Lecture 13 to 14 Tue.-Thu. 3.01-3.03.2016

Complex Variables, Series, and Field Coordinates (Ch. 10 of Unit 1)

1. The Story of e (A Tale of Great \$Interest\$) How good are those power series?

Taylor-Maclaurin series, imaginary interest, and complex exponentials Lecture 14 Tue. 10,

2. What good are complex exponentials?

Easy trig Easy 2D vector analysis *Easy oscillator phase analysis* Easy rotation and "dot" or "cross" products 3. Easy 2D vector calculus Easy 2D vector derivatives Easy 2D source-free field theory *Easy 2D vector field-potential theory* 4. *Riemann-Cauchy relations* (*What's analytic? What's not?*) Easy 2D curvilinear coordinate discovery *Easy 2D circulation and flux integrals Easy 2D monopole, dipole, and 2^n-pole analysis Easy* 2^{*n*}*-multipole field and potential expansion* Easy stereo-projection visualization *Cauchy integrals, Laurent-Maclaurin series* 5. Mapping and Non-analytic 2D source field analysis 1. Complex numbers provide "automatic trigonometry"

- 2. Complex numbers add like vectors.
- 3. Complex exponentials $Ae^{-i\omega t}$ track position <u>and</u> velocity using Phasor Clock.
- 4. Complex products provide 2D rotation operations.
- 5. Complex products provide 2D "dot"(•) and "cross"(x) products.

2D Applications: E&B-fields, heat flow, hydro-dynamics, surface-shape,...

- 6. Complex derivative contains "divergence" ($\nabla \cdot F$) and "curl" ($\nabla x F$) of 2D vector field
- 7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F}=0 \text{ and } \nabla \mathbf{x}\mathbf{F}=0]$
- 8. Complex potential ϕ contains "scalar"($\mathbf{F}=\nabla \Phi$) and "vector"($\mathbf{F}=\nabla x\mathbf{A}$) potentials The half-n'-half results: (Riemann-Cauchy Derivative Relations)
- 9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
- 10. Complex integrals $\int f(z)dz$ count 2D "circulation"($\int \mathbf{F} \cdot d\mathbf{r}$) and "flux"($\int \mathbf{F} \times d\mathbf{r}$)
- 11. Complex integrals define 2D monopole fields and potentials
- 12. Complex derivatives give 2D dipole fields Lecture 15 Thur. 10.17
- 13. More derivatives give 2D 2^N-pole fields...
- 14. ...and 2^N-pole multipole expansions of fields and potentials...
- 15. ...and Laurent Series...
- 16. ...and non-analytic source analysis.

,...quantum probability current flow, 2ⁿ-pole fields,...

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r\cdot t)p(0)$.

\$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r \cdot t)p(0)$. \$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r\cdot t)p(0)$. \$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r \cdot \frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1^{st} trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3}\cdot \frac{4}{3}\cdot \frac{4}{3}\cdot 1 = \frac{64}{27} = 2.37$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r\cdot t)p(0)$. \$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r \cdot \frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1^{st} trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$\frac{1}{3}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3}\cdot\frac{4$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

р

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r\cdot t)p(0)$. \$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r\cdot\frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1^{st} trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3}\cdot\frac{4}{3}\cdot\frac{4}{3}\cdot1 = \frac{64}{27} = 2.37$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r\cdot t)p(0)$. \$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r\cdot\frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1^{st} trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3}\cdot \frac{4}{3}\cdot \frac{4}{3}\cdot 1 = \frac{64}{27} = 2.37$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

$$p^{\frac{1}{1}}(t) = (1 + r \cdot \frac{t}{1})^{1} p(0) = \left(\frac{2}{1}\right)^{1} \cdot 1 = \frac{2}{1} = 2.00$$

$$+25\phi$$

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})^{2} p(0) = \left(\frac{3}{2}\right)^{2} \cdot 1 = \frac{9}{4} = 2.25$$

$$+12\phi$$

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})^{3} p(0) = \left(\frac{4}{3}\right)^{3} \cdot 1 = \frac{64}{27} = 2.37$$

$$+7\phi$$

$$p^{\frac{1}{4}}(t) = (1 + r \cdot \frac{t}{4})^{4} p(0) = \left(\frac{5}{4}\right)^{4} \cdot 1 = \frac{625}{256} = 2.44$$

Simple *interest* at some rate r based on a 1 year period.

You gave a principal p(0) to the bank and some time *t* later they would pay you $p(t)=(1+r\cdot t)p(0)$. \$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives \$2.00 at t=1 year.

Semester compounded interest gives $p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2})p(0)$ at the half-period $\frac{t}{2}$ and then use $p(\frac{t}{2})$ during the last half to figure final payment. Now \$1.00 at rate r=1 earns \$2.25.

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})p(\frac{t}{2}) = (1 + r \cdot \frac{t}{2}) \cdot (1 + r \cdot \frac{t}{2})p(0) = \frac{3}{2} \cdot \frac{3}{2} \cdot 1 = \frac{9}{4} = 2.25$$

Trimester compounded interest gives $p(\frac{t}{3}) = (1+r\cdot\frac{t}{3})p(0)$ at the $1/3^{rd}$ -period $\frac{t}{3}$ or 1st trimester and then use that to figure the 2nd trimester and so on. Now \$1.00 at rate r=1 earns \$2.37.

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})p(2\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(\frac{t}{3}) = (1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})\cdot(1 + r \cdot \frac{t}{3})p(0) = \frac{4}{3}\cdot \frac{4}{3}\cdot \frac{4}{3}\cdot 1 = \frac{64}{27} = 2.37$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

$$p^{\frac{1}{1}}(t) = (1 + r \cdot \frac{t}{1})^{1} p(0) = \left(\frac{2}{1}\right)^{1} \cdot 1 = \frac{2}{1} = 2.00$$

$$+25\phi$$

$$p^{\frac{1}{2}}(t) = (1 + r \cdot \frac{t}{2})^{2} p(0) = \left(\frac{3}{2}\right)^{2} \cdot 1 = \frac{9}{4} = 2.25$$

$$+12\phi$$

$$p^{\frac{1}{3}}(t) = (1 + r \cdot \frac{t}{3})^{3} p(0) = \left(\frac{4}{3}\right)^{3} \cdot 1 = \frac{64}{27} = 2.37$$

$$+7\phi$$

$$p^{\frac{1}{4}}(t) = (1 + r \cdot \frac{t}{4})^{4} p(0) = \left(\frac{5}{4}\right)^{4} \cdot 1 = \frac{625}{256} = 2.44$$

Monthly:
$$p^{\frac{1}{12}}(t) = (1 + r \cdot \frac{t}{12})^{12} p(0) = \left(\frac{13}{12}\right)^{12} \cdot 1 = 2.613$$

Weekly: $p^{\frac{1}{52}}(t) = (1 + r \cdot \frac{t}{52})^{52} p(0) = \left(\frac{53}{52}\right)^{52} \cdot 1 = 2.693$
Daily: $p^{\frac{1}{365}}(t) = (1 + r \cdot \frac{t}{365})^{365} p(0) = \left(\frac{366}{365}\right)^{365} \cdot 1 = 2.7145$
Hrly: $p^{\frac{1}{8760}}(t) = (1 + r \cdot \frac{t}{8760})^{8760} p(0) = \left(\frac{8761}{8760}\right)^{8760} \cdot 1 = 2.7181$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{=} 2.718281828459.$$

$$p^{1/m}(1) = 2.7169239322 \qquad for m = 1,000 \qquad for m = 10,000 \qquad for m = 100,000 \qquad for m = 100,000 \qquad for m = 100,000 \qquad for m = 1,000,000 \qquad for m = 10,000,000 \qquad for m = 1,000,000 \qquad for m$$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{=} e^{p^{1/m}(1)} = 2.7169239322 \qquad for m = 1,000$$

$$p^{1/m}(1) = 2.718281828459.$$

$$p^{1/m}(1) = 2.7182682372 \qquad for m = 10,000$$

$$p^{1/m}(1) = 2.7182682372 \qquad for m = 100,000$$

$$p^{1/m}(1) = 2.7182804693 \qquad for m = 1,000,000$$

$$p^{1/m}(1) = 2.7182816925 \qquad for m = 10,000,000$$

$$p^{1/m}(1) = 2.7182816925 \qquad for m = 10,000,000$$

$$p^{1/m}(1) = 2.7182818149 \qquad for m = 100,000,000$$

$$p^{1/m}(1) = 2.7182818149 \qquad for m = 100,000,000$$

$$p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000$$

Can improve computational efficiency using binomial theorem:

$$(x+y)^{n} = x^{n} + n \cdot x^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^{3} + \dots + n \cdot xy^{n-1} + y^{n}$$
$$(1 + \frac{r \cdot t}{n})^{n} = 1 + n \cdot \left(\frac{r \cdot t}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3} + \dots \qquad \text{Define: Factorials(!):}$$
$$0! = 1 = 1!, \quad 2! = 1\cdot 2, \quad 3! = 1\cdot 2\cdot 3, \dots$$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{=} e^{2.718281828459..} p^{1/m}(1) = 2.7169239322 \qquad for m = 1,000 \\ p^{1/m}(1) = 2.7181459268 \qquad for m = 10,000 \\ p^{1/m}(1) = 2.7182682372 \qquad for m = 100,000 \\ p^{1/m}(1) = 2.7182804693 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182816925 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182816925 \qquad for m = 10,000,000 \\ p^{1/m}(1) = 2.7182818149 \qquad for m = 100,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\$$

