Group Theory in Quantum Mechanics
 Lecture $30_{(5.10 .17)}$
 Symmetry product analysis $U(m)^{*}$ Sn tensors
 > (Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26) > $($ PSDS - Ch. 5, 7)

 (Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26)

 (Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26)

 (PSDS - Ch. 5, 7)

 (PSDS - Ch. 5, 7)}

Review : 2-D aौa algebra of $U(2)$ representations
Spin-spin (1/2)² product states: Hydrogen hyperfine structure
Kronecker product states and operators
Spin-spin interaction reduces symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ to $U(2)^{e+p} \quad T_{d}$-SymmCF 4
Clebsch-Gordan Coefficients
Hydrogen hyperfine structure: Fermi-contact interaction plus B-field gives avoided crossing
Higher-J product states
$(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case
5.03.17 Lecture 28

Gyro-rotor REES\&levels (Lect. $30 C_{n_{1} n_{2} q}^{j, j_{2} k}$ coupling intro.)
5.04.17 Lecture 29
$S i F_{4}$ and $S_{6} \operatorname{Spin} \boxplus$ Tableau \& hyperfine effects C60"Buckyball"

Lecture $30 R(3) \sim U(2)$ Tensors and CG/Wigner coefficients More $\#$ Tableau theory

$U(2)$ and $U(3)$ tensor expansions

2^{k}-pole expansion of an N-by- N matrix \mathbf{H}

$$
\begin{aligned}
& =\frac{A+D}{2} \mathbf{1}+\boldsymbol{\sigma}_{\boldsymbol{x}}+C \boldsymbol{\sigma}_{\boldsymbol{y}}+\frac{A-D}{2} \boldsymbol{\sigma}_{z} \\
& ={ }^{4+D} \mathbf{T}_{0}{ }^{+(B-i C} \mathbf{T}_{1}+(B+i C) \mathbf{T}_{-1}+\frac{A-D}{2} \mathbf{T}_{0} \\
& \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

3-by-3 case: $\mathbf{H}=\binom{H_{H} H_{H} H_{H} H_{H} H_{t}}{H_{y} H_{t s} H_{s} t_{s}}$
U(3) generators (spin $J=1$)

$$
\begin{aligned}
& \mathbf{u}_{+2}^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \mathbf{u}_{+1}^{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \frac{1}{2} \mathbf{u}_{0}^{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right) \frac{1}{6} \quad \mathbf{u}_{-1}^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \frac{1}{\sqrt{2}} \quad \mathbf{u}_{-2}^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \text { rank-2 } \quad \text { (tensor) } \\
& \mathbf{u}_{+1}^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \frac{1}{\sqrt{2}} \mathbf{u}_{0}^{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \frac{1}{\sqrt{2}} \mathbf{u}_{-1}^{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \frac{1}{2} \\
& \mathbf{u}_{0}^{0}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \frac{1}{\sqrt{3}} \\
& \text { rank-0 } \\
& \text { (scalar) }
\end{aligned}
$$

commuting diagonal operators

Wigner-Clebsch-Gordan expressions for Tensor $\left\langle\mathbf{T}_{q}^{k}\right\rangle$
$\left\langle\begin{array}{l|l|l}J^{\prime} & \boldsymbol{T}_{q}^{\prime} & J \\ M^{\prime} & M\end{array}\right\rangle=\left(\begin{array}{ccc}J^{\prime} & k & J \\ M^{\prime} & q & -M\end{array}\right)\left(J^{\prime}\|\mid k\| J\right)=C_{q M M}^{k J} J^{\prime}\left\langle J^{\prime}\|k\| J\right\rangle$

Spin-spin (1/2) $)^{2}$ product states: Hydrogen hyperfine structure
electron-proton spin-spin interaction gives a simple example of hyperfine spectra Ket-kets for spin-up and spin-dn states and column matrix representations..

$$
\begin{aligned}
& \left.\left.\left.|\uparrow\rangle|\uparrow\rangle=\left|\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right\rangle^{\text {proton }} \right\rvert\, \begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)^{\text {electron }},|\uparrow\rangle|\downarrow\rangle=\left|\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right\rangle^{\text {proton }}\left|\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right\rangle^{\text {electron }},|\downarrow\rangle|\uparrow\rangle=\left\lvert\, \begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right.\right)^{\text {proton }}\left|\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right\rangle^{\text {electron }},|\downarrow\rangle|\downarrow\rangle=\left|\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right\rangle^{\text {proton }}\left|\begin{array}{l}
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right\rangle^{\text {electron }} \\
& \binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.

$$
\begin{aligned}
& \text { ctron kets. } \\
& D^{1 / 2}(\alpha \beta \gamma)=\left(\begin{array}{ll}
D_{-1 / 2,+1 / 2}^{1 / 2} & D_{+1 / 2,-1 / 2}^{1 / 2} \\
D_{-1 / 2,+1 / 2}^{1 / 2} & D_{-1 / 2-1 / 2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{ll}
e^{\frac{-i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2} & -e^{\frac{-i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} \\
e^{\frac{i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2}
\end{array}\right)
\end{aligned}
$$

electron-proton spin-spin interaction gives a simple example of hyperfine spectra

 Ket-kets for spin-up and spin-dn states and column matrix representations..$$
\begin{aligned}
& \binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.
Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

$$
\begin{aligned}
& \text { ctron kets. } \\
& D^{1 / 2}(\alpha \beta \gamma)=\left(\begin{array}{ll}
D_{+1 / 2,+1 / 2}^{1 / 2} & D_{+1 / 2,-1 / 2}^{1 / 2} \\
D_{-1 / 2,+1 / 2}^{1 / 2} & D_{-1 / 2,-1 / 2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{lll}
e^{\frac{-i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2} & -e^{-i(\alpha-\gamma)} 2 & \sin \frac{\beta}{2} \\
e^{\frac{i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2}
\end{array}\right)
\end{aligned}
$$

Applies to outer product symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ for NO interaction.

electron-proton spin-spin interaction gives a simple example of hyperfine spectra

Ket-kets for spin-up and spin-dn states and column matrix representations..

$$
\begin{aligned}
& \binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.
Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

$$
\begin{aligned}
& \text { ctron kets. } \\
& D^{1 / 2}(\alpha \beta \gamma)=\left(\begin{array}{ll}
D_{+1 / 2,+1 / 2}^{1 / 2} & D_{+1 / 2,-1 / 2}^{1 / 2} \\
D_{-1 / 2,+1 / 2}^{1 / 2} & D_{-1 / 2,-1 / 2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{ccc}
e^{-i(\alpha+\gamma)} & \cos \frac{\beta}{2} & -e^{-i(\alpha-\gamma)} 2 \\
\sin \frac{\beta}{2} \\
e^{\frac{i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2}
\end{array}\right) \\
& \text { NO interaction }
\end{aligned}
$$

Applies to outer product symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ for NO interaction.

