Relawavity: Relativistic wave mechanics II. 2nd-order effects

(4.05.16)

Review of Doppler-shift and Rapidity ρ_{AB} calculation: \textit{Galileo’s Revenge Part I Lect. 23 p.64-75}

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of ½-sum-½-difference Phase and Group factors giving relativistic space-axes and time-axes
Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of ½-sum-½-difference of phasor angular velocity: \textit{Galileo’s Revenge Part II} (Pirelli site)
Elementary models: 2-comb Moire' patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted ½-sum-½-difference Phase and Group factors
Doppler shifted Phase vector P' and Group vector G' in per-space-time
Minkowski coordinate grid in space-time
Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry
Doppler shifted Phase parameters
Doppler shifted Group parameters
Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (\textit{Thales of Miletus 624-543 BCE}) and its role in Relawavity
Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR
Review Doppler-shift and Rapidity calculation

Alice: Hey, Bob and Carla! Read off your Doppler shift ratios \(\langle B|A \rangle \) and \(\langle C|A \rangle \) to my 600THz beam.

Also, rapidity \(\rho_{BA} \) and \(\rho_{CA} \) relative to me.

Now, Carla, what’s your rapidity \(\rho_{CB} \) relative to Bob?

Bob-Alice Doppler ratio:
\[
\langle B|A \rangle = \frac{v_B}{v_A} = \frac{1200}{600} = 2
\]

Bob-Alice rapidity:
\[
\rho_{BA} = \log_e \langle B|A \rangle = \log_e \frac{2}{1} = 0.69 \quad \text{(so:} \rho_{AB} = -0.69)\]

Carla-Alice Doppler ratio:
\[
\langle C|A \rangle = \frac{v_C}{v_A} = \frac{400}{600} = \frac{2}{3}
\]

Carla-Alice rapidity:
\[
\rho_{CA} = \log_e \langle C|A \rangle = \log_e \frac{2}{3}
\]

Carla-Bob Doppler ratio:
\[
\langle C|B \rangle = \frac{v_C}{v_B} = \frac{v_C}{v_A} \cdot \frac{v_A}{v_B} = \langle C|A \rangle \langle A|B \rangle
\]

Carla-Bob rapidity:
\[
e^{\rho_{CB}} = e^{\rho_{CA}} e^{\rho_{AB}} \quad \text{implied:} \quad \rho_{CB} = \rho_{CA} + \rho_{AB}
\]

\[
e^{\rho_{CB}} = e^{\rho_{CA}} e^{\rho_{AB}} = e^{-0.41} e^{-0.69} = e^{-1.10}
\]

Galileo’s Revenge (part 1)
Rapidity adds just like Galilean velocity

\[\rho_{CB} = \rho_{CA} + \rho_{AB} = -0.41 - 0.69 = -1.10\]
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I Lect. 23 p.64-75*

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes
Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)
Elementary models: 2-comb Moire’ patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors
Doppler shifted Phase vector P' and Group vector G' in per-space-time
Minkowski coordinate grid in space-time
Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry
Doppler shifted Phase parameters
Doppler shifted Group parameters
Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity
Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *'Un Grande Affare’ - Light Meets Light*
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$ and $\omega_R=\omega_A$ going left-to-right (from Alice's $600\,\text{THz}$ laser) and $\omega_L=\omega_C$ going right-to-left (from Carla's $600\,\text{THz}$ laser).
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB} = u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R = +\omega_R/c$ and $k_L = -\omega_L/c$

$\omega_R = \omega_A$ going left-to-right (from Alice's 600 THz laser) and $\omega_L = \omega_C$ going right-to-left (from Carla's 600 THz laser).

We ask two questions:
(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?
(2.) What is that frequency ω_E?
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB} = u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R = +\omega_R/c$ and $k_L = -\omega_L/c$ $\omega_R = \omega_A$ going left-to-right (from Alice's 600 THz laser) and $\omega_L = \omega_C$ going right-to-left (from Carla's 600 THz laser).

We ask two questions:

(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?

(2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:
What is the beam group velocity?
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB} = u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R = +\omega_R/c$ and $k_L = -\omega_L/c$ $\omega_R = \omega_A$ going left-to-right (from Alice's 600 THz laser) and $\omega_L = \omega_C$ going right-to-left (from Carla's 600 THz laser).

We ask two questions:

(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?

(2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given: $\omega_{\text{group}} = \frac{\omega_R - \omega_L}{2}$ and $k_{\text{group}} = \frac{k_R - k_L}{2}$
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB} = u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R = +\omega_R/c$ and $k_L = -\omega_L/c$ $\omega_R = \omega_A$ going left-to-right (from Alice's laser) and $\omega_L = \omega_C$ going right-to-left (from Carla's laser).

We ask two questions:

1. To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?

2. What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given: $\omega_{\text{group}} = \frac{\omega_R - \omega_L}{2}$ and $k_{\text{group}} = \frac{k_R - k_L}{2}$

$$u_E = V_{\text{group}} = \frac{\omega_{\text{group}}}{k_{\text{group}}} = \frac{\omega_R - \omega_L}{k_R - k_L}$$
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$ $\omega_R=\omega_A$ going left-to-right (from Alice's 600 THz laser) and $\omega_L=\omega_C$ going right-to-left (from Carla's 600 THz laser).

We ask two questions:

1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?

2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given: $\omega_{\text{group}} = \frac{\omega_R - \omega_L}{2}$ and $k_{\text{group}} = \frac{k_R - k_L}{2}$

with $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$ $\omega_R=\omega_A$ going left-to-right (from Alice's 600 THz laser) and $\omega_L=\omega_C$ going right-to-left (from Carla's 600 THz laser).

We ask two questions:

(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E ?

(2.) What is that frequency ω_E ?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given: $\omega_{\text{group}} = \frac{\omega_R - \omega_L}{2}$ and: $k_{\text{group}} = \frac{k_R - k_L}{2}$ with $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$ $\omega_R=\omega_A$ going left-to-right (from Alice's 600 THz laser) and $\omega_L=\omega_C$ going right-to-left (from Carla's 600 THz laser).

We ask two questions:
(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?
(2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given: $\omega_{group} = \frac{\omega_R - \omega_L}{2}$ and $k_{group} = \frac{k_R - k_L}{2}$

$u_E = V_{group} = \frac{\omega_{group}}{k_{group}} = \frac{\omega_R - \omega_L}{k_R - k_L} = c \frac{\omega_R - \omega_L}{\omega_R + \omega_L} = c \frac{1200 - 300}{1200 + 300} = \frac{3}{5}c$

with $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$ $\omega_R=\omega_A$ going left-to-right (from Alice's 600 THz laser) and $\omega_L=\omega_C$ going right-to-left (from Carla's 600 THz laser).

We ask two questions:

(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?

(2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given: $\omega_{\text{group}} = \frac{\omega_R - \omega_L}{2}$ and $k_{\text{group}} = \frac{k_R - k_L}{2}$

$$u_E = V_{\text{group}} = \frac{\omega_{\text{group}}}{k_{\text{group}}} = \frac{\omega_R - \omega_L}{\frac{k_R - k_L}{c}} = \frac{\omega_R - \omega_L}{\frac{\omega_R + \omega_L}{c}} = \frac{1200 - 300}{1200 + 300} = \frac{3}{5}c$$

with $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$

Reply to Query (2.) in similar style:

What ω_E is blue-shift $b\omega_L$ of ω_L and red-shift ω_R/b of ω_R?

$$\omega_E = b \omega_L = \omega_R/b$$
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB} = u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R = +\omega_R/c$ and $k_L = -\omega_L/c$ going left-to-right (from Alice's 600 THz laser) and $\omega_L = \omega_C$ going right-to-left (from Carla's 600 THz laser).

We ask two questions:

(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?

(2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given: $\omega_{\text{group}} = \frac{\omega_R - \omega_L}{2}$ and $k_{\text{group}} = \frac{k_R - k_L}{2}$

$$u_E = u_{\text{group}} = \frac{\omega_{\text{group}}}{k_{\text{group}}} = \frac{\omega_R - \omega_L}{k_R - k_L} = c \frac{\omega_R - \omega_L}{\omega_R + \omega_L} = c \frac{1200 - 300}{1200 + 300} = \frac{3}{5} c$$

with $k_R = +\omega_R/c$ and $k_L = -\omega_L/c$

Reply to Query (2.) in similar style:

What ω_E is blue-shift $b\omega_L$ of ω_L and red-shift ω_R/b of ω_R?

$$\omega_E = b \omega_L = \frac{\omega_R}{b} \quad \Rightarrow \quad b = \sqrt{\frac{\omega_R}{\omega_L}}$$
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$ $\omega_R=\omega_A$ going left-to-right (from Alice's 600THz laser) and $\omega_L=\omega_C$ going right-to-left (from Carla's 600THz laser).

We ask two questions:

(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?

(2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given:

$$u_E=V_{\text{group}}=\frac{\omega}{k_{\text{group}}} = \frac{\omega R - \omega L}{k_R - k_L} = c \frac{\omega R - \omega L}{\omega R + \omega L} = c \frac{1200 - 300}{1200 + 300} = \frac{3}{5} c$$

with $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$

Reply to Query (2.) in similar style:

What ω_E is blue-shift $b\omega_L$ of ω_L and red-shift ω_R/b of ω_R?

$$\omega_E = b\omega_L = \frac{\omega_R}{b} \quad \Rightarrow \quad b = \sqrt{\frac{\omega_R}{\omega_L}} \quad \Rightarrow \quad \omega_E = \sqrt{\omega_R \omega_L}$$

(Geometric Mean)
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$ and $\omega_R=\omega_A$ going left-to-right (from Alice's 600 THz laser) and $\omega_L=\omega_C$ going right-to-left (from Carla's 600 THz laser).