Can improve computational efficiency using binomial theorem:

$$\begin{aligned} (x+y)^{n} &= x^{n} + n \cdot x^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^{3} + \dots + n \cdot xy^{n-1} + y^{n} \\ (1+\frac{r \cdot t}{n})^{n} &= 1 + n \cdot \left(\frac{r \cdot t}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3} + \dots \end{aligned}$$
Define: Factorials(!):

$$0! = 1 = 1!, \quad 2! = 12, \quad 3! = 12:3, \dots \end{aligned}$$

$$\begin{aligned} e^{r \cdot t} &= 1 + r \cdot t + \frac{1}{2!}\left(r \cdot t\right)^{2} + \frac{1}{3!}\left(r \cdot t\right)^{3} + \dots = \sum_{p=0}^{o} \frac{\left(r \cdot t\right)^{p}}{p!} \end{aligned}$$

$$As \ n \to \infty \ let : n(n-1) \to n^{2}, \\ n(n-1) \to n^{2}, \\ n(n-1)(n-2) \to n^{3}, \ etc. \end{aligned}$$

$$p^{1/m}(1) = (1 + \frac{1}{m})^m \xrightarrow[m \to \infty]{=} e^{2.718281828459..} = e^{p^{1/m}(1)} = 2.7169239322 \qquad for m = 1,000 \\ p^{1/m}(1) = 2.7181459268 \qquad for m = 10,000 \\ p^{1/m}(1) = 2.7182682372 \qquad for m = 100,000 \\ p^{1/m}(1) = 2.7182804693 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182816925 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182816925 \qquad for m = 10,000,000 \\ p^{1/m}(1) = 2.7182818149 \qquad for m = 10,000,000 \\ p^{1/m}(1) = 2.7182818149 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m = 1,000,000,000 \\ p^{1/m}(1) = 2.7182818271 \qquad for m =$$

Can improve computational efficiency using binomial theorem:

$$\begin{aligned} (x+y)^{n} &= x^{n} + n \cdot x^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^{3} + \dots + n \cdot xy^{n-1} + y^{n} \\ (1+\frac{r \cdot t}{n})^{n} &= 1 + n \cdot \left(\frac{r \cdot t}{n}\right) + \frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2} + \frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3} + \dots \\ & 0! = 1 = 1!, \quad 2! = 1 \cdot 2, \quad 3! = 1 \cdot 2 \cdot 3, \dots \\ e^{r \cdot t} &= 1 + r \cdot t + \frac{1}{2!}\left(r \cdot t\right)^{2} + \frac{1}{3!}\left(r \cdot t\right)^{3} + \dots \\ &= \sum_{p=0}^{o} \frac{\left(r \cdot t\right)^{p}}{p!} \\ & n(n-1) \to n^{2}, \end{aligned}$$

Precision order:
$$(o=1)$$
-e-series = 2.00000 =1+1 $n(n-1)(n-2) \rightarrow n^3$, etc.
 $(o=2)$ -e-series = 2.50000 =1+1+1/2
 $(o=3)$ -e-series = 2.66667 =1+1+1/2+1/6
 $(o=4)$ -e-series = 2.70833 =1+1+1/2+1/6+1/24
 $(o=5)$ -e-series = 2.71667 =1+1+1/2+1/6+1/24+1/120
 $(o=6)$ -e-series = 2.71805 =1+1+1/2+1/6+1/24+1/120+1/720
 $(o=7)$ -e-series = 2.71825
 $(o=8)$ -e-series = 2.71828 About 12 summed quotients
for 6-figure precision (A lot better!)

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set t=0 to get $c_0 = x(0)$. $x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + d^n t^n$

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set
$$t=0$$
 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

Set
$$t=0$$
 to get $c_1 = v(0)$.

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + \frac{d}{dt}x(t)$$

Start with a general power series with constant coefficients c_0 , c_1 , etc.

Set
$$t=0$$
 to get $c_0 = x(0)$.

Set t=0 to get $c_1 = v(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 3c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 3c_3t^2 + 4c_4t^3 + 3c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 3c_3t^2 + 3c_5t^2 +$$

Change of velocity v(t) is *acceleration* a(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + \frac{d}{dt}v(t) = 0 + 2c_5t^2 + \frac{d}{dt}v(t) = 0 +$$

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set

Set
$$t=0$$
 to get $c_0 = x(0)$.

Set t=0 to get $c_1 = v(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + \frac{d}{dt}x(t) =$$

Change of velocity v(t) is *acceleration* a(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \dots$$

Change of acceleration a(t) is *jerk j(t)*. (*Jerk* is NASA term.) Set t=0 to get $c_3 = \frac{1}{3!} j(0)$. $j(t) = \frac{d}{dt} a(t) = 0 + 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 t + 3 \cdot 4 \cdot 5c_5 t^2 + \dots + n(n-1)(n-2)c_n t^{n-3} + \dots$

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set *i*

Set
$$t=0$$
 to get $c_0 = x(0)$.

Set t=0 to get $c_1 = v(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + \frac{d}{dt}x(t$$

Change of velocity v(t) is acceleration a(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + \frac{d}{dt}v(t) = 0 + 2c_5t^2 + \frac{d}{dt}v(t) = 0 +$$

Change of acceleration a(t) is *jerk j(t)*. (*Jerk* is NASA term.) Set t=0 to get $c_3 = \frac{1}{3!} j(0)$. $j(t) = \frac{d}{dt} a(t) = 0 + 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 t + 3 \cdot 4 \cdot 5c_5 t^2 + \dots + n(n-1)(n-2)c_n t^{n-3} + \dots$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!) Set t=0 to get $c_4 = \frac{1}{4!}i(0)$.

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + \frac{d}{dt}x(t) =$$

Change of velocity v(t) is acceleration a(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + \frac{d}{dt}v(t) = 0 + 2c_5t^2 + \frac{d}{dt}v(t) = 0 +$$

Change of acceleration a(t) is *jerk j(t)*. (*Jerk* is NASA term.) Set t=0 to get $c_3 = \frac{1}{3!} j(0)$. $j(t) = \frac{d}{dt} a(t) = 0 + 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 t + 3 \cdot 4 \cdot 5c_5 t^2 + \dots + n(n-1)(n-2)c_n t^{n-3} + \dots$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!) Set t=0 to get $c_4 = \frac{1}{4!}i(0)$.

$$i(t) = \frac{d}{dt}j(t) = 0 + 2\cdot 3\cdot 4c_4 + 2\cdot 3\cdot 4\cdot 5c_5t + \dots + n(n-1)(n-2)(n-3)c_nt^{n-4} + \dots$$

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \dots$$

⁺ +

Set t=0 to get $c_2 = \frac{1}{2}a(0)$.

Set t=0 to get $c_1 = v(0)$.

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + \frac{d}{dt}x(t) =$$

Change of velocity v(t) is acceleration a(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + \frac{d}{dt}v(t) = 0 + 2c_5t^2 + \frac{d}{dt}v(t) = 0 +$$

Change of acceleration a(t) is *jerk j(t)*. (*Jerk* is NASA term.) Set t=0 to get $c_3 = \frac{1}{3!} j(0)$. $j(t) = \frac{d}{dt} a(t) = 0 + 2 \cdot 3c_3 + 2 \cdot 3 \cdot 4c_4 t + 3 \cdot 4 \cdot 5c_5 t^2 + ... + n(n-1)(n-2)c_n t^{n-3} +$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!) Set t=0 to get $c_4 = \frac{1}{4!}i(0)$.

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}i(0)t^{4} + \frac{1}{5!}i(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{5!}i(0)t^{5} + \dots + \frac{1}{3!}i(0)t^{5} + \dots + \frac{1}{$$

Good old UP I formula!

Set t=0 to get $c_1 = v(0)$.

Start with a general power series with constant coefficients c_0 , c_1 , etc. Set t=0 to get $c_0 = x(0)$.

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^5 + \dots + c_n t^n + \dots$$

Rate of change of position x(t) is velocity v(t).

$$v(t) = \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t + 3c_3t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + 4c_4t^3 + 5c_5t^4 + \dots + nc_nt^{n-1} + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + 2c_2t^2 + \frac{d}{dt}x(t) = 0 + c_1 + \frac{d}{dt}x(t) =$$

Change of velocity v(t) is acceleration a(t).

$$a(t) = \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + 3\cdot 4c_4t^2 + 4\cdot 5c_5t^3 + \dots + n(n-1)c_nt^{n-2} + \frac{d}{dt}v(t) = 0 + 2c_2 + 2\cdot 3c_3t + \frac{d}{dt}v(t) = 0 + 2c_5t^2 + \frac{d}{dt}v(t) = 0 +$$

Change of acceleration a(t) is *jerk j(t)*. (*Jerk* is NASA term.) Set t=0 to get $c_3 = \frac{1}{3!} j(0)$.

$$j(t) = \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3c_3 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_nt^{n-3} + \frac{a}{dt}a(t) = 0 + 2\cdot 3\cdot 4c_4t + 3\cdot 4\cdot 5c_5t^2 + \dots + n(n-1)(n-2)c_1t^2 + \dots + n(n-$$

Change of jerk j(t) is *inauguration* i(t). (Be silly like NASA!) Set t=0 to get $c_4 = \frac{1}{4!}i(0)$.

