(\uparrow) \\
\omega_0 & \quad k(\leftarrow) \\
\omega_0 k(\rightarrow) & \quad CW \text{ Laser-pair wavevectors}
\end{align*}
\]

(b) z-(→Moving) ship

\[
\begin{align*}
\omega_0 e^\rho & \quad k'(\uparrow) \\
\omega_0 e^{-\rho} & \quad k'(\leftarrow) \\
\omega_0 e^{-\rho} & \quad k'(\rightarrow)
\end{align*}
\]

Suppose starlight in lighthouse frame is straight down x-axis: \(\left(\omega_\downarrow, ck_x\downarrow, ck_y\downarrow, ck_z\downarrow\right) = (\omega_0, -\omega_0, 0, 0)\)

\(+\rho_z\)-rapidity ship frame sees starlight Lorentz transformed to: \(\left(\omega'_\downarrow, ck'_x\downarrow, ck'_y\downarrow, ck'_z\downarrow\right) = (\omega_0 \cosh \rho_z, -\omega_0, 0, -\omega_0 \sinh \rho_z)\)

\[
\begin{pmatrix}
\omega'_\downarrow \\
ck'_x\downarrow \\
ck'_y\downarrow \\
ck'_z\downarrow
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z & 0 & -\sinh \rho_z \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-\sinh \rho_z & \cosh \rho_z & 0
\end{pmatrix}
\begin{pmatrix}
\omega_\downarrow \\
ck_x\downarrow \\
ck_y\downarrow \\
ck_z\downarrow
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z & 0 & -\sinh \rho_z \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-\sinh \rho_z & \cosh \rho_z & 0
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
0 \\
0 \\
-\omega_0 \sinh \rho_z
\end{pmatrix} =
\begin{pmatrix}
\omega_0 \cosh \rho_z \\
-\omega_0 \\
0 \\
-\omega_0 \sinh \rho_z
\end{pmatrix}
\]
Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

(a) Laser frame \(\omega_0\)

(b) \(z\)-(→ Moving) ship

Suppose starlight in lighthouse frame is straight down x-axis:
\[
\left(\omega_{\downarrow}, ck_{x\downarrow}, ck_{y\downarrow}, ck_{z\downarrow}\right) = \left(\omega_0, -\omega_0, 0, 0\right)
\]

+ \(\rho_z\) -rapidity ship frame sees starlight Lorentz transformed to:
\[
\left(\omega_{\downarrow}', ck_{x\downarrow}', ck_{y\downarrow}', ck_{z\downarrow}'\right) = \left(\omega_0 \cosh \rho_z, -\omega_0, 0, -\omega_0 \sinh \rho_z\right)
\]

Alternative ordering to \((\omega, ck_x, ck_y, ck_z)\):
\[
\left(\omega_{\downarrow}', ck_{x\downarrow}', ck_{y\downarrow}', ck_{z\downarrow}'\right) = \left(\omega_0 \cosh \rho_z, -\omega_0, 0, -\omega_0 \sinh \rho_z\right)
\]

You can simplify notation by using ordering of 4-vector.

(But, we won’t do that, now)
Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z) \) transformation

\[
\begin{align*}
(a) \text{ Laser frame } &\quad \omega_0 \quad \omega_0 \quad \omega_0 \quad \omega_0 \\
\text{CW Laser-pair wavevectors} &\quad k(\downarrow) \quad k(\leftarrow) \quad k(\uparrow) \quad k(\rightarrow) \\
\end{align*}
\]

(b) \(z-(\rightarrow \text{Moving}) \) ship

1. **Lighthouse frame**
 - Starlight in lighthouse frame is straight down x-axis: \((\omega_\downarrow, ck_x\downarrow, ck_y\downarrow, ck_z\downarrow) = (\omega_0, -\omega_0, 0, 0) \)

2. **Ship frame**
 - Starlight Lorentz transformed to: \((\omega'_\downarrow, ck'_x\downarrow, ck'_y\downarrow, ck'_z\downarrow) = (\omega_0 \cosh \rho_z, -\omega_0, 0, -\omega_0 \sinh \rho_z) \)

\[
\begin{bmatrix}
\omega'_\downarrow \\
ck'_x\downarrow \\
ck'_y\downarrow \\
ck'_z\downarrow
\end{bmatrix}
= \begin{bmatrix}
\cosh \rho_z & -\sinh \rho_z \\
1 & 0 \\
0 & 1 \\
-\sinh \rho_z & \cosh \rho_z
\end{bmatrix}
\begin{bmatrix}
\omega_\downarrow \\
ck_x\downarrow \\
ck_y\downarrow \\
ck_z\downarrow
\end{bmatrix}
= \begin{bmatrix}
\cosh \rho_z & -\sinh \rho_z \\
1 & 0 \\
0 & 1 \\
-\sinh \rho_z & \cosh \rho_z
\end{bmatrix}
\begin{bmatrix}
\omega_0 \\
-\omega_0 \\
0 \\
-\omega_0 \sinh \rho_z
\end{bmatrix}
= \begin{bmatrix}
\omega_0 \cosh \rho_z \\
-\omega_0 \\
0 \\
-\omega_0 \sinh \rho_z
\end{bmatrix}
\]

After the 4-vector transformation, \(\omega_0 = \omega_\downarrow \) is **transverse Doppler shifted** to \(\omega_0 \cosh \rho_z \), while \(ck_z = 0 \) becomes \(ck'_z = -\omega_0 \sinh \rho_z \).