Interaction reduces symmetry:
(Only $\left(\alpha_{e}, \beta_{e}, \gamma_{e}\right)=\left(\alpha_{p}, \beta_{p}, \gamma_{p}\right)$
is allowed!
Spin-spin interaction reduces symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ to $U(2)^{e+p}$

electron-proton spin-spin interaction gives a simple example of hyperfine spectra

Ket-kets for spin-up and spin-dn states and column matrix representations..

$$
\begin{aligned}
& \binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.
Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

$$
\begin{aligned}
& \text { ctron kets. } \\
& D^{1 / 2}(\alpha \beta \gamma)=\left(\begin{array}{ll}
D_{+1 / 2,+1 / 2}^{1 / 2} & D_{+1 / 2,-1 / 2}^{1 / 2} \\
D_{-1 / 2,+1 / 2}^{1 / 2} & D_{-1 / 2,-1 / 2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{lll}
e^{\frac{-i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2} & -e^{\frac{-i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} \\
e^{\frac{i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2}
\end{array}\right)
\end{aligned}
$$

Applies to outer product symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ for NO interaction.

Interaction reduces symmetry:
(Only $\left(\alpha_{e}, \beta_{e}, \gamma_{e}\right)=\left(\alpha_{p}, \beta_{p}, \gamma_{p}\right)$
is allowed!
Spin-spin interaction reduces symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ to $U(2)^{e+p}$
$\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0\end{array}\right) \cdot\left(\begin{array}{cccc}\cos ^{2} \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} & \sin 2 \frac{\beta}{2} \\ \sin \frac{\beta}{2} \cos \frac{\beta}{2} & \cos ^{2} \frac{\beta}{2} & -\sin ^{2} \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} \\ \sin \frac{\beta}{2} \cos \frac{\beta}{2} & -\sin ^{2} \frac{\beta}{2} & \cos ^{2} \frac{\beta}{2} & -\sin \frac{\beta}{2} \cos \frac{\beta}{2} \\ \sin ^{2} \frac{\beta}{2} & \sin \frac{\beta}{2} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \cos \frac{\beta}{2} & \cos ^{2} \frac{\beta}{2}\end{array}\right) \cdot\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ 0 & 0 & 1 & 0\end{array}\right)$

electron-proton spin-spin interaction gives a simple example of hyperfine spectra

Ket-kets for spin-up and spin-dn states and column matrix representations..

$$
\begin{aligned}
& \binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Same spin-1/2 representation applies to either proton or electron kets.
Kronecker product $D^{\frac{1}{2}} \otimes D^{\frac{1}{2}}$

$$
\begin{aligned}
& \text { ctron kets. } \\
& D^{1 / 2}(\alpha \beta \gamma)=\left(\begin{array}{ll}
D_{+1 / 2}^{1 / 2} & D_{+1 / 1 / 2}^{1 / 2} \\
D_{-1 / 2,+1 / 2}^{1 / 2} & D_{-1 / 2,-1 / 2}^{1 / 2}
\end{array}\right)=\left(\begin{array}{lll}
e^{\frac{-i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2} & -e^{\frac{-i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} \\
e^{\frac{i(\alpha-\gamma)}{2}} \sin \frac{\beta}{2} & e^{\frac{i(\alpha+\gamma)}{2}} \cos \frac{\beta}{2}
\end{array}\right)
\end{aligned}
$$

Applies to outer product symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ for NO interaction.

Interaction reduces symmetry:
(Only $\left(\alpha_{e}, \beta_{e}, \gamma_{e}\right)=\left(\alpha_{p}, \beta_{p}, \gamma_{p}\right)$
is allowed!

Spin-spin interaction reduces symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ to $U(2)^{e+p}$
 ...and "irreducible" becomes "reducible"...

Spin-spin interaction reduces symmetry $U(2)^{\text {proton }} \times U(2)^{\text {electron }}$ to $U(2)^{e+p}$

Hydrogen hyperfine structure: Fermi-contact interaction

Racah's trick for energy eigenvalues

$$
\begin{aligned}
& a_{e p} \mathbf{J}^{\text {proton }} \bullet \mathbf{J}^{\text {electron }}=\frac{a_{e p}}{2}\left[\left(\mathbf{J}^{\text {proton }}+\mathbf{J}^{\text {electron }}\right)^{2}-\left(\mathbf{J}^{\text {proton }}\right)^{2}-\left(J^{\text {electron }}\right)^{2}\right] \\
&=\frac{a_{e p}}{2}\left[\left(\mathbf{J}^{\text {total }}\right)^{2}-\left(\mathbf{J}^{\text {proton }}\right)^{2}-\left(J^{\text {electron }}\right)^{2}\right] \\
& \begin{aligned}
\left.\left.\left\langle_{M}^{J(1 / 2 \otimes 1 / 2)}\right| H_{\text {contact }}\right|_{M} ^{J(1 / 2 \otimes 1 / 2)}\right\rangle & =\frac{a_{e p}}{2}\left[J(J+1)-\frac{1}{2}\left(\frac{1}{2}+1\right)-\frac{1}{2}\left(\frac{1}{2}+1\right)\right] \\
& =\left\{\begin{array}{rr}
a_{e p} / 4 \text { for the }(J=1) & \text { triplet state } \\
-3 a_{e p} / 4 \text { for the }(J=0) & \text { singlet state. }
\end{array}\right.
\end{aligned} .
\end{aligned}
$$

$$
\left|\begin{array}{ll}
{ }_{M}(1 / 2 \otimes 1 / 2)
\end{array}\right\rangle=\sum_{m_{1}, m_{2}} C_{m_{1}}^{1 / 2} m_{2} M\left|\begin{array}{cc}
1 / 2 & 1 / 2 \\
m_{1}
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
m_{2}
\end{array}\right\rangle
$$

