

2<sup>nd</sup>-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ Splitting classes

 $3^{rd}$ -stage spectral resolution to *irreducible representations* (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for  $D_3 \supset C_2$  and  $D_3 \supset C_3$  local subgroup chains Review: Spectral resolution of  $D_3$  Center (Class algebra)Group theory of equivalence transformations and classes<br/>Lagrange theoremsAll-commuting class projectors and  $D_3$ -invariant character ortho-completenessSpectral resolution to irreducible representations (or "irreps") foretold by characters or traces<br/>Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ <br/>Atomic  $\ell$ -level or  $2\ell+1$ -multiplet splitting<br/> $D_3$  examples for  $\ell=1-6$ <br/>Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ 

*3rd-stage spectral resolution to irreducible representations* (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for*  $D_3 \supset C_2$  *and*  $D_3 \supset C_3$  *local subgroup chains* 

*Review:* 1<sup>st</sup>-Stage Spectral resolution of **D**<sub>3</sub> Center (Class algebra)



## *Review:* 1<sup>st</sup>-Stage Spectral resolution of **D**<sub>3</sub> Center (Class algebra)



Review: 1<sup>st</sup>-Stage Spectral resolution of **D**<sub>3</sub> Center (Class algebra)



Review: 1<sup>st</sup>-Stage Spectral resolution of **D**<sub>3</sub> Center (Class algebra)



Review: 1<sup>st</sup>-Stage Spectral resolution of **D**<sub>3</sub> Center (Class algebra)



 $s_k = G / \kappa_k$   $s_k$  is an integer count of  $D_3$  operators  $\mathbf{g}_s$  that commute with  $\mathbf{g}_k$ .

Review: Spectral resolution of  $D_3$  Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and  $D_3$ -invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic  $\ell$ -level or  $2\ell+1$ -multiplet splitting  $D_3$  examples for  $\ell=1-6$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ 

*3rd-stage spectral resolution to irreducible representations* (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for*  $D_3 \supset C_2$  *and*  $D_3 \supset C_3$  *local subgroup chains* 



 $s_k = G / \kappa_k$   $s_k$  is an integer count of  $D_3$  operators  $\mathbf{g}_s$  that commute with  $\mathbf{g}_k$ .



 $s_k = G / \kappa_k$   $s_k$  is an integer count of  $D_3$  operators  $\mathbf{g}_s$  that commute with  $\mathbf{g}_k$ .

These operators  $\mathbf{g}_s$  form the  $\mathbf{g}_k$ -self-symmetry group  $s_k$ . Each  $\mathbf{g}_s$  transforms  $\mathbf{g}_k$  into itself:  $\mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_k$ 



 $s_k = G / \kappa_k$   $s_k$  is an integer count of  $D_3$  operators  $\mathbf{g}_s$  that commute with  $\mathbf{g}_k$ .

These operators  $\mathbf{g}_s$  form the  $\mathbf{g}_k$ -self-symmetry group  $s_k$ . Each  $\mathbf{g}_s$  transforms  $\mathbf{g}_k$  into itself:  $\mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_k$ 

If an operator  $\mathbf{g}_t$  transforms  $\mathbf{g}_k$  into a different element  $\mathbf{g}'_k$  of its class:  $\mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$ , then so does  $\mathbf{g}_t \mathbf{g}_s$ . that is:  $\mathbf{g}_t \mathbf{g}_s \mathbf{g}_k (\mathbf{g}_t \mathbf{g}_s)^{-1} = \mathbf{g}_t \mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$ ,



 $s_{k} = {}^{\circ}G / {}^{\circ}\kappa_{k}$   $s_{k}$  is an integer count of  $D_{3}$  operators  $\mathbf{g}_{s}$  that commute with  $\mathbf{g}_{k}$ .

These operators  $\mathbf{g}_s$  form the  $\mathbf{g}_k$ -self-symmetry group  $s_k$ . Each  $\mathbf{g}_s$  transforms  $\mathbf{g}_k$  into itself:  $\mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_k$ 

If an operator  $\mathbf{g}_t$  transforms  $\mathbf{g}_k$  into a different element  $\mathbf{g}'_k$  of its class:  $\mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$ , then so does  $\mathbf{g}_t \mathbf{g}_s$ . that is:  $\mathbf{g}_t \mathbf{g}_s \mathbf{g}_k (\mathbf{g}_t \mathbf{g}_s)^{-1} = \mathbf{g}_t \mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} \mathbf{g}_t^{-1} = \mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$ , Subgroup  $s_k = \{\mathbf{g}_0 = \mathbf{1}, \mathbf{g}_1 = \mathbf{g}_k, \mathbf{g}_2, ...\}$  has  $\ell = ({}^\circ\kappa_k - 1)$  Left Cosets (one coset for each member of class  $\kappa_k$ ).