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}i(0)t^{4} + \frac{1}{5!}i(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{5!}i(0)t^{5} + \dots + \frac{1}{3!}i(0)t^{5} + \dots + \frac{1}{3!}$$

Setting all initial values to $l = x(0) = v(0) = a(0) = j(0) = i(0) = \dots$

Góod old UP I formula!

gives exponential:
$$e^{t} = 1 + t + \frac{1}{2!}t^{2} + \frac{1}{3!}t^{3} + \frac{1}{4!}t^{4} + \frac{1}{5!}t^{5} + \dots + \frac{1}{n!}t^{n} + \frac{1}{2!}t^{n} + \frac{1}{$$

Set t=0 to get $c_1 = v(0)$.

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}x^{(n)}t^{n} + \frac{1}{3$$

gives exponential:
$$e^{t} = 1 + t + \frac{1}{2!}t^{2} + \frac{1}{3!}t^{3} + \frac{1}{4!}t^{4} + \frac{1}{5!}t^{5} + \dots + \frac{1}{n!}t^{n} + \frac{1}{2!}t^{n} + \frac{1}{$$

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}x^{(n)}t^{n} + \frac{1}{3!}i(0)t^{2} + \frac{1}{3!}i(0)$$

gives exponential:
$$e^{t} = 1 + t + \frac{1}{2!}t^{2} + \frac{1}{3!}t^{3} + \frac{1}{4!}t^{4} + \frac{1}{5!}t^{5} + \dots + \frac{1}{n!}t^{n} + \frac{1}{2!}t^{n} + \frac{1}{$$

But, how good <u>are power series?</u>

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}x^{(n)}t^{n} + \frac{1}{3!}i(0)t^{2} + \frac{1}{3!}i(0)$$

gives exponential:
$$e^{t} = 1 + t + \frac{1}{2!}t^{2} + \frac{1}{3!}t^{3} + \frac{1}{4!}t^{4} + \frac{1}{5!}t^{5} + \dots + \frac{1}{n!}t^{n} + \frac{1}{2!}t^{n} + \frac{1}{$$

But, how good <u>are power series</u>?

Gives Maclaurin (or Taylor) power series

$$x(t) = x(0) + v(0)t + \frac{1}{2!}a(0)t^{2} + \frac{1}{3!}j(0)t^{3} + \frac{1}{4!}i(0)t^{4} + \frac{1}{5!}r(0)t^{5} + \dots + \frac{1}{n!}x^{(n)}t^{n} + \frac{1}{3!}x^{(n)}t^{n} + \frac{1}{3$$

gives exponential:
$$e^{t} = 1 + t + \frac{1}{2!}t^{2} + \frac{1}{3!}t^{3} + \frac{1}{4!}t^{4} + \frac{1}{5!}t^{5} + \dots + \frac{1}{n!}t^{n} + \frac{1}{2!}t^{n} + \frac{1}{$$

How good are power series? Depends...

Thursday, March 3, 2016

How good are those power series? Taylor-Maclaurin series,

imaginary interest, and complex exponentials

Suppose the fancy bankers really went bonkers and made interest rate *r* an *imaginary number r=i* θ . Imaginary number $i = \sqrt{-1}$ powers have *repeat-after-4-pattern*: $i^0 = 1$, $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, etc... $e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \dots$ (From exponential series) $= 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \dots$ ($i = \sqrt{-1}$ imples: $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = +1$, $i^5 = i$,...) $= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + \left(i\theta - i\frac{\theta^3}{3!} + i\frac{\theta^5}{5!} - \dots\right)$

Polar form (r, θ)

Cartesian form (x,y)

 $z = re^{i\theta} = r\cos\theta + ir\sin\theta = x + iy$

 $e^{i\theta}$

 $e^{i\theta}$

2. What Good Are Complex Exponentials?

Easy trig Easy 2D vector analysis Easy oscillator phase analysis Easy rotation and "dot" or "cross" products

What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is $\cos(a+b)$ or $\sin(a+b)$? Just factor $e^{i(a+b)} = e^{ia}e^{ib}$...

$$e^{i(a+b)} = e^{ia} e^{ib}$$

$$cos(a+b) + i sin(a+b) = (cos a + i sin a) (cos b + i sin b)$$

$$cos(a+b) + i sin(a+b) = [cos a cos b - sin a sin b] + i [sin a cos b + cos a sin b]$$
What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is $\cos(a+b)$ or $\sin(a+b)$? Just factor $e^{i(a+b)} = e^{ia}e^{ib}$...

2. Complex numbers add like vectors. $z_{Sum} = z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')$ $z_{diff} = z - z' = (x + iy) - (x' + iy') = (x - x') + i(y - y')$ (a) y = Im z' y' = Im z' z'z'

3.Complex exponentials Ae^{-iwt} track position <u>and</u> velocity using Phasor Clock.

3.Complex exponentials Ae^{-iwt} track position <u>and</u> velocity using Phasor Clock.

(b) Quantum Phasor Clock $\psi = Ae^{-i\omega t} = A\cos\omega t - i A\sin\omega t = x + iy$

Some Rect-vs-Polar relations worth remembering

Cartesian

$$\begin{cases}
\psi_x = \operatorname{Re}\psi(t) = x(t) = A\cos\omega t = \frac{\psi + \psi^*}{2} \\
\psi_y = \operatorname{Im}\psi(t) = \frac{v(t)}{\omega} = -A\sin\omega t = \frac{\psi - \psi^*}{2i} \\
\psi = re^{+i\theta} = re^{-i\omega t} = r(\cos\omega t - i\sin\omega t) \\
\psi^* = re^{-i\theta} = re^{+i\omega t} = r(\cos\omega t + i\sin\omega t)
\end{cases}$$

$$Polar \begin{cases} r = A = |\psi| = \sqrt{\psi_x^2 + \psi_y^2} = \sqrt{\psi^* \psi} \\ \theta = -\omega t = \arctan(\psi_y / \psi_x) \end{cases}$$
$$\cos \theta = \frac{1}{2} (e^{+i\theta} + e^{-i\theta}) \qquad \operatorname{Re} \psi = \frac{\psi + \psi^*}{2} \\ \sin \theta = \frac{1}{2i} (e^{+i\theta} - e^{-i\theta}) \qquad \operatorname{Im} \psi = \frac{\psi - \psi^*}{2i} \end{cases}$$

2. What Good Are Complex Exponentials?

Easy trig Easy 2D vector analysis Easy oscillator phase analysis Easy rotation and "dot" or "cross" products

4. Complex products provide 2D rotation operations.

$$e^{i\phi} \cdot z = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i \quad (x\sin\phi + y\cos\phi)$$
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi)\mathbf{\hat{e}}_x + (x\sin\phi + y\cos\phi)\mathbf{\hat{e}}_y$$

4. Complex products provide 2D rotation operations.

$$e^{i\phi} \cdot z = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i \quad (x\sin\phi + y\cos\phi)$$
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \hat{\mathbf{e}}_x + (x\sin\phi + y\cos\phi) \hat{\mathbf{e}}_y$$
$$\begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi\\ x\sin\phi + y\cos\phi \end{pmatrix}$$

4. Complex products provide 2D rotation operations.

$$e^{i\phi} \cdot z = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i (x\sin\phi + y\cos\phi)$$

$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \hat{\mathbf{e}}_{x} + (x\sin\phi + y\cos\phi) \hat{\mathbf{e}}_{y}$$

$$\begin{pmatrix}\cos\phi & -\sin\phi\\\sin\phi & \cos\phi\end{pmatrix} \cdot \begin{pmatrix}x\\y\\y\end{pmatrix} = \begin{pmatrix}x\cos\phi - y\sin\phi\\x\sin\phi + y\cos\phi\end{pmatrix}$$

$$e^{i\phi} \operatorname{acts on this:} z = re^{i\theta}$$

$$Imaginary \operatorname{axis} \begin{pmatrix}i \\ axis\end{pmatrix} \quad to give this: e^{i\phi}z = re^{i\phi}e^{i\theta} = re^{i(\phi+\theta)}$$

$$Imaginary \operatorname{axis} \begin{pmatrix}i \\ axis\end{pmatrix} \quad e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$z = re^{i\theta} = x + iy$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$z = re^{i\theta} = x + iy$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\theta}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\phi}e^{i\theta} = re^{i(\phi+\theta)} = \overline{x} + i\overline{y}$$

$$\int e^{i\phi}z = re^{i\phi}e^{i\phi}z = re^{i\phi}e^{i\phi}z = re^{i\phi}e^{i\phi}z$$

4. Complex products provide 2D rotation operations.

$$e^{i\phi \cdot z} = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i \quad (x\sin\phi + y\cos\phi)$$
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \hat{\mathbf{e}}_x + (x\sin\phi + y\cos\phi) \hat{\mathbf{e}}_y$$
$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A = A_x + iA_y$ and $B = B_x + iB_y$ and their "star" (*)-product A * B.

$$A * B = (A_x + iA_y)^* (B_x + iB_y) = (A_x - iA_y)(B_x + iB_y)$$

= $(A_x B_x + A_y B_y) + i(A_x B_y - A_y B_x)$

4. Complex products provide 2D rotation operations.

$$e^{i\phi \cdot z} = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i \quad (x\sin\phi + y\cos\phi)$$
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \mathbf{\hat{e}}_x + (x\sin\phi + y\cos\phi) \mathbf{\hat{e}}_y$$
$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A = A_x + iA_y$ and $B = B_x + iB_y$ and their "star" (*)-product A * B.

$$A * B = (A_x + iA_y)^* (B_x + iB_y) = (A_x - iA_y)(B_x + iB_y)$$

= $(A_x B_x + A_y B_y) + i(A_x B_y - A_y B_x) = \mathbf{A} \cdot \mathbf{B} + i | \mathbf{A} \times \mathbf{B} |_{Z \perp (x,y)}$
Real part is scalar or "dot"(•) product $\mathbf{A} \cdot \mathbf{B}$.
Imaginary part is vector or "cross"(×) product, but just the Z-component normal to xy-plane.