Hydrogen hyperfine structure: Fermi-contact interaction $+B$-field
$H_{1 s-B-\text { field }}=-a_{p} B_{z} J_{z}^{\text {proton }}+a_{e} B_{z} J_{z}^{\text {electron }}+a_{e p} \mathbf{J}^{\text {proton }} \bullet \mathbf{J}^{\text {electron }}$

	g - factor	Bohr-magneton	gyromagnetic factor
electron	g_{e} $=2.0023$	$\mu_{e}=\frac{e \hbar}{2 m_{e}}$ $=9.27401 \cdot 10^{-24} \frac{\mathrm{~J}}{\mathrm{~T}}$	$a_{e}=g_{e} \mu_{e}$ $=1.8570 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~T}}$
proton	g_{p} $=5.585$	$\mu_{p}=\frac{e \hbar}{2 m_{p}}$ $=5.05078 \cdot 10^{-27} \frac{\mathrm{~J}}{\mathrm{~T}}$	$a_{p}=g_{p} \mu_{p}$ $=2.8209 \cdot 10^{-26} \frac{\mathrm{~J}}{\mathrm{~T}}$

$$
\begin{gathered}
\text { Fermi-contact factor } \\
\hline a_{e p}=\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} a_{e} a_{p}=9.427 \cdot 10^{-25} \mathrm{~J} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h}=1.4227 \cdot 10^{9} \mathrm{~Hz} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h c}=4.746 \mathrm{~m}^{-1} \\
=\frac{1}{21.1} \mathrm{~cm}^{-1} \\
\hline
\end{gathered}
$$

Magnetic constant : $\mu_{0} / 4 \pi=10^{-7} N / A^{2}$
$H_{1 s-B-\text { field }}=-a_{p} B_{z} J_{z}^{\text {proton }}+a_{e} B_{z} J_{z}^{\text {lectron }}+a_{e p} \mathrm{~J}^{\text {proton }} \bullet \mathrm{J}^{\text {electron }}$

	$g-$ factor	Bohr - magneton	gyromagnetic factor
electron	$\begin{aligned} & g_{e} \\ & =2.0023 \end{aligned}$	$\begin{aligned} & \mu_{e}=\frac{e \hbar}{2 m_{e}} \\ & =9.27401 \cdot 10^{-24} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{e}=g_{e} \mu_{e} \\ & =1.8570 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$
proton	$\begin{aligned} & g_{p} \\ & =5.585 \end{aligned}$	$\begin{aligned} & \mu_{p}=\frac{e \hbar}{2 m_{p}} \\ & =5.05078 \cdot 10^{-27} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{p}=g_{p} \mu_{p} \\ & =2.8209 \cdot 10^{-26} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$

$$
\begin{gathered}
\text { Fermi-contact factor } \\
\begin{aligned}
& a_{e p}=\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} a_{e} a_{p}=9.427 \cdot 10^{-25} \mathrm{~J} \\
& \mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h}=1.4227 \cdot 10^{9} \mathrm{~Hz} \\
& \mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h c}=4.746 \mathrm{~m}^{-1} \\
&=\frac{1}{21.1} \mathrm{~cm}^{-1}
\end{aligned}
\end{gathered}
$$

Magnetic constant : $\mu_{0} / 4 \pi=10^{-7} N / A^{2}$

$\left\langle a_{e p} \mathbf{J}^{\text {proton }} \cdot \mathbf{J}^{\text {electron }}\right\rangle=$

	$\left\|\begin{array}{c}1 \\ 1\end{array}\right\rangle$	$\left\|\begin{array}{c}1 \\ 0\end{array}\right\rangle$	$\left\|\begin{array}{c}0 \\ 0\end{array}\right\rangle$	$\left.\begin{array}{c}1 \\ -1\end{array}\right\rangle$
$\left\langle\begin{array}{c}1 \\ 1\end{array}\right\|$	$\frac{a_{e p}}{4}$	\cdot	\cdot	\cdot
$\left\langle\begin{array}{c}1 \\ 0\end{array}\right\|$	\cdot	$\frac{a_{e p}}{4}$	0	\cdot
$\left\langle\begin{array}{c}0 \\ 0\end{array}\right\|$	\cdot	0	$\frac{-3 a_{e p}}{4}$	\cdot
$\left\langle\begin{array}{c}1 \\ -1\end{array}\right\|$	\cdot	\cdot	\cdot	$\frac{a_{e p}}{4}$

$H_{1 s-B-\text { field }}=-a_{p} B_{z} J_{z}^{\text {proton }}+a_{e} B_{z} z_{z}^{\text {electron }}+a_{e p} \mathbf{J}^{\text {proton }} \bullet \mathbf{J}^{\text {electron }}$

	$g-$ factor	Bohr - magneton	gyromagnetic factor
electron	$\begin{aligned} & g_{e} \\ & =2.0023 \end{aligned}$	$\begin{aligned} & \mu_{e}=\frac{e \hbar}{2 m_{e}} \\ & =9.27401 \cdot 10^{-24} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{e}=g_{e} \mu_{e} \\ & =1.8570 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$
proton	$\begin{aligned} & g_{p} \\ & =5.585 \end{aligned}$	$\begin{aligned} & \mu_{p}=\frac{e \hbar}{2 m_{p}} \\ & =5.05078 \cdot 10^{-27} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{p}=g_{p} \mu_{p} \\ & =2.8209 \cdot 10^{-26} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$

$$
\begin{gathered}
\text { Fermi-contact factor } \\
\hline a_{e p}=\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} a_{e} a_{p}=9.427 \cdot 10^{-25} \mathrm{~J} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h}=1.4227 \cdot 10^{9} \mathrm{~Hz} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h c}=4.746 \mathrm{~m}^{-1} \\
=\frac{1}{21.1} \mathrm{~cm}^{-1} \\
\hline
\end{gathered}
$$

Magnetic constant : $\mu_{0} / 4 \pi=10^{-7} N / A^{2}$

$\left\langle-a_{p} B_{z} z_{z}^{\text {proton }}+a_{e} B_{z}{ }^{\text {decectron }}\right\rangle=$			
	$\|\uparrow p \uparrow e\rangle$	$\left\|\uparrow^{p} \downarrow^{e}\right\rangle \quad\left\|\downarrow^{p} \uparrow^{e}\right\rangle$	$\left\|\downarrow^{p} \downarrow^{e}\right\rangle$
$\left\langle\uparrow p \uparrow^{e}\right\|$	$\frac{1}{2}\left(a_{e}-a_{p}\right) B_{z}$		
$\begin{aligned} & \left\langle\uparrow^{p} \downarrow^{e}\right\| \\ & \left\langle\downarrow^{p} \uparrow^{e}\right\| \end{aligned}$. .	$\begin{array}{cc} \frac{-1}{2}\left(a_{e}+a_{p}\right) B_{z} & 0 \\ 0 & \frac{1}{2}\left(a_{e}+a_{p}\right) B_{z} \end{array}$	
$\left\langle\downarrow^{p} \downarrow^{c}\right\|$.		$\frac{-1}{2}\left(a_{e}-a_{p}\right) B_{z}$

$\left\langle a_{e p} \mathbf{J}^{\text {proton }} \bullet \mathrm{J}^{\text {electron }}\right\rangle=$