(The \(x \)-component is unchanged: \(ck'_x = -\omega_0 = ck_x \) and so is \(y \)-component: \(ck'_y = 0 = ck_y \).)
Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

(a) Laser frame \(\omega_0\) — (Lighthouse frame)
(b) z-(→Moving) ship

Suppose starlight in lighthouse frame is straight down \(x\)-axis : \((\omega_\downarrow, ck_x_\downarrow, ck_y_\downarrow, ck_z_\downarrow) = (\omega_0,-\omega_0,0,0)\)

+ \(\rho_z\) -rapidity ship frame sees starlight Lorentz transformed to :
\[
\begin{pmatrix}
\omega'_\downarrow \\
ck'_{x\downarrow} \\
ck'_{y\downarrow} \\
ck'_{z\downarrow}
\end{pmatrix}

= \begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
\omega_\downarrow \\
c_{kx}_{\downarrow} \\
c_{ky}_{\downarrow} \\
c_{kz}_{\downarrow}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
-\omega_0 \\
0 \\
0
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\omega_0 \cosh \rho_z \\
-\omega_0 \\
0 \\
-\omega_0 \sinh \rho_z
\end{pmatrix}
\]

After the 4-vector transformation, \(\omega_0=\omega_\downarrow\) is **transverse Doppler shifted** to \(\omega_0 \cosh \rho_z\), while \(ck_z=0\) becomes \(ck'_z = -\omega_0 \sinh \rho_z\). (The \(x\)-component is unchanged: \(ck'_{x'} = -\omega_0 = ck_x\) and so is \(y\)-component: \(ck'_{y'} = 0 = ck_y\).)
Per-spacetime 4-vector \((\omega_0,\omega_x,\omega_y,\omega_z) = (\omega,ck_x,ck_y,ck_z)\) transformation

(a) Laser frame \(\omega_0\)

(b) z-(Moving) ship

Suppose starlight in lighthouse frame is straight down x-axis: \((\omega_\downarrow,ck_{x\downarrow},ck_{y\downarrow},ck_{z\downarrow}) = (\omega_0,-\omega_0,0,0)\)

\(+\rho_z\) -rapidity ship frame sees starlight Lorentz transformed to: \((\omega'_\downarrow,ck'_{x\downarrow},ck'_{y\downarrow},ck'_{z\downarrow}) = (\omega_0 \cosh \rho_z,-\omega_0,0,-\omega_0 \sinh \rho_z)\)

After the 4-vector transformation, \(\omega_0=\omega_\downarrow\) is transverse Doppler shifted to \(\omega_0 \cosh \rho_z\), while \(ck_z=0\) becomes \(ck'_z = -\omega_0 \sinh \rho_z\).

(The x-component is unchanged: \(ck'_x = -\omega_0 = ck_x\) and so is y-component: \(ck'_y = 0 = ck_y\).)

Recall hyperbolic invariant to Lorentz transform: \(\omega^2-c^2k^2 = \omega'^2-c^2k'^2\) (=0 for 1-CW light)

The 4-vector form of this is: \(\omega^2-c^2k\cdot k = \omega'^2-c^2k'\cdot k'\) (=0

\[\begin{pmatrix}
\omega'_\downarrow \\
ck'_{x\downarrow} \\
ck'_{y\downarrow} \\
ck'_{z\downarrow}
\end{pmatrix} = \begin{pmatrix}
\cosh \rho_z & 0 & -\sinh \rho_z \\
0 & 1 & 0 \\
-\sinh \rho_z & 0 & \cosh \rho_z
\end{pmatrix} \begin{pmatrix}
\omega_\downarrow \\
ck_{x\downarrow} \\
ck_{y\downarrow} \\
ck_{z\downarrow}
\end{pmatrix} = \begin{pmatrix}
\cosh \rho_z & 0 & -\sinh \rho_z \\
0 & 1 & 0 \\
-\sinh \rho_z & 0 & \cosh \rho_z
\end{pmatrix} \begin{pmatrix}
\omega_0 \\
-\omega_0 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix}
\omega_0 \cosh \rho_z \\
-\omega_0 \\
0 \\
-\omega_0 \sinh \rho_z
\end{pmatrix} = \begin{pmatrix}
\omega_0 \sec \rho_z \\
-\omega_0 \\
0 \\
-\omega_0 \tan \rho_z
\end{pmatrix} \]
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations). 2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device
Ship frame: time dilation \(\Delta=\cosh \rho=1.15\) of Lighthouse blinks

Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame
Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies
Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time
Pythagorean derivation of time-dilation factor \(\Delta=\cosh \rho\)
Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0,\omega_x,\omega_y,\omega_z) = (\omega,ck_x,ck_y,ck_z)\) transformation

“Occam-sword” geometry: A pattern recognition aid
Relating velocity parameter \(\beta=u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)
Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)
Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
Pattern recognition: “Occam’s Sword”

Fig. 5.10 CW cosmic speedometer.
Geometry of Lorentz boost of counter-propagating waves.
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations). 2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device
Ship frame: time dilation \(\Delta = \cosh \rho = 1.15\) of Lighthouse blinks

Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame
Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies
Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time

Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho\)
Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0,\omega_x,\omega_y,\omega_z) = (\omega,ck_x,ck_y,ck_z)\) transformation

“Occam-sword” geometry: A pattern recognition aid

Relating velocity parameter \(\beta = u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)

Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)

Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
Pattern recognition aid: “Occam’s Sword”

Phase angle ν

$sinh \rho = tan \sigma$

$tanh \rho = sin \sigma = \frac{u}{c} = tan \nu$

$e^\rho = sinh \rho + cosh \rho$

$c = 1$

σ

ν
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations).