We ask two questions:

1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?

2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

$$u_E = V_{\text{group}} = \frac{\omega}{k_{\text{group}}} = \frac{\omega_R - \omega_L}{k_R - k_L} = c \frac{\omega_R - \omega_L}{\omega_R + \omega_L} = c \frac{1200 - 300}{1200 + 300} = \frac{3}{5} c$$

with $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$.

Reply to Query (2.) in similar style:

What ω_E is blue-shift $b\omega_L$ of ω_L and red-shift ω_R/b of ω_R?

$$\omega_E = b\omega_L = \frac{\omega_R}{b} \quad \Rightarrow \quad b = \sqrt{\omega_R/\omega_L} \quad \Rightarrow \quad \omega_E = \sqrt{\omega_R \cdot \omega_L} = \sqrt{1200 \cdot 300} = 600 \text{THz}$$

(Geometric Mean)
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$ going left-to-right (from Alice's laser) and $\omega_L=\omega_C$ going right-to-left (from Carla's laser).

We ask two questions:

(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?

(2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given: $\omega_{\text{group}} = \frac{\omega_R-\omega_L}{2}$ and: $k_{\text{group}} = \frac{k_R-k_L}{2}$

\[
u_E = V_{\text{group}} = \frac{\omega_{\text{group}}}{k_{\text{group}}} = \frac{k_R-k_L}{c} = \frac{\omega_R-\omega_L}{\omega_R+\omega_L} = c \frac{1200 - 300}{1200 + 300} = \frac{3}{5}c
\]

With $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$

Using Rapidity:

$\rho_{BA} = \log_e \langle B | A \rangle$

Reply to Query (2.) in similar style:

What ω_E is blue-shift $b\omega_L$ of ω_L and red-shift ω_R/b of ω_R?

\[
\omega_E = b \omega_L = \omega_R/b \quad \Rightarrow \quad b = \frac{\omega_R}{\omega_L} \quad \Rightarrow \quad \omega_E = \frac{\omega_R \cdot \omega_L}{\omega_R+\omega_L} = \sqrt{1200 \cdot 300} = 600 \text{THz}
\]

(Geometric Mean)
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$ $\omega_R=\omega_A$ going left-to-right (from Alice's 600 THz laser) and $\omega_L=\omega_C$ going right-to-left (from Carla's 600 THz laser).

We ask two questions:
(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?
(2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given: $\omega_{\text{group}} = \frac{\omega_R - \omega_L}{2}$ and $k_{\text{group}} = \frac{k_R - k_L}{2}$ with $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$

Using Rapidity:

\[\rho_{AB} = \log_e(A/B) \]

Reply to Query (2.) in similar style:
What ω_E is blue-shift $b\omega_L$ of ω_L and red-shift ω_R/b of ω_R?

Blue-shift $b = e^{\rho_{AB}}$ Red-shift $r = b^{-1} = e^{-\rho_{AB}}$

Thus $\omega_E = b\omega_L = \omega_R/b \quad \Rightarrow \quad b = \sqrt{\omega_R/\omega_L} \quad \Rightarrow \quad \omega_E = \sqrt{\omega_R \cdot \omega_L} = \sqrt{1200 \cdot 300} = 600 \text{ THz}$ (Geometric Mean)

Thursday, April 7, 2016
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Imagine Bob sees a pair of counter-propagating laser beams with wavevectors $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$ $\omega_R=\omega_A$ going left-to-right (from Alice's 600THz laser) and $\omega_L=\omega_C$ going right-to-left (from Carla's 600THz laser).

We ask two questions:

(1.) To what velocity u_E must Bob accelerate so he sees beams with equal frequency ω_E?

(2.) What is that frequency ω_E?

Reply to Query (1.) has a Jeopardy-style answer-by-question:

What is the beam group velocity?

Given: $\omega_{\text{group}}=\frac{\omega_R-\omega_L}{2}$ and: $k_{\text{group}}=\frac{k_R-k_L}{2}$ with $k_R=+\omega_R/c$ and $k_L=-\omega_L/c$

\[
\frac{u_E}{c} = \frac{u_{AB}}{c} = \frac{e^{\rho_{AB}}-e^{-\rho_{AB}}}{e^{\rho_{AB}}+e^{-\rho_{AB}}} = \frac{\sinh \rho_{AB}}{\cosh \rho_{AB}} = \frac{3}{5} \quad \text{Using Rapidity:} \quad \rho_{AB} = \log_e \left(\frac{A}{B} \right)
\]

Reply to Query (2.) in similar style:

What ω_E is blue-shift $b \omega_L$ of ω_L and red-shift ω_R/b of ω_R?

Blue-shift $b = e^{\rho_{AB}}$

Red-shift $r = b^{-1} = e^{-\rho_{AB}}$

\[
\omega_E = b \omega_L = \frac{\omega_R}{b} \quad \Rightarrow \quad b = \sqrt{\frac{\omega_R}{\omega_L}} \quad \Rightarrow \quad \omega_E = \sqrt{\omega_R \cdot \omega_L} = \sqrt{1200 \cdot 300} = 600\text{THz}
\]

(Geometric Mean)
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I Lect. 23 p.64-75*

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

- Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes
- Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

- Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)
- Elementary models: 2-comb Moire’ patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors
Doppler shifted Phase vector P' and Group vector G' in per-space-time
Minkowski coordinate grid in space-time
Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry
Doppler shifted Phase parameters
Doppler shifted Group parameters
Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity
Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *Un Grande Affaire’ - Light Meets Light*
Colliding 2CW laser beams

Right-moving wave $e^{i(kx-\omega t)}$

$\begin{align*}
&k = +2 \\
&\omega = 2c
\end{align*}$

Alice’s laser

$\begin{align*}
&\text{CW Dye-laser} \\
&600 \text{ THz}
\end{align*}$

Left-moving wave $e^{i(-kx-\omega t)}$

$\begin{align*}
&k = -2 \\
&\omega = 2c
\end{align*}$

Carla’s laser

$\begin{align*}
&\text{CW Dye-laser} \\
&600 \text{ THz}
\end{align*}$

Wavelength $\lambda = 2\pi/k = 1/\kappa$

$(1/2\mu m = 0.5 \cdot 10^{-6} m)$

Period $\tau = 2\pi/\omega = 1/\nu$

$(5/3 fs = 1.67 \cdot 10^{-15} s)$

Alice: OK, Bob. We're gonna' hit you from both sides, now!

Carla: Look out, Bob!

Bob: Yikes!

Thursday, April 7, 2016
Right-moving CW $e^{ikx-\omega t}$

Left-moving CW $e^{i(-kx-\omega t)}$

Carla:
You get zeros of any wave-sum $e^{ia} + e^{ib}$ by factoring it into phase and group parts.

Bob:
Cool! You guys made me a space-time graph out of real zeros.

How’d it do that?

BohrIt Web Simulation
1 CW ct vs x Plot (ck = +1)
Single panel with Zero Tracers

BohrIt Web Simulation
2 CW ct vs x Plot (ck = ±2)
Multi-panel with Zero Tracers
Edge 0

Right-moving CW $e^{i(kx-\omega t)}$

- $k = +2$
- $\omega = 2c$
- CW Dye-laser 600 THz

Left-moving CW $e^{i(-kx-\omega t)}$

- $k = -2$
- $\omega = 2c$
- CW Dye-laser 600 THz

Carla:

Easy!

You get zeros of any wave-sum $e^{ia}+e^{ib}$ by factoring it into phase and group parts.

Remember your algebra? Exponents of products add.

So, half-sum $\frac{a+b}{2}$ plus half-diff $\frac{a-b}{2}$ gives a, and half-sum $\frac{a+b}{2}$ minus half-diff $\frac{a-b}{2}$ gives b.

Presto!

You factor $e^{ia}+e^{ib}$ into $e^\frac{a+b}{2}\left(e^{i\frac{a-b}{2}} + e^{-i\frac{a-b}{2}}\right)$.