4. Complex products provide 2D rotation operations.

$$e^{i\phi \cdot z} = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i \quad (x\sin\phi + y\cos\phi)$$
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \hat{\mathbf{e}}_{x} + (x\sin\phi + y\cos\phi) \hat{\mathbf{e}}_{y}$$
$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A = A_x + iA_y$ and $B = B_x + iB_y$ and their "star" (*)-product A * B.

$$A * B = (A_x + iA_y)^* (B_x + iB_y) = (A_x - iA_y)(B_x + iB_y)$$

= $(A_x B_x + A_y B_y) + i(A_x B_y - A_y B_x) = \mathbf{A} \cdot \mathbf{B} + i | \mathbf{A} \times \mathbf{B} |_{Z \perp (x,y)}$
Real part is scalar or "dot"(•) product $\mathbf{A} \cdot \mathbf{B}$.
Imaginary part is vector or "cross"(×) product, but just the Z-component normal to xy-plane.

Rewrite *A***B* in polar form.

$$A * B = (|A|e^{i\theta_A})^* (|B|e^{i\theta_B}) = |A|e^{-i\theta_A}|B|e^{i\theta_B} = |A||B|e^{i(\theta_B - \theta_A)}$$
$$= |A||B|\cos(\theta_B - \theta_A) + i|A||B|\sin(\theta_B - \theta_A) = \mathbf{A} \cdot \mathbf{B} + i|\mathbf{A} \times \mathbf{B}|_{Z\perp(x,y)}$$

4. Complex products provide 2D rotation operations.

$$e^{i\phi \cdot z} = (\cos\phi + i\sin\phi) \cdot (x + iy) = x\cos\phi - y\sin\phi + i \quad (x\sin\phi + y\cos\phi)$$
$$\mathbf{R}_{+\phi} \cdot \mathbf{r} = (x\cos\phi - y\sin\phi) \hat{\mathbf{e}}_{x} + (x\sin\phi + y\cos\phi) \hat{\mathbf{e}}_{y}$$
$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A = A_x + iA_y$ and $B = B_x + iB_y$ and their "star" (*)-product A * B.

$$A * B = (A_x + iA_y)^* (B_x + iB_y) = (A_x - iA_y)(B_x + iB_y)$$

= $(A_x B_x + A_y B_y) + i(A_x B_y - A_y B_x) = \mathbf{A} \cdot \mathbf{B} + i | \mathbf{A} \times \mathbf{B} |_{Z \perp (x,y)}$
Real part is scalar or "dot"(•) product $\mathbf{A} \cdot \mathbf{B}$.
Imaginary part is vector or "cross"(×) product, but just the Z-component normal to xy-plane.

Rewrite *A***B* in polar form. $A * B = (|A|e^{i\theta_A})^* (|B|e^{i\theta_B}) = |A|e^{-i\theta_A}|B|e^{i\theta_B} = |A||B|e^{i(\theta_B - \theta_A)}$ $= |A||B|\cos(\theta_B - \theta_A) + i|A||B|\sin(\theta_B - \theta_A) = \mathbf{A} \cdot \mathbf{B} + i|\mathbf{A} \times \mathbf{B}|_{Z \perp (x,v)}$ $|\mathbf{A} \times \mathbf{B}| = |A||B|\sin(\theta_B - \theta_A)$ $\mathbf{A} \bullet \mathbf{B} = |A| |B| \cos(\theta_B - \theta_A)$ $= |A| \cos \theta_A |B| \sin \theta_B - |A| \sin \theta_A |B| \cos \theta_B$ $= |A| \cos \theta_A |B| \cos \theta_B + |A| \sin \theta_A |B| \sin \theta_B$ $= A_x B_y - A_y B_x$ $A_x B_x + A_v B_v$ =

Real part

What Good are complex variables?

Easy 2D vector calculus Easy 2D vector derivatives Easy 2D source-free field theory Easy 2D vector field-potential theory

6. Complex derivative contains "divergence"($\nabla \cdot \mathbf{F}$) and "curl"($\nabla \mathbf{xF}$) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Re}z,y=\operatorname{Im}z)$ defines a z-derivative $\frac{df}{dz}$ and "star" z^* -derivative. $\frac{df}{dz^*}$ z = x + iy $x = \frac{1}{2}(z + z^*)$ $y = \frac{1}{2i}(z - z^*)$ x = x - iy $y = \frac{1}{2i}(z - z^*)$ $x = \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$ $\frac{d}{dz} = \frac{1}{2} \frac{\partial z}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$ $\frac{d}{dz} = \frac{1}{2} \frac{\partial z}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$ $\frac{d}{dz} = \frac{1}{2} \frac{\partial z}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}$

Discussion of partial derivatives $\partial f/\partial x$ and chain-rule $df = \partial f/\partial x \, dx + \partial f/\partial y \, dy$ <u>http://www.uark.edu/ua/modphys/pdfs/CMwBang_Pdfs/CMwBang_Lectures_2015/CMwithBang_Lect.9_9.22.15.pdf</u>

6. Complex derivative contains "divergence" ($\nabla \cdot F$) and "curl" ($\nabla x F$) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Re}z,y=\operatorname{Im}z)$ defines a *z*-derivative $\frac{df}{dz}$ and "star" *z**-derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial x}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial x}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial x}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial x}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial x}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial x}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} + \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} f_x + \frac{\partial}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial}{\partial x} f_y - \frac{\partial}{\partial y} \right) = \frac{1}{2} \nabla \bullet \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x, y)}$$

6. Complex derivative contains "divergence"($\nabla \cdot F$) and "curl"(∇xF) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Re}z,y=\operatorname{Im}z)$ defines a *z*-derivative $\frac{df}{dz}$ and "star" *z**-derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{\partial f}{\partial y} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{\partial f}{\partial y} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{i}{2}$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} f_x + \frac{\partial}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial}{\partial x} f_y - \frac{\partial}{\partial y} \right) = \frac{1}{2} \nabla \bullet \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x, y)}$$

7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F}=0 \text{ and } \nabla \mathbf{x}\mathbf{F}=0]$

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all *i*'s to -i) to give $f^*(z^*)$ for which $\frac{df^*}{dz} = 0$

6. Complex derivative contains "divergence"($\nabla \cdot F$) and "curl"(∇xF) of 2D vector field Relation of (z,z^*) to $(x=\operatorname{Rez},y=\operatorname{Imz})$ defines a *z*-derivative $\frac{df}{dz}$ and "star" *z**-derivative. $\frac{df}{dz^*}$

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{1}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{\partial y}{\partial x} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{\partial y}{\partial y} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{\partial y}{\partial y} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{d}{dz} = \frac{i}{2} \frac{i}{2} \frac{\partial y}{\partial y} - \frac{i}{2} \frac{\partial y}{\partial y} \qquad \frac{i}{2} \frac{\partial y}{\partial y} = \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2$$

Derivative chain-rule shows real part of $\frac{df}{dz}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$\frac{df}{dz} = \frac{d}{dz} \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \left(f_x + i f_y \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} f_x + \frac{\partial}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial}{\partial x} f_y - \frac{\partial}{\partial y} \right) = \frac{1}{2} \nabla \bullet \mathbf{f} + \frac{i}{2} |\nabla \times \mathbf{f}|_{Z \perp (x, y)}$$

7. Invent source-free 2D vector fields $[\nabla \cdot \mathbf{F}=0 \text{ and } \nabla \mathbf{x}\mathbf{F}=0]$

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all *i*'s to -i) to give $f^*(z^*)$ for which $\begin{bmatrix} df \\ dz \end{bmatrix} = 0$.

For example: if $f(z) = a \cdot z$ then $f^*(z^*) = a \cdot z^* = a(x - iy)$ is not function of z so it has zero z-derivative. $\mathbf{F} = (F_x, F_y) = (f^*_x, f^*_y) = (a \cdot x, -a \cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F} = 0$ and has zero curl: $|\nabla \times \mathbf{F}| = 0$. $\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} = \frac{\partial (ax)}{\partial x} + \frac{\partial F(-ay)}{\partial y} = 0$ $|\nabla \times \mathbf{F}|_{Z \perp (x, y)} = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (-ay)}{\partial x} - \frac{\partial F(ax)}{\partial y} = 0$ A DFL field \mathbf{F} (Divergence-Free-Laminar)

7. Invent source-free 2D vector fields [$\nabla \cdot \mathbf{F} = 0$ and $\nabla \mathbf{x} \mathbf{F} = 0$]

We can invent *source-free 2D vector fields* that are both *zero-divergence* and *zero-curl*. Take any function f(z), conjugate it (change all *i*'s to -i) to give $f^*(z^*)$ for which .

