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Group Theory in Quantum Mechanics 
Lecture 16 (3.14.17)  

Spectral decomposition of groups D3 ~C3v 
(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 5 Ch. 15 ) 

(PSDS - Ch. 3 ) 
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Review: 1st-Stage Spectral resolution of D3 Center (Class algebra) 
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See P(α)vsκk derivation 
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⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

PA1=(κ1+ κ2+ κ3)/6= (1+r+r
2+i1+i2+i3)/6⇒ R(PA1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6      TraceR(PA1) =1

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 



        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1
i2
i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

PA1=(κ1+ κ2+ κ3)/6= (1+r+r
2+i1+i2+i3)/6⇒ R(PA1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6      TraceR(PA1) =1

So: R(PA1) reduces to:

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 

Min-eq. of all P’s : P2=P or (P-1)P=0  
Allowed P eigenvalues: 1 or 0



        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1
i2
i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

PA1=(κ1+ κ2+ κ3)/6= (1+r+r
2+i1+i2+i3)/6⇒ R(PA1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6      TraceR(PA1) =1

PA2=(κ1+ κ2− κ3)/6= (1+r+r
2−i1−i2−i3)/6⇒ R(PA2)=

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6     TraceR(PA2 ) =1

So: R(PA1) reduces to:

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

So: R(PA2) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 

Min-eq. of all P’s : P2=P or (P-1)P=0  
Allowed P eigenvalues: 1 or 0



        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1
i2
i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

PA1=(κ1+ κ2+ κ3)/6= (1+r+r
2+i1+i2+i3)/6⇒ R(PA1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6      TraceR(PA1) =1

PA2=(κ1+ κ2− κ3)/6= (1+r+r
2−i1−i2−i3)/6⇒ R(PA2)=

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6     TraceR(PA2 ) =1

PE= (2κ1−κ2+0)/3=(21−r−r
2+0+0+0)/3  ⇒   R(PE )=

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/3     TraceR(PE ) = 4

So: R(PA1) reduces to:

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

So: R(PA2) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

So: R(PE ) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 

Min-eq. of all P’s : P2=P or (P-1)P=0  
Allowed P eigenvalues: 1 or 0



Review:Spectral resolution of D3 Center (Class algebra)  
        Group theory of equivalence transformations and classes 
                    Lagrange theorems 
        All-commuting class projectors and D3-invariant character ortho-completeness 
Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces  
                    Subgroup splitting and correlation frequency formula: f (a)(D(α)(G)↓H) 
                    Atomic ℓ-level or 2ℓ+1-multiplet splitting 
                          D3 examples for ℓ=1-6 
        Group invariant numbers: Centrum, Rank, and Order 

2nd-Stage spectral decompositions of global/local D3          
        Splitting class projectors using subgroup chains D3⊃C2 and D3⊃C3 
         
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions 
       Tunneling modes and spectra for D3⊃C2 and D3⊃C3 local subgroup chains  
       



        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1
i2
i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

R(PA1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒     TraceR(PA1) =1      So: R(PA1g) reduces to:

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

R(PA2)=

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒    TraceR(PA2 ) =1

R(PE )=

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/3   ⇒   TraceR(PE ) = 4

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 



        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1
i2
i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

R(PA1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒     TraceR(PA1) =1      So: R(PA1g) reduces to:

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

R(PA2)=

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒    TraceR(PA2 ) =1     So: R(PA2g) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

R(PE )=

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/3   ⇒   TraceR(PE ) = 4

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 



        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1
i2
i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

R(PA1)=

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒     TraceR(PA1) =1      So: R(PA1g) reduces to:

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

R(PA2)=

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/6  ⇒    TraceR(PA2 ) =1     So: R(PA2g) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

R(PE )=

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

/3   ⇒   TraceR(PE ) = 4     So: R(PEg) reduces to:

Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces 

  

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D
11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
21

E D
22

E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟



        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1
i2
i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

TraceR(PA1) =1      So: R(PA1g) reduces to:

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

TraceR(PA2 ) =1     So: R(PA2g) reduces to:

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

TraceR(PE ) = 4     So: R(PEg) reduces to:

Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces 

  

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D
11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
21

E D
22

E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

So: R(g) reduces to:   

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D
11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
21

E D
22

E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟



Review:Spectral resolution of D3 Center (Class algebra)  
        Group theory of equivalence transformations and classes 
                    Lagrange theorems 
        All-commuting class projectors and D3-invariant character ortho-completeness 
Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces  
                    Subgroup splitting and correlation frequency formula: f (a)(D(α)(G)↓H) 
                    Atomic ℓ-level or 2ℓ+1-multiplet splitting 
                          D3 examples for ℓ=1-6 
        Group invariant numbers: Centrum, Rank, and Order 

2nd-Stage spectral decompositions of global/local D3          
        Splitting class projectors using subgroup chains D3⊃C2 and D3⊃C3 
         
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions 
       Tunneling modes and spectra for D3⊃C2 and D3⊃C3 local subgroup chains  
       



        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1
i2
i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
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⎜
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⎜
⎜
⎜
⎜
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⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
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⎜
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⎠
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⎟
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⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
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Spectral resolution to irreducible representations (or “ireps”) foretold by characters or traces 

    R(g) reduces to:   

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D
11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
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E D
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⎟
⎟
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{RG(g)}has lots of empty space and looks like it could be reduced.
But, {RG(g)} cannot be diagonalized all-at-once. (Not all g commute.) 

Nevertheless, {RG(g)} can be block-diagonalized  
all-at-once into  “ireps” A1, A2, and two E1‘s



        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1
i2
i3

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
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⎜
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,
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⋅ ⋅ ⋅ ⋅ 1 ⋅
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,
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Spectral resolution to irreducible representations (or “ireps”) foretold by characters or traces 

    R(g) reduces to:   

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D
11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
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⎟
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⎟
⎟
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{RG(g)}has lots of empty space and looks like it could be reduced.
But, {RG(g)} cannot be diagonalized all-at-once. (Not all g commute.) 

We relate traces of {RG(g)} :   

   

(g) = {1} {r1,r2 } {i1 ,i2,i3 }

TraceRG (g) = 6 0 0

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

to D3 character table:

χ A1(g) 1 1 1

+χ A2 (g) 1 1 −1

+2χ E1(g) 2·2 −2⋅1 0
6 0 0

Nevertheless, {RG(g)} can be block-diagonalized  
all-at-once into  “ireps” A1, A2, and two E1‘s



        RG (1) =                       RG (r) =                        RG (r2 ) =                      RG (i1) =                       RG (i2 ) =                    RG (i3) =        

1
r1

r 2

i1
i2
i3
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⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Spectral resolution to irreducible representations (or “ireps”) foretold by characters or traces 

    R(g) reduces to:   

D
A1(g) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D
A2 (g) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D
11

E D
12

E ⋅ ⋅

⋅ ⋅ D
21

E D
22

E ⋅ ⋅

⋅ ⋅ ⋅ ⋅ D
11

E D
12

E

⋅ ⋅ ⋅ ⋅ D
21

E D
22

E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

{RG(g)}has lots of empty space and looks like it could be reduced.
But, {RG(g)} cannot be diagonalized all-at-once. (Not all g commute.) 

We relate traces of {RG(g)} :   

   

(g) = {1} {r1,r2 } {i1 ,i2,i3 }

TraceRG (g) = 6 0 0

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

to D3 character table:

χ A1(g) 1 1 1

+χ A2 (g) 1 1 −1

+2χ E1(g) 2·2 −2⋅1 0
6 0 0

So{RG(g)} can be block-diagonalized into a  direct sum⊕ of “ireps” RG(g)=DA1(g)⊕DA2(g)⊕2DE1(g)

Nevertheless, {RG(g)} can be block-diagonalized  
all-at-once into  “ireps” A1, A2, and two E1‘s
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Subgroup splitting and correlation frequency formula: f(a)(D(α)(G)↓H)

Symmetry reduction of G to H⊂G involves splitting of G-ireps D(α)(G) into smaller H-ireps d(a)(H)

D(α)(G)↓H ≡ D(α)(H)  is reducible to:  Treducer D(α)(H)T†reducer = f(a)d(a)(H) ⊕ f(b)d(b)(H) ⊕...

(irep ≡ irreducible representation)

The following derives formulae for integral H⊂G correlation coefficients f(a)(D(α)(G)↓H)

• •
• •

• •
• •

.
.