Alice 1CW phase: $a = kx - \omega t$

Carla 1CW phase: $b = -kx - \omega t$
Right-moving CW \(e^{i(kx - \omega t)} \)

Left-moving CW \(e^{i(-kx - \omega t)} \)

Wavelength \(\lambda = \frac{2\pi}{k} = \frac{1}{\nu} \) (1/2\(\mu m = 0.5 \cdot 10^{-6} m \))

Period \(\tau = \frac{2\pi}{\omega} = \frac{1}{\nu} \) (5/3fs = 1.67 \cdot 10^{-15}s)

\[
\begin{align*}
\text{Bob:} & \quad \text{Cool! You guys made me a space-time graph out of real zeros. How’d it do that?}
\end{align*}
\]

\[
\begin{align*}
\text{Carla:} & \quad \text{Easy! You get zeros of any wave-sum } e^{ia} + e^{ib} \text{ by factoring it into phase and group parts.}
\end{align*}
\]

\[
\begin{align*}
\text{Remember your algebra? Exponents of products add.}
\end{align*}
\]

\[
\begin{align*}
\text{So, half-sum } & \quad \frac{a+b}{2} \quad \text{plus half-diff } \frac{a-b}{2} \quad \text{gives } a,
\end{align*}
\]

\[
\begin{align*}
\text{and half-sum } & \quad \frac{a+b}{2} \quad \text{minus half-diff } \frac{a-b}{2} \quad \text{gives } b.
\end{align*}
\]

\[
\begin{align*}
\text{Presto! You factor } e^{ia} + e^{ib} \text{ into } e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} + e^{-i\frac{a-b}{2}} \right)
\end{align*}
\]

\[
\begin{align*}
\text{Alice 1CW phase: } a = kx - \omega t
\end{align*}
\]

\[
\begin{align*}
\text{Carla 1CW phase: } b = -kx - \omega t
\end{align*}
\]

\[
\begin{align*}
\text{Bob’s 2CW Group-phase: } +k = \frac{a-b}{2}
\end{align*}
\]

\[
\begin{align*}
\text{Group wave: } e^{-ikx} + e^{-ikx} = 2\cos kx \text{ is standing wave (does not vary with time } t)\]
\]
Let’s plot this in per-spacetime?!

Cool! You guys made me a space-time graph out of real zeros.

How’d it do that?

You get zeros of any wave-sum $e^{ia} + e^{ib}$ by factoring it into phase and group parts.

Remember your algebra? Exponents of products add.

So, half-sum $\frac{a+b}{2}$ plus half-diff $\frac{a-b}{2}$ gives a,

and half-sum $\frac{a+b}{2}$ minus half-diff $\frac{a-b}{2}$ gives b.

Presto!
You factor $e^{ia} + e^{ib}$ into $e^{\frac{i}{2}} \left(e^{\frac{i}{2} a-b} + e^{-\frac{i}{2} a-b} \right)$

Alice 1CW phase: $a = kx - \omega t$
Carla 1CW phase: $b = -kx - \omega t$

Bob’s 2CW Group-phase: $+k = \frac{a-b}{2}$

Group wave: $e^{-i\omega t} (e^{ikx} + e^{-ikx}) = 2\cos kx$

is standing wave (does not vary with time t)

Bob’s 2CW Phase-phase: $-\omega = \frac{a+b}{2}$

Phase wave real part: $\text{Re}(e^{-i\omega t}) = \cos(\omega t)$

is “instanton” wave (does not vary in space x)
Standing 2CW in per-space-time
Frequency
\(\omega = 2\pi \nu \)

\[\Psi(x,t) = (e^{i\omega t})(2\cos kx) = e^{i(kx-\omega t)} + e^{i(-kx-\omega t)} \]

Standing 2CW in space-time

Phase vector
1/2-sum:
\[\text{Phase vector} \]
\[K_{\text{phase}} = \frac{R+L}{2} \]

Group vector
1/2-difference
\[K_{\text{group}} = \frac{R-L}{2} \]

Bob: The \(P \) and \(G \) vectors are scale models of zero-grid lattice vectors (but \(P \) and \(G \) switch places).

\[L = K_{-2} \]
\[R = K_{+2} \]
\[L = P - G \]
\[R = P + G \]

Carla: OK, Bob! It looks like a baseball diamond with \(P \) at Pitcher’s mound and \(G \) at the Grandstand*. I’m on 1st base! (R)

*Thanks, Woody!
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I Lect. 23 p.64-75*

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes

Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)

Elementary models: 2-comb Moire' patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors

Doppler shifted Phase vector P' and Group vector G' in per-space-time

Minkowski coordinate grid in space-time

Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry

Doppler shifted Phase parameters

Doppler shifted Group parameters

Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity

Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR
The \((\Psi, \kappa)\) "Baseball Diamond"

The \((\nu, \kappa)\) \(\lambda=2\pi/k=1/\kappa\)

\((0.5\mu m=0.5 \cdot 10^{-6} m)\)

Period \(\tau=2\pi/\omega=1/\nu\)

\((1.67 fs=0.167 \cdot 10^{-15} s)\)

\(\Psi(x,t) = (e^{i\omega t}) (2\cos kx) = e^{i(kx-\omega t)} + e^{i(-kx-\omega t)}\)

Standing 2CW in per-space-time

Frequency \(\omega=2\pi \nu\)

Phase vector 1/2-sum:

\(\mathbf{K}_{\text{phase}} = \mathbf{P} = \frac{\mathbf{R} + \mathbf{L}}{2}\)

\(\mathbf{L} = \mathbf{K}_{-2}\)

\(\mathbf{P} = \mathbf{R} + \mathbf{G}\)

\(\mathbf{G} = \mathbf{P} - \mathbf{G}\)

Pitcher’s mound 1st base (Alice)

Grandstand 2nd base (Carla)

Wavevector \(ck=2\pi \kappa c\)

Group vector 1/2-difference

\(\mathbf{K}_{\text{group}} = \mathbf{G} = \frac{\mathbf{R} - \mathbf{L}}{2}\)

Bob: The \(\mathbf{P}\) and \(\mathbf{G}\) vectors are scale models of zero-grid lattice vectors (but \(\mathbf{P}\) and \(\mathbf{G}\) switch places)

It looks like a baseball diamond with \(\mathbf{P}\) at Pitcher’s mound and \(\mathbf{G}\) at the Grandstand*. Ok, I’m on 3rd base! L.

*Thanks, Woody!
Continuous Waves (CW) trace “Cartesian squares” in space-time

(a) CW squares
1 femtosecond
1.0 fs = 10^{-15}s
1 micron
1.0 µm = 10^{-6} meter

Pulse Waves (PW) trace “baseball diamonds” in space-time

(b) PW diamonds

```
0 0.5 µm 1.0 µm
```

```
0 0.5 µm 1.0 µm
```
BohrIt Web Simulation

2 CW ct vs x Plot
(ck = ±2)

RelAvativity Site

Phase and Group Vectors in per-Time vs per-Space

\[R = P + G \]
\[L = P - G \]
\[P = \frac{R + L}{2} \]
\[G = \frac{R - L}{2} \]
$R = P + G$

$L = P - G$

$P = \frac{R + L}{2}$

$G = \frac{R - L}{2}$

BohrIt Multi-Panel Simulation

2 PW ct vs x Plot
$(\beta = u/c = 0)$

BohrIt Simulation

2 PW ct vs x Plot
$(\beta = u/c = 0)$
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I* Lect. 23 p.64-75

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes
Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)
Elementary models: 2-comb Moire’ patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors
Doppler shifted Phase vector P' and Group vector G' in per-space-time
Minkowski coordinate grid in space-time
Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry
Doppler shifted Phase parameters
Doppler shifted Group parameters
Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity
Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *Un Grande Affaire’ - Light Meets Light*
You get zeros of any wave-sum $e^{ia} + e^{ib}$ by factoring it into phase and group parts.

Remember your algebra? Exponents of products add.

So, half-sum $\frac{a+b}{2}$ plus half-diff $\frac{a-b}{2}$ gives a, and half-sum $\frac{a+b}{2}$ minus half-diff $\frac{a-b}{2}$ gives b.

Presto!

You factor $e^{ia} + e^{ib}$ into $e^{i \frac{a+b}{2}} \left(e^{i \frac{a-b}{2}} + e^{-i \frac{a-b}{2}} \right)$

More at Pirelli Challenge page: 'Un Grande Affare’ - Light Meets Light
(a) Sum of Wave Phasor Array

Red phasor B: \(\Psi_A = e^{i\alpha}\) with \(\alpha\) and \(\beta\)
GREEN phasor A: \(\Psi_B = e^{i\beta}\) with \(\cos\beta\) and \(\sin\beta\)

\(r = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0\)

(b) Typical Phasor Sum:

\(\Psi_{A+B} = \Psi_A + \Psi_B\)

(c) Phasor-relative views

\(\Psi_A - \Psi_B = (\alpha - \beta) / 2\)

Galileo’s Revenge (part 2)
Phasor angular velocity adds just like Galilean velocity

Happy now?

More at Pirelli Challenge page: 'Un Grande Affare' - Light Meets Light
Review of Doppler-shift and Rapidity ρ_{AB} calculation: \textit{Galileo’s Revenge Part I Lect. 23 p.64-75}

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes

Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: \textit{Galileo’s Revenge Part II} (Pirelli site)

Elementary models: 2-comb Moire' patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors

Doppler shifted Phase vector P' and Group vector G' in per-space-time

Minkowski coordinate grid in space-time

Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry

Doppler shifted Phase parameters

Doppler shifted Group parameters

Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (\textit{Thales of Miletus 624-543 BCE}) and its role in Relawavity

Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: \textit{'Un Grande Affare’ - Light Meets Light}
Alice: Now our 600THz lasers move left-to-right. My 600THz laser is going so fast its beam blasts you with UV 1200THz.

Carla's 600THz laser is going away so you get a nice infrared 300THz.

Bob: That UV burns! I need to put on my sunglasses.
My UV 1200THz vector is fierce! You’ll need glasses to see P' and G' lines or coordinates.

Frequency ν' (units of $\nu_A = 600THz$)

Bob: Sunglasses help. Wow! Your 1st baseline R' is Doppler blued up by $e^{\nu' p} = 2$.