2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device

Ship frame: time dilation \(\Delta = \cosh \rho = 1.15\) of Lighthouse blinks

Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame

Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies

Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time

Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho\)

Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0, \omega_x, \omega_y, \omega_z) = (\omega, ck_x, ck_y, ck_z)\) transformation

“Occam-sword” geometry: A pattern recognition aid

Relating velocity parameter \(\beta = u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)

Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)

Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
Relating **Longitudinal** relativity parameter: Rapidity \(\rho = \log_e(\text{Doppler Shift}) \)

to Transverse relativity parameter: Stellar aberration angle \(\sigma \)

(a) Circular Functions

\[
\begin{align*}
\sin(\sigma) &= 0.6000 \\
\tan(\sigma) &= 0.7500 \\
\sec(\sigma) &= 1.2500
\end{align*}
\]
Relating **Longitudinal** relativity parameter: Rapidity $\rho = \log_e(\text{Doppler Shift})$

to **Transverse** relativity parameter: Stellar aberration angle σ

$\sinh \rho = \tan \sigma$

$tanh \rho = \sin \sigma = \frac{u}{c} = \tan \nu$

![Diagram showing hyperbolic and circular functions with examples of $\sin(\sigma)$, $\tan(\sigma)$, $\sinh(\rho)$, $\cosh(\rho)$, and $\tanh(\rho)$. The diagram also illustrates the relation between longitudinal and transverse parameters through hyperbolic and trigonometric functions.]
The straight scoop on “angle” and “rapidity” (They’re area!)

\[y/x = \tanh \theta = \frac{v}{c} \]

-1.0

\[y = \sinh \rho \]

\[x = \cosh \rho \]

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

\[\text{Area} = \frac{1}{2} \text{base} \cdot \text{altitude} - \text{area under curve} = \frac{1}{2} xy - \int y \, dx \]
The straight scoop on “angle” and “rapidity” (They’re area!)

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

Useful hyperbolic identities

\[\text{Area} = \frac{1}{2} \text{base} \uparrow \text{altitude} - \text{area under curve} = \frac{1}{2} xy - \int y \, dx \]

\[\text{Area} = \frac{1}{2} \sinh \rho \cosh \rho - \int \sinh \rho \, d(\cosh \rho) \]

\[\sinh^2 \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right)^2 = \frac{1}{4} (e^{2\rho} + e^{-2\rho} - 2) = \frac{\cosh 2\rho - 1}{2} \]

\[\sinh \rho \cosh \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right) \left(\frac{e^\rho + e^{-\rho}}{2} \right) = \frac{1}{4} (e^{2\rho} - e^{-2\rho}) = \frac{1}{2} \sinh 2\rho \]
The straight scoop on “angle” and “rapidity” (They’re area!)

\[y/x = \tanh \theta = v/c \]

\[y = \sinh \rho \]
\[x = \cosh \rho \]

The “Area” being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

Useful hyperbolic identities

\[\sinh^2 \rho = \left(\frac{e^\rho - e^{-\rho}}{2} \right)^2 = \frac{1}{4} \left(e^{2\rho} + e^{-2\rho} - 2 \right) = \frac{\cosh 2\rho - 1}{2} \]

\[\sinh \theta \cosh \theta = \left(\frac{e^\theta - e^{-\theta}}{2} \right) \left(\frac{e^\theta + e^{-\theta}}{2} \right) = \frac{1}{4} \left(e^{2\theta} - e^{-2\theta} \right) = \frac{1}{2} \sinh 2\theta \]

\[\int \cosh a\rho \, d\rho = \frac{1}{a} \sinh a\rho \]
The straight scoop on “angle” and “rapidity” (They’re area!)

\[
\begin{align*}
\frac{\text{Area}}{2} &= \frac{1}{2} \text{base} \cdot \text{altitude} - \text{area under curve} = \frac{1}{2} xy - \int y \, dx \\
\frac{\text{Area}}{2} &= \frac{1}{2} \sinh \rho \cosh \rho - \int \sinh \rho \, d(\cosh \rho) \\
\frac{\text{Area}}{2} &= \frac{1}{2} \sinh \rho \cosh \rho - \int \sinh^2 \rho \, d\rho = \frac{1}{4} \sinh 2\rho - \int \frac{\cosh 2\rho - 1}{2} \, d\rho \\
&= \frac{1}{4} \sinh 2\rho - \frac{1}{4} \sinh 2\rho + \int \frac{1}{2} \, d\rho \\
&= \frac{\rho}{2}
\end{align*}
\]

Amazing result: \(\text{Area} = \rho \) is rapidity

The “Area” being calculated is the **total** Gray Area between hyperbola pairs, \(X \) axis, and sloping u-line

Useful hyperbolic identities

\[
\begin{align*}
\sinh^2 \rho &= \left(\frac{e^\rho - e^{-\rho}}{2} \right)^2 = \frac{1}{4} (e^{2\rho} + e^{-2\rho} - 2) = \frac{\cosh 2\rho - 1}{2} \\
\sinh \rho \cosh \rho &= \left(\frac{e^\rho - e^{-\rho}}{2} \right) \left(\frac{e^\rho + e^{-\rho}}{2} \right) = \frac{1}{4} (e^{2\rho} - e^{-2\rho}) = \frac{1}{2} \sinh 2\rho \\
\int \cosh a\theta \, d\theta &= \frac{1}{a} \sinh a\theta
\end{align*}
\]
Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1st RelativIt animations).