• • •
• •
• • •

• • •
• •
• • •

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

d(a)

d(a)

d(a)

f(a)=3

f(b) =2
d(b)

d(b)

TreducerD
(α )(h)Treducer

† =



Subgroup splitting and correlation frequency formula: f(a)(D(α)(G)↓H)

Symmetry reduction of G to H⊂G involves splitting of G-ireps D(α)(G) into smaller H-ireps d(a)(H)

D(α)(G)↓H ≡ D(α)(H)  is reducible to:  Treducer D(α)(H)T†reducer = f(a)d(a)(H) ⊕ f(b)d(b)(H) ⊕...

(irep ≡ irreducible representation)

The following derives formulae for integral H⊂G correlation coefficients f(b)(D(α)(G)↓H)

• •
• •

• •
• •

.
.

• • •
• •
• • •

• • •
• •
• • •
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d(a)

d(a)

d(a)

f(a)=3

f(b) =2
d(b)

d(b)

TreducerD
(α )(h)Treducer

† =

 TraceD
(α )(P(b) ) = f (b) ⋅ℓ(b) Since each d (b)(P(b) ) is an ℓ(b)-by-ℓ(b)unit matrix



Subgroup splitting and correlation frequency formula: f(a)(D(α)(G)↓H)

Symmetry reduction of G to H⊂G involves splitting of G-ireps D(α)(G) into smaller H-ireps d(a)(H)

D(α)(G)↓H ≡ D(α)(H)  is reducible to:  Treducer D(α)(H)T†reducer = f(a)d(a)(H) ⊕ f(b)d(b)(H) ⊕...

(irep ≡ irreducible representation)

The following derives formulae for integral H⊂G correlation coefficients f(a)(D(α)(G)↓H)

• •
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d(b)

d(b)

TreducerD
(α )(h)Treducer

† =

 

TraceD(α )(P(b) ) = f (b) ⋅ℓ(b)

f (b) = 1
ℓ(b)

TraceD(α )(P(b) )

Since each d (b)(P(b) ) is an ℓ(b)-by-ℓ(b)unit matrix



Subgroup splitting and correlation frequency formula: f(a)(D(α)(G)↓H)

Symmetry reduction of G to H⊂G involves splitting of G-ireps D(α)(G) into smaller H-ireps d(a)(H)

D(α)(G)↓H ≡ D(α)(H)  is reducible to:  Treducer D(α)(H)T†reducer = f(a)d(a)(H) ⊕ f(b)d(b)(H) ⊕...

(irep ≡ irreducible representation)

The following derives formulae for integral H⊂G correlation coefficients f(a)(D(α)(G)↓H)
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† =

 

TraceD(α )(P(b) ) = f (b) ⋅ℓ(b)

f (b) = 1
ℓ(b)

TraceD(α )(P(b) ) = 1
ℓ(b)
ℓ(b)

°H
χ k
(b)*

classes
κ k∈H

∑ TraceD(α )(κ k )

    

P(α ) =
ℓ(α )

°G
χk

(α )*

k∈G
∑ κ k

P(b) =
ℓ(b)

°H
χk

(b)*

k∈H
∑ κ k

Class ortho-complete  
projector relations (p.24)

Since each d (b)(P(b) ) is an ℓ(b)-by-ℓ(b)unit matrix



Subgroup splitting and correlation frequency formula: f(a)(D(α)(G)↓H)

Symmetry reduction of G to H⊂G involves splitting of G-ireps D(α)(G) into smaller H-ireps d(a)(H)

D(α)(G)↓H ≡ D(α)(H)  is reducible to:  Treducer D(α)(H)T†reducer = f(a)d(a)(H) ⊕ f(b)d(b)(H) ⊕...

(irep ≡ irreducible representation)

The following derives formulae for integral H⊂G correlation coefficients f(a)(D(α)(G)↓H)

• •
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d(a)

f(a)=3

f(b) =2
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TraceD(α )(P(b) ) = f (b) ⋅ℓ(b)

f (b) = 1
ℓ(b)

TraceD(α )(P(b) ) = 1
ℓ(b)
ℓ(b)

°H
χ k
(b)*

classes
κ k∈H

∑ TraceD(α )(κ k )

f (b) = 1
°H

°κ kχ k
(b)*

classes
κ k∈H

∑ χ k
(α )

χ (α )(κ k ) = °κ kχ k
(α )

    

P(α ) =
ℓ(α )

°G
χk

(α )*

k∈G
∑ κ k

P(b) =
ℓ(b)

°H
χk

(b)*

k∈H
∑ κ k

Class ortho-complete  
projector relations (p.24)

Character relation  for frequency f(b) of d (b) of subgroup H in D(α)↓H of G 

Since each d (b)(P(b) ) is an ℓ(b)-by-ℓ(b)unit matrix
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1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

Crystal-field splitting: O(3)⊃D3 symmetry reduction 
(Fig. 5.6.1 PSDS)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

Crystal-field splitting: O(3)⊃D3 symmetry reduction 
(Fig. 5.6.1 PSDS)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

Crystal-field splitting: O(3)⊃D3 symmetry reduction 
(Fig. 5.6.1 PSDS)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

Crystal-field splitting: O(3)⊃D3 symmetry reduction 
(Fig. 5.6.1 PSDS)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

Crystal-field splitting: O(3)⊃D3 symmetry reduction and Dl↓D3 splitting 
(Fig. 5.6.1 PSDS)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

Crystal-field splitting: O(3)⊃D3 symmetry reduction and Dl↓D3 splitting 
(Fig. 5.6.1 PSDS)

R(3) character 
where: 2ℓ+1 

is ℓ-orbital dimension
 

χ ℓ(2π
n
) =
sin (2ℓ+1)π

n
sinπ

n

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

Crystal-field splitting: O(3)⊃D3 symmetry reduction and Dl↓D3 splitting 
(Fig. 5.6.1 PSDS)

R(3) character 
where: 2ℓ+1 

is ℓ-orbital dimension
 

χ ℓ(2π
n
) =
sin (2ℓ+1)π

n
sinπ

n

 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

Crystal-field splitting: O(3)⊃D3 symmetry reduction and Dl↓D3 splitting 
(Fig. 5.6.1 PSDS)

R(3) character 
where: 2ℓ+1 

is ℓ-orbital dimension
 

χ ℓ(2π
n
) =
sin (2ℓ+1)π

n
sinπ

n

 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

...and D3 character table from p. 24:

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

A1

E1

E1

A1
A2

E1

ℓ = 4



Review:Spectral resolution of D3 Center (Class algebra)  
        Group theory of equivalence transformations and classes 
                    Lagrange theorems 
        All-commuting class projectors and D3-invariant character ortho-completeness 
Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces  
                    Subgroup splitting and correlation frequency formula: f (a)(D(α)(G)↓H) 
                    Atomic ℓ-level or 2ℓ+1-multiplet splitting 
                          D3 examples for ℓ=1-6 
        Group invariant numbers: Centrum, Rank, and Order 

2nd-Stage spectral decompositions of global/local D3          
        Splitting class projectors using subgroup chains D3⊃C2 and D3⊃C3 
         
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions 
       Tunneling modes and spectra for D3⊃C2 and D3⊃C3 local subgroup chains  
       



1A1

 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

...and D3 character table from p. 24:

Crystal-field splitting: O(3)⊃D3 symmetry reduction and Dl↓D3 splitting 
(Fig. 5.6.1 PSDS)

R(3) character 
where: 2ℓ+1 

is ℓ-orbital dimension
 

χ ℓ(2π
n
) =
sin (2ℓ+1)π

n
sinπ

n

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

...and D3 character table from p. 24:

3 0 −1
0χ A1 (g)= 0 0 0
1χ A2 (g)= 1 1 −1
1χ E1 (g)= 2 −1 0

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

R(3) character 
where: 2ℓ+1 

is ℓ-orbital dimension
 

χ ℓ(2π
n
) =
sin (2ℓ+1)π

n
sinπ

n

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

...and D3 character table from p. 24:

R(3) character 
where: 2ℓ+1 

is ℓ-orbital dimension
 

χ ℓ(2π
n
) =
sin (2ℓ+1)π

n
sinπ

n

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

...and D3 character table from p. 24:

5 −1 1
1χ A1 (g)= 1 1 1
0χ A2 (g)= 0 0 0
2χ E1 (g)= 4 −2 0

R(3) character 
where: 2ℓ+1 

is ℓ-orbital dimension
 

χ ℓ(2π
n
) =
sin (2ℓ+1)π

n
sinπ

n

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

...and D3 character table from p. 24:

R(3) character 
where: 2ℓ+1 

is ℓ-orbital dimension
 

χ ℓ(2π
n
) =
sin (2ℓ+1)π

n
sinπ

n

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

Formula from p.44  
Example: (ℓ=4)    

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Atomic ℓ-level or 2ℓ+1-multiplet splitting ℓ=0, s-singlet  
2ℓ+1=1 
ℓ=1, p-triplet  
2ℓ+1=3 
ℓ=2, d-quintet  
2ℓ+1=5 
ℓ=3, f-septet  
2ℓ+1=7 
ℓ=4, g-nonet  
2ℓ+1=9 
ℓ=5, h-(11)-let  
2ℓ+1=11 
...