For example: if $f(z) = a \cdot z$ then $f^*(z^*) = a \cdot z^* = a(x - iy)$ is not function of z so it has zero z-derivative. $\mathbf{F}=(F_x,F_y)=(f_x^*,f_y^*)=(a\cdot x,-a\cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $|\nabla \times \mathbf{F}|=0$. $\nabla \bullet \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} = \frac{\partial (ax)}{\partial x} + \frac{\partial F(-ay)}{\partial y} = 0 \qquad \qquad |\nabla \times \mathbf{F}|_{Z \perp (x,y)} = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial (-ay)}{\partial x} - \frac{\partial F(ax)}{\partial y} = 0$ precursor to Unit 1 *Fig.* 10.7

 $\mathbf{F}=(f_{x}^{*},f_{y}^{*})=(a\cdot x,-a\cdot y)$ is a *divergence-free laminar (DFL)* field.

What Good are complex variables?

Easy 2D vector calculus Easy 2D vector derivatives Easy 2D source-free field theory Easy 2D vector field-potential theory

8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A *complex potential* $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose *z*-derivative is $f(z) = d \phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A *complex potential* $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose *z*-derivative is $f(z) = d\phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + iA$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = A$) parts.

8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A *complex potential* $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose *z*-derivative is $f(z) = d \phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts. $f(z) = \frac{d\phi}{dz} \Rightarrow \phi = \Phi + i \mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2} az^2$

8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d \phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts. $f(z) = \frac{d\phi}{dz} \Rightarrow \phi = \phi + i\mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2}az^2 = \frac{1}{2}a(x + iy)^2$ $= \frac{1}{2}a(x^2 - y^2) + i\mathbf{axy}$

8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A *complex potential* $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose *z*-derivative is $f(z) = d \phi/dz$.

Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z^* -derivative $f^*(z^*) = d\phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + i\mathbf{A}$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = \mathbf{A}$) parts. $f(z) = \frac{d\phi}{dz} \Rightarrow \phi = \phi + i\mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2}az^2 = \frac{1}{2}a(x + iy)^2$ $= \frac{1}{2}a(x^2 - y^2) + i\mathbf{A} = \int f \cdot dz = \int az \cdot dz = \frac{1}{2}az^2 = \frac{1}{2}a(x + iy)^2$

Unit 1 Fig. 10.7

8. Complex potential ϕ contains "scalar" ($\mathbf{F}=\nabla \Phi$) and "vector" ($\mathbf{F}=\nabla x \mathbf{A}$) potentials

Any *DFL* field **F** is a gradient of a *scalar potential field* Φ or a curl of a *vector potential field* **A**. **F**= $\nabla \Phi$ **F**= $\nabla \times \mathbf{A}$

A complex potential $\phi(z) = \Phi(x,y) + iA(x,y)$ exists whose z-derivative is $f(z) = d \phi/dz$. Its complex conjugate $\phi^*(z^*) = \Phi(x,y) - iA(x,y)$ has z*-derivative $f^*(z^*) = d \phi^*/dz^*$ giving *DFL* field **F**.

To find $\phi = \Phi + iA$ integrate $f(z) = a \cdot z$ to get ϕ and isolate real (Re $\phi = \Phi$) and imaginary (Im $\phi = A$) parts.

$$f(z) = \frac{d\phi}{dz} \implies \phi = \underbrace{\Phi}_{=\frac{1}{2}a(x^2 - y^2)} + i \quad A = \int f \cdot dz = \int az \cdot dz = \frac{1}{2}az^2 = \frac{1}{2}a(x + iy)^2$$

BONUS! Get a free coordinate system!

The (Φ, A) grid is a GCC coordinate system*: $q^{l} = \Phi = (x^{2}-y^{2})/2 = const.$ $q^{2} = A = (xy) = const.$

*Actually it's OCC.

What Good are complex variables?

Easy 2D vector calculus Easy 2D vector derivatives Easy 2D source-free field theory Easy 2D vector field-potential theory

The half-n'-half results: (Riemann-Cauchy Derivative Relations)

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative $\frac{d\phi^*}{dz^*}$ has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times A = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector A (and they're equal!) $f(z) = \frac{d\phi}{dz} \Rightarrow$ $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - iA) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - iA) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times A$ $\frac{d}{dz} = \frac{1}{2} \frac{\partial}{\partial x} - \frac{i}{2} \frac{\partial}{\partial y}$ $\frac{d}{dz^*} = \frac{1}{2} \frac{\partial}{\partial x} + \frac{i}{2} \frac{\partial}{\partial y}$

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times A = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector A (and they 're equal!)
 $f(z) = \frac{d\phi}{dz} \Rightarrow$
 $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - iA) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - iA) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times A$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times A = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix}$ of vector A (and they're equal!)
 $f(z) = \frac{d\phi}{dz} \Rightarrow$
 $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - iA) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - iA) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times A$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative
$$\frac{d\phi^*}{dz^*}$$
 has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times A = \begin{bmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{bmatrix}$ of vector A (and they 're equal!)
 $f(z) = \frac{d\phi}{dz} \Rightarrow$
 $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - iA) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - iA) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times A$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

Scalar *static potential lines* Φ =*const.* and vector *flux potential lines* A=*const.* define *DFL field-net.*

8. (contd.) Complex potential ϕ contains "scalar"($F=\nabla \Phi$) and "vector"($F=\nabla xA$) potentials ...and either one (or half-n'-half!) works just as well.

Derivative $\frac{d\phi^*}{dz^*}$ has 2D gradient $\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix}$ of scalar Φ and curl $\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix}$ of vector \mathbf{A} (and they 're <u>equal</u>!) The half-n'-half result $\frac{d}{dz^*} \phi^* = \frac{d}{dz^*} (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}) (\Phi - i\mathbf{A}) = \frac{1}{2} (\frac{\partial \Phi}{\partial x} + i\frac{\partial \Phi}{\partial y}) + \frac{1}{2} (\frac{\partial \mathbf{A}}{\partial y} - i\frac{\partial \mathbf{A}}{\partial x}) = \frac{1}{2} \nabla \Phi + \frac{1}{2} \nabla \times \mathbf{A}$

Note, *mathematician definition* of force field $\mathbf{F} = +\nabla \Phi$ replaces usual physicist's definition $\mathbf{F} = -\nabla \Phi$

Scalar *static potential lines* Φ =*const.* and vector *flux potential lines* A=*const.* define *DFL field-net.*

The half-n'-half results are called Riemann-Cauchy Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \quad \text{is:} \quad \frac{\partial \text{Re}f(z)}{\partial x} = \quad \frac{\partial \text{Im}f(z)}{\partial y}$$
$$\frac{\partial \Phi}{\partial y} = -\frac{\partial A}{\partial x} \quad \text{is:} \quad \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x}$$

→ 4. Riemann-Cauchy conditions What's analytic? (...and what's <u>not</u>?)

Review (*z*,*z**) *to* (*x*,*y*) *transformation relations*

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right) f$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^*} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z^*} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ to be an **analytic function** f(z) of z=x+iy: First, f(z) must <u>not</u> be a function of $z^*=x-iy$, that is: $\frac{df}{dz^*}=0$ This implies f(z) satisfies differential equations known as the **Riemann-Cauchy conditions**

$$\frac{df}{dz^*} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) implies : \left(\frac{\partial f_x}{\partial x} = \frac{\partial f_y}{\partial y} \right) and : \frac{\partial f_y}{\partial x} = -\frac{\partial f_x}{\partial y} \right) dx = \frac{\partial f_y}{\partial y} dx = \frac{\partial f$$

Review (*z*,*z**) *to* (*x*,*y*) *transformation relations*

$$z = x + iy \qquad x = \frac{1}{2} (z + z^*) \qquad \frac{df}{dz} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right) f$$

$$z^* = x - iy \qquad y = \frac{1}{2i} (z - z^*) \qquad \frac{df}{dz^*} = \frac{\partial x}{\partial z^*} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z^*} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2i} \frac{\partial f}{\partial y} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ *to be an* **analytic function** f(z) *of* z=x+iy: First, f(z) must <u>not</u> be a function of $z^*=x-iy$, that is: $\frac{df}{dz^*}=0$ This implies f(z) satisfies differential equations known as the **Riemann-Cauchy conditions** $1(\partial \partial \partial)$ $1(\partial f \partial f_{u}) i(\partial f_{u} \partial f)$ ∂*f* ∂f ∂f df

$$\frac{dg}{dz^*} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y} \right) (f_x + if_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{1}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_y}{\partial y} \right) \text{ implies} : \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) \text{ and} : \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_y}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{1}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i\frac{\partial f_y}{\partial x} = \frac{\partial f_y}{\partial y} - i\frac{\partial f_x}{\partial y} = \frac{\partial}{\partial x} (f_x + if_y) = \frac{\partial}{\partial iy} (f_y +$$

Criteria for a field function $f = f_x(x,y) + i f_y(x,y)$ *to be an* **analytic function** $f(z^*)$ *of* $z^*=x-iy$: First, $f(z^*)$ must <u>not</u> be a function of z=x+iy, that is: $\frac{df}{dz}=0$ This implies f(z*) satisfies differential equations we call Anti-Riemann-Cauchy conditions $\frac{df}{dz} = 0 = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \right) = implies : \frac{\partial f_x}{\partial x} = -\frac{\partial f_y}{\partial y} \quad and : \frac{\partial f_y}{\partial x} = \frac{\partial f_x}{\partial y}$ $\frac{df}{dz^*} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) (f_x + i f_y) = \frac{1}{2} \left(\frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial f_y}{\partial x} + \frac{\partial f_x}{\partial y} \right) = \frac{\partial f_x}{\partial x} + i \frac{\partial f_y}{\partial x} = -\frac{\partial f_y}{\partial y} + i \frac{\partial f_x}{\partial y} = -\frac{\partial}{\partial i y} (f_x + i f_y) = -\frac{\partial}{\partial i y} (f_x + i f_y)$

Эf

What's analytic? (...and what's <u>not</u>?)