	$\left\|\begin{array}{l}1 \\ 1\end{array}\right\rangle$	10		$\left\|\begin{array}{l}1 \\ -1\end{array}\right\rangle$
$\langle 1\rangle$	$\frac{a_{e p}}{4}$			
$\left\langle{ }_{0}^{1}\right\|$ $\left\langle{ }_{0}^{0}\right\|$			$\begin{gathered} 0 \\ -3 a_{e p} \\ \hline 4 \end{gathered}$	
$\left\langle{ }^{1}{ }_{-1}\right\|$				$\frac{a_{e p}}{4}$

$H_{1 s-B-\text { field }}=-a_{p} B_{z} J_{z}^{\text {proton }}+a_{e} B_{z} z_{z}^{\text {electron }}+a_{e p} \mathbf{J}^{\text {proton }} \bullet \mathbf{J}^{\text {electron }}$

	$g-$ factor	Bohr - magneton	gyromagnetic factor
electron	$\begin{aligned} & g_{e} \\ & =2.0023 \end{aligned}$	$\begin{aligned} & \mu_{e}=\frac{e \hbar}{2 m_{e}} \\ & =9.27401 \cdot 10^{-24} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{e}=g_{e} \mu_{e} \\ & =1.8570 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$
proton	$\begin{aligned} & g_{p} \\ & =5.585 \end{aligned}$	$\begin{aligned} & \mu_{p}=\frac{e \hbar}{2 m_{p}} \\ & =5.05078 \cdot 10^{-27} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$	$\begin{aligned} & a_{p}=g_{p} \mu_{p} \\ & =2.8209 \cdot 10^{-26} \frac{\mathrm{~J}}{\mathrm{~T}} \end{aligned}$

$$
\begin{gathered}
\text { Fermi-contact factor } \\
\hline a_{e p}=\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} a_{e} a_{p}=9.427 \cdot 10^{-25} \mathrm{~J} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h}=1.4227 \cdot 10^{9} \mathrm{~Hz} \\
\mu_{0} \frac{2}{3} \frac{1}{\pi a_{0}^{3}} \frac{a_{e} a_{p}}{h c}=4.746 \mathrm{~m}^{-1} \\
=\frac{1}{21.1} \mathrm{~cm}^{-1} \\
\hline
\end{gathered}
$$

Magnetic constant : $\mu_{0} / 4 \pi=10^{-7} N / A^{2}$

$\left\langle-a_{p} B_{z} J_{z}^{\text {proton }}+a_{e} B_{z} J_{z}^{\text {electron }}\right\rangle=$			
	$\|\uparrow p \uparrow e\rangle$	$\|\uparrow p \downarrow e\rangle$	$\left\|\downarrow \downarrow^{p} \downarrow^{e}\right\rangle$
$\langle\uparrow p \uparrow e\|$	$\frac{1}{2}\left(a_{e}-a_{p}\right) B_{z}$	- -	.
$\langle\uparrow p \downarrow e\|$	-	$\frac{-1}{2}\left(a_{e}+a_{p}\right) B_{z}$	-
$\langle\downarrow p \uparrow e\|$	-	$0 \quad \frac{1}{2}\left(a_{e}+a_{p}\right) B_{z}$	-
$\left\langle\downarrow^{p} \downarrow^{e}\right\|$	-	- -	$\frac{-1}{2}\left(a_{e}-a_{p}\right) B_{z}$

	$\left\|\begin{array}{l}1 \\ 1\end{array}\right\rangle$	$\left\|\begin{array}{l}1 \\ 0\end{array}\right\rangle \quad\left\|\begin{array}{l}0 \\ 0\end{array}\right\rangle$	$\left\|\begin{array}{l}1 \\ -1\end{array}\right\rangle$
$\left\langle\begin{array}{l}1 \\ 1\end{array}\right\rangle$	$\frac{1}{2}\left(a_{e}-a_{p}\right) B_{z}$	- -	-
$\left\langle\begin{array}{l}1 \\ 0\end{array}\right\|$	-	$0 \quad \frac{-1}{2}\left(a_{e}+a_{p}\right) B_{z}$	-
$\left\langle\begin{array}{l}0 \\ 0\end{array}\right\|$	-	$\frac{-1}{2}\left(a_{e}+a_{p}\right) B_{z}$	-
$\left\langle\begin{array}{l}1 \\ -1\end{array}\right\|$	-	- -	$\frac{-1}{2}\left(a_{e}-a_{p}\right) B_{z}$

$\left\langle a_{e p} \mathbf{J}^{\text {proton }} \bullet \mathbf{J}^{\text {electron }}\right\rangle=$
$\left.\begin{array}{c:c:c:c} & \left|\uparrow^{p} \uparrow^{e}\right\rangle & \left|\uparrow^{p} \downarrow^{e}\right\rangle & \left|\downarrow^{p} \uparrow^{e}\right\rangle \\ \left\langle\uparrow p \uparrow^{e}\right| & \frac{a_{e p}}{4} & \cdot & \left.\downarrow^{p} \downarrow^{e}\right\rangle \\ \hdashline\left\langle\uparrow^{p} \downarrow^{e}\right| & \cdot & \frac{-a_{e p}}{4} & \frac{a_{e p}}{2}\end{array}\right] \cdot$.
$\left\langle a_{e p} \mathbf{J}^{\text {protonon }} \bullet \mathbf{J}^{\text {electron }}\right\rangle=$

	$\left\|\begin{array}{l}1 \\ 1\end{array}\right\rangle$	10	$\left\|\begin{array}{l}0 \\ 0\end{array}\right\rangle$	$\left\|\begin{array}{l}1 \\ -1\end{array}\right\rangle$
$\left\langle{ }_{1}^{1}\right\|$	$\frac{a_{e p}}{4}$			
$\begin{aligned} & \left\langle{ }_{0}^{1}\right\| \\ & \left\langle\left\langle\begin{array}{l} 0 \\ 0 \end{array}\right\|\right. \end{aligned}$			$\begin{gathered} 0 \\ -3 a_{e p} \\ \hline 4 \end{gathered}$	
$\left\langle{ }_{-1}^{1}\right\|$				$\frac{a_{e p}}{4}$