Evenson axiom says, “Stay on your baseline!”

Carla: My IR 300THz L' baseline is a lot nicer!
Evenson Axiom:

Stay on your baseline!

Doppler shift:

UV 1200THz \(\mathbf{R}' \) vector is fierce! You'll need glasses to see \(\mathbf{P}' \) and \(\mathbf{G}' \) lines or coordinates.

New Baseline:

My UV 300THz \(\mathbf{L}' \) is a lot nicer! (and half as long.)

Frequency:

\(\nu' = e^{+\rho} \frac{1}{2} \nu_A = 1200 \text{THz} \)

Wavevector:

\(c\kappa' = e^{+\rho} c\kappa_A = 2 c\kappa_A \)

Exson axiom says:

Stay on your baseline!
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I* Lect. 23 p.64-75

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes

Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)

Elementary models: 2-comb Moire’ patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors

Doppler shifted Phase vector P' and Group vector G' in per-space-time

Minkowski coordinate grid in space-time

Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry

Doppler shifted Phase parameters

Doppler shifted Group parameters

Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity

Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *Un Grande Affare’ - Light Meets Light*
Alice: OK. My UV 1200THz vector is fierce! You’ll need glasses to see \(\mathbf{P}' \) and \(\mathbf{G}' \) lines or coordinates.

Carla: My UV 300THz is a lot nicer! (and half as long.)

Bob: Sunglasses help. Wow! Your 1st baseline is Doppler blued up by \(e^{+\Delta} = 2 \).

But, Carla’s 3rd baseline \(\mathbf{L}' \) is Doppler red shifted by \(e^{-\Delta} = 1/2 \):

New “Pitcher-mound” \(\mathbf{P}' \) (Phase pt.) is 1/2-sum \(\frac{\mathbf{R}'+\mathbf{L}'}{2} \):

\[
\begin{align*}
\mathbf{v}' & = \frac{c \mathbf{k}'}{2} = \mathbf{v}_A \left(\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} \right) + \mathbf{v}_A \left(\begin{array}{c} -1/2 \\ +1/2 \\ 2+1/2 \\ 2+1/2 \\ 2+1/2 \\ 2+1/2 \end{array} \right) \\
& = \mathbf{v}_A \left(\begin{array}{c} 3/4 \\ 5/4 \end{array} \right) \\
& = \mathbf{v}_A \left(\begin{array}{c} 3/4 \\ 5/4 \end{array} \right) \\
& = \mathbf{v}_A \left(\begin{array}{c} 3/4 \\ 5/4 \end{array} \right)
\end{align*}
\]

RelaWavity Simulation

Shifted \(b=2 \) Phase and Group Vectors in per-Time vs per-Space
Alice: OK. My UV 1200THz \(R' \) vector is fierce! You’ll need glasses to see \(P' \) and \(G' \) lines or coordinates.

Carla: My UV 300THz \(L' \) 3rd baseline is a lot nicer! (and half as long.)

Bob: Sunglasses help. Wow! Your 1st baseline is Doppler blued up by \(e^{+\rho} = 2 \).

But, Carla’s 3rd baseline \(L' \) is Doppler red shifted by \(e^{-\rho} = 1/2 \).

New “Pitcher-mound” \(P' \) (Phase pt.) is 1/2-sum \((R' + L')/2 \):

\[
K'_{phase} = \frac{P'}{2} = \frac{R' + L'}{2}
\]

\[
\begin{align*}
\nu'_{phase} &= \frac{\nu_A}{2} \begin{pmatrix} e^{+\rho} \\ e^{+\rho} \end{pmatrix} + \nu_A \begin{pmatrix} -e^{-\rho} \\ +e^{-\rho} \end{pmatrix} = \nu_A \\
&= \nu_A \begin{pmatrix} \sinh\rho \\ \cosh\rho \end{pmatrix} = \nu_A \begin{pmatrix} 3/4 \\ 5/4 \end{pmatrix}
\end{align*}
\]

RelaWavity Simulation

Shifted (b=2) Phase and Group Vectors in per-Time vs per-Space
Alice: OK. My UV 1200THz vector is fierce! You’ll need glasses to see P' and G' lines or coordinates.

Carla: My UV 300THz is a lot nicer! (and half as long.)
Alice: OK.

My UV 1200THz \mathbf{R}' vector is fierce!
You'll need glasses to see \mathbf{P}' and \mathbf{G}' lines or coordinates.

Carla: My UV 300THz \mathbf{L}' vector is 3rd baseline is a lot nicer!
(and half as long.)

Bob: Sunglasses help.
Wow! Your 1st baseline \mathbf{R}' is Doppler blued up by $e^{v_1}=2$;

But, Carla’s 3rd baseline \mathbf{L}' is Doppler red shifted by $e^{v_1}=1/2; \quad \text{New "Pitcher-mound"} \quad \mathbf{P}' \quad \text{(Phase pt.)}$ is 1/2-sum $\left(\mathbf{R}'+\mathbf{L}'\right)/2$: $\quad \frac{e^{v_1}+e^{-v_1}}{2}$

New “Grandstand” \mathbf{G}' (Group pt.) $\quad \frac{e^{v_1}-e^{-v_1}}{2}$

But, Carla’s 3rd baseline \mathbf{L}' is Doppler red shifted by $e^{v_1}=1/2; \quad \text{New "Pitcher-mound"} \quad \mathbf{P}' \quad \text{(Phase pt.)}$ is 1/2-sum $\left(\mathbf{R}'+\mathbf{L}'\right)/2$: $\quad \frac{e^{v_1}+e^{-v_1}}{2}$

New “Grandstand” \mathbf{G}' (Group pt.) $\quad \frac{e^{v_1}-e^{-v_1}}{2}$
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I Lect. 23 p.64-75*

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB} = u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes

Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)

Elementary models: 2-comb Moire' patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors

Doppler shifted Phase vector P' and Group vector G' in per-space-time

Minkowski coordinate grid in space-time

Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry

Doppler shifted Phase parameters

Doppler shifted Group parameters

Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity

Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB} = u_{AB}/c = 3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *'Un Grande Affare’ - Light Meets Light*
Frequency
\(\nu' \)
(units of \(\nu_A = 600 \text{THz} \))

\[\begin{align*}
\text{Wavelength} & = 2\pi/k = 1/\kappa \\
(1/4\mu m) & = 0.25 \times 10^{-6} \text{m} \\
(1\mu m) & = 10^{-6} \text{m}
\end{align*} \]

\[\begin{align*}
\text{Wavelength} & = 2\pi/k = 1/\kappa \\
\text{Group vector} \quad G' = \frac{R' - L'}{2} \\
\text{Phase vector} \quad P' = R' + L' \quad (1/2-\text{sum vector})
\end{align*} \]

Bob: The spacetime wave-zeros replicate the same pattern.
Frequency

\(\nu' \)
(units of \(\nu_A = 600 \text{THz} \))

2CW per-Spacetime Plot

2CW Minkowski-Spacetime Grid

Bob: The spacetime wave-zeros replicate
the same pattern.

(Except \(P' \)-phase and
\(G' \)-group indicators get switched again.)

Let's measure these in careful detail!

2CW Minkowski-spacetime grid

Wavevector \(ck' \)
(units of \(ck_A = 2 \cdot 10^6 / \text{m} \))

Phase vector \(P \)
1/2-sum vector \(K_{phase}' = \frac{P' + L'}{2} \)

Group vector \(G \)
1/2-diff vector \(K_{group}' = \frac{G' - L'}{2} \)
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I Lect. 23 p.64-75*

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes

Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)

Elementary models: 2-comb Moire' patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors

Doppler shifted Phase vector P' and Group vector G' in per-space-time

Minkowski coordinate grid in space-time

Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry

Doppler shifted Phase parameters

Doppler shifted Group parameters

Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity

Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *'Un Grande Affare’ - Light Meets Light*
BohrIt Web Simulation
2 CW Minkowski Plot (ck = -1, +4)
BohrIt Web Simulation

2 PW ct vs x Plot (β = u/c = 3/5)
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I Lect. 23 p.64-75*

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes

Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)

Elementary models: 2-comb Moire' patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors

Doppler shifted Phase vector P' and Group vector G' in per-space-time

Minkowski coordinate grid in space-time

Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry

- Doppler shifted Phase parameters
- Doppler shifted Group parameters

Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity

Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *'Un Grande Affaire’ - Light Meets Light*
The 16 parameters of 2CW interference

Start with the Dopplers

Space $x'\quad$ (units of $\lambda_A = 1/2\mu m$)

Time $ct'\quad$ (units of $\lambda_A = 1/2\mu m$)

RelaWavity Web Simulation - 16 Relativity Dimensions
The 16 parameters of 2CW interference

\[P' = \begin{pmatrix} cK_{\text{phase}}' \\ v_{\text{phase}}' \end{pmatrix} = \begin{pmatrix} \sinh \rho \\ \cosh \rho \end{pmatrix} = \begin{pmatrix} 3/4 \\ 5/4 \end{pmatrix} \]

Phase frequency \(v_{\text{phase}}' = v_A \cosh \rho = 5/4 = 1.25 \)
Phase period \(\tau'_{\text{phase}} = \tau_A \text{sech} \rho = 4/5 \)

Frequency \(v' \)
(units of \(v_A = 600 \text{THz} \))