2005 and 2016 animations of lighthouses and ships in \((x,y)\) scenarios and Minkowski \((x,ct)\) plots

Lighthouse \((x,y)\) frame: Dual concentric circular wavefronts serve as timing device

Ship frame: time dilation \(\Delta = \cosh \rho = 1.15\) of Lighthouse blinks

Simultaneous events in Lighthouse \((x,y)\) frame: Not so in Ship \((x',y')\) frame

Lighthouse-square \((x,ct)\) plots correlated with Ship-square \((x',ct')\) plots

Overlapped Lighthouse \((x,ct)\) and Ship \((x',ct')\) frame Minkowski plots correlate inconsistencies

Ship \((x',y')\) frame: Dual un-concentric circular wavefronts map space-time

Pythagorean derivation of time-dilation factor \(\Delta = \cosh \rho\)

Un-concentric derivation of stellar aberration \(k\)-angle \(\sigma\)

Per-spacetime 4-vector \((\omega_0,\omega_x,\omega_y,\omega_z) = (\omega,ck_x,ck_y,ck_z)\) transformation

“Occam-sword” geometry: A pattern recognition aid

Relating velocity parameter \(\beta = u/c\) to rapidity \(\rho\) to \(k\)-angle \(\sigma\) to \(u/c\)-angle \(\nu\)

Circular arc-area \(\sigma\) vs. hyperbolic arc-area \(\rho\)

Each circular trig function has a hyperbolic “country-cousin” function

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration \(k\)-angle \(\sigma\)
Circular Functions

\[\begin{align*}
\sin(\sigma) &= 0.6000 \\
\tan(\sigma) &= 0.7500 \\
\sec(\sigma) &= 1.2500 \\
\cos(\sigma) &= 0.8000 \\
\cot(\sigma) &= 1.3333 \\
csc(\sigma) &= 1.6667
\end{align*} \]

Hyperbolic Functions

\[\begin{align*}
\tanh(\rho) &= 0.6000 \\
\sinh(\rho) &= 0.7500 \\
cosh(\rho) &= 1.2500 \\
\sech(\rho) &= 0.8000 \\
csch(\rho) &= 1.3333 \\
\coth(\rho) &= 1.6667 \\
\cot(\sigma) &= csch(\rho) \\
csc(\sigma) &= coth(\rho) \\
\cos(\sigma) &= sech(\rho) \\
tan(\sigma) &= sinh(\rho) = sinh(\rho) \\
sin(\sigma) &= tan(\sigma) = sinh(\rho) \\
sec(\sigma) &= cosh(\rho) \\
\end{align*} \]

RelaWavity Web Simulation
Relating Rapidity and Stellar Abberation
Summary of optical wave parameters for relativity and QM

and their geometry

\[v' = \omega'/2\pi \]

axis

(Units of 300THz)

An aid to pattern recognition:

Occam's Sword

(u/c = 3/5)

RelaWavity Web Simulation

\{perSpace - perTime All\}

Tuesday, April 19, 2016
An aid to pattern recognition:

Table of 12 wave parameters

(includes inverses) for relativity

...and values for $u/c=3/5$

RelaWavity Web Simulation
Relativistic Terms (Dual plot w/expanded table)
Fig. 5.5
Relativistic wave mechanics geometry.
(a) Overview.
(b-d) Details of contacting tangents.

(c) Basic construction given \(u/c = 45/53 \)
(d) \(u/c = 3/5 \)
Spectral details of Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0, \omega_x, \omega_y, \omega_z)\)

\[\sigma = 30^\circ = 0.524\]

\[\rho = 0.549\]

\[e^\rho = \sqrt{3}\]

\[e^{-\rho} = 1/\sqrt{3}\]

\[u/c = \sin \sigma = 1/2\]

\[u/c = \tanh \rho = 1/2\]

\[\omega_0 \tan \sigma = \omega_0 \sinh \rho = 1/\sqrt{3}\]

South starlight in lighthouse frame is straight down x-axis: \((\omega_\downarrow, ck_\downarrow, ck_\downarrow, ck_\downarrow) = (\omega_0, -\omega_0, 0, 0)\)

+ \(\rho_z\)-rapidity ship frame sees starlight Lorentz transformed to: \((\omega'_\downarrow, ck'_\downarrow, ck'_\downarrow, ck'_\downarrow) = (\omega_0 \cosh \rho_z, -\omega_0, 0, -\omega_0 \sinh \rho_z)\)

\[
\begin{pmatrix}
\omega'_\downarrow \\
ck'_\downarrow \\
ck'_\downarrow \\
ck'_\downarrow
\end{pmatrix}
=
\begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
1 & 0 \\
1 & 0 \\
-\sinh \rho_z & \cosh \rho_z
\end{pmatrix}
\begin{pmatrix}
\omega_\downarrow \\
ck_\downarrow \\
ck_\downarrow \\
ck_\downarrow
\end{pmatrix}
=
\begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
1 & 0 \\
1 & 0 \\
-\sinh \rho_z & \cosh \rho_z
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
-\omega_0 \\
0 \\
-\omega_0 \sinh \rho_z
\end{pmatrix}
=
\begin{pmatrix}
\omega_0 \cosh \rho_z \\
-\omega_0 \\
0 \\
-\omega_0 \sinh \rho_z
\end{pmatrix}
\begin{pmatrix}
\omega_0 \sec \sigma \\
-\omega_0 \\
0 \\
-\omega_0 \tan \sigma
\end{pmatrix}
\]
Lecture 27 discusses Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0, \omega_x, \omega_y, \omega_z)\).