Higher-J product states

$$
\begin{gathered}
(J=1) \otimes(J=1)=20100 c a s e \\
\left\lvert\, \begin{array}{ccc|ccccc|ccc|c|}
\hline & 1 & L \\
1 & \otimes & 1 & 2 & 1 & 0 & -1 & -2 & 1 & 0 & -1 & 0 \\
\hline 1 & 1 & 1 & \cdot \\
1 & 0 & \cdot & \frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot & \frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot \\
1 & -1 & \cdot & \cdot & \frac{1}{\sqrt{6}} & \cdot & \cdot & \cdot & \frac{1}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{3}} \\
0 & 1 & \cdot & \frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot & -\frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & \cdot & \sqrt{\frac{2}{3}} & \cdot & \cdot & \cdot & \cdot & \cdot & -\frac{1}{\sqrt{3}} \\
0 & -1 & \cdot & \cdot & \cdot & \frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot & \frac{1}{\sqrt{2}} & \cdot \\
-1 & 1 & . & \cdot & \frac{1}{\sqrt{6}} & \cdot & \cdot & \cdot & -\frac{1}{\sqrt{2}} & \cdot & \frac{1}{\sqrt{3}} \\
-1 & 0 & . & \cdot & \cdot & \frac{1}{\sqrt{2}} & \cdot & \cdot & \cdot & -\frac{1}{\sqrt{2}} & \cdot \\
-1 & -1 & . & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\hline
\end{array}\right.
\end{gathered}
$$

Pauli-Fermi selection rules
requires total anti-symmetry

Pauli-Fermi selection rules
requires total anti-symmetry

From unpublished Ch. 10 for
Principles of Symmetry, Dynamics \& Spectroscopy
Weight or Moment Diagrams of Atomic $(p)^{n}$ States Each tableau is located at point $\left(x_{1} x_{2} x_{3}\right)$ in a cartesian co-ordinate system for which x_{n} is the number of $n ' s$ in the tableau. An alternative co-ordinate system is ($\mathrm{v}_{0}^{2}, \mathrm{v}_{0}^{1}, \mathrm{v}_{0}^{0}$) defined by $(10.2+9)$ which gives the $z z$-quadrupole moment,
z-magnetic dipole moment, and number of particles, respectively The last axis $\left(\mathrm{v}_{0}^{0}\right)$ would be pointing straight out of the figure, and each family of states lies in a plane perpendicular to it.

$(J=1) \otimes(J=1)=2 \oplus 1 \oplus 0$ case											
			2	2	2		2	1		1	0
	$1 \otimes$	1	2	1	0	-1	-2	1	0	-1	0
	1	1	1					.	.		
	1	0	.	$\frac{1}{\sqrt{2}}$.	$\frac{1}{\sqrt{2}}$.		.
	1	-1	.		$\frac{1}{\sqrt{6}}$.		$\frac{1}{\sqrt{2}}$		$\frac{1}{\sqrt{3}}$
$\left\|\begin{array}{ccc} C_{m_{1}}^{1} & 1 & L \\ m_{1} & m_{2} & M \end{array}\right\rangle=$	0	1	.	$\frac{1}{\sqrt{2}}$				$-\frac{1}{\sqrt{2}}$.		
	0	0			$\sqrt{\frac{2}{3}}$						$-\frac{1}{\sqrt{3}}$
	0	-1	-			$\frac{1}{\sqrt{2}}$.			$\frac{1}{\sqrt{2}}$	
	-1	1	-				.		$-\frac{1}{\sqrt{2}}$		$\frac{1}{\sqrt{3}}$
	-1	0	.		,					$-\frac{1}{\sqrt{2}}$.
	-1	-1	.	.	.		1	.	.		.

General U(2) case

Pauli-Fermi selection rules
requires total anti-symmetry
Pauli-Fermi selection rules
requires total anti-symmetry

$$
\left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=(-1)^{j_{1}-j_{2}-m_{3}} C_{m_{1} m_{2}}^{j_{1}} j_{2} j_{3} m_{3} /\left(2 j_{3}+1\right)^{\frac{1}{2}} \quad \text { Wigner } 3 j \text { vs. Clebsch-Gordon (CGC) }
$$

(b) Mixed Configuration (2p3p)

Pauli-Fermi selection rules
requires total anti-symmetry

General U(2) case

$$
\begin{aligned}
& \left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=(-1)^{j_{1}-j_{2}-m_{3}} C_{m_{1}}^{j_{1}} \dot{m}_{m_{2}} j_{m_{3}} /\left(2 j_{3}+1\right)^{\frac{1}{2}} \quad \text { Wigner } 3 j \text { vs. Clebsch-Gordon (CGC) } \\
& \left(\begin{array}{lll}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=(-1)^{j_{1}-j_{2}-n_{3}} \sqrt{\frac{\left(j_{1}+j_{2}-j_{3}\right)!\left(j_{1}-j_{2}+j_{3}\right)\left(-j_{1}+j_{2}+j_{3}\right)}{\left(j_{1}+j_{2}+j_{3}+1\right)!}} \\
& \sum_{k} \frac{(-1)^{k}}{k!} \frac{\sqrt{\left(j_{1}+m_{1}\right)!\left(j_{1}-m_{1}\right)!\left(j_{2}+m_{2}\right)!\left(j_{2}-m_{2}\right)!\left(j_{3}+m_{3}\right)!\left(j_{3}-m_{3}\right)!}}{\left(j_{1}-m_{1}-k\right)!\left(j_{2}-m_{2}-k\right)!\left(j_{1}+j_{2}-j_{3}-k\right)!\left(j_{3}-j_{2}-m_{1}+k\right)!\left(j_{3}-j_{1}-m_{2}+k\right)!}
\end{aligned}
$$

Higher-J product states

Figure 24.1.6 Level-splitting and vector-addition picture of angular-momentum coupling.

Higher-J product states

Figure 24.1.7 Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.

Figure 24.1.8 Clebsch-Gordan coefficients plotted next to their angular-momentum cones.
Figure 24.1.7 Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.

Higher-J product states

Figure 24.1.8 Clebsch-Gordan coefficients plotted next to their angular-momentum cones
Figure 24.1.7 Angular-momentum cone picture of Clebsch-Gordan coupling amplitudes.