Example: Is f(x,y) = 2x + iy an analytic function of z=x+iy?

What's analytic? (...and what's <u>not</u>?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

What's analytic? (...and what's <u>not</u>?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2(z+z^*)/2 + i4(-i(z-z^*)/2)$$
Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2)$$

= z+z^* + (2z-2z^*)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2)$$

= z+z^* + (2z-2z^*)
= 3z-z^*

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2) = z+z^* + (2z-2z^*) = 3z-z^*$$

A: NO! It's a function of $z \text{ and } z^*$ so not analytic for <u>either</u>.

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2) = z+z^* + (2z-2z^*) = 3z-z^*$$

A: NO! It's a function of $z \text{ and } z^*$ so not analytic for <u>either</u>.

Example 2: Q: Is $r(x,y) = x^2 + y^2$ an analytic function of z=x+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for <u>either</u>.

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+iy?

Well, test it using definitions: z = x + iy and: $z^* = x - iy$ or: $x = (z+z^*)/2$ and: $y = -i(z-z^*)/2$

$$f(x,y) = 2x + i4y = 2 (z+z^*)/2 + i4(-i(z-z^*)/2) = z+z^* + (2z-2z^*) = 3z-z^*$$

A: NO! It's a function of z and z* so not analytic for <u>either</u>.

Example 2: Q: Is $r(x,y) = x^2 + y^2$ an analytic function of z=x+iy?

A: NO! $r(xy)=z^*z$ is a function of z and z^* so not analytic for <u>either</u>.

Example 3: Q: Is $s(x,y) = x^2 - y^2 + 2ixy$ an analytic function of z = x + iy?

A: YES! $s(xy)=(x+iy)^2=z^2$ is analytic function of z. (Yay!)

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

 Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2ⁿ-pole analysis Easy 2ⁿ-multipole field and potential expansion Easy stereo-projection visualization

9. Complex integrals f (z)dz count 2D "circulation" (**F**•dr) and "flux" (**F**xdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$ $\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z) dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$ $\Delta \phi = \Delta \Phi + i \Delta A$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

9. Complex integrals ∫ f(z)dz count 2D "circulation"(∫F•dr) and "flux"(∫Fxdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$ $\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z) dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$ $\Delta \phi = \Delta \Phi + i \Delta A$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

$$\int f(z)dz = \int \left(f^*(z^*)\right)^* dz = \int \left(f^*(z^*)\right)^* \left(dx + i \, dy\right) = \int \left(f_x^* + i \, f_y^*\right)^* \left(dx + i \, dy\right) = \int \left(f_x^* - i \, f_y^*\right) \left(dx + i \, dy\right)$$
$$= \int \left(f_x^* dx + f_y^* dy\right) + i \int \left(f_x^* dy - f_y^* dx\right)$$
$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \times d\mathbf{r} \cdot \hat{\mathbf{e}}_Z$$
$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$
$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$
where: $d\mathbf{S} = d\mathbf{r} \times \hat{\mathbf{e}}_Z$

9. Complex integrals ∫ f(z)dz count 2D "circulation"(∫F•dr) and "flux"(∫Fxdr)

Integral of f(z) between point z_1 and point z_2 is potential difference $\Delta \phi = \phi(z_2) - \phi(z_1)$ $\Delta \phi = \phi(z_2) - \phi(z_1) = \int_{z_1}^{z_2} f(z) dz = \Phi(x_2, y_2) - \Phi(x_1, y_1) + i[A(x_2, y_2) - A(x_1, y_1)]$ $\Delta \phi = \Delta \Phi + i \Delta A$

In *DFL*-field **F**, $\Delta \phi$ is independent of the integration path z(t) connecting z_1 and z_2 .

$$\int f(z)dz = \int \left(f^*(z^*)\right)^* dz = \int \left(f^*(z^*)\right)^* \left(dx + i \, dy\right) = \int \left(f_x^* + i \, f_y^*\right)^* \left(dx + i \, dy\right) = \int \left(f_x^* - i \, f_y^*\right) \left(dx + i \, dy\right)$$

$$= \int \left(f_x^* dx + f_y^* dy\right) + i \int \left(f_x^* dy - f_y^* dx\right)$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \times d\mathbf{r} \cdot \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} \times \hat{\mathbf{e}}_Z$$

$$= \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot d\mathbf{r} + i \int \mathbf{F} \cdot$$

Here the scalar potential $\Phi = (x^2 - y^2)/2$ is stereo-plotted vs. (x,y)The $\Phi = (x^2 - y^2)/2 = const$. curves are topography lines The A = (xy) = const. curves are streamlines normal to topography lines

4. Riemann-Cauchy conditions What's analytic? (...and what's <u>not</u>?) Easy 2D circulation and flux integrals

Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2ⁿ-pole analysis Easy 2ⁿ-multipole field and potential expansion Easy stereo-projection visualization

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

Riemann-Cauchy Derivative Relations make coordinates orthogonal

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x^2} (x^2 - y^2) \\ \frac{\partial}{\partial y^2} (x^2 - y^2) \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\mathbf{F}$$

$$\mathbf{E}_{\Phi} \cdot \mathbf{E}_A = \frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$

$$= -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x} = 0$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial \mathbf{A}}{\partial y} \\ -\frac{\partial \mathbf{A}}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

Riemann-Cauchy Derivative Relations make coordinates orthogonal

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x^2} (x^2 - y^2) \\ \frac{\partial}{\partial y^2} (x^2 - y^2) \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\mathbf{F} = \mathbf{F}$$

$$\mathbf{F} = \mathbf{F}$$

$$\mathbf{F} = \mathbf{F}$$

$$\mathbf{F} = \mathbf{F} = \mathbf{F}$$

$$\mathbf{F} = -\frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y}$$

$$\mathbf{\nabla} \times \mathbf{A} = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} axy \\ -\frac{\partial}{\partial x} axy \end{pmatrix} = \begin{pmatrix} ax \\ -ay \end{pmatrix} = \mathbf{F}$$

$$\mathbf{F} = -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x} = 0$$

Zero divergence requirement: $0 = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} = \frac{\partial}{\partial x} \frac{\partial \Phi}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \Phi}{\partial y} = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$ potential Φ obeys Laplace equation

Thursday, March 3, 2016

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

or Riemann-Cauchy
Zero divergence requirement:
$$0 = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} = \frac{\partial}{\partial x} \frac{\partial \Phi}{\partial x} + \frac{\partial}{\partial y} \frac{\partial \Phi}{\partial y} = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$$
 potential Φ obeys Laplace equation

 $= -\frac{\partial \Phi}{\partial r}\frac{\partial \Phi}{\partial v} + \frac{\partial \Phi}{\partial v}\frac{\partial \Phi}{\partial r} = 0$

Thursday, March 3, 2016

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
 Easy 2D curvilinear coordinate discovery
 Easy 2D monopole, dipole, and 2ⁿ-pole analysis
 Easy 2ⁿ-multipole field and potential expansion
 Easy stereo-projection visualization

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x+iy)$.

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z)$$

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

(a) Unit Z-line-flux field f(z)=1/z

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + i\mathbf{A} = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

(a) Unit Z-line-flux field f(z)=1/z

(b) Unit Z-line-vortex field f(z)=i/z

11. Complex integrals define 2D monopole fields and potentials Of all power-law fields $f(z)=az^n$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1}z^{n+1}$. It is the n=-1 case.

Unit monopole field: $f(z) = \frac{1}{z} = z^{-1}$ $f(z) = \frac{a}{z} = az^{-1}$ Source-*a* monopole

It has a *logarithmic potential* $\phi(z) = a \cdot \ln(z) = a \cdot \ln(x + iy)$. Note: $\ln(a \cdot b) = \ln(a) + \ln(b)$, $\ln(e^{i\theta}) = i\theta$, and $z = re^{i\theta}$.

$$\phi(z) = \Phi + iA = \int f(z)dz = \int \frac{a}{z}dz = a\ln(z) = a\ln(re^{i\theta})$$
$$= a\ln(r) + ia\theta$$

A monopole field is the only power-law field whose integral (potential) depends on path of integration.

$$\Delta \phi = \oint f(z)dz = a \oint \frac{dz}{z} = a \oint_{\theta=0}^{\theta=2\pi N} \frac{d(Re^{i\theta})}{Re^{i\theta}} = a \oint_{\theta=0}^{\theta=2\pi N} \frac{d\theta=2\pi N}{\theta=0} id\theta = ai \theta \Big|_{0}^{2\pi N} = 2a\pi iN$$

Thursday, March 3, 2016

Thursday, March 3, 2016

(b) Unit Z-line-vortex field f(z)=i/z

What Good Are Complex Exponentials? (contd.)