Wavevector \(ck' \)
(units of \(cK_A = 2 \cdot 10^6 \text{m} \))

RelaWavity Web Simulation - 16 Relativity Dimensions

Time \(ct' \)
(units of \(\lambda_A = 1/2 \mu m \))

Start with the Dopplers
...then do the phase waves

Space \(x' \)
(units of \(\lambda_A = 1/2 \mu m \))

<table>
<thead>
<tr>
<th>phase</th>
<th>(b_{\text{Doppler RED}})</th>
<th>(c)</th>
<th>(K')</th>
<th>(\kappa')</th>
<th>(\tau'_{\text{phase}})</th>
<th>(v'_{\text{phase}})</th>
<th>(\lambda')</th>
<th>(\kappa')</th>
<th>(\tau'_{\text{group}})</th>
<th>(v'_{\text{group}})</th>
<th>(b_{\text{Doppler BLUE}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>1</td>
<td>(v_A)</td>
<td>(K_A)</td>
<td>(c_A)</td>
<td>(\kappa_A)</td>
<td>(\tau_A)</td>
<td>(v_A)</td>
<td>(\lambda_A)</td>
<td>(\kappa_A)</td>
<td>(\tau_A)</td>
<td>(v_A)</td>
</tr>
<tr>
<td>rapidity (\rho)</td>
<td>(e^{-\rho})</td>
<td>(\tanh \rho)</td>
<td>(\sinh \rho)</td>
<td>(\text{sech} \rho)</td>
<td>(\cosh \rho)</td>
<td>(\text{sech} \rho)</td>
<td>(\coth \rho)</td>
<td>(e^{+\rho})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>value for (\beta = 3/5)</td>
<td>(1/2 = 0.5)</td>
<td>(3/5 = 0.6)</td>
<td>(3/4 = 0.75)</td>
<td>(4/5 = 0.80)</td>
<td>(5/4 = 1.25)</td>
<td>(4/3 = 1.33)</td>
<td>(5/3 = 1.67)</td>
<td>(2/1 = 2.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The 16 parameters of 2CW interference

\[
P' = \begin{pmatrix} c \kappa'_{phase} \\ \nu'_{phase} \end{pmatrix} = \nu_A \begin{pmatrix} \sinh \rho \\ \cosh \rho \end{pmatrix} = \nu_A \begin{pmatrix} 3/4 \\ 5/4 \end{pmatrix}
\]

Phase frequency \(\nu'_{phase} = \nu_A \cosh \rho = 5/4 = 1.25 \)
Phase period \(\tau = \frac{1}{\nu} \)

Start with the Dopplers ...
then do the phase waves

\[
\tau'_{phase} = \tau_A \text{sech} \rho = 4/5
\]

\[
\tau'_{phase} = 0.8
\]

Frequency \(\nu' \)
(units of \(\nu_A = 600 \text{THz} \))

Wavevector \(\mathbf{c k'} \)
(units of \(\mathbf{c k_A} = 2 \cdot 10^6 / \text{m} \))

\[
\mathbf{L} = \mathbf{K}_1, \quad \mathbf{R} = \mathbf{K}_A
\]

\[
e^{-\rho} \nu_A = \frac{1}{2} \nu_A
\]

RelaWavity Web Simulation - 16 Relativity Dimensions
Phase wavenumber \(\kappa'_{\text{phase}} = \kappa_A \sinh \rho = 3/4 \) to Phase wavelength \(\lambda'_{\text{phase}} = \lambda_A \cosh \rho = 4/3 \)

\[
P' = \begin{pmatrix} c \kappa'_{\text{phase}} \\ \nu'_{\text{phase}} \end{pmatrix} = \nu_A \begin{pmatrix} \sinh \rho \\ \cosh \rho \end{pmatrix} = \nu_A \begin{pmatrix} 3/4 \\ 5/4 \end{pmatrix}
\]

Phase frequency \(\nu'_{\text{phase}} = \nu_A \cosh \rho = 5/4 \) to Phase period \(\tau'_{\text{phase}} = \tau_A \sech \rho = 4/5 \)

Frequency \(\nu' \)
(units of \(\nu_A = 600 \text{THz} \))

1500 THz
1200 THz
900 THz
600 THz
300 THz
60 THz
90 THz
120 THz
1500 THz

Wavevector \(c \kappa' \)
(units of \(c \kappa_A = 2 \cdot 10^6 / \text{m} \))

RelaWavity Web Simulation - 16 Relativity Dimensions

Phase wavenumber \(\kappa_{\text{phase}} \) flips to Phase wavelength \(\lambda = 1/\kappa \).

\(\kappa'_{\text{phase}} = \kappa_A \sinh \rho = 3/4 \)

\(\lambda'_{\text{phase}} = \lambda_A \cosh \rho = 4/3 \)

\(\tau'_{\text{phase}} = \tau_A \sech \rho = 4/5 \)

Time \(ct' \)
(units of \(\lambda_A = 1/2 \mu m \))

2
1.5
1
0.5
0
-0.5
-1
0
0.5
1
1.5
2

Space \(x' \)
(units of \(\lambda_A = 1/2 \mu m \))

0
0.5
1
1.5
2

<table>
<thead>
<tr>
<th>group</th>
<th>(b_{\text{Doppler RED}})</th>
<th>(V_{\text{blue}})</th>
<th>(K_{\text{phase}})</th>
<th>(\kappa_{\text{phase}})</th>
<th>(\nu_{\text{phase}})</th>
<th>(\lambda_{\text{phase}})</th>
<th>(V_{\text{phase}})</th>
<th>(b_{\text{Doppler BLUE}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>phase</td>
<td>(\frac{1}{b_{\text{Doppler RED}}})</td>
<td>(V_{\text{red}})</td>
<td>(\frac{\kappa_{\text{phase}}}{\kappa_{A}})</td>
<td>(\frac{\nu_{\text{phase}}}{\nu_{A}})</td>
<td>(\frac{\lambda_{\text{phase}}}{\lambda_{A}})</td>
<td>(\frac{V_{\text{phase}}}{V_{A}})</td>
<td>(\frac{1}{b_{\text{Doppler BLUE}}})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rapidity (\rho)</th>
<th>(e^{-\rho})</th>
<th>(\cosh \rho)</th>
<th>(\sinh \rho)</th>
<th>(\sech \rho)</th>
<th>(\cosh \rho)</th>
<th>(\sech \rho)</th>
<th>(\cosh \rho)</th>
<th>(e^\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>value for (\beta = 3/5)</td>
<td>(\frac{1}{2} = 0.5)</td>
<td>(\frac{3}{5} = 0.6)</td>
<td>(\frac{3}{4} = 0.75)</td>
<td>(\frac{4}{5} = 0.80)</td>
<td>(\frac{5}{4} = 1.25)</td>
<td>(\frac{4}{3} = 1.33)</td>
<td>(\frac{5}{3} = 1.67)</td>
<td>(\frac{2}{1} = 2.0)</td>
</tr>
</tbody>
</table>
Phase frequency flips to Phase period

Phase wavenumber flips to Phase wavelength

\[\kappa'_{\text{phase}} = \kappa_A \sinh \rho = \frac{3}{4} \]
\[\lambda'_{\text{phase}} = \lambda_A \cosh \rho = \frac{4}{3} \]

Time \(c't' \)

Phase wavenumber \(\kappa'_{\text{phase}} \) to Phase wavelength \(\lambda'_{\text{phase}} \)

\(\kappa'_{\text{phase}} = \kappa_A \sinh \rho = \frac{3}{4} \)
\(\lambda'_{\text{phase}} = \lambda_A \cosh \rho = \frac{4}{3} \)

Frequency

\(\nu' \)
(units of \(\nu_A = 600 \text{THz} \))

Wavevector \(c \kappa' \)
(units of \(c \kappa_A = 2 \cdot 10^6 / \text{m} \))

RelaWavity Web Simulation - 16 Relativity Dimensions
Phase wavenumber \(\kappa'_{\text{phase}} = \kappa_A \sinh \rho = 3/4 \) flips to Phase wavelength \(\lambda'_{\text{phase}} = \lambda_A \cosh \rho = 4/3 \)

\[
P' = \begin{pmatrix} c \kappa'_{\text{phase}} \\ \nu'_{\text{phase}} \end{pmatrix} = \nu_A \begin{pmatrix} \sinh \rho \\ \cosh \rho \end{pmatrix} = \nu_A \begin{pmatrix} 3/4 \\ 5/4 \end{pmatrix}
\]

Frequency \(\nu' \) (units of \(\nu_A = 600 \text{THz} \))

Phase frequency \(\nu'_{\text{phase}} = \nu_A \cosh \rho = 5/4 \) flips to Phase period \(\tau' = 1/\nu'_{\text{phase}} = \tau_A \text{sech} \rho = 4/5 \)

Phase wavenumber \(\kappa'_{\text{phase}} = \kappa_A \sinh \rho = 0.75 \) flips to Phase wavelength \(\lambda'_{\text{phase}} = \lambda_A \cosh \rho = 4/3 \)

\[
R' = K'_{\text{phase}} = \begin{pmatrix} c \kappa'_{\text{phase}} \\ \nu'_{\text{phase}} \end{pmatrix} = \nu_A \begin{pmatrix} \sinh \rho \\ \cosh \rho \end{pmatrix} = \nu_A \begin{pmatrix} 0.75 \\ 4/3 \end{pmatrix}
\]

RelaWavity Web Simulation - 16 Relativity Dimensions
The diagram illustrates the relationship between phase wavenumber and phase wavelength, showing how they flip to their counterparts in a transformed coordinate system. It also highlights the velocity of light and its change in a reference frame.