Multi-spin $(1 / 2)^{N}$ product states

$$
\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \frac{1}{2}
$$

Multi-spin $(1 / 2)^{N}$ product states

$$
\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \frac{1}{2}=(0 \oplus 1) \otimes \frac{1}{2}
$$

Multi-spin $(1 / 2)^{N}$ product states

$$
\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \frac{1}{2}=(0 \oplus 1) \otimes \frac{1}{2}=\left(0 \otimes \frac{1}{2}\right) \oplus \quad\left(1 \otimes \frac{1}{2}\right)
$$

Multi-spin $(1 / 2)^{N}$ product states

$$
\begin{aligned}
\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \frac{1}{2}=(0 \oplus 1) \otimes \frac{1}{2} & =\left(0 \otimes \frac{1}{2}\right) \oplus \quad\left(1 \otimes \frac{1}{2}\right) \\
& =\left(\frac{1}{2}\right) \oplus\left(\left(\frac{1}{2}\right) \oplus\left(\frac{3}{2}\right)\right)
\end{aligned}
$$

Multi-spin $(1 / 2)^{N}$ product states

$$
\begin{aligned}
\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \frac{1}{2}=(0 \oplus 1) \otimes \frac{1}{2} & =\left(0 \otimes \frac{1}{2}\right) \oplus \quad\left(1 \otimes \frac{1}{2}\right) \\
& =\left(\frac{1}{2}\right) \oplus\left(\left(\frac{1}{2}\right) \oplus\left(\frac{3}{2}\right)\right)=\frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}
\end{aligned}
$$

Multi-spin $(1 / 2)^{N}$ product states

$$
\begin{aligned}
\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \frac{1}{2}=(0 \oplus 1) \otimes \frac{1}{2} & =\left(0 \otimes \frac{1}{2}\right) \oplus \quad\left(1 \otimes \frac{1}{2}\right) \\
& =\left(\frac{1}{2}\right) \oplus\left(\left(\frac{1}{2}\right) \oplus\left(\frac{3}{2}\right)\right)=\frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}=2\left(\frac{1}{2}\right) \oplus 1\left(\frac{3}{2}\right)
\end{aligned}
$$

Multi-spin $(1 / 2)^{N}$ product states

$$
\begin{aligned}
\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \frac{1}{2}=(0 \oplus 1) \otimes \frac{1}{2} & =\left(0 \otimes \frac{1}{2}\right) \oplus\left(1 \otimes \frac{1}{2}\right) \\
& =\left(\frac{1}{2}\right) \oplus\left(\left(\frac{1}{2}\right) \oplus\left(\frac{3}{2}\right)\right)=\frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}=2\left(\frac{1}{2}\right) \oplus 1\left(\frac{3}{2}\right)
\end{aligned}
$$

$$
S=5 / 2
$$

$$
S=2
$$

$$
S=3 / 2
$$

Multi-spin $(1 / 2)^{N}$ product states

$$
\begin{aligned}
\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \frac{1}{2}=(0 \oplus 1) \otimes \frac{1}{2} & =\left(0 \otimes \frac{1}{2}\right) \oplus\left(1 \otimes \frac{1}{2}\right) \\
& =\left(\frac{1}{2}\right) \oplus\left(\left(\frac{1}{2}\right) \oplus\left(\frac{3}{2}\right)\right)=\frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}=2\left(\frac{1}{2}\right) \oplus 1\left(\frac{3}{2}\right)
\end{aligned}
$$

Multi-spin $(1 / 2)^{N}$ product states

$$
\begin{aligned}
\left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \frac{1}{2}=(0 \oplus 1) \otimes \frac{1}{2} & =\left(0 \otimes \frac{1}{2}\right) \oplus\left(1 \otimes \frac{1}{2}\right) \\
& =\left(\frac{1}{2}\right) \oplus\left(\left(\frac{1}{2}\right) \oplus\left(\frac{3}{2}\right)\right)=\frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}=2\left(\frac{1}{2}\right) \oplus 1\left(\frac{3}{2}\right)
\end{aligned}
$$

Multi-spin $(1 / 2)^{N}$ product states

$\begin{array}{llllll}\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \downarrow\end{array}$

$$
\begin{aligned}
& \left.\begin{array}{lllrr}
\uparrow & \uparrow & \uparrow & \uparrow & \square 3 / 2 \\
\downarrow & & & 1 / 2
\end{array} \right\rvert\, \begin{array}{|l|l}
1 / 2 \\
\hline
\end{array}
\end{aligned}
$$

Multi-spin $(1 / 2)^{N}$ product states

Fig. 23.3.2 Spin-1/2 and $U(2)$ Tableau branching diagrams

Magic squares - Intro to Young Tableaus

2	3	4	5
1	2	3	4
5	4	3	2
4	3	2	1

$$
2^{N}=\sum_{S}^{N / 2} \ell^{[S]} \ell^{\left[\mu_{1}, \mu_{2}\right]}
$$

$$
=\sum_{S}^{N / 2}(2 S+1) e^{\left[\frac{N+2 S}{2}, \frac{N-2 S}{2}\right]}
$$

$$
\underline{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}
$$

5	4	3	2
4	3	2	1

Fig. 23.3.2 Spin-1/2 and $U(2)$ Tableau branching diagrams

Magic squares - Intro to Young Tableaus

2	3	4	5
1	2	3	4
5	4	3	2
4	3	2	1

$$
2^{N}=\sum_{S}^{N / 2} \ell^{[S]} \ell^{\left[\mu_{1}, \mu_{2}\right]}
$$

$$
=\sum_{S}^{N / 2}(2 S+1) \ell^{\left[\frac{N+2 S}{2}, \frac{N-2 S}{2}\right]}
$$

$$
\begin{array}{c|c|c|c|}
8 \cdot 7: 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\
\hline \hline 5 & 4 & 3 & 2 \\
\hline 4 & 3 & 2 & 1 \\
\hline
\end{array}
$$

Fig. 23.3.2 Spin-1/2 and $U(2)$ Tableau branching diagrams

Magic squares - Intro to Young Tableaus

Fig. 23.3.2 Spin-1/2 and $U(2)$ Tableau branching diagrams

Introducing $U(N)$

(a) N-D Oscillator Degeneracy ℓ of quamtum level v
(c) Binomial coefficients

$$
\frac{(N-1+v)!}{(N-1)!v!}=\binom{N-1+v}{v}=\binom{N-1+v}{N-1}
$$

Introducing $U(3)$

(b) N-particle 3-level states ...or spin-1 states

1st three operators are a vector set with following Cartesian combinations:
Tartesian operators