For ship going \(u = c\) tanh \(\rho\) along \(z\)-axis:

- West starlight \((\omega_0, 0, 0, -\omega_0)\) is blue shifted by \(e^\rho = \cosh \rho + \sinh \rho\):
 \[
 \begin{pmatrix}
 \omega' \\
 c k'_{x} \\
 c k'_{y} \\
 c k'_{z}
 \end{pmatrix} = \omega_0 \begin{pmatrix}
 \cosh \rho_z + \sinh \rho_z \\
 0 \\
 0 \\
 -\sinh \rho_z - \cosh \rho_z
 \end{pmatrix} = \omega_0 \begin{pmatrix}
 e^\rho \\
 0 \\
 0 \\
 -e^\rho
 \end{pmatrix}
 \]

- Blue shift factor is \(e^\rho = \cosh \rho + \sinh \rho = \sec \sigma + \tan \sigma\)

- East starlight \((\omega_0, 0, 0, +\omega_0)\) is red shifted by \(e^{-\rho} = \cosh \rho - \sinh \rho\):
 \[
 \begin{pmatrix}
 \omega' \\
 c k'_{x} \\
 c k'_{y} \\
 c k'_{z}
 \end{pmatrix} = \omega_0 \begin{pmatrix}
 \cosh \rho_z - \sinh \rho_z \\
 0 \\
 0 \\
 -\sinh \rho_z + \cosh \rho_z
 \end{pmatrix} = \omega_0 \begin{pmatrix}
 e^{-\rho} \\
 0 \\
 0 \\
 -e^{-\rho}
 \end{pmatrix}
 \]

- Red shift factor is \(e^{-\rho} = \cosh \rho - \sinh \rho = \sec \sigma - \tan \sigma\)

\[
\begin{align*}
\sigma &= 30^\circ = 0.524 \\
\rho &= 0.549 \\
e^\rho &= \sqrt{3} \\
e^{-\rho} &= 1/\sqrt{3}
\end{align*}
\]
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0, \omega_x, \omega_y, \omega_z)\)

Lorentz boost by \(\sigma=60^\circ\) or \(e^{+\rho}=2+\sqrt{3}\)

Lighthouse view \((\omega, c\mathbf{k})\) of wave-vectors

Ship-frame view \((\omega', c\mathbf{k}')\) of wave-vectors

\[
\sigma = 60^\circ = 1.047 \\
\rho = 1.317 \\
e^\rho = 2+\sqrt{3} \\
e^{-\rho} = 2-\sqrt{3}
\]

\omega_0 \sin \sigma = \omega_0 \tanh \rho = \omega_0 \sqrt{3/2}

\omega_0 \sec \sigma = \omega_0 \cosh \rho

\omega_0 e^{+\rho} = \omega_0 (2+\sqrt{3})

\omega_0 e^{-\rho} = \omega_0 (2-\sqrt{3})

\omega/c = \sin \sigma = \sqrt{3/2}

\omega/c = \tanh \rho = \sqrt{3/2}

Red shift

Blue shift
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors ($\omega_0, \omega_x, \omega_y, \omega_z$)

\[\sigma = 60^\circ \text{ or } e^\rho = 2 + \sqrt{3} \]

How does Lorentz boost affect vector of arbitrary θ?

Lighthouse view ($\omega, c\mathbf{k}$) of wave-vectors

Ship-frame view ($\omega', c\mathbf{k}'$) of wave-vectors

\[u/c = \sin \sigma = \sqrt{3}/2 \]

\[u/c = \tanh \rho = \sqrt{3}/2 \]

\[\sigma = 60^\circ = 1.047 \]

\[\rho = 1.317 \]

\[e^\rho = 2 + \sqrt{3} \]

\[e^{-\rho} = 2 - \sqrt{3} \]
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0, \omega_x, \omega_y, \omega_z)\)

\[\text{Lorentz boost by } \sigma = 60^\circ \text{ or } e^{i\rho} = 2 + \sqrt{3} \]

How does Lorentz boost affect vector of arbitrary \(\theta\)?

Lighthouse view \((\omega, c\mathbf{k})\) of wave-vectors

Ship-frame view \((\omega', c\mathbf{k}')\) of wave-vectors

Let lab starlight ray at polar angle \(\theta\) have \(\mathbf{k} \uparrow \theta = \omega_0 (1, \cos \theta, 0, -\sin \theta)\). Then ship going \(\mathbf{u}\) along \(z\)-axis sees:

\[
\begin{pmatrix}
\omega'_x \\
\omega'_y \\
\omega'_z
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z \\
-\sinh \rho_z & \cosh \rho_z \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
\omega_0 \cos \theta \\
0
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z + \sinh \rho_z \sin \theta \\
\cos \theta \\
-\sin \rho_z - \cosh \rho_z \sin \theta
\end{pmatrix} =
\begin{pmatrix}
\sec \sigma + \tan \sigma \sin \theta \\
\cos \theta \\
-\tan \sigma - \sec \sigma \sin \theta
\end{pmatrix}
\]

\[u/c = \sin \sigma = \sqrt{3}/2 \]

\[u/c = \tanh \rho = \sqrt{3}/2 \]
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0, \omega_x, \omega_y, \omega_z)\)

\(\text{Lorentz boost by } \sigma = 60^\circ \text{ or } e^{i \rho} = 2 + \sqrt{3}\)

How does Lorentz boost affect vector of arbitrary \(\theta\)?