...and D3 character table from p. 24:

7 1 −1
1χ A1 (g)= 1 1 1
2χ A2 (g)= 2 2 −2
2χ E1 (g)= 4 −2 0

R(3) character 
where: 2ℓ+1 

is ℓ-orbital dimension
 

χ ℓ(2π
n
) =
sin (2ℓ+1)π

n
sinπ

n

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

 

f (E1 ) = 1
°D3

°κ kχ k
(E1 )*

classes
κ k∈D3

∑ χ k
(ℓ=4) =

1
°D3

°κ 0°χ0°
(E1 )*χ0°

(ℓ=4) + °κ120°χ120°
(E1 )*χ120°

(ℓ=4) + °κ180°χ180°
(E1 )*χ180°

(ℓ=4)( )
 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Formula from p.44  
Example: (ℓ=4)    

...and D3 character table from p. 24:

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

ℓ=4, g-nonet  
2ℓ+1=9 

A1

E1

E1

A1
A2

E1

ℓ = 4



1A1

 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 1 2 3
5 2 1 3
6 3 2 4
7 2 3 5

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

1A1⊕2A2⊕3E1

2A1⊕  A2⊕3E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

...and D3 character table from p. 24:

 

f (E1 ) =
1
°D3

°κ kχ k
(E1 )*

classes
κ k∈D3

∑ χ k
(ℓ=4) =

1
°D3

°κ 0°χ0°
(E1 )*χ0°

(ℓ=4) + °κ120°χ120°
(E1 )*χ120°

(ℓ=4) + °κ180°χ180°
(E1 )*χ180°

(ℓ=4)( )

                                              =  1
6

   1 · 2*  · 9     +     2 · −1*  · 0      +      3 · 0*  · 1     ( )

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Formula from p.44  
Example: (ℓ=4)    

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

ℓ=4, g-nonet  
2ℓ+1=9 

A1

E1

E1

A1
A2

E1

ℓ = 4



 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

 

f (E1 ) =
1
°D3

°κ kχ k
(E1 )*

classes
κ k∈D3

∑ χ k
(ℓ=4) =

1
°D3

°κ 0°χ0°
(E1 )*χ0°

(ℓ=4) + °κ120°χ120°
(E1 )*χ120°

(ℓ=4) + °κ180°χ180°
(E1 )*χ180°

(ℓ=4)( )

                                              =  1
6

   1 · 2*  · 9     +     2 · −1*  · 0      +      3 · 0*  · 1     ( )
                                        f (E1 ) =  3

1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 2 1 3
5 1 2 4
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

2A1⊕1A2⊕3E1

1A1⊕2A2⊕4E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Formula from p.44  
Example: (ℓ=4)    

...and D3 character table from p. 24:

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

ℓ=4, g-nonet  
2ℓ+1=9 

A1

E1

E1

A1
A2

E1

ℓ = 4



 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

 

f (E1 ) =
1
°D3

°κ kχ k
(E1 )*

classes
κ k∈D3

∑ χ k
(ℓ=4) =

1
°D3

°κ 0°χ0°
(E1 )*χ0°

(ℓ=4) + °κ120°χ120°
(E1 )*χ120°

(ℓ=4) + °κ180°χ180°
(E1 )*χ180°

(ℓ=4)( )

                                              =  1
6

   1 · 2*  · 9     +     2 · −1*  · 0      +      3 · 0*  · 1     ( )
                                        f (E1 ) =  3

1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 2 1 3
5 1 2 4
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

2A1⊕1A2⊕3E1

1A1⊕2A2⊕4E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

f (A2 ) =  1
6

   1 · 1*  · 9     +     2 · 1*  · 0      +      3 · −1*  · 1( ) = 1

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Formula from p.44  
Example: (ℓ=4)    

...and D3 character table from p. 24:

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

ℓ=4, g-nonet  
2ℓ+1=9 

A1

E1

E1

A1
A2

E1

ℓ = 4



 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

 

f (E1 ) =
1
°D3

°κ kχ k
(E1 )*

classes
κ k∈D3

∑ χ k
(ℓ=4) =

1
°D3

°κ 0°χ0°
(E1 )*χ0°

(ℓ=4) + °κ120°χ120°
(E1 )*χ120°

(ℓ=4) + °κ180°χ180°
(E1 )*χ180°

(ℓ=4)( )

                                              =  1
6

   1 · 2*  · 9     +     2 · −1*  · 0      +      3 · 0*  · 1     ( )
                                        f (E1 ) =  3

1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 2 1 3
5 1 2 4
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

2A1⊕1A2⊕3E1

1A1⊕2A2⊕4E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

f (A1 ) =  1
6

   1 · 1*  · 9     +     2 · 1*  · 0      +       3 ·   1*  · 1( ) = 2

f (A2 ) =  1
6

   1 · 1*  · 9     +     2 · 1*  · 0      +      3 · −1*  · 1( ) = 1

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Formula from p.44  
Example: (ℓ=4)    

...and D3 character table from p. 24:

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

ℓ=4, g-nonet  
2ℓ+1=9 

A1

E1

E1

A1
A2

E1

ℓ = 4



 

χ ℓ(Θ) Θ = 0 2π
3

π

ℓ = 0 1 1 1
1 3 0 −1
2 5 −1 1
3 7 1 −1
4 9 0 1
5 11 −1 −1
6 13 1 1
7 15 0 −1

 

χ ℓ(Θ) = sin(ℓ+2
1 )Θ

sinΘ
2

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

 

f (E1 ) =
1
°D3

°κ kχ k
(E1 )*

classes
κ k∈D3

∑ χ k
(ℓ=4) =

1
°D3

°κ 0°χ0°
(E1 )*χ0°

(ℓ=4) + °κ120°χ120°
(E1 )*χ120°

(ℓ=4) + °κ180°χ180°
(E1 )*χ180°

(ℓ=4)( )

                                              =  1
6

   1 · 2*  · 9     +     2 · −1*  · 0      +      3 · 0*  · 1     ( )
                                        f (E1 ) =  3

1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 2 1 3
5 1 2 4
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

2A1⊕1A2⊕3E1

1A1⊕2A2⊕4E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

f (A1 ) =  1
6

   1 · 1*  · 9     +     2 · 1*  · 0      +       3 ·   1*  · 1( ) = 2

f (A2 ) =  1
6

   1 · 1*  · 9     +     2 · 1*  · 0      +      3 · −1*  · 1( ) = 1

 

f (b) = 1
°D3

°κ kχ k
(b)*

classes
κ k∈D3

∑ χ k
(ℓ)

Formula from p.44  
Example: (ℓ=4)    

...and D3 character table from p. 24:

 
Note : ℓ=6 13 1 1 = A1 1 1 1 ⊕2RG 12 0 0 =A1⊕2[A1⊕A2⊕2E1] (ℓ=6 is 1st re-cycling point)

U(2) characters 
from Lecture 14.5 p.93: 
(or end of this lecture)

ℓ=4, g-nonet  
2ℓ+1=9 

A1

E1

E1

A1
A2

E1

ℓ = 4



Spectral splitting in symmetry breaking foretold by character analysis (on p. 38) 

Crystal-field splitting: O(3)⊃D3 symmetry reduction and Dl↓D3 splitting 

A1

E1

E1

A2 RG(U(6))↓D3 =DA1(g)⊕DA2(g)⊕2DE1(g)U(6)⊃D3

(g) = {1} {r1,r2 } {i1, i2, i3 }

χ A1 (g) = 1 1 1
χ A2 (g) = 1 1 −1
χ E1 (g) = 2 −1 0

 D3 character table:

E1

A2

R(3)⊃D3

A1

E1

A1

E1

E1

A2

E1

A2

A1

E1

E1

A1
A2

E1

A1

E1

E1

A2

E1

E1

A2

1A1

 

f (α )(ℓ) f A1 f A2 f E1

ℓ = 0 1 ⋅ ⋅
1 ⋅ 1 1
2 1 ⋅ 2
3 1 2 2
4 2 1 3
5 1 2 4
6 3 2 4
7 2 3 5

0A1⊕A2⊕E1

1A1       ⊕2E1

1A1⊕2A2⊕2E1

2A1⊕1A2⊕3E1

1A1⊕2A2⊕4E1

3A1⊕2A2⊕4E1

2A1⊕3A2⊕5E1

A1
E1
E1
A1

A2
E1

A1
E1

A2

ℓ = 0
ℓ =1

ℓ = 2

ℓ = 3

ℓ = 4

ℓ = 5

ℓ = 6

A1



Review:Spectral resolution of D3 Center (Class algebra)  
        Group theory of equivalence transformations and classes 
                    Lagrange theorems 
        All-commuting class projectors and D3-invariant character ortho-completeness 
Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces  
                    Subgroup splitting and correlation frequency formula: f (a)(D(α)(G)↓H) 
                    Atomic ℓ-level or 2ℓ+1-multiplet splitting 
                          D3 examples for ℓ=1-6 
        Group invariant numbers: Centrum, Rank, and Order 

2nd-Stage spectral decompositions of global/local D3          
        Splitting class projectors using subgroup chains D3⊃C2 and D3⊃C3 
         
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions 
       Tunneling modes and spectra for D3⊃C2 and D3⊃C3 local subgroup chains  
       



Important invariant numbers or “characters”
lα= Irreducible representation (irrep) dimension or level degeneracy
Centrum: κ(G)=Σ

irrep(α) (lα)0 =Number of classes, invariants, irrep types, all-commuting ops
Rank: ρ(G)=Σ

irrep(α) (lα)1 =Number of irrep idempotents P(α), mutually-commuting ops
Order: ο(G)=Σ

irrep(α) (lα)2 =Total number of irrep projectors P(α) or symmetry ops

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

κ(D3)=(1)0+ (1)0+ (2)0= 3
ρ(D3)=(1)1+ (1)1+ (2)1= 4
°(D3)=(1)2+ (1)2+ (2)2= 6

D3 Algebra

i
1

i
2 i

3

κκ
1
=1κκ
1
=1

κκ
i
= i
1
+ i
2
+i
3

κκ
i
= i
1
+ i
2
+i
3 κκ

r
= r2 + rκκ
r
= r2 + r

D3 Center
(All-commuting

operators)

r2

r

A Maximal Set of Commuting

Operators

PA1
PA2
PE1

PE
xx yy
PE

PE
11

22
PE

PE
xy yx
PE

PE
12

21
PE

Another

Maximal Set

of Commuting

Operators(All-commuting
operators)

PA1
PA2
PE1



Review:Spectral resolution of D3 Center (Class algebra)  
        Group theory of equivalence transformations and classes 
                    Lagrange theorems 
        All-commuting class projectors and D3-invariant character ortho-completeness  
                    Subgroup splitting and correlation frequency formula: f (a)(D(α)(G)↓H) 
        Group invariant numbers: Centrum, Rank, and Order 

2nd-Stage spectral decompositions of global/local D3          
        Splitting class projectors using subgroup chains D3⊃C2 and D3⊃C3 

                             Splitting classes 
         
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions 
       Tunneling modes and spectra for D3⊃C2 and D3⊃C3 local subgroup chains  
       



11 ==pp03+ pp13+pp23
PPA1= PA1 · ·

PPA2= PA2 · ·

PPE = · PE PE
1
3
1
3
2
3
2
3

0
3
0
3

0
3
0
3

22nndd SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff CCllaassss PPrroojjeeccttoorr((ss)) ooff DD33

Spectral reduction of non-commutative “Group-table Hamiltonian”

DD33 EExxaammppllee
CCoorrrreellaattee DD33 cchhaarraacctteerrss wwiitthh iittss ssuubbggoouupp((ss)) CC22((ii)) oorr EELLSSEE CC33((rr)) ((CC22 aanndd CC33 ddoonn’’tt ccoommmmuuttee))

Let:

ε=e-2πi/3

0
2

1
2
1
2

0
2
0
2
1
2
1
2

n,n

SSaammee ffoorr Correlation table:

CC22 κ = 1 i3
pp02 = 1 1 /2

pp12 = 1 -1 /2

CC33 κ = 1 r1 r2

pp03= 1 1 1 /3

pp13= 1 ε ε* /3
pp23= 2 ε* ε /3

DD33⊃CC22 02 12
nA1= 1 ·

nA2= · 1

nE = 1 1

11 ==pp02 + pp12
PPA1= PA1 ·

PPA2= · PA2
PPE = PE PE

DD33⊃CC33 03 13 23
nA1= 1 · ·

nA2= 1 · ·

nE = · 1 1

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC22-friendly” irep projectors

P(α)11 ==P(α)(pp02 ++ pp12)
==P(α) ++ P(α)

0
2
0
2

1
2
1
2

1
3
1
3

DD33 κ =1 r1+r2 i1+i2+i3
PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6

PPE = 2 -1 0 /3

0
2

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC33-friendly” irreducible projectors

P(α)11 ==P(α)(pp03 + pp13 + pp23)
== P(α) ++ P(α) ++ P(α)

0
2
0
2

DD33⊃CC22 Correlation table
shows which products of
class projector PP(α) with
CC22--uunniitt 11 ==pp

02
++ pp12 will

make IIRRRREEDDUUCCIIBBLLEE P(α) ))

2
3
2
3

PA1=PPA1pp02 =PPA1(1+i3)/2=( 1+ r
1+ r2+ i1+ i2+ i3 )/6

PA2=PPA2pp12 =PPA2(1-i3)/2=( 1+ r
1+ r2 - i1 - i2 - i3 )/6

PE = PPEpp02 = PPE(1+i3)/2=(21- r
1- r2 - i1 - i2+2i3 )/6

PE = PPEpp12 = PPE(1-i3)/2=(21- r
1- r2 +i1 + i2-2i3 )/6

PA1=PPA1pp03 =PPA1(1+ r1+ r2)/3=( 1+ r1+ r2+ i1+ i2+ i3 )/6
PA2=PPA2pp03 =PPA2(1+ r1+ r2)/3=( 1+ r1+ r2 - i1 - i2 - i3 )/6
PE = PPEpp13 = PPE(1+ ε*r1+ εr2)/3=(1+ εr1+ ε*r2 )/6
PE = PPEpp23 = PPE(1+ εr1+ ε*r2)/3=(1+ ε*r1+εr2 )/6

0
3
0
3

0
3
0
3

1
3
1
3

2
3
2
3

Standing-wave 
Subroup chain 
D3⊃C2(ρ3)  



11 ==pp03+ pp13+pp23
PPA1= PA1 · ·

PPA2= PA2 · ·

PPE = · PE PE
1
3
1
3
2
3
2
3

0
3
0
3

0
3
0
3

22nndd SStteepp:: SSppeeccttrraall rreessoolluuttiioonn ooff CCllaassss PPrroojjeeccttoorr((ss)) ooff DD33

Spectral reduction of non-commutative “Group-table Hamiltonian”

DD33 EExxaammppllee
CCoorrrreellaattee DD33 cchhaarraacctteerrss wwiitthh iittss ssuubbggoouupp((ss)) CC22((ii)) oorr EELLSSEE CC33((rr)) ((CC22 aanndd CC33 ddoonn’’tt ccoommmmuuttee))

Let:

ε=e-2πi/3

0
2

1
2
1
2

0
2
0
2
1
2
1
2

n,n

SSaammee ffoorr Correlation table:

CC22 κ = 1 i3
pp02 = 1 1 /2

pp12 = 1 -1 /2

CC33 κ = 1 r1 r2

pp03= 1 1 1 /3

pp13= 1 ε ε* /3
pp23= 2 ε* ε /3

DD33⊃CC22 02 12
nA1= 1 ·

nA2= · 1

nE = 1 1

11 ==pp02 + pp12
PPA1= PA1 ·

PPA2= · PA2
PPE = PE PE

DD33⊃CC33 03 13 23
nA1= 1 · ·

nA2= 1 · ·
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PE = PPEpp02 = PPE(1+i3)/2=(21- r
1- r2 - i1 - i2+2i3 )/6
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nE = 1 1
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PPA1= PA1 ·
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PPE = PE PE

DD33⊃CC33 03 13 23
nA1= 1 · ·

nA2= 1 · ·

nE = · 1 1

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC22-friendly” irep projectors

P(α)11 ==P(α)(pp02 ++ pp12)
==P(α) ++ P(α)
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PPE = 2 -1 0 /3
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P(α)11 ==P(α)(pp03 + pp13 + pp23)
== P(α) ++ P(α) ++ P(α)
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2
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class projector PP(α) with
CC22--uunniitt 11 ==pp
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++ pp12 will

make IIRRRREEDDUUCCIIBBLLEE P(α) ))
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PA2=PPA2pp12 =PPA2(1-i3)/2=( 1+ r
1+ r2 - i1 - i2 - i3 )/6

PE = PPEpp02 = PPE(1+i3)/2=(21- r
1- r2 - i1 - i2+2i3 )/6

PE = PPEpp12 = PPE(1-i3)/2=(21- r
1- r2 +i1 + i2-2i3 )/6

PA1=PPA1pp03 =PPA1(1+ r1+ r2)/3=( 1+ r1+ r2+ i1+ i2+ i3 )/6
PA2=PPA2pp03 =PPA2(1+ r1+ r2)/3=( 1+ r1+ r2 - i1 - i2 - i3 )/6
PE = PPEpp13 = PPE(1+ ε*r1+ εr2)/3=(1+ εr1+ ε*r2 )/6
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DD33 EExxaammppllee
CCoorrrreellaattee DD33 cchhaarraacctteerrss wwiitthh iittss ssuubbggoouupp((ss)) CC22((ii)) oorr EELLSSEE CC33((rr)) ((CC22 aanndd CC33 ddoonn’’tt ccoommmmuuttee))

Let:

ε=e-2πi/3
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SSaammee ffoorr Correlation table:

CC22 κ = 1 i3
pp02 = 1 1 /2

pp12 = 1 -1 /2

CC33 κ = 1 r1 r2

pp03= 1 1 1 /3

pp13= 1 ε ε* /3
pp23= 2 ε* ε /3

DD33⊃CC22 02 12
nA1= 1 ·

nA2= · 1

nE = 1 1

11 ==pp02 + pp12
PPA1= PA1 ·

PPA2= · PA2
PPE = PE PE

DD33⊃CC33 03 13 23
nA1= 1 · ·

nA2= 1 · ·

nE = · 1 1

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC22-friendly” irep projectors

P(α)11 ==P(α)(pp02 ++ pp12)
==P(α) ++ P(α)

0
2
0
2

1
2
1
2

1
3
1
3

DD33 κ =1 r1+r2 i1+i2+i3
PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6

PPE = 2 -1 0 /3

0
2

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC33-friendly” irreducible projectors

P(α)11 ==P(α)(pp03 + pp13 + pp23)
== P(α) ++ P(α) ++ P(α)

0
2
0
2

DD33⊃CC22 Correlation table
shows which products of
class projector PP(α) with
CC22--uunniitt 11 ==pp

02
++ pp12 will

make IIRRRREEDDUUCCIIBBLLEE P(α) ))

2
3
2
3

PA1=PPA1pp02 =PPA1(1+i3)/2=( 1+ r
1+ r2+ i1+ i2+ i3 )/6

PA2=PPA2pp12 =PPA2(1-i3)/2=( 1+ r
1+ r2 - i1 - i2 - i3 )/6

PE = PPEpp02 = PPE(1+i3)/2=(21- r
1- r2 - i1 - i2+2i3 )/6

PE = PPEpp12 = PPE(1-i3)/2=(21- r
1- r2 +i1 + i2-2i3 )/6

PA1=PPA1pp03 =PPA1(1+ r1+ r2)/3=( 1+ r1+ r2+ i1+ i2+ i3 )/6
PA2=PPA2pp03 =PPA2(1+ r1+ r2)/3=( 1+ r1+ r2 - i1 - i2 - i3 )/6
PE = PPEpp13 = PPE(1+ ε*r1+ εr2)/3=(1+ εr1+ ε*r2 )/6
PE = PPEpp23 = PPE(1+ εr1+ ε*r2)/3=(1+ ε*r1+εr2 )/6

0
3
0
3

0
3
0
3

1
3
1
3

2
3
2
3
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Review:Spectral resolution of D3 Center (Class algebra)  
        Group theory of equivalence transformations and classes 
                    Lagrange theorems 
        All-commuting class projectors and D3-invariant character ortho-completeness  
                    Subgroup splitting and correlation frequency formula: f (a)(D(α)(G)↓H) 
        Group invariant numbers: Centrum, Rank, and Order 

2nd-Stage spectral decompositions of global/local D3          
        Splitting class projectors using subgroup chains D3⊃C2 and D3⊃C3 

                             Splitting classes 
         
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions 
       Tunneling modes and spectra for D3⊃C2 and D3⊃C3 local subgroup chains  
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PPA1= PA1 · ·

PPA2= PA2 · ·
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Spectral reduction of non-commutative “Group-table Hamiltonian”

DD33 EExxaammppllee
CCoorrrreellaattee DD33 cchhaarraacctteerrss wwiitthh iittss ssuubbggoouupp((ss)) CC22((ii)) oorr EELLSSEE CC33((rr)) ((CC22 aanndd CC33 ddoonn’’tt ccoommmmuuttee))

Let:

ε=e-2πi/3
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SSaammee ffoorr Correlation table:

CC22 κ = 1 i3
pp02 = 1 1 /2

pp12 = 1 -1 /2

CC33 κ = 1 r1 r2

pp03= 1 1 1 /3

pp13= 1 ε ε* /3
pp23= 2 ε* ε /3

DD33⊃CC22 02 12
nA1= 1 ·

nA2= · 1

nE = 1 1

11 ==pp02 + pp12
PPA1= PA1 ·

PPA2= · PA2
PPE = PE PE

DD33⊃CC33 03 13 23
nA1= 1 · ·

nA2= 1 · ·

nE = · 1 1

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC22-friendly” irep projectors

P(α)11 ==P(α)(pp02 ++ pp12)
==P(α) ++ P(α)

0
2
0
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1
2
1
2

1
3
1
3

DD33 κ =1 r1+r2 i1+i2+i3
PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6

PPE = 2 -1 0 /3

0
2

Rank ρ(DD33)=4 implies
there will be exactly 4

“CC33-friendly” irreducible projectors

P(α)11 ==P(α)(pp03 + pp13 + pp23)
== P(α) ++ P(α) ++ P(α)

0
2
0
2

DD33⊃CC22 Correlation table
shows which products of
class projector PP(α) with
CC22--uunniitt 11 ==pp

02
++ pp12 will

make IIRRRREEDDUUCCIIBBLLEE P(α) ))
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3
2
3

PA1=PPA1pp02 =PPA1(1+i3)/2=( 1+ r
1+ r2+ i1+ i2+ i3 )/6

PA2=PPA2pp12 =PPA2(1-i3)/2=( 1+ r
1+ r2 - i1 - i2 - i3 )/6

PE = PPEpp02 = PPE(1+i3)/2=(21- r
1- r2 - i1 - i2+2i3 )/6

PE = PPEpp12 = PPE(1-i3)/2=(21- r
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PA1=PPA1pp03 =PPA1(1+ r1+ r2)/3=( 1+ r1+ r2+ i1+ i2+ i3 )/6
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PE = PPEpp13 = PPE(1+ ε*r1+ εr2)/3=(1+ εr1+ ε*r2 )/6
PE = PPEpp23 = PPE(1+ εr1+ ε*r2)/3=(1+ ε*r1+εr2 )/6
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0
3
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Standing-wave 
Subroup chain 
D3⊃C2(ρ3)  

2nd-Stage
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Let:
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Moving-wave 
Subroup chain 
D3⊃C3(rp)  