 $f(z) = (0.5 + i0.5)/z = e^{i\pi/4}/z\sqrt{2}$

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals
 Easy 2D curvilinear coordinate discovery
 Easy 2D monopole, dipole, and 2ⁿ-pole analysis
 Easy 2ⁿ-multipole field and potential expansion
 Easy stereo-projection visualization

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln \frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is *tiny* and is divided out we get a *point-dipole field* f^{2-pole} that is the *z*-derivative of f^{1-pole} .

$$f^{2-pole} = \frac{-a}{z^2} = \frac{df^{1-pole}}{dz} = \frac{d\phi^{2-pole}}{dz} \qquad \qquad \phi^{2-pole} = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$$

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln \frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is *tiny* and is divided out we get a *point-dipole field* f^{2-pole} that is the *z*-derivative of f^{1-pole} .

12. Complex derivatives give 2D dipole fields

Start with $f(z) = az^{-1}$: 2D line *monopole field* and is its *monopole potential* $\phi(z) = a \ln z$ of source strength a. $f^{1-pole}(z) = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$ $\phi^{1-pole}(z) = a \ln z$

Now let these two line-sources of equal but opposite source constants +a and -a be located at $z=\pm\Delta/2$ separated by a small interval Δ . This sum (actually difference) of f^{1-pole} -fields is called a *dipole field*.

$$f^{dipole}(z) = \frac{a}{z + \frac{\Delta}{2}} - \frac{a}{z - \frac{\Delta}{2}} = \frac{-a \cdot \Delta}{z^2 - \frac{\Delta^2}{4}} \qquad \phi^{dipole}(z) = a \ln(z - \frac{\Delta}{2}) - a \ln(z + \frac{\Delta}{2}) = a \ln \frac{z - \frac{\Delta}{2}}{z + \frac{\Delta}{2}}$$

If interval Δ is *tiny* and is divided out we get a *point-dipole field* f^{2-pole} that is the *z*-derivative of f^{1-pole} .

$$f^{2-pole} = \frac{-a}{z^2} = \frac{df^{1-pole}}{dz} = \frac{d\phi^{2-pole}}{dz} \qquad \phi^{2-pole} = \frac{a}{z} = \frac{d\phi^{1-pole}}{dz}$$

A *point-dipole potential* ϕ^{2-pole} (whose *z*-derivative is f^{2-pole}) is a *z*-derivative of ϕ^{1-pole} .

$$\phi^{2-pole} = \frac{a}{z} = \frac{a}{x+iy} = \frac{a}{x+iy} \frac{x-iy}{x-iy} = \frac{ax}{x^2+y^2} + i\frac{-ay}{x^2+y^2} = \frac{a}{r}\cos\theta - i\frac{a}{r}\sin\theta$$
$$= \Phi^{2-pole} + iA^{2-pole}$$

A *point-dipole potential* ϕ^{2-pole} (whose *z*-derivative is f^{2-pole}) is a *z*-derivative of ϕ^{1-pole} .

$$\phi^{2-pole} = \frac{a}{z} = \frac{a}{x+iy} = \frac{a}{x+iy} \frac{x-iy}{x-iy} = \frac{ax}{x^2+y^2} + i\frac{-ay}{x^2+y^2} = \frac{a}{r}\cos\theta - i\frac{a}{r}\sin\theta$$
$$= \Phi^{2-pole} + i\mathbf{A}^{2-pole}$$

2ⁿ-pole analysis (quadrupole:2²=4-pole, octapole:2³=8-pole,..., pole dancer,

What if we put a (-)copy of a 2-pole near its original?

Well, the result is 4-pole or quadrupole field f^{4-pole} and potential ϕ^{4-pole} .

Each a *z*-derivative of f^{2-pole} and ϕ^{2-pole} .

2ⁿ-pole analysis (quadrupole:2²=4-pole, octapole:2³=8-pole,..., pole dancer,

What if we put a (-)copy of a 2-pole near its original?

Well, the result is 4-pole or quadrupole field f^{4-pole} and potential ϕ^{4-pole} .

Each a *z*-derivative of f^{2-pole} and ϕ^{2-pole} .

4. Riemann-Cauchy conditions What's analytic? (...and what's not?)

Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2ⁿ-pole analysis Easy 2ⁿ-multipole field and potential expansion Easy stereo-projection visualization

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or *multipole expansion* of a given complex field function f(z) around z=0. $\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$ $\dots 2^2 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^0 \text{-pole} \qquad 2^1 \text{-pole} \qquad 2^2 \text{-pole} \qquad 2^3 \text{-pole} \qquad 2^4 \text{-pole} \qquad 2^5 \text{-pole} \qquad 2^6 \text{-pole} \cdots$ $(audrupole) \qquad (dipole) \qquad (d$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a_{-1}}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m -pole. These are located at z=0 for m<0 and at $z=\infty$ for m>0.

 $\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$

2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or *multipole expansion* of a given complex field function f(z) around z=0.

 $\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$ $\frac{(2^2 - pole}{at z = 0} = 2^1 - pole = 2^0 - pole = 2^1 - pole = 2^2 - pole = 2^3 - pole = 2^4 - pole = 2^5 - pole = 2^6 - pole \cdots$ $\frac{(quadrupole)}{at z = 0} = a_1 z = 0 = a_1 z = 0 = a_1 z = \infty = a_1 z = 0 = a_1 z = 0 = a_1 z = \infty =$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a_{-1}}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m-pole. These are located at z=0 for m<0 and at $z=\infty$ for m>0.

 $(octapole)_{0} \quad (quadrupole)_{0} \quad (dipole)_{0} \quad (monopole) \quad (dipole)_{\infty} \quad (quadrupole)_{\infty} \quad (octapole)_{\infty}$ $\phi(z) = \dots \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_{0} z + \frac{a_{1}}{2} z^{2} + \frac{a_{2}}{3} z^{3} + \dots$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$
(with $z = w^{-1}$)
2ⁿ-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or *multipole expansion* of a given complex field function f(z) around z=0.

$$\frac{d\phi}{dz} = f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

$$\frac{(2^2 - pole}{(quadrupole)} = 2^1 - pole = 2^0 - pole = 2^1 - pole = 2^2 - pole = 2^3 - pole = 2^4 - pole = 2^5 - pole = 2^6 - pole \cdots$$

$$\int f dz = a_{-1}z^{-1} + a_{-1}\ln z + a_0z + \frac{a_1}{2}z^2 + \frac{a_2}{3}z^3 + \frac{a_3}{4}z^4 + \frac{a_4}{5}z^5 + \frac{a_5}{6}z^6 + \dots$$

All field terms $a_{m-1}z^{m-1}$ except 1-pole $\frac{a_{-1}}{z}$ have potential term $a_{m-1}z^m/m$ of a 2^m-pole. These are located at z=0 for m<0 and at $z=\infty$ for m>0.

 $\phi(z) = \dots \frac{a_{-4}}{-3} z^{-3} + \frac{a_{-3}}{-2} z^{-2} + \frac{a_{-2}}{-1} z^{-1} + a_{-1} \ln z + a_0 z + \frac{a_1}{2} z^2 + \frac{a_2}{3} z^3 + \dots$

$$\phi(w) = \dots \frac{a_{-4}}{-3} w^{-3} + \frac{a_{-3}}{-2} w^{-2} + \frac{a_{-2}}{-1} w^{-1} + a_{-1} \ln w + a_0 w + \frac{a_1}{2} w^2 + \frac{a_2}{3} w^3 + \dots$$

$$(with \ z \to w)$$

$$= \dots \frac{a_2}{3} z^{-3} + \frac{a_1}{2} z^{-2} + a_0 z^{-1} - a_{-1} \ln z + \frac{a_{-2}}{-1} z + \frac{a_{-3}}{-2} z^2 + \frac{a_{-4}}{-3} z^3 + \dots$$

$$(with \ w = z^{-1})$$

Thursday, March 3, 2016

Thursday, March 3, 2016

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

Of all 2^m-pole field terms $a_{m-1}z^{m-1}$, only the $m=0$ monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).
 $\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1}$ $a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$

$$f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \dots$$

Of all 2^{*m*}-pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1} dz = 2\pi i$.

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

(assume tiny circle around z=a) $\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$ (but any contour that doesn't "touch a gives same answer)

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

(assume tiny circle around
$$z=a$$
)

$$\oint \frac{f(z)}{z-a} dz = \oint \frac{f(a)}{z-a} dz = f(a) \oint \frac{1}{z-a} dz = 2\pi i f(a)$$
(but any contour that doesn't "touch a gives same answer)

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The *f*(*a*) result is called a *Cauchy integral*.

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz$$

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \ \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz$$

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz$$

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_2 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_3 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_4 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_5 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_6 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_7 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \ a_8$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated *a*-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-*a*.

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated *a*-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-*a*.