Spherical vs. Cartesian operators

$$
T_{-1}^{1}=J_{-} / 2=\left(J_{x}-i J_{y}\right) / \sqrt{2}, \quad T_{0}^{1}=J_{z} / \sqrt{2}, \quad T_{-1}^{1}=J_{+} / 2=\left(J_{x}+i J_{y}\right) / 2 .
$$

$$
\begin{aligned}
& T_{x} \equiv-\frac{T_{-1}^{1}-T_{1}^{1}}{\sqrt{2}} \quad T_{y} \equiv-i \frac{T_{-1}^{1}+T_{1}^{1}}{\sqrt{2}} \quad T_{z} \equiv-T_{0}^{1} \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \equiv \frac{1}{\sqrt{2}} \sigma_{x} \quad \equiv \frac{1}{\sqrt{2}} \sigma_{y} \quad \equiv \frac{1}{\sqrt{2}} \sigma_{z} \\
& \equiv \sqrt{2} J_{x} \quad \equiv \sqrt{2} J_{y} \quad \equiv \sqrt{2} J_{z} \\
& \text { (Some old friends!) } \\
& \sigma_{X} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
& \sigma_{Y} \rightarrow\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{Z} \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& T_{-1}^{1}=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right) \quad T_{0}^{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad T_{1}^{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad|\quad| \begin{array}{l}
1(1 / 2 \otimes / 2) \\
1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& T_{0}^{0}=-\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =-\frac{1}{\sqrt{2}}\left[\left\{\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array} \left\lvert\,+\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right.\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right] . \quad\right\} \text { analogous to: }\left\{\left|\begin{array}{l}
0(1 / 2 \otimes / 2) \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle+\frac{-1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\right. \\
& \left|\begin{array}{l}
1(1 / 2 \otimes / 2) \\
-1
\end{array}\right|=\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left(\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle
\end{aligned}
$$

CG-Products of spin- $1 / 2$ ket-bras $\left.\left|\frac{1 / 2}{m_{1}}\right\rangle\right\rangle\left\langle\langle | \begin{array}{l}1 / 2 \\ m_{2}\end{array}\right\}$ \} give scalar/vector operators analogous to: ket-kets

1 st three operators are a vector set that transform like a vector set

$$
\begin{aligned}
& R(0 \beta 0) \\
& \left(\cos \frac{\beta}{2}-\sin \frac{\beta}{2}\right) \\
& \sin \frac{\beta}{2} \quad \cos \frac{\beta}{2} . \\
& \left(\begin{array}{cc}
-1 / \sqrt{2} & 0 \\
0 & 1 / \sqrt{2}
\end{array}\right) \\
& R^{\dagger}(0 \beta 0) \\
& \downarrow \\
& \begin{array}{c}
=T_{0}^{\prime} \\
\downarrow
\end{array} \\
& =D_{10}^{1}(0 \beta 0) T_{1}^{1} \\
& \begin{array}{c}
=D_{10}^{1}(0 \beta 0) \\
\downarrow
\end{array} \\
& \begin{array}{r}
T_{0}^{1} \\
\downarrow
\end{array} \\
& \left(\begin{array}{cc}
\cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\
-\sin \frac{\beta}{2} & \cos \frac{\beta}{2}
\end{array}\right)=\begin{array}{cc}
-\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array}\right)
\end{array} \\
& +D_{-10}^{1}(0 \beta 0) T_{-1}^{1} \\
& \downarrow \\
& =\frac{-\sin \beta}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad+\cos \beta\left(\begin{array}{cc}
-1 / \sqrt{2} & 0 \\
0 & 1 / \sqrt{2}
\end{array}\right) \quad+\frac{\sin \beta}{\sqrt{2}}\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

CG-Products of spin- $1 / 2$ ket-bras $\left.\left|\begin{array}{l}1 / 2 \\ m_{1}\end{array}\right\rangle, \left.\langle | \begin{array}{l}1 / 2 \\ m_{2}\end{array} \right\rvert\,\right\}$ give scalar/vector operators analogous to: ket-kets

1 st three operators are a vector set that transform like a vector set so do expectation $\begin{array}{ccccc}R(0 \beta 0) & T_{0}^{1} & R^{\dagger}(0 \beta 0) & = & T_{0}^{\prime} \\ \downarrow & \downarrow & \downarrow & \downarrow\end{array}$

$$
\left(\begin{array}{cc}
\cos \frac{\beta}{2} & -\sin \frac{\beta}{2} \\
\sin \frac{\beta}{2} & \cos \frac{\beta}{2}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
-1 / \sqrt{2} & 0 \\
0 & 1 / \sqrt{2}
\end{array}\right)
$$

$$
\begin{array}{cc}
=D_{10}^{1}(0 \beta 0) T_{1}^{1} & +D_{00}^{1}(0 \beta 0) T_{0}^{1} \\
\downarrow & \downarrow
\end{array}
$$

$$
\begin{gathered}
\left(\begin{array}{cc}
\cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\
-\sin \frac{\beta}{2} & \cos \frac{\beta}{2}
\end{array}\right)= \\
+D_{-10}^{1}(0 \beta 0) T_{-1}^{1} \\
\downarrow
\end{gathered}
$$

$$
=\frac{-\sin \beta}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+\cos \beta\left(\begin{array}{cc}
-1 / \sqrt{2} & 0 \\
0 & 1 / \sqrt{2}
\end{array}\right) \quad+\frac{\sin \beta}{\sqrt{2}}\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \left.\left.T_{q}^{k}=\sum_{m_{1}} C_{m_{1} m_{2}}^{1 / 2} 1 / 2 k\left|m_{1} k\right| 2\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
-m_{2}
\end{array}\right|(-1)^{\frac{1}{2}-m_{2}} \quad\right\} \quad \text { analogous to: } \quad\left\{\quad\left|\begin{array}{l}
J \\
M
\end{array}(1 / 2 \otimes 1 / 2)\right\rangle=\sum_{m_{1}, m_{2}} C_{m_{1} m_{2} M}^{1 / 2} 1 / 2 J\left|\begin{array}{c}
1 / 2 \\
m_{1}
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
m_{2}
\end{array}\right\rangle\right. \\
& T_{-1}^{1}=\left(\begin{array}{rr}
0 & 0 \\
-1 & 0
\end{array}\right) \quad T_{0}^{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) \quad T_{1}^{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \quad \quad\left|\begin{array}{l}
1(1 / 2 \otimes 1 / 2) \\
1
\end{array}\right\rangle=\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle \\
& \left.\left.=-\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|,=-\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|-\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right|\right],=\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left\langle\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right|,\right\} \text { analogous to: }\left\{\left|\begin{array}{l}
1(1 / 2 \otimes 1 / 2) \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle+\frac{1}{\sqrt{2}}\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\right. \\
& T_{0}^{0}=-\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left.\left.=-\frac{1}{\sqrt{2}}\left[\left\lvert\, \begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right.\right)\left\langle\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right|+\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right)\left\langle\begin{array}{r}
1 / 2 \\
-1 / 2
\end{array}\right|\right] \text {. } \\
& \} \text { analogous to: }\left\{\left|\begin{array}{l}
0(1 / 2 \otimes 1 / 2) \\
0
\end{array}\right\rangle=\frac{1}{\sqrt{2}}\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\left|\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right\rangle+\frac{-1}{\sqrt{2}}\left|\begin{array}{l}
1 / 2 \\
-1 / 2
\end{array}\right\rangle\left|\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right\rangle\right.
\end{aligned}
$$