2nd-Stage
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Review:Spectral resolution of D3 Center (Class algebra)  
        Group theory of equivalence transformations and classes 
                    Lagrange theorems 
        All-commuting class projectors and D3-invariant character ortho-completeness  
                    Subgroup splitting and correlation frequency formula: f (a)(D(α)(G)↓H) 
                    Atomic ℓ-level or 2ℓ+1-multiplet splitting 
                          D3 examples for ℓ=1-6 
        Group invariant numbers: Centrum, Rank, and Order 

2nd-Stage spectral decompositions of global/local D3          
        Splitting class projectors using subgroup chains D3⊃C2 and D3⊃C3 

                             Splitting classes 
         
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions 
       Tunneling modes and spectra for D3⊃C2 and D3⊃C3 local subgroup chains  
       



22nndd SStteepp:: ((ccoonnttdd..))WWhhiillee ssoommee ccllaassss pprroojjeeccttoorrss PP(α) sspplliitt iinn ttwwoo,,
ssoo AALLSSOO DDOO ssoommee ccllaasssseess κκk

n,n

4 different
idempotent
P(α)n,n

0202

1212

0202

1212

PA2=PPA2pp12 =PPA2(1-i
3
)/2=( 1+ r1+ r2 - i

1
- i
2
- i
3
)/6

PE = PPEpp02 = PPE(1+i
3
)/2=(21- r1- r2 - i

1
- i
2
+2i

3
)/6

PA1=PPA1pp02 =PPA1(1+i
3
)/2=( 1+ r1+ r2+ i

1
+ i
2
+ i
3
)/6

PE = PPEpp12 = PPE(1-i
3
)/2=(21- r1- r2 +i

1
+ i

2
-2i
3
)/6

0303

0303
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2323

PA1=PPA1pp03 =PPA1(1+ r1+ r2)/3=( 1+ r1+ r2+ i
1
+ i
2
+ i
3
)/6
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1
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2
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3
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PE = PPEpp13 = PPE(1+ εr1+ ε*r2)/3=(1+ εr1+ ε*r2 )/3
PE = PPEpp23 = PPE(1+ ε*r1+ ε r2)/3=(1+ ε*r1+εr2 )/3

PPEE sspplliittss iinnttoo PPEE ==PE +PE ,,
ccllaassss κκi sspplliittss iinnttoo κκ aanndd κκ

DD
33
κ =1 r1+r2 i

1
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2
+i
3
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0202 1212 PPEE sspplliittss iinnttoo PPEE ==PE +PE ,,
ccllaassss κκr sspplliittss iinnttoo κκr1 aanndd κκr2i

12
i
3

23231313

Centrum κ(DD
33
)=3

idempotents
PP(α)

Rank ρ(DD
33
)=4

idempotents
P(α)

ε=e−2πi/3

2nd-Stage

Compare ahead to Lect.17 p. 12 
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The old ‘gg-equals-11-times-gg-times-11’ Trick
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Compare ahead to Lect.17 p.14-18 
Pµmn g-expansion 
in Lect.17 p. 35-51
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Need to Define  
6 Irreducible 
Projectors Pm, n
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Order °(D3) = 6
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Compare ahead to Lect.17 p.18-21 
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33rrdd aanndd FFiinnaall SStteepp::

SSppeeccttrraall rreessoolluuttiioonn ooff AALLLL 66 ooff DD33 ::

The old ‘gg-equals-11-times-gg-times-11’ Trick

Order
ο(DD

33
)=6

projectors
P(α)m,n

DD
33
κ =1 r1+r2 i

1
+i
2
+i
3

PPA1= 1 1 1 /6

PPA2= 1 1 -1 /6
PPE = 2 -1 0 /3

Centrum κ(DD
33
)=3

idempotents
PP(α)

0202

1212

0202

1212

PA2=PPA2pp12 =PPA2(1-i
3
)/2=( 1+ r1+ r2 - i

1
- i
2
- i
3
)/6

PE = PPEpp02 = PPE(1+i
3
)/2=(21- r1- r2 - i

1
- i
2
+2i

3
)/6

PA1=PPA1pp02 =PPA1(1+i
3
)/2=( 1+ r1+ r2+ i

1
+ i
2
+ i
3
)/6

PE = PPEpp12 = PPE(1-i
3
)/2=(21- r1- r2 +i

1
+ i

2
-2i
3
)/6

Rank ρ(DD
33
)=4

idempotents
P(α)n,n

PA1=x,x
PA2=y,y

PE =
PE =
x,x

y,y

PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i
1
i
2
i
3

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

1 r1 r2 i
1
i
2
i
3

1 r1 r2 i
1
i
2
i
3

SSiixx DD
33
pprroojjeeccttoorrss:: 44 iiddeemmppootteennttss ++ 22 nniillppootteennttss ((ooffff--ddiiaagg..))

g=Σ
m
Σ
e
Σ
b
D(m) PP(m)

PP(m)= (norm)ΣgD
(m)* g

ebeb

ebeb

(g)

(g)

g = 1 ⋅g ⋅1 = (Px,x
A1 + Py,y

A1 + Px,x
E + Py,y

E ) ⋅g ⋅(Px,x
A1 + Py,y

A1 + Px,x
E + Py,y

E )

g = DA1(g)Px,x
A1+ DA2(g)Py,y

A2+ Dx,x
E (g)Px,x

E + Dy,y
E (g)Py,y

E +Dx,y
E (g)Px,y

E + Dy,x
E (g)Py,x

E

                                                     

where D3  irreducible representations
 are:                   DA1(g)=+1,      DA2(g)=±1,  

DE(1)= 1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟,DE(r)=

−2
1 − 4

3

4
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,DE(r2 )=

−2
1

4
3

− 4
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,DE(i1)=

−2
1 − 4

3

− 4
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,DE(i2 )=

−2
1

4
3

4
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,DE(i3)= 1 0

0 −1

⎛

⎝
⎜

⎞

⎠
⎟

  



i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -
-
+

-

-

+

-
+

-

| 〉A1
xx

| 〉A2
yy

| 〉Exy | 〉Eyy

| 〉Exx | 〉Eyx

D
3
>C

2
i
3
projector states

|(m)〉 =P(m)|1〉eb eb

ii
3
global (y)

anti-symmetry

ii
3
global (y)

anti-symmetry

ii
3
global

(x) symmetry

ii
3
local

(x) symmetry

ii
3
local (y)

anti-symmetry

Local g commute through
to the “inside” to be a gg†

eb eb

Global (LAB) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉

=(-1)e |(m)〉
eb eb eb

eb

Local (BOD) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉= P(m)ii

3
|1〉

= P(m)ii
3

†|1〉=(-1)b |(m)〉

i3

1 r1 r2 i
1
i
2
i
3

PA2= ( 1 1 1 -1 -1 -1)/6y,y

PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

Here the“Mock-Mach” 
is being applied!

                                                                DE(1)=        DE(r)=                 DE(r2 )=               DE(i1)=                DE(i2 )=              DE(i3)=

DA1(g)=+1,  DA2(r p )=+1,   DA2(iq )= −1     1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟    

−2
1 − 4

3

4
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
   

−2
1

4
3

− 4
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
  

−2
1 − 4

3

− 4
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
   

−2
1

4
3

4
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
   1 0

0 −1

⎛

⎝
⎜

⎞

⎠
⎟

Ket norm factors detailed 
in Lect.17 p.23-30 



||(m)〉==PP(m)||11〉eb eb

external LAB

symmety label-e

internal BOD

symmety label-b

GLOBAL LOCAL

i2

i3

i1

+
+

++

+
+

GLOBAL

(i
3
) =0

2

x-symmetry

x

y

LOCAL

(i
3
) =0

2

x-symmetry

i2

i3

i1

++
++

+
+

GLOBAL

(i
3
) =0

2

x-symmetry

x

y

LOCAL

(i
3
) =0

2

x-symmetry

i3 i3

((bbrrookkeenn )) ((bbrrookkeenn ))

i2

i3

i1

++
++

+
+

GLOBAL

(i
3
) =0

2

x-symmetry

x

y

LOCAL

(i
3
) =0

2

x-symmetry

i3

ii33ii33 OK ii33 ii33 OK

ii33 OK ii33 OK



PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2
x,x
y,x

PA1= ( 1 1 1 1 1 1)/6x,x
PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i1 i2 i3