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n \qquad \text{where : } a_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z - a)^{n+1}} dz \left(= \frac{1}{n!} \frac{d^n f(a)}{da^n} \quad \text{for : } n \ge 0 \right)$$

Of all 2^{m} -pole field terms $a_{m-1}z^{m-1}$, only the m=0 monopole $a_{-1}z^{-1}$ has a non-zero loop integral (10.39).

$$\oint f(z)dz = \oint a_{-1}z^{-1}dz = 2\pi i a_{-1} \qquad a_{-1} = \frac{1}{2\pi i} \oint f(z)dz$$

This m=1-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$\cdots a_{-3} = \frac{1}{2\pi i} \oint z^2 f(z) dz \ , \ a_{-2} = \frac{1}{2\pi i} \oint z^1 f(z) dz \ , \ a_{-1} = \frac{1}{2\pi i} \oint f(z) dz \ , \ a_0 = \frac{1}{2\pi i} \oint \frac{f(z)}{z} dz \ , \ a_1 = \frac{1}{2\pi i} \oint \frac{f(z)}{z^2} dz \ , \cdots$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1}dz = 2\pi i$ or, with origin shifted $\oint (z-a)^{-1}dz = 2\pi i$. They hold for any loop about point-*a*. Function f(z) is just f(a) on a *tiny* circle around point-*a*.

$$f(a) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - a} dz$$

The f(a) result is called a *Cauchy integral*. Then repeated *a*-derivatives gives a sequence of them.

$$\frac{df(a)}{da} = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^2} dz , \quad \frac{d^2 f(a)}{da^2} = \frac{2}{2\pi i} \oint \frac{f(z)}{(z-a)^3} dz , \quad \frac{d^3 f(a)}{da^3} = \frac{3!}{2\pi i} \oint \frac{f(z)}{(z-a)^4} dz , \quad \dots, \\ \frac{d^n f(a)}{da^n} = \frac{n!}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz$$

This leads to a general *Taylor-Laurent* power series expansion of function f(z) around point-*a*.

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n \qquad \text{where : } a_n = \frac{1}{2\pi i} \oint \frac{f(z)}{(z-a)^{n+1}} dz \left(= \frac{1}{n!} \frac{d^n f(a)}{da^n} \quad \text{for : } n \ge 0 \right)$$

 $(quadrupole)_{\emptyset} \quad (dipole)_{\emptyset} \quad (monopole) \quad (dipole)_{\infty} \quad (quadrupole)_{\infty} \quad (octapole)_{\infty} \quad (hexadecapole)_{\infty} \quad \dots \\ f(z) = \dots a_{-3}z^{-3} + a_{-2}z^{-2} + a_{-1}z^{-1} + a_{0} + a_{1}z + a_{2}z^{2} + a_{3}z^{3} + a_{4}z^{4} + a_{5}z^{5} + \dots \\ monopole \quad moment \quad m$

5. Mapping and Non-analytic 2D source field analysis

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Im}f(z)}{\partial y} \text{ or: } \frac{\partial \text{Im}f(z$$

RC applies to analytic potential $\phi(z) = \Phi + iA$ and analytic field $f(z) = f_x + if_y$ and any analytic function

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Im}f(z)}{\partial y} \text{ or: } \frac{\partial \text{Im}f($$

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Im}f(z)}{\partial y} \text{ o$$

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Im}f(z)}{\partial y} \text{ or: } \frac{\partial \text{Im}f(z)}{$$

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Im}f(z)}{\partial y} \text{$$

are called

Riemann-Cauchy

Derivative Relations

$$\frac{\partial \Phi}{\partial x} = \frac{\partial A}{\partial y} \text{ is: } \frac{\partial \text{Re}\phi(z)}{\partial x} = -\frac{\partial \text{Im}\phi(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial x} = -\frac{\partial \text{Im}f(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial x} = -\frac{\partial f_y(z)}{\partial y} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ is: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial f_y(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_x(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial f_y(z)}{\partial y} \text{ or: } \frac{\partial \text{Re}f(z)}{\partial y} = -\frac{\partial \text{Im}f(z)}{\partial x} \text{ or: } \frac{\partial \text{Im}f(z)}{\partial y} \text{ or: } \frac{\partial \text{Im}f$$

Non-analytic potential, force, and source field functions

A general 2D complex field may have:

- 1. non-analytic *potential field function* $\phi(z,z^*) = \Phi(x,y) + iA(x,y)$,
- 2. non-analytic *force field function* $f(z,z^*) = f_x(x,y) + if_y(x,y)$,
- 3. non-analytic *source distribution function* $s(z,z^*) = \rho(x,y) + i I(x,y)$.

Source definitions are made to generalize the f^* field equations (10.33) based on relations (10.31) and (10.32).

$$2\frac{df^*}{dz} = s^*(z, z^*) \qquad \qquad 2\frac{df}{dz^*} = s(z, z^*)$$

Field equations for the potentials are like (10.33) with an extra factor of 2.

$$2\frac{d\phi}{dz} = f(z, z^*) \qquad \qquad 2\frac{d\phi^*}{dz^*} = f^*(z, z^*)$$

Source equations (10.46) expand like (10.32) into a real and imaginary parts of divergence and curl terms.

$$s^{*}(z,z^{*}) = 2\frac{df^{*}}{dz} = \left[\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right] \left[f_{x}^{*}(x,y) + if_{y}^{*}(x,y)\right] = \rho - iI, \quad \text{where:} f_{x}^{*} = f_{x}, \text{ and:} f_{y}^{*} = -f_{y}$$
$$= \left[\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial x} - \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial x} - \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial x} - \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial y} + \frac{\partial}{\partial y} + i\left[\frac{\partial}{\partial y}$$

Real part: Poisson scalar source equation (charge density ρ). Imaginary part: Biot-Savart vector source equation(current density I) $\nabla \bullet \mathbf{f}^* = \rho$ $\nabla \times \mathbf{f}^* = -I$

Field equations (10.47) expand into Re and Im parts; x and y components of grad Φ and curlA_Z from potential $\phi = \Phi + iA$ or $\phi^* = \Phi - iA$.

$$f^{*}(z,z^{*}) = 2\frac{d\phi^{*}}{dz^{*}} = \left[\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right] (\Phi - iA) = f_{x}^{*} + if_{y}^{*}$$
$$= \left[\frac{\partial\Phi}{\partial x} + i\frac{\partial\Phi}{\partial y}\right] + \left[\frac{\partial A}{\partial y} - i\frac{\partial A}{\partial x}\right] = \left[\nabla\Phi\right] + \left[\nabla \times \mathbf{A}_{z}\right]$$

Two parts: gradient of scalar potential called the *longitudinal field* $\mathbf{f}_{\mathbf{L}}^*$ and curl of a vector potential called the *transverse field* $\mathbf{f}_{\mathbf{T}}^*$. $\mathbf{f}^* = \mathbf{f}_{\mathbf{L}}^* + \mathbf{f}_{\mathbf{T}}^*$ $\mathbf{f}_{\mathbf{L}}^* = \nabla \Phi$ $\mathbf{f}_{\mathbf{L}}^* = \nabla \mathbf{A}$

(For source-free analytic functions these two fields are identical.)

Example 1 Consider a non-analytic field $f(z) = (z^*)^2$ or $f^*(z) = z^2$.

The non-analytic potential function follows by integrating

$$s^{*}(z,z^{*}) = 2\frac{df^{*}}{dz} = 4z = 4x + i4y,$$

or: $\rho = 4x$, and: $I = -4y$.
 $\phi(z,z^{*}) = \frac{1}{2} \int f(z) dz = \frac{1}{2} \int (z^{*})^{2} dz = \frac{z(z^{*})^{2}}{2} = \frac{(x+iy)(x^{2}-y^{2}-i2xy)}{2},$

or:
$$\Phi = \frac{x^3 + xy^2}{2}$$
, and: $A = \frac{-y^3 - yx^2}{2}$.

The longitudinal field f_T^* is quite different from the transverse field f_L^* .

$$\mathbf{f}_{\mathbf{L}}^{*} = \nabla \Phi = \nabla \left(\frac{x^{3} + xy^{2}}{2}\right) = \begin{pmatrix} \frac{3x^{2} + y^{2}}{2} \\ xy \end{pmatrix}, \quad \mathbf{f}_{\mathbf{T}}^{*} = \nabla \times \mathbf{A} = \nabla \times \left(\frac{-y^{3} - yx^{2}}{2}\mathbf{e}_{\mathbf{z}}\right) = \begin{pmatrix} \frac{\partial A}{\partial y} \\ -\frac{\partial A}{\partial x} \end{pmatrix} = \begin{pmatrix} \frac{-3y^{2} - x^{2}}{2} \\ xy \end{pmatrix}.$$

The longitudinal field $\mathbf{f}_{\mathbf{L}}^*$ has no curl and the transverse field $\mathbf{f}_{\mathbf{T}}^*$ has no divergence. The sum field has both making a violent storm, indeed, as shown by a plot of in Fig. 10.17.

$$\mathbf{f}^* = \mathbf{f}_{\mathbf{L}}^* + \mathbf{f}_{\mathbf{T}}^* = \begin{pmatrix} \frac{3x^2 + y^2}{2} \\ xy \end{pmatrix} + \begin{pmatrix} \frac{-3y^2 - x^2}{2} \\ xy \end{pmatrix} = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix}, \quad \nabla \cdot \mathbf{f}^* = \nabla \cdot \mathbf{f}_{\mathbf{L}}^* = 4x = \rho, \quad \nabla \times \mathbf{f}^* = \nabla \times \mathbf{f}_{\mathbf{T}}^* = 4y = -I.$$