- **Phase wavenumber:** $\kappa'_{\text{phase}} = \kappa_{A} \sinh \rho = 3/4$
- **Phase wavelength:** $\lambda'_{\text{phase}} = \lambda_{A} \text{csch} \rho = 4/3$

The diagram further explains the transformation of frequency and period, showing how velocities and wavelengths change in different reference frames.
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I Lect. 23 p.64-75*
Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes
Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)
Elementary models: 2-comb Moire’ patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors
Doppler shifted Phase vector P' and Group vector G' in per-space-time
Minkowski coordinate grid in space-time
Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry
Doppler shifted Phase parameters

Doppler shifted Group parameters
Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity
Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *'Un Grande Affare’ - Light Meets Light*
The 16 dimensions of 2CW interference

\[
G' = \begin{pmatrix}
\cosh \rho \\
\sinh \rho
\end{pmatrix} = \nu_A
\begin{pmatrix}
2/3 \\
2/3
\end{pmatrix}
\]

Group frequency
\\
\nu'_\text{group} = \nu_A \sinh \rho = 3/4
\\
= 0.75
\\

Group period
\\
\tau'_\text{group} = \tau_A \csc h \rho = 4/3
\\
= 1.33
\\

Start with the Dopplers
\ldots then do the phase waves
\ldots then the group waves
\\

Frequency
\\
\nu'
\\
(\text{units of } \nu_A = 600 \text{THz})
\\
1500 THz
\\
1200 THz
\\
900 THz
\\
600 THz
\\
300 THz
\\
\nu'_\text{group} = 0.75
\\

Wavevector \(c \kappa'_A \)
\\
(\text{units of } c \kappa_A = 2 \times 10^6 / \text{m})
\\
RelaWavity Web Simulation - 16 Relativity Dimensions

\[R = K_{-4} \]

\[L = K_{-1} \]

\[P = K_1 \]

\[\text{Space } x' \]

(\text{units of } \lambda_A = 1/2 \mu m)

\[2.0 \]

\[1.5 \]

\[1.0 \]

\[0.5 \]

\[-0.5 \]

\[-1.0 \]

\[-1.5 \]

\[-2.0 \]

\[\text{Time } ct' \]

(\text{units of } \lambda_A = 1/2 \mu m)

\[2 \]

\[1.5 \]

\[1.0 \]

\[0.5 \]

\[-0.5 \]

\[-1.0 \]

\[-1.5 \]

\[-2.0 \]
The 16 dimensions of 2CW interference

\[
G' = \left(\begin{array}{cc}
\frac{c\kappa_{\text{group}}'}{u_{\text{group}}'} & \cosh \rho \\
\frac{u_{\text{group}}'}{u_{\text{group}}'} & \sinh \rho
\end{array} \right) = \nu_A \left(\begin{array}{cc}
\frac{5}{4} \\
\frac{3}{4}
\end{array} \right)
\]

Group frequency

\[u_{\text{group}}' = \nu_A \sinh \rho = 3/4 = 0.75\]

Group period

\[\tau = \frac{1}{\nu} \]

\[\tau'_{\text{group}} = \tau_A \text{csch} \rho = 4/3 = 1.33\]

Start with the Dopplers

...then do the phase waves

...then the group waves

Frequency

\[\nu' (\text{units of } \nu_A = 600\text{THz})\]

- 1500 THz
- 1200 THz
- 900 THz
- 600 THz
- 300 THz
- 2 -1.10^6
- 1.10^6
- 2.10^6
- 3.10^6
- 4.10^6
- 0

Wavevector

\[\kappa'_{\text{group}} = 1.25\]

\[\kappa_{\text{group}}' = 0.75\]

\[\nu_{\text{group}}' = \nu_A \sinh \rho = 3/4 = 0.75\]

Space

\[x' (\text{units of } \lambda_A = 1/2\mu m)\]

RelaWavity Web Simulation - 16 Relativity Dimensions

<table>
<thead>
<tr>
<th>phase</th>
<th>b_{\text{Doppler \ RED}}</th>
<th>c</th>
<th>\kappa_{\text{phase}}/\kappa_A</th>
<th>\lambda_{\text{phase}}/\lambda_A</th>
<th>V_{\text{phase}}/c</th>
<th>b_{\text{Doppler \ BLUE}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rapidity</td>
<td>\rho</td>
<td>e^{-\rho}</td>
<td>\tanh \rho</td>
<td>\sinh \rho</td>
<td>\sech \rho</td>
<td>\cosh \rho</td>
</tr>
<tr>
<td>value for</td>
<td>$\beta = 3/5$</td>
<td>$1/2 = 0.5$</td>
<td>$3/5 = 0.6$</td>
<td>$3/4 = 0.75$</td>
<td>$4/5 = 0.80$</td>
<td>$5/4 = 1.25$</td>
</tr>
</tbody>
</table>
Start with the Dopplers...then do the phase waves...then the group waves.

\[\rho = \frac{\kappa_A}{2} \]

\[\kappa'_{\text{group}} = \kappa_A \cosh \rho = \frac{5}{4} \]

\[\lambda'_{\text{group}} = \lambda_A \text{sech} \rho = \frac{4}{5} \]

\[\tau'_{\text{group}} = \tau_A \csc \rho = \frac{4}{3} \]

\[\tau'_{\text{group}} = 1.33 \]

\[\rho = 0.75 \]

\[\kappa'_{\text{group}} = 1.25 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = 1/\kappa \]

\[\kappa'_{\text{group}} = \kappa_A \cosh \rho = 1.25 \]

\[\lambda'_{\text{group}} = \lambda_A \text{sech} \rho = 0.8 \]

\[\tau'_{\text{group}} = \tau_A \csc \rho = 1.25 \]

\[\rho = 2 \]

\[\kappa'_{\text{group}} = 2 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = \frac{\kappa_A}{2} \]

\[\kappa'_{\text{group}} = 1.25 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = 2 \]

\[\kappa'_{\text{group}} = 2 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = \frac{\kappa_A}{2} \]

\[\kappa'_{\text{group}} = 1.25 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = 2 \]

\[\kappa'_{\text{group}} = 2 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = \frac{\kappa_A}{2} \]

\[\kappa'_{\text{group}} = 1.25 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = 2 \]

\[\kappa'_{\text{group}} = 2 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = \frac{\kappa_A}{2} \]

\[\kappa'_{\text{group}} = 1.25 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = 2 \]

\[\kappa'_{\text{group}} = 2 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = \frac{\kappa_A}{2} \]

\[\kappa'_{\text{group}} = 1.25 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = 2 \]

\[\kappa'_{\text{group}} = 2 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = \frac{\kappa_A}{2} \]

\[\kappa'_{\text{group}} = 1.25 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]

\[\rho = 2 \]

\[\kappa'_{\text{group}} = 2 \]

\[\lambda'_{\text{group}} = 0.8 \]

\[\tau'_{\text{group}} = 1.25 \]
Group wavenumber $k'_{\text{group}} = \kappa_A \cosh \rho = \frac{5}{4}$

$= 1.25$

Group wavelength $\lambda'_{\text{group}} = \lambda_A \text{sech} \rho = \frac{4}{5}$

$= 0.8$

Time ct'

(units of $\lambda_A = 1/2 \mu m$)

Start with the Dopplers

...then do the phase waves

...then the group waves

Group frequency $\nu'_{\text{group}} = \nu_A \sinh \rho = \frac{3}{4}$

$= 0.75$

Group period $\tau'_{\text{group}} = \tau_A \text{csch} \rho = \frac{4}{3}$

$= 1.33$

Space x'

(units of $\lambda_A = 1/2 \mu m$)

Frequency ν'

(units of $\nu_A = 600 \text{THz}$)

Wavevector $\mathbf{c}k'$

(units of $\mathbf{c}k_A = 2 \cdot 10^6 / m$)

RelaWavity Web Simulation - 16 Relativity Dimensions

<table>
<thead>
<tr>
<th>Phase</th>
<th>β</th>
<th>κ_{phase}</th>
<th>ν_{phase}</th>
<th>ν_A</th>
<th>λ_{phase}</th>
<th>λ_A</th>
<th>V_{phase}</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>b_{Doppler}</td>
<td>V_{phase}</td>
<td>ν_{group}</td>
<td>λ'_{group}</td>
<td>κ'_{group}</td>
<td>τ'_{group}</td>
<td>τ_A</td>
<td>V_{group}</td>
<td>c</td>
</tr>
</tbody>
</table>
| ρ | $e^{-\rho}$ | $\tanh \rho$ | $\sinh \rho$ | $\text{sech} \rho$ | $\cosh \rho$ | $\text{csch} \rho$ | $\coth \rho$ | $e^{+\rho}$ |}

| $\beta = 3/5$ | $\frac{1}{2} = 0.5$ | $\frac{3}{5} = 0.6$ | $\frac{3}{4} = 0.75$ | $\frac{4}{5} = 0.80$ | $\frac{5}{4} = 1.25$ | $\frac{4}{3} = 1.33$ | $\frac{5}{3} = 1.67$ | $\frac{2}{1} = 2.0$ |
Group wavenumber
\(\kappa'_{\text{group}} = \kappa_A \cosh \rho = \frac{5}{4} \)
= 1.25