PE =( 0 -1 1 -1 +1 0)/√3/2
PE =( 2 -1 -1+1 +1 -2)/6
x,y
y,y

1 r1 r2 i1 i2 i3 1 r1 r2 i1 i2 i3

H r r i i i1 2 1 2 3
- - - - +H r r i i i1 2 1 2 3
1
2

1
2

1
2

1
2

√3
2
( + - +r r i i1 2 1 2

)-

√3
2
( - - +r r i i1 2 1 2

)+ - - + + -H r r i i i1 2 1 2 3
1
2

1
2

1
2

1
2

A1-block

A2-block

(Local Symmetry=>off-diagonal=0)

H r r i i i1 2 1 2 3

3

r1=r2=r1*=r, i1=i2=i1*= i
+ + +r i i2 2 3HA1-level:
+ - -r i i2 2 3HA2-level:
- - +r i i3HEx-level:
- + -r iHEy-level: i

gives:

mn (g)l(µ)
°G mn

(µ)= ΣgD
(µ)* g

Pµmn g-expansion 
in Lect.17 p. 35-51

Rigorous Global vs Local  
Calculus begins on p.90 of 
Lecture 17. Matrix forms on  
p. 125-129 and p. 130-146.



i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -

-
+

-

-

+

-
+

-

| 〉A1
xx

| 〉A2
yy

| 〉Exy | 〉Eyy

| 〉Exx | 〉Eyx

| 〉E1
xy

| 〉E1
xx

| 〉

| 〉A1
xx

| 〉A2
yy

E1
yx

| 〉E1
yy

D
3
>C

2
i
3
projector states

|(m)〉 =P(m)|1〉eb eb

ii
3
global (y)

anti-symmetry

ii
3
global (y)

anti-symmetry

ii
3
global

(x) symmetry

ii
3
local

(x) symmetry

ii
3
local (y)

anti-symmetry

eb eb

Global (LAB) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉

=(-1)e |(m)〉
eb eb eb

eb

Local (BOD) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉= P(m)ii

3
|1〉

= P(m)ii
3

†|1〉=(-1)b |(m)〉

                                                                DE(1)=        DE(r)=                 DE(r2 )=               DE(i1)=                DE(i2 )=              DE(i3)=

DA1(g)=+1,  DA2(r p )=+1,   DA2(iq )= −1     1 0
0 1

⎛

⎝
⎜

⎞

⎠
⎟    

−2
1 − 4

3

4
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
   

−2
1

4
3

− 4
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
  

−2
1 − 4

3

− 4
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
   

−2
1

4
3

4
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
   1 0

0 −1

⎛

⎝
⎜

⎞

⎠
⎟



i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -
-
+

-

-

+

-
+

-

| 〉A1xx

| 〉A2yy

| 〉Exy | 〉Eyy

| 〉Exx | 〉Eyx

| 〉E1xy

| 〉E1xx | 〉

| 〉A1xx

| 〉A2yy

E1
yx

| 〉E1yy

When there is no there, there...

ii3 global (y)
anti-symmetry

ii3 global (y)
anti-symmetry

ii3 global
(x) symmetry

ii3 local
(x) symmetry

ii3 local (y)
anti-symmetry

Nobody Home
where LOCAL
and GLOBAL

clash!clash!!

clash!clash!!

clash!clash!!

clash!clash!!
clash!clash!!



See p. 12-45 of  
Lecture 18

MolVibes Web Application: http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html MolVibes Web Simulation 
 3 Atom with C3v symmetry

http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html
http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3
http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3
http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3


See p. 12-45 of  
Lecture 18

MolVibes Web Simulation 
 3 Atom with C3v symmetry

http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3
http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3
http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html?scenario=C3vN3


Trace-character χj(Θ) of U(2) rotation by Cn  angle Θ=2π/n  
is an (ℓj=2j+1)-term sum of e-imΘ over allowed m-quanta m={-j, -j+1,…, j-1, j}.

χ1/2 (Θ)= traceD1/2 (Θ)= trace e−iθ /2 ⋅

⋅ e+iθ /2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

χ1(Θ)= traceD1(Θ)= trace
e−iθ ⋅ ⋅
⋅ 1 ⋅

⋅ ⋅ e−iθ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Polygonal geometry of U(2)⊃CN character spectral function

(spinor-j=1/2) (vector-j=1)

Excerpts from Lecture 13 page 135-146 (also Lecture 14.5 p. 93-104)



χ1/2 (Θ)= traceD1/2 (Θ)= trace e−iθ /2 ⋅

⋅ e+iθ /2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

χ1(Θ)= traceD1(Θ)= trace
e−iθ ⋅ ⋅
⋅ 1 ⋅

⋅ ⋅ e−iθ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 χ1/2 (Θ) = e
−iΘ

2 + e
iΘ

2                = 2cosΘ
2

χ 3/2 (Θ) = e
−i 3Θ

2 + ...     + e
i 3Θ

2 = 2cosΘ
2
+ 2cos 3Θ

2

χ 5/2 (Θ) = e
−i5Θ

2 + ...     + e
i5Θ

2 = 2cosΘ
2
+ 2cos 3Θ

2
+ 2cos 5Θ

2

χj(Θ) involves a sum of 2cos(m Θ/2) for m≥0 up to m=j.

Polygonal geometry of U(2)⊃CN character spectral function

(spinor-j=1/2) (vector-j=1)

(spinor-j=1/2)

Trace-character χj(Θ) of U(2) rotation by Cn  angle Θ=2π/n  
is an (ℓj=2j+1)-term sum of e-imΘ over allowed m-quanta m={-j, -j+1,…, j-1, j}.

Excerpts from Lecture 13 page 135-146



χ1/2 (Θ)= traceD1/2 (Θ)= trace e−iθ /2 ⋅

⋅ e+iθ /2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

χ1(Θ)= traceD1(Θ)= trace
e−iθ ⋅ ⋅
⋅ 1 ⋅

⋅ ⋅ e−iθ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 χ1/2 (Θ) = e
−iΘ

2 + e
iΘ

2                = 2cosΘ
2

χ 3/2 (Θ) = e
−i 3Θ

2 + ...     + e
i 3Θ

2 = 2cosΘ
2
+ 2cos 3Θ

2

χ 5/2 (Θ) = e
−i5Θ

2 + ...     + e
i5Θ

2 = 2cosΘ
2
+ 2cos 3Θ

2
+ 2cos 5Θ

2

χj(Θ) involves a sum of 2cos(m Θ/2) for m≥0 up to m=j.

χ 0(Θ) = e−iΘ⋅0               = 1                                   Θ
2
e
−iΘ

2                     

χ1(Θ) = e−iΘ +1+ eiΘ  = 1+ 2cosΘ                        Θ
2
e
−iΘ

2              

χ 2(Θ) = e−i2Θ + ...ei2Θ = 1+ 2cosΘ + 2cos2Θ       Θ
2
e
−iΘ

2

Polygonal geometry of U(2)⊃CN character spectral function

(spinor-j=1/2) (vector-j=1)

(spinor-j=1/2)
(scalar-j=0)

(vector-j=1)

(tensor-j=2)

Trace-character χj(Θ) of U(2) rotation by Cn  angle Θ=2π/n  
is an (ℓj=2j+1)-term sum of e-imΘ over allowed m-quanta m={-j, -j+1,…, j-1, j}.

Excerpts from Lecture 13 page 135-146



χ1/2 (Θ)= traceD1/2 (Θ)= trace e−iθ /2 ⋅

⋅ e+iθ /2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

χ1(Θ)= traceD1(Θ)= trace
e−iθ ⋅ ⋅
⋅ 1 ⋅

⋅ ⋅ e−iθ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

χ j (Θ) = TraceD j( )(Θ) = e−iΘj + e−iΘ( j−1) + e−iΘ( j−2) + ...+ e+iΘ( j−2) + e+iΘ( j−1) + e+iΘj

χ j (Θ)e−iΘ = e−iΘ( j+1) + e−iΘj + e−iΘ( j−1) + e−iΘ( j−2) + ...+ e+iΘ( j−2) + e+iΘ( j−1)

 χ1/2 (Θ) = e
−iΘ

2 + e
iΘ

2                = 2cosΘ
2

χ 3/2 (Θ) = e
−i 3Θ

2 + ...     + e
i 3Θ

2 = 2cosΘ
2
+ 2cos 3Θ

2

χ 5/2 (Θ) = e
−i5Θ

2 + ...     + e
i5Θ

2 = 2cosΘ
2
+ 2cos 3Θ

2
+ 2cos 5Θ

2

χj(Θ) involves a sum of 2cos(m Θ/2) for m≥0 up to m=j.