Lighthouse view \((\omega, c \vec{k})\) of wave-vectors

Ship-frame view \((\omega', c \vec{k}')\) of wave-vectors

Let lab starlight ray at polar angle \(\theta\) have \(\vec{k} \uparrow \theta = \omega_\theta (1, \cos \theta, 0, -\sin \theta)\). Then ship going \(u\) along \(z\)-axis sees:

\[
\begin{pmatrix}
\omega'_{\theta} \\
ck'_{x\uparrow \theta} \\
ck'_{y\uparrow \theta} \\
ck'_{z\uparrow \theta}
\end{pmatrix} =
\begin{pmatrix}
\cosh \rho_z & \cdot & -\sinh \rho_z \\
\cdot & 1 & \cdot \\
\cdot & 1 & \cdot \\
-\sinh \rho_z & \cdot & \cosh \rho_z
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
0 \\
0 \\
-\omega_0 \sin \theta
\end{pmatrix}
= \omega_0
\begin{pmatrix}
\cosh \rho_z + \sinh \rho_z \sin \theta \\
\omega_0 \cos \theta \\
0 \\
-\sinh \rho_z - \cosh \rho_z \sin \theta
\end{pmatrix}
= \omega_0
\begin{pmatrix}
\sec \sigma + \tan \sigma \sin \theta \\
\cos \theta \\
0 \\
-\tan \sigma - \sec \sigma \sin \theta
\end{pmatrix}
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors ($\omega_0, \omega_x, \omega_y, \omega_z$)

Lorentz boost by $\sigma = 60^\circ$ or $e^{i\rho} = 2 + \sqrt{3}$

How does Lorentz boost affect vector of arbitrary θ?

Let lab starlight ray at polar angle θ have $\mathbf{k}^\uparrow \theta = \omega_0 (1, \cos \theta, 0, -\sin \theta)$. Then ship going \mathbf{u}-along-z-axis sees:

$$
\begin{pmatrix}
\omega'_{\theta} \\
ck'_{x\theta} \\
ck'_{y\theta} \\
ck'_{z\theta}
\end{pmatrix}
=
\begin{pmatrix}
\cosh \rho_z & \cdot & -\sinh \rho_z \\
\cdot & 1 & \cdot \\
-\sinh \rho_z & \cdot & \cosh \rho_z
\end{pmatrix}
\begin{pmatrix}
\omega_0 \\
\omega_0 \cos \theta \\
0
\end{pmatrix}
=
\omega_0
\begin{pmatrix}
\cosh \rho_z + \sinh \rho_z \sin \theta \\
\omega_0 \cos \theta \\
-\omega_0 \sin \theta
\end{pmatrix}
=
\omega_0
\begin{pmatrix}
\sec \sigma + \tan \sigma \sin \theta \\
\cos \theta \\
0
\end{pmatrix}
=
\omega_0
\begin{pmatrix}
\sec \sigma + \tan \sigma \sin \theta \\
\cos \theta \\
0
\end{pmatrix}
\begin{pmatrix}
\cos \theta \\
0 \\
-\tan \sigma - \sec \sigma \sin \theta
\end{pmatrix}
$$

Lighthouse view ($\omega, c\mathbf{k}$) of wave-vectors

Ship-frame view ($\omega', c\mathbf{k}')$ of wave-vectors

Faster Lorentz boost of North-South-East-West plane-wave 4-vectors ($\omega_0, \omega_x, \omega_y, \omega_z$)
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0,\omega_x,\omega_y,\omega_z)\)

Lorentz boost by \(\sigma=60^\circ\) or \(e^{i\rho}=2+\sqrt{3}\)

How does Lorentz boost affect vector of arbitrary \(\theta\)?

Let lab starlight ray at polar angle \(\theta\) have \(\mathbf{k} \uparrow \theta = \omega_0 (1,\cos \theta,0,-\sin \theta)\). Then ship going \(\mathbf{u}\) along \(z\)-axis sees:

\[
\begin{align*}
\left(\begin{array}{c}
\omega'_x \theta \\
\omega'_y \theta \\
\omega'_z \theta \\
\end{array}\right) &= \left(\begin{array}{ccc}
cosh \rho_z & -\sinh \rho_z & \omega_0 \\
1 & 0 & \omega_0 \cos \theta \\
-\sinh \rho_z & \cosh \rho_z & -\omega_0 \sin \theta \\
\end{array}\right) \\
&= \omega_0 \left(\begin{array}{ccc}
cosh \rho_z + \sinh \rho_z \sin \theta & \cos \theta & 0 \\
\cos \theta & 0 & 0 \\
-\sinh \rho_z - \cosh \rho_z \sin \theta & 0 & -\tan \sigma - \sec \sigma \sin \theta \\
\end{array}\right)
\end{align*}
\]
Faster Lorentz boost of North-South-East-West plane-wave 4-vectors \((\omega_0,\omega_x,\omega_y,\omega_z)\)

\[\omega_{\sec\sigma}\sin\theta = \omega_{\tan\sigma} \]

\[\omega_{\sec\sigma} = \omega_0 \cosh \rho \]

\[u/c = \sin \sigma = \sqrt{3}/2 \]

\[u/c = \tanh \rho = \sqrt{3}/2 \]

\[\rho = 1.317 \]

\[e^{\rho} = 2 + \sqrt{3} \]

\[e^{-\rho} = 2 - \sqrt{3} \]

\[\omega_{\sec\sigma} = \omega_0 \cos \theta \]

\[\cos \theta \]

\[\omega_0 \tan \sigma \]

\[0 \]

\[\omega_0 \sec \sigma \sin \theta \]

\[\cos \theta \]

\[0 \]

\[\omega_0 \sec \sigma + \tan \sigma \sin \theta \]

\[\omega_0 \cosh \rho \]

\[\omega_0 \cos \theta \]

\[0 \]

\[\omega_0 \sec \sigma \sin \theta \]

\[\cos \theta \]

\[0 \]

\[\omega_0 \tan \sigma \]

\[0 \]

\[-\tan \sigma - \sec \sigma \sin \theta \]

\[\omega_0 \sec \sigma \sin \theta \]

\[\cos \theta \]

\[0 \]

\[-\tan \sigma - \sec \sigma \sin \theta \]

