Physics 3922H Physics Colloquium Thur. 3.17.2016 Exercise Set 9 Solutions Due Thur 4.07 Read Unit 2 Chapter 4 (all) and Chapter 5 thru part (9).

1.In class[†] we constructed a quadratic dispersion (υ, κ) -plot (frequency υvs wavenumber κ) for the case of quadratic dispersion $\upsilon = \kappa^2$. The case involved a 1-CW (single coherent wave) with wavenumber $(\upsilon = -1)$ colliding with another 1-CW of wavenumber $(\upsilon = +2)$ and required you to derive and plot 2-CW (pair of interfering coherent waves) parameters of *frequencies* υ_{Phase}^{2-CW} and υ_{Group}^{2-CW} and *wavenumbers* κ_{Phase}^{2-CW} , κ_{Group}^{2-CW} . With these we found wave velocities V_{Phase}^{2-CW} and V_{Group}^{2-CW} .

Now do this for the case of linear dispersion $v = \kappa^1$ involving a 1-CW (single coherent wave) with wavenumber (v = -1) colliding with another 1-CW of wavenumber (v = +4). Use per-spacetime graph paper provided in class[†] to find 2-CW parameters v_{Phase}^{2-CW} , v_{Group}^{2-CW} , κ_{Group}^{2-CW} , and velocities V_{Phase}^{2-CW} and V_{Group}^{2-CW} . Make a table of the wave per-space-time parameters and (reciprocal) space-time ones as done in class.

2. The second part of the class[†] construction involved using the space-time 2-CW parameters that are reciprocals of v_{Phase}^{2-CW} , v_{Group}^{2-CW} , κ_{Group}^{2-CW} , namely periods τ_{Phase}^{2-CW} , τ_{Group}^{2-CW} and wavelengths λ_{Phase}^{2-CW} , λ_{Group}^{2-CW} .

Now do this for the case of linear dispersion $v = \kappa^1$ (in part 1) and use the provided spacetime graph paper to plot and label a lattice for ideal 2-CW real-zeros in space and time. Label the line segments that correspond to periods and wavelengths as was done in class. Choose points so you make a symmetric array around origin (0,0) having at least 16 cells. Accuracy and neatness counts here. Precision should be to a fraction of the tiniest square on the graph.

[†] Class step-by-step constructions are in Lecture 22 ranging from p. 40 to around p.70. BohrIt animations in lecture show space-time lattices. First example is around p. 40.