χj(Θ) is a geometric series with ratio eiΘ between each successive term. 

χ 0(Θ) = e−iΘ⋅0               = 1                                   Θ
2
e
−iΘ

2                     

χ1(Θ) = e−iΘ +1+ eiΘ  = 1+ 2cosΘ                        Θ
2
e
−iΘ

2              

χ 2(Θ) = e−i2Θ + ...ei2Θ = 1+ 2cosΘ + 2cos2Θ       Θ
2
e
−iΘ

2

Polygonal geometry of U(2)⊃CN character spectral function

(spinor-j=1/2) (vector-j=1)

(spinor-j=1/2)
(scalar-j=0)

(vector-j=1)

(tensor-j=2)

Subtracting gives:

χ j (Θ)(1− e−iΘ ) = −e−iΘ( j+1)                                    +                                     e+iΘj           

Trace-character χj(Θ) of U(2) rotation by Cn  angle Θ=2π/n  
is an (ℓj=2j+1)-term sum of e-imΘ over allowed m-quanta m={-j, -j+1,…, j-1, j}.

Excerpts from Lecture 13 page 135-146



χ1/2 (Θ)= traceD1/2 (Θ)= trace e−iθ /2 ⋅

⋅ e+iθ /2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

χ1(Θ)= traceD1(Θ)= trace
e−iθ ⋅ ⋅
⋅ 1 ⋅

⋅ ⋅ e−iθ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

χ j (Θ) = TraceD j( )(Θ) = e−iΘj + e−iΘ( j−1) + e−iΘ( j−2) + ...+ e+iΘ( j−2) + e+iΘ( j−1) + e+iΘj

χ j (Θ)e−iΘ = e−iΘ( j+1) + e−iΘj + e−iΘ( j−1) + e−iΘ( j−2) + ...+ e+iΘ( j−2) + e+iΘ( j−1)

 χ1/2 (Θ) = e
−iΘ

2 + e
iΘ

2                = 2cosΘ
2

χ 3/2 (Θ) = e
−i 3Θ

2 + ...     + e
i 3Θ

2 = 2cosΘ
2
+ 2cos 3Θ

2

χ 5/2 (Θ) = e
−i5Θ

2 + ...     + e
i5Θ

2 = 2cosΘ
2
+ 2cos 3Θ

2
+ 2cos 5Θ

2

χj(Θ) involves a sum of 2cos(m Θ/2) for m≥0 up to m=j.

χj(Θ) is a geometric series with ratio eiΘ between each successive term. 

Subtracting/dividing gives χj(Θ) formula.
χ j (Θ) = e

+iΘj − e−iΘ( j+1)

1− e−iΘ
=
e
+iΘ( j+ 1

2
)
− e

−iΘ( j+ 1
2
)

e
+iΘ
2 − e

−iΘ
2

=
sinΘ( j + 1

2
)

sinΘ
2

χ 0(Θ) = e−iΘ⋅0               = 1                                   Θ
2
e
−iΘ

2                     

χ1(Θ) = e−iΘ +1+ eiΘ  = 1+ 2cosΘ                        Θ
2
e
−iΘ

2              

χ 2(Θ) = e−i2Θ + ...ei2Θ = 1+ 2cosΘ + 2cos2Θ       Θ
2
e
−iΘ

2

Polygonal geometry of U(2)⊃CN character spectral function

(spinor-j=1/2) (vector-j=1)

(spinor-j=1/2)
(scalar-j=0)

(vector-j=1)

(tensor-j=2)

Trace-character χj(Θ) of U(2) rotation by Cn  angle Θ=2π/n  
is an (ℓj=2j+1)-term sum of e-imΘ over allowed m-quanta m={-j, -j+1,…, j-1, j}.

Excerpts from Lecture 13 page 135-146



Trace-character χj(Θ) of U(2) rotation by Cn  angle Θ=2π/n  
is an (ℓj=2j+1)-term sum of e-imΘ over allowed m-quanta m={-j, -j+1,…, j-1, j}.

χ1/2 (Θ)= traceD1/2 (Θ)= trace e−iθ /2 ⋅

⋅ e+iθ /2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

χ1(Θ)= traceD1(Θ)= trace
e−iθ ⋅ ⋅
⋅ 1 ⋅

⋅ ⋅ e−iθ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

χ j (Θ) = TraceD j( )(Θ) = e−iΘj + e−iΘ( j−1) + e−iΘ( j−2) + ...+ e+iΘ( j−2) + e+iΘ( j−1) + e+iΘj

χ j (Θ)e−iΘ = e−iΘ( j+1) + e−iΘj + e−iΘ( j−1) + e−iΘ( j−2) + ...+ e+iΘ( j−2) + e+iΘ( j−1)

 χ1/2 (Θ) = e
−iΘ

2 + e
iΘ

2                = 2cosΘ
2

χ 3/2 (Θ) = e
−i 3Θ

2 + ...     + e
i 3Θ

2 = 2cosΘ
2
+ 2cos 3Θ

2

χ 5/2 (Θ) = e
−i5Θ

2 + ...     + e
i5Θ

2 = 2cosΘ
2
+ 2cos 3Θ

2
+ 2cos 5Θ

2

χj(Θ) involves a sum of 2cos(m Θ/2) for m≥0 up to m=j.

χj(Θ) is a geometric series with ratio eiΘ between each successive term. 

Subtracting/dividing gives χj(Θ) formula.
χ j (Θ) = e

+iΘj − e−iΘ( j+1)

1− e−iΘ
=
e
+iΘ( j+ 1

2
)
− e

−iΘ( j+ 1
2
)

e
+iΘ
2 − e

−iΘ
2

=
sinΘ( j + 1

2
)

sinΘ
2

χ 0(Θ) = e−iΘ⋅0               = 1                                   Θ
2
e
−iΘ

2                     

χ1(Θ) = e−iΘ +1+ eiΘ  = 1+ 2cosΘ                        Θ
2
e
−iΘ

2              

χ 2(Θ) = e−i2Θ + ...ei2Θ = 1+ 2cosΘ + 2cos2Θ       Θ
2
e
−iΘ

2

For Cn  angle Θ=2π/n this χj has  
a lot of geometric significance.

Character Spectral Function 
where: ℓj=2j+1 

is U(2) irrep dimension
 

χ j (2π
n

) =
sinπ

n
(2 j +1)

sinπ
n

=
sinπℓ

j

n
sinπ

n

 

Polygonal geometry of U(2)⊃CN character spectral function

(spinor-j=1/2) (vector-j=1)

(spinor-j=1/2)
(scalar-j=0)

(vector-j=1)

(tensor-j=2)



Polygonal geometry of U(2)⊃CN character spectral function

Θ=

n = 12
n = 7

n = 5

n
2π

= n
πΘ

2

=Θ2l
j

l
j
= 4

l
j
= 1,2,3

n
πl
j

1/sinn
π

sin( )/sinn
πl
j

n
π

1/tann
π

l
j
= 1,2

l
j
Θ

= n
πΘ

2

(j)th n-gon segments
χj(2π/n)=sin( )/sinn

πl
j

n
π

l
j
= 2j+1

χ
0(2π/5)=1
χ
1/2(2π/5)=1.618...

=(1+√5)/2=

χ
0(2π/7)=1
χ
1/2(2π/7)=1.802...
χ
1(2π/7)=2.247...
χ
3/2(2π/7)=2.247...

χ
1/2(2π/12)=1.932...
χ
1(2π/12)=2.732...
χ
3/2(2π/12)=3.346...

χ
2(2π/12)=3.732...
χ
5/2(2π/12)=3.864...
χ
3(2π/12)=3.732...

eiΘ

Θ/2
Θ/2

ei2Θ

1

ei3Θ

Θ
Θ

Θ

Θ

1+eiΘ+ei2Θ+ei3Θ Character Spectral Function 
where: ℓj=2j+1 

is U(2) irrep dimension
 

χ j (2π
n

) =
sinπ

n
(2 j +1)

sinπ
n

=
sinπℓ

j

n
sinπ

n

 

Excerpts from  
Lecture 14.5 
page 93-103