Let lab starlight ray at polar angle \(\theta\) have \(k^\uparrow\theta = \omega_0 (1, \cos \theta, 0, -\sin \theta)\). Then ship going \(u\) along \(z\)-axis sees:

\[
\begin{pmatrix}
\omega'_{\uparrow\theta} \\
ck'_{x\uparrow\theta} \\
ck'_{y\uparrow\theta} \\
ck'_{z\uparrow\theta}
\end{pmatrix} = \begin{pmatrix}
\cosh \rho_z & -\sinh \rho_z & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\sinh \rho_z & \cosh \rho_z & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
\omega_0 \\
0 \\
-\omega_0 \sin \theta \\
0
\end{pmatrix} = \begin{pmatrix}
\cosh \rho_z + \sinh \rho_z \sin \theta \\
\omega_0 \cos \theta \\
-\sinh \rho_z - \cosh \rho_z \sin \theta \\
0
\end{pmatrix} = \begin{pmatrix}
\sec \sigma + \tan \sigma \sin \theta \\
\cos \theta \\
0 \\
-\tan \sigma - \sec \sigma \sin \theta
\end{pmatrix}
\]
Review of geometric construction, per-space-time \((\omega, ck)\) dispersion hyperbola \(\omega = B \cosh \rho\).

A quick flip to space-time \((ct, x)\) construction: Minkowski coordinate grid.

Lorentz transformations of Phase vector \(P'\) and Group vector \(G'\) in per-space-time.

Lorentz matrix transformation of \((x, ct)\) space-time coordinates.

Two Famous-Name Coefficients: Lorentz space contraction and Einsein time dilation.

Heighway Paradoxes: A relativistic “He said-She-said...” argument.

Phase invariance...derives Lorentz transformations...and vice-versa.

Another view of phasor-invariance.

Geometry of invariant hyperbolas.

Algebra of invariant hyperbolas.

Proper time \(\tau_0\) and proper frequency \(\omega_0\).

A politically incorrect analogy of rotation to Lorentz transformation.

Yet another view: The Epstein space-proper-time approach to SR uses stellar aberration angle \(\sigma\).

Relating rapidity \(\rho\) to stellar aberration angle \(\sigma\) and circular or hyperbolic arc-area.

Each circular trig function has a hyperbolic “country-cousin” function.

Ship vs Lighthouse sagas and the Bureau of Inter-Galactic Aids to Navigation at Night (Our 1\(^{st}\) RelativIt animations).
Comparing Longitudinal relativity parameter: Rapidity $\rho = \log_e$ (Doppler Shift) to Transverse relativity parameter: Stellar aberration angle σ.

Observer fixed below star sees it directly overhead. Observer going u sees star at angle σ in u direction.

Stellar aberration angle σ:

$$c \tanh \rho = u = c \sin \sigma$$

We used notion σ for stellar-ab-angle, (a “flipped-out” ρ).

Epstein seemed uninterested in ρ analysis or in relation of σ and ρ.
Relating **Longitudinal** relativity parameter: \(\text{Rapidity } \rho = \log_e(\text{Doppler Shift}) \)

to **Transverse** relativity parameter: Stellar aberration angle \(\sigma \)

Proper time \(c\tau \) vs. coordinate space \(x \) - (L. C. Epstein’s “Cosmic Speedometer”)
Particles \(P \) and \(P' \) have speed \(u \) in \((x',ct') \) and speed \(c \) in \((x, c\tau) \)

Proper time \(C\tau \)

\[
c\tau = \sqrt{(ct')^2 - (x')^2}
\]

Coordinate \(x' = (u/c)ct' = ut' \)

Einstein time dilation:

\[
ct' = c\tau \sec\sigma = c\tau \cosh\rho = c\tau/\sqrt{1-u^2/c^2}
\]

Lorentz length contraction:

\[
L' = L \sech\rho = L\cos\sigma = L \cdot \sqrt{1-u^2/c^2}
\]

Proper Time simultaneity:

\[
c \Delta\tau = L' \sinh\rho = L \cos\sigma \sinh\rho = L \cos\sigma \tan\sigma = L \sin\sigma = L/\sqrt{c^2/u^2-1} \sim L u/c
\]
Relating **Longitudinal** relativity parameter: Rapidity $\rho = \log_e(\text{Doppler Shift})$

to **Transverse** relativity parameter: Stellar aberration angle σ

Proper time $c\tau$ vs. coordinate space x - (L. C. Epstein’s “Cosmic Speedometer”)

Particles P and P' have speed u in (x',ct') and speed c in $(x,c\tau)$

Proper time $c\tau$

$ct = \sqrt{(ct')^2 -(x')^2}$

Coordinate $x' = (u/c)ct' = ut'$

Einstein time dilation:

$ct' = c\tau \sec \sigma = c\tau \cosh \rho = c\tau / \sqrt{1-u^2/c^2}$

Lorentz length contraction:

$L' = L \sech \rho = L \cos \sigma = L \cdot \sqrt{1-u^2/c^2}$

Proper Time asimultaneity:

$c \Delta \tau = L' \sinh \rho = L \cos \sigma \sinh \rho$

$= L \cos \sigma \tan \sigma$

$= L \sin \sigma = L / \sqrt{c^2/u^2-1} \sim L u/c$

Epstein’s trick is to turn a hyperbolic form $c\tau = \sqrt{(ct')^2 -(x')^2}$ into a circular form:

$\sqrt{(c\tau)^2 + (x')^2} = (ct')$

Then everything (and everybody) always goes speed c through $(x',c\tau)$ space!
Geometry of invariant hyperbolas

Euclid’s 3-means (300 BC)
Geometric “heart” of wave mechanics

Thales (580 BC) rectangle-in-circle
Relates to wave interference by (Galilean) phasor angular velocity addition

Figure 10a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units).