Group frequency
\(v'_{\text{group}} = \frac{\sinh \rho}{\kappa'_{\text{group}}} = \frac{3}{4} \)
= 0.75

G-slope = \(\frac{V_{\text{group}}}{c} \)
\(\kappa'_{\text{group}} = \frac{\cosh \rho}{\kappa A} = \frac{5}{4} \)

Group wavelength
\(\lambda'_{\text{group}} = \lambda_A \text{sech} \rho = \frac{4}{5} \)
= 0.8

Time \(ct' \)

Group period
\(T'_{\text{group}} = T_A \text{csch} \rho = \frac{4}{3} \)
= 1.33

Space \(x' \)

(units of \(\lambda_A = 1/2 \mu m \))
Review of Doppler-shift and Rapidity \(\rho_{AB} \) calculation: *Galileo’s Revenge Part I* Lect. 23 p.64-75
Relating rapidity \(\rho_{AB} \) and relativity velocity parameter \(\beta_{AB} = u_{AB}/c \)

Review of \(\frac{1}{2} \)-sum-\(\frac{1}{2} \)-difference Phase and Group factors giving relativistic space-axes and time-axes
Colliding-CW space-time \((x,ct)\)-graph vs Colliding PW space-time \((R,L)\)-baseball diamond

Review of \(\frac{1}{2} \)-sum-\(\frac{1}{2} \)-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)
Elementary models: 2-comb Moire’ patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted \(\frac{1}{2} \)-sum-\(\frac{1}{2} \)-difference Phase and Group factors
Doppler shifted Phase vector \(P' \) and Group vector \(G' \) in per-space-time
Minkowski coordinate grid in space-time
Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry
Doppler shifted Phase parameters
Doppler shifted Group parameters

\[
\rightarrow \quad \text{Lorentz transformation matrix and Two Famous-Name Coefficients} \quad \leftarrow
\]

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity
Detailed geometric construction of relawavity plot for 1-octave Doppler \((\beta_{AB} = u_{AB}/c = 3/5)\)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *'Un Grande Affare' - Light Meets Light*
Lorentz transformations... write G' and P' in terms of G and P using $\cosh \rho$ and $\sinh \rho$

\[
G' = \begin{pmatrix}
c'_{\text{group}} \\
u'_{\text{group}}
\end{pmatrix} = \nu_A \begin{pmatrix}
\cosh \rho \\
\sinh \rho
\end{pmatrix} = \nu_A \begin{pmatrix}
5/4 \\
3/4
\end{pmatrix}
= \nu_A \begin{pmatrix}
1 \\
0
\end{pmatrix} \cosh \rho + \nu_A \begin{pmatrix}
0 \\
1
\end{pmatrix} \sinh \rho
\]

\[
P' = \begin{pmatrix}
c'_{\text{phase}} \\
u'_{\text{phase}}
\end{pmatrix} = \nu_A \begin{pmatrix}
\sinh \rho \\
\cosh \rho
\end{pmatrix} = \nu_A \begin{pmatrix}
3/4 \\
5/4
\end{pmatrix}
= \nu_A \begin{pmatrix}
1 \\
0
\end{pmatrix} \sinh \rho + \nu_A \begin{pmatrix}
0 \\
1
\end{pmatrix} \cosh \rho
\]

$P' = G \sinh \rho + P \cosh \rho$

\[
\begin{pmatrix}
cosh \rho & \sinh \rho \\
\sinh \rho & c\cosh \rho
\end{pmatrix}
\]
Lorentz transform matrix

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\text{phase} & b_{\text{Doppler}}^{\text{RED}} & c & \kappa_{\text{phase}} & \frac{\kappa}{\kappa_A} & \tau_{\text{phase}} & \frac{\tau}{\tau_A} & \nu_{\text{phase}} & \frac{\nu}{\nu_A} & \lambda_{\text{phase}} & \frac{\lambda}{\lambda_A} & V_{\text{phase}} & \frac{1}{b_{\text{Doppler}}^{\text{BLUE}}}
\hline
\text{group} & \frac{1}{b_{\text{Doppler}}^{\text{RED}}} & \frac{V_{\text{group}}}{c} & \frac{\nu_{\text{group}}}{\nu_A} & \frac{\lambda_{\text{group}}}{\lambda_A} & \frac{\kappa_{\text{group}}}{\kappa_A} & \frac{\tau_{\text{group}}}{\tau_A} & \frac{V_{\text{phase}}}{c} & \frac{1}{b_{\text{Doppler}}^{\text{BLUE}}}
\hline
\text{rapidity} \ \ \ \ \rho & e^{-\rho} & \tanh \rho & \sinh \rho & \sech \rho & \cosh \rho & \csch \rho & \coth \rho & e^{+\rho}
\hline
\text{value for } \beta = 3/5 & 1/2 = 0.5 & 3/5 = 0.6 & 3/4 = 0.75 & 4/5 = 0.80 & 5/4 = 1.25 & 4/3 = 1.33 & 5/3 = 1.67 & 2/1 = 2.0
\hline
\end{array}
\]
Two Famous-Name Coefficients

Time ct'
(units of $\lambda_A = 1/2\mu m$)

Space x'
(units of $\lambda_A = 1/2\mu m$)

This number is called an **Einstein time-dilation**
(dilated by 25% here)

This number is called a **Lorentz length-contraction**
(contracted by 20% here)

Old-Fashioned Notation

Relativistic Terms (Dual plot w/ expanded table)

<table>
<thead>
<tr>
<th>phase group</th>
<th>b_D</th>
<th>c/V_{phase}</th>
<th>κ_{phase}</th>
<th>τ_{phase}</th>
<th>ν_{phase}</th>
<th>λ_{phase}</th>
<th>V_{phase}</th>
<th>b_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{group}</td>
<td>V_{group}</td>
<td>ν_{group}</td>
<td>λ_{group}</td>
<td>κ_{group}</td>
<td>τ_{group}</td>
<td>ν_{group}</td>
<td>λ_{group}</td>
<td>κ_{group}</td>
</tr>
<tr>
<td>rapidity ρ</td>
<td>$e^{-\rho}$</td>
<td>$\tanh \rho$</td>
<td>$\sinh \rho$</td>
<td>$\sech \rho$</td>
<td>$\cosh \rho$</td>
<td>$\csch \rho$</td>
<td>$\coth \rho$</td>
<td>$e^{+\rho}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\beta = \frac{u}{c}$</th>
<th>$\sqrt{1-\beta^2}$</th>
<th>$\frac{1}{\sqrt{1+\beta^2}}$</th>
<th>$\sqrt{1-\beta^2} \frac{1}{1}$</th>
<th>$\sqrt{1-\beta^2} \frac{1}{1}$</th>
<th>$\sqrt{1-\beta^2} \frac{1}{1}$</th>
<th>$\sqrt{1+\beta^2} \frac{1}{1}$</th>
<th>$\sqrt{1+\beta^2} \frac{1}{1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta^2 = 0.5$</td>
<td>$\frac{3}{5} = 0.6$</td>
<td>$\frac{3}{4} = 0.75$</td>
<td>$\frac{4}{5} = 0.80$</td>
<td>$\frac{5}{4} = 1.25$</td>
<td>$\frac{4}{3} = 1.33$</td>
<td>$\frac{5}{3} = 1.67$</td>
<td>$\frac{2}{1} = 2.0$</td>
</tr>
</tbody>
</table>

Relativity Web Simulation

Hendrik A. Lorentz
1853-1928

Albert Einstein
1859-1955

Herman Minkowski
1864-1909

*If you can't explain it *simply*, you don't understand it well enough.*

— Albert Einstein

Thursday, April 7, 2016
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I* Lect. 23 p.64-75

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes

Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)

Elementary models: 2-comb Moire' patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors

Doppler shifted Phase vector P' and Group vector G' in per-space-time

Minkowski coordinate grid in space-time

Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry

Doppler shifted Phase parameters

Doppler shifted Group parameters

Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity

Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *'Un Grande Affaire’ - Light Meets Light*
Thales Mean Geometry (600BCE)

helps “Relawavity”

Thales of Miletus
624-543 BCE

Frequency unit:
300THZ

Per-Time
\(\omega - \text{axis} \)

Transformed Per-Time
\(\omega' - \text{axis} \)

Slope-to-vertical
\(= \frac{V_{\text{group}}/c = 3/5}{4+1} \)

Geometric Mean
\(B = \sqrt{4 \cdot 1} = 2 \)

Arithmetic Mean
\(B_{\text{cosh} \rho} = \frac{(1+4)}{2} = \frac{5}{2} \)

Difference Mean
\(B_{\text{sinh} \rho} = \frac{(4-1)}{2} = \frac{3}{2} \)

Red shift = 1

Blue shift = 4
Thales Mean Geometry (600 BCE)

Thales showed a circle diameter subtends a right angle with any circle point \(P \). This leads to a convenient construction of geometric means and relativistic hyperbolas.