CGC definition:
Wigner 3jm definition:

$$
\mathbf{v}_{q}^{k}=\sum_{m, m^{\prime}} C_{m-m^{\prime}}^{j}{ }_{q}{ }^{k}(-1)^{j-m^{\prime}}\left|\begin{array}{c}
j \\
m
\end{array}\right\rangle\left\langle\begin{array}{l}
j \\
m^{\prime}
\end{array}\right|=(-1)^{2 j} T_{q}^{k} . \quad \mathbf{v}_{q}^{k}=\sum_{m, m^{\prime}}(-1)^{j-m} \sqrt{2 k+1}\left(\begin{array}{ccc}
k & j & j \\
q & m^{\prime} & -m
\end{array}\right)\left|\begin{array}{l}
j \\
m
\end{array}\right\rangle\left\langle\begin{array}{c}
j \\
m^{\prime}
\end{array}\right|
$$

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 / \sqrt{2} & 0 & 0 \\
0 & 1 / \sqrt{2} & 0
\end{array}\right) \quad \rightarrow\left(\begin{array}{ccc}
1 / \sqrt{2} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1 / \sqrt{2}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & -1 / \sqrt{2} & 0 \\
0 & 0 & -1 / \sqrt{2} \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left(\begin{array}{ccc}
1 / \sqrt{3} & 0 & 0 \\
0 & 1 / \sqrt{3} & 0 \\
0 & 0 & 1 / \sqrt{3}
\end{array}\right)
\end{aligned}
$$

These $T^{k}{ }_{q}$ operators are combinations of Elementary operators $E_{m n}$

Example:

$$
T_{1}^{2}=\frac{-1}{\sqrt{2}} E_{12}+\frac{1}{\sqrt{2}} E_{23}
$$

(a)
$\left\langle T^{\prime}\right| E_{i i}|r\rangle=\delta_{T_{T}^{\prime} T}\binom{$ number }{ of (i)'s }$\quad\left\langle T^{\prime}\right| E_{i j}|T\rangle=\langle T| E_{\mathrm{ji}}\left|T^{\prime}\right\rangle$
(c)

(d)

(e)

(f)

E_{12} [12] $=\sqrt{2}$ III

(h)

(a) Number operators $E_{i j}$ are djagonal. (The only eigenvalues for orbitalstates are 0,1, and 2.)
(b) Raising and lowering operators are simply transposes of each other.
(c-h) $\varepsilon_{i-1, i}$ acting on a tableau state gives zero unless there is an (i) in a column of the tableau that doesn't already have an (i-1), too. Then it gives back a new state with the (i) changed to(i-1) ard a factor (matrix element) that depends on where the other (i)'s and (i-1)'s are located. (Boxes not outlined in the figure contain numbers not equal to (i) or (i-1).) Cases (c) and (d) involved the "city block" distance \mathbb{Q} (See Fig.7) whirh is the denominator of the matrix element. The numerator is one larger ($\mathrm{d}+1$) or smaller ($\mathrm{d}-1$) depending on whether the involved tableaus favor the larger or smaller state number (i or $i-1$) with a higher position. The special cases of ($d=1$) shown in (f) always pick the larger (and non-zero) choice of $\mathrm{d}+1=2$. All other non-zero matrix elements are equal to unity.

These $T^{k}{ }_{q}$ operators are combinations of Elementary operators $E_{m n}$ Elementary operators have tableau hook length formula above.

$$
\begin{gathered}
\text { Example: } \\
T_{1}^{2}=\frac{-1}{\sqrt{2}} E_{12}+\frac{1}{\sqrt{2}} E_{23}
\end{gathered}
$$

For applications of Tableaus and Tensors to Molecular physics Go back to Lect. 29 p. 50

$$
\begin{aligned}
& \begin{array}{l}
\left.\left.\mathbf{v}_{q}^{k}=\sum_{m, m^{\prime}}(-1)^{j-m} \sqrt{2 k+1}\left(\begin{array}{rrr}
k & j & j \\
q & m^{\prime} & -m
\end{array}\right) \right\rvert\, \begin{array}{c}
j \\
m
\end{array}\right)\left\langle\begin{array}{c}
j \\
m^{\prime}
\end{array}\right| \\
\text { for } j=1,2,3 .
\end{array} \\
& \text { (a) } j=\frac{1}{2} \\
& \text { (b) } j=\frac{3}{2} \\
& \text { (p) } l=1 \\
& \text { (f) } l=3 \\
& \text { Tensor operators for spin-J states: } U(2 J+1) \text { generalization of Pauli spinors } \\
& \text { (b) } j=\frac{3}{2} \\
& \text { (d) } l=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Toensor operators for spin-J states: Application to splitting } \\
& V^{(4)}=D\left[x^{4}+y^{4}+z^{4}-\frac{3}{4} r^{4}\right]=D\left[\frac{2}{\sqrt{70}}\left(X_{4}^{4}+X_{-4}^{4}\right)+\frac{2}{5} X_{0}^{4}\right] \\
& \left\langle V^{(4)}\right\rangle_{j=2}=D\left\langle\frac{2}{\sqrt{70}}\left(v_{4}^{4}+v_{-4}^{4}\right)+\frac{2}{5} v_{0}^{4}\right\rangle_{j=2} \frac{\sqrt{5}}{3}\langle 2|\left|X^{4}\right||2\rangle .
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle V^{(4)}\right\rangle_{j=2}=\frac{D}{\sqrt{70}}\left(\begin{array}{ccccc}
\frac{2}{5} & \cdot & \cdot & \cdot & 2 \\
\cdot & -\frac{8}{5} & \cdot & \cdot & \cdot \\
\cdot & \cdot & \frac{12}{5} & \cdot & \cdot \\
\cdot & \cdot & \cdot & -\frac{8}{5} & \cdot \\
2 & \cdot & \cdot & \cdot & \frac{2}{5}
\end{array}\right) \frac{\sqrt{5}}{3}\langle 2|\left|X^{4}\right||2\rangle .
\end{aligned}
$$

$$
\begin{aligned}
& q=0 \begin{array}{rrr}
{ }^{1} & { }^{2} \\
x_{1} & \underline{x}_{1} & \\
1 & -2 & 1 \\
1 & -1 & -1 \\
1 & & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.\begin{array}{|ccc|}
\hline 1 & -1 & \ddots \\
1 & 0 & -1 \\
. & 1 & -1
\end{array} \right\rvert\, \\
\begin{array}{l}
\text { (p) } t=1
\end{array}
\end{array} \\
& \text { (d) } l=2
\end{aligned}
$$