Pirelli Site animations:
http://www.uark.edu/ua/pirelli/php/means_1.php
http://www.uark.edu/ua/pirelli/php/half_sum_2.php
Geometry of invariant hyperbolas

Euclidian wave geometry with time-reversal symmetry imply dispersion hyperbolas: \(\omega = nB \cosh \rho \)

Time \(r=1/b \) symmetry shows geometry of 2-CW grid transformation that leaves hyperbolas invariant.

http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html?plotType=3l5&minkGridPosCells=2
Algebra of invariant hyperbolas: Proper time τ_0 and proper frequency ω_0

\[
\begin{pmatrix}
ck \\
\omega
\end{pmatrix} = \begin{pmatrix}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
ck' \\
\omega'
\end{pmatrix}
\]

\[
\begin{pmatrix}
x \\
ct
\end{pmatrix} = \begin{pmatrix}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{pmatrix} \begin{pmatrix}
x' \\
ct'
\end{pmatrix}
\]

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant:

\[
\omega_0^2 = \omega^2 - (ck)^2 = \omega'^2 - (ck')^2
\]

ω_0 is called “proper frequency” or rate of “aging”

\[
\omega_0 = \omega \sqrt{1- \frac{k^2}{c^2}} = \omega' \sqrt{1- \frac{k'^2}{c^2}}
\]

\[
= \omega \sqrt{1- \frac{u^2}{c^2}} = \omega' \sqrt{1- \frac{u'^2}{c^2}}
\]

ω_0 is called “proper frequency” or rate of “aging”

Space-time invariant:

\[
(c\tau_0)^2 = (ct)^2 - x^2 = (ct')^2 - (x')^2
\]

τ_0 is called “proper time” or “age”:

\[
\tau_0 = t \sqrt{1- \frac{x^2}{(ct)^2}} = t' \sqrt{1- \frac{x'^2}{(ct')^2}}
\]

\[
= t \sqrt{1- \frac{u^2}{c^2}} = t' \sqrt{1- \frac{u'^2}{c^2}}
\]

The “grand-daddy-of ‘em all” invariant

Phase invariance:

\[
\Phi_0 = k \cdot x - \omega \cdot t = k' \cdot x' - \omega' \cdot t'
\]

Proof:

\[
ck \cdot x' - \omega' \cdot ct' = ck \cdot x - \omega \cdot ct
\]

\[
ck \cdot \cosh - \omega \cdot \sinh = \omega' \cdot \cosh - ct' \cdot \sinh
\]

\[
ck \cdot \cosh^2 - ck \cdot x \cdot \sinh = ck \cdot x
\]

\[
ck \cdot x \cdot \cosh^2 - \omega \cdot ct \cdot \sinh = -\omega \cdot ct
\]
A politically incorrect analogy of rotation to Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!

Circular invariants $r^2 = x^2 + y^2$

You may apply (Jacobian) transform matrix:

$$
\begin{pmatrix}
\langle x | x' \rangle & \langle y | x' \rangle \\
\langle y | y' \rangle & \langle y | y' \rangle
\end{pmatrix} = \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
$$

or the inverse (Kajobian) transformation:

$$
\begin{pmatrix}
\langle x' | x \rangle & \langle x' | y \rangle \\
\langle y' | x \rangle & \langle y' | y \rangle
\end{pmatrix} = \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
$$

to any vector $\mathbf{V} = |V\rangle = |x\rangle\langle x|V\rangle + |y\rangle\langle y|V\rangle$

$$
=x\langle x'|V\rangle + y\langle y'|V\rangle
$$
(a) Rotation Transformation and Invariants

\[
x = 1.65 \\
y = -0.85 \\
x^2 + y^2 = 3.43 \\
x' = 1.00 \\
y' = -1.56 \\
x'^2 + y'^2 = 3.43
\]

\[
\gamma = 0 \\
\theta = 0 \\
\theta + \theta' = 0.5236
\]

\[
x' = x \cos \theta - y \sin \theta = \frac{x}{\sqrt{1 + \frac{b^2}{c^2}}} + \frac{- \left(\frac{b}{c} \right) y}{\sqrt{1 + \frac{b^2}{c^2}}}
\]

\[
y' = x \sin \theta + y \cos \theta = \frac{\left(\frac{b}{c} \right) x}{\sqrt{1 + \frac{b^2}{c^2}}} + \frac{y}{\sqrt{1 + \frac{b^2}{c^2}}}
\]

(b) Lorentz Transformation and Invariants

\[
x = 1.5453 \\
ct = 0.9819 \\
x^2 - (ct)^2 = 1.42 \\
x' = 2.3512 \\
ct' = 2.0260 \\
x'^2 - (ct')^2 = 1.42
\]

\[
\gamma = 0.5493 \\
\theta = 0 \\
\theta + \theta' = -0.5493
\]

\[
x' = \frac{x}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{\frac{v}{c} ct}{\sqrt{1 - \frac{v^2}{c^2}}} = x \cosh \rho + y \sinh \rho
\]

\[
ct' = \frac{\frac{v}{c} x}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{ct}{\sqrt{1 - \frac{v^2}{c^2}}} = x \sinh \rho + y \cosh \rho
\]
Light-cone-sections are hyperbolas

Main Lighthouse on (x=0,y=0) time line

North Lighthouse-1 on (x=0,y=1) time line

Fig. 2.B.5 Space-Space-Time plot of world lines for Lighthouses. North Lighthouse blink waves trace light cones.