Thales of Miletus
624-543 BCE

Frequency unit: 300 THZ

Geometric Mean

\[B = \sqrt{(4-1)} = 2 \]

Arithmetic Mean

\[B_{\text{cosh}} \rho = \frac{(1+4)}{2} = \frac{5}{2} \]

Difference Mean

\[B_{\text{sinh}} \rho = \frac{(4-1)}{2} = \frac{3}{2} \]

Transformed Per-Time

\[\omega' - \text{axis} \]

\[\text{Slope-to-vertical} = \frac{4-1}{4+1} = \frac{3}{5} \]

This leads to a convenient construction of geometric means and relativistic hyperbolas.
Thales Mean Geometry (600BCE)

helps “Relawavity” Thales showed a circle diameter subtends a right angle with any circle point P

This leads to a convenient construction of geometric means and relativistic hyperbolas.
Thales Mean Geometry (600BCE)

helps “Relawavity”

Thales of Miletus
624-543 BCE

\[r \cdot b = 2 \]
due to Doppler T-symmetry

Per-Time
\(\omega - \text{axis} \)

Per-Space
\(ck' - \text{axis} \)

Geometric Mean
\[B = \sqrt{(4 \cdot 1)} = 2 \]

Arithmetic Mean
\[B \cosh \rho = \frac{(1+4)}{2} = \frac{5}{2} \]

Difference Mean
\[B \sinh \rho = \frac{(4-1)}{2} = \frac{3}{2} \]

Red shift

Blue shift

RelaWavity Web Simulation
Detailed Thales Geometry
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I* Lect. 23 p.64-75
 Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes
 Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)
 Elementary models: 2-comb Moire' patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors
 Doppler shifted Phase vector P' and Group vector G' in per-space-time
 Minkowski coordinate grid in space-time
 Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry
 Doppler shifted Phase parameters
 Doppler shifted Group parameters
 Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity
 Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR

More at Pirelli Challenge page: *'Un Grande Affare’ - Light Meets Light*
hyperbola $H=bcosh\theta$

slope = -tan θ

slope = sin θ

Base circle $L=bsin\theta$

$ck_R = \omega_R - \omega_L$

$ck_L = \omega_R + \omega_L$

$ck_R - ck_L = \omega_R + \omega_L$

$ck_L + ck_R = \omega_R - \omega_L$
\[\rho = \log e 2 = \text{Arctanh}(\frac{3}{5}) = \tanh^{-1}(\frac{3}{5}) = 0.6931 \]
Review of Doppler-shift and Rapidity ρ_{AB} calculation: *Galileo’s Revenge Part I* Lect. 23 p.64-75

Relating rapidity ρ_{AB} and relativity velocity parameter $\beta_{AB}=u_{AB}/c$

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors giving relativistic space-axes and time-axes

Colliding-CW space-time (x,ct)-graph vs Colliding PW space-time (R,L)-baseball diamond

Review of $\frac{1}{2}$-sum-$\frac{1}{2}$-difference of phasor angular velocity: *Galileo’s Revenge Part II* (Pirelli site)

Elementary models: 2-comb Moire’ patterns and cosine-law constructions

Bob, Alice, and Carla combine Doppler shifted $\frac{1}{2}$-sum-$\frac{1}{2}$-difference Phase and Group factors

Doppler shifted Phase vector $P’$ and Group vector $G’$ in per-space-time

Minkowski coordinate grid in space-time

Animations that compare Doppler shifted colliding CW with colliding PW

The 16 parameters of Doppler-shifted 2-CW Minkowski geometry

Doppler shifted Phase parameters

Doppler shifted Group parameters

Lorentz transformation matrix and Two Famous-Name Coefficients

Thales Mean Geometry (*Thales of Miletus 624-543 BCE*) and its role in Relawavity

Detailed geometric construction of relawavity plot for 1-octave Doppler ($\beta_{AB}=u_{AB}/c=3/5$)

Stellar aberration and the Epstein approach to SR
Comparing **Longitudinal** relativity parameter: Rapidity $\rho = \log_e(\text{Doppler Shift})$

to a **Transverse** relativity parameter: Stellar aberration angle σ

Observer fixed below star sees it directly overhead.
Observer going \mathbf{u} sees star at angle σ in \mathbf{u} direction.

Stellar aberration angle σ:

$$c \tanh \rho = u = c \sin \sigma$$

We used notion σ for stellar-ab-angle, (a “flipped-out” ρ). Epstein not interested in ρ analysis or in relation of σ and ρ.
Comparing **Longitudinal** relativity parameter: Rapidity $\rho = \log_e(\text{Doppler Shift})$

to a **Transverse** relativity parameter: Stellar aberration angle σ

Proper time $c\tau$ vs. **coordinate space** x - (L. C. Epstein’s “Cosmic Speedometer”)

Particles P and P' have speed u in (x', ct') and speed c in $(x, c\tau)$

Proper time $c\tau$

$c\tau = \sqrt{(ct')^2 - (x')^2}$

Coordinate

$x' = (u/c)ct' = ut'$

Einstein time dilation:

$ct' = c\tau \sec \sigma = c\tau \cosh \rho = c\tau/\sqrt{1-u^2/c^2}$

Lorentz length contraction:

$L' = L \sech \rho = L \cos \sigma = L \sqrt{1-u^2/c^2}$

Proper Time asimultaneity:

$c \Delta \tau = L' \sinh \rho = L \cos \sigma \sinh \rho$

$= L \cos \sigma \tan \sigma$

$= L \sin \sigma = L/\sqrt{c^2/u^2-1} \sim L u/c$
Comparing **Longitudinal** relativity parameter: Rapidity $\rho = \log_e(\text{Doppler Shift})$

to a **Transverse** relativity parameter: Stellar aberration angle σ

Proper time $c\tau$ vs. coordinate space x - (L. C. Epstein’s “Cosmic Speedometer”)

Particles P and P' have speed u in (x', ct') and speed c in $(x, c\tau)$

Proper time $c\tau$

$$c\tau = \sqrt{(ct')^2 - (x')^2}$$

Coordinate

$$x' = (u/c)ct' = ut'$$

Einstein time dilation:

$$ct' = c\tau \sec \sigma = c\tau \cosh \rho = c\tau / \sqrt{1 - u^2/c^2}$$

Lorentz length contraction:

$$L' = L \sech \rho = L \cos \sigma = L \cdot \sqrt{1 - u^2/c^2}$$

Proper Time as simultaneity:

$$c \Delta \tau = L' \sinh \rho = L \cos \sigma \sinh \rho$$

$$= L \cos \sigma \tan \sigma$$

$$= L \sin \sigma = L / \sqrt{c^2/u^2 - 1} \sim L u/c$$

Epstein’s trick is to turn a hyperbolic form $c\tau = \sqrt{(ct')^2 - (x')^2}$ into a circular form:

$$\sqrt{(c\tau)^2 + (x')^2} = (ct')$$

Then everything (and everybody) always goes speed c through $(x', c\tau)$ space!
Comparing **Longitudinal** relativity parameter: Rapidity $\rho = \log_e(\text{Doppler Shift})$

to a **Transverse** relativity parameter: Stellar aberration angle σ

(a) Circular Functions

- $\sin(\sigma) = 0.6000$
- $\tan(\sigma) = 0.7500$
- $\sec(\sigma) = 1.2500$

Relativity Web Simulation

Geometry of Stellar Aberration Angle
Comparing **Longitudinal** relativity parameter: \(\rho = \log_e(\text{Doppler Shift}) \)

to a **Transverse** relativity parameter: Stellar aberration angle \(\sigma \)

Circular Functions
- \(\sin(\sigma) = 0.6000 \)
- \(\tan(\sigma) = 0.7500 \)
- \(\sec(\sigma) = 1.2500 \)

Hyperbolic Functions
- \(\tanh(\rho) = 0.6000 \)
- \(\sinh(\rho) = 0.7500 \)
- \(\cosh(\rho) = 1.2500 \)

RelaWavity Web Simulation
Geometry of Rapidity Relations
Summary of optical wave parameters for relativity and QM
...and their geometry

\[v' = \frac{\omega'}{2\pi} \]
axis (Units of 300THz)

An aid to pattern recognition:

RelaWavity Web Simulation{perSpace - perTime All}
\[u' = \omega' / 2\pi \]

axis

(Units of 300THz)

\[B \sinh \rho \]

\[B \tanh \rho \]

\[B \csc \rho \]

\[B \sech \rho \]

\[B \cosh \rho \]

Table of 12 wave parameters (includes inverses) for relativity

...and values for \(u/c = 3/5 \)

- \(\beta = \frac{u}{c} \)
 - \(\beta = \frac{1}{2} = 0.5 \)
 - \(\beta = 0.6 \)
 - \(\beta = 0.75 \)
 - \(\beta = 0.80 \)
 - \(\beta = 1.25 \)
 - \(\beta = 1.33 \)
 - \(\beta = 1.67 \)
 - \(\beta = 2.0 \)

\[\beta = \frac{u}{c} \]

\(\frac{1}{2} \)

\(\frac{3}{5} = 0.6 \)

\(\frac{3}{4} = 0.75 \)

\(\frac{4}{5} = 0.80 \)

\(\frac{5}{4} = 1.25 \)

\(\frac{4}{3} = 1.33 \)

\(\frac{5}{3} = 1.67 \)

\(\frac{2}{1} = 2.0 \)

An aid to pattern recognition:

Occam's Sword

(\(u/c = 3/5 \))

Relativity Web Simulation

Relativistic Terms (Dual plot w/expanded table)