 $s_k = \circ G / \circ \kappa_k$   $s_k$ 

These operators  $\mathbf{g}_s$  form the  $\mathbf{g}_k$ -self-symmetry group  $s_k$ . Each  $\mathbf{g}_s$  transforms  $\mathbf{g}_k$  into itself:  $\mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_k$ 

If an operator  $\mathbf{g}_t$  transforms  $\mathbf{g}_k$  into a different element  $\mathbf{g}'_k$  of its class:  $\mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$ , then so does  $\mathbf{g}_t \mathbf{g}_s$ . that is:  $\mathbf{g}_t \mathbf{g}_s \mathbf{g}_k (\mathbf{g}_t \mathbf{g}_s)^{-1} = \mathbf{g}_t \mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} \mathbf{g}_t^{-1} = \mathbf{g}'_k \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$ , Subgroup  $s_k = \{\mathbf{g}_0 = \mathbf{1}, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \ldots\}$  has  $\ell = (\circ \kappa_k - 1)$  Left Cosets (one coset for each member of class  $\kappa_k$ ).  $\circ \kappa_k \begin{cases} \mathbf{g}_1 s_k = \mathbf{g}_1 \{\mathbf{g}_0 = 1, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \ldots\}, \\ \mathbf{g}_2 s_k = \mathbf{g}_2 \{\mathbf{g}_0 = 1, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \ldots\}, \\ \mathbf{g}_3 = \circ \kappa_k \cdot \circ s_k$  evenly into  $\circ \kappa_k$  subsets each of order  $\circ s_k$ .



 $\circ s_k = \circ G / \circ \kappa_k$  or  $s_k$  is an integer count of  $D_3$  operators  $\mathbf{g}_s$  that commute with  $\mathbf{g}_k$ .

These operators  $\mathbf{g}_s$  form the  $\mathbf{g}_k$ -self-symmetry group  $s_k$ . Each  $\mathbf{g}_s$  transforms  $\mathbf{g}_k$  into itself:  $\mathbf{g}_s \mathbf{g}_k \mathbf{g}_s^{-1} = \mathbf{g}_k$ 

If an operator  $\mathbf{g}_t$  transforms  $\mathbf{g}_k$  into a different element  $\mathbf{g}'_k$  of its class:  $\mathbf{g}_t \mathbf{g}_k \mathbf{g}_t^{-1} = \mathbf{g}'_k$ , then so does  $\mathbf{g}_t \mathbf{g}_s$ . Subgroup  $s_k = \{\mathbf{g}_0 = \mathbf{1}, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \dots\}$  has  $\ell = (\circ \kappa_k - 1)$  Left Cosets (one coset for each member of class  $\kappa_k$ ).  $\circ \kappa_k \begin{cases} \mathbf{g}_1 s_k = \mathbf{g}_1 \{\mathbf{g}_0 = 1, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \dots\}, \\ \mathbf{g}_2 s_k = \mathbf{g}_2 \{\mathbf{g}_0 = 1, \ \mathbf{g}_1 = \mathbf{g}_k, \ \mathbf{g}_2, \dots\}, \\ \vdots \\ \ddots \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \vdots \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \vdots \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \vdots \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \ \mathbf{g}_k, \dots\}, \\ \mathbf{g}_k = \mathbf{g}_k = \mathbf{g}_k \{\mathbf{g}_k = \mathbf{g}_k, \ \mathbf{g}_k,$  Review: Spectral resolution of  $D_3$  Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D<sub>3</sub>-invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic  $\ell$ -level or  $2\ell$ +1-multiplet splitting D<sub>3</sub> examples for  $\ell$ =1-6 Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ 

*3rd-stage spectral resolution to irreducible representations* (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for*  $D_3 \supset C_2$  *and*  $D_3 \supset C_3$  *local subgroup chains* 











![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_1.jpeg)

Review: Spectral resolution of D<sub>3</sub> Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D<sub>3</sub>-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: f<sup>(a)</sup>(D<sup>(\u03ex)</sup>(G)↓H) Atomic ℓ-level or 2ℓ+1-multiplet splitting D<sub>3</sub> examples for ℓ=1-6
Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ 

*3rd-stage spectral resolution to irreducible representations* (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for*  $D_3 \supset C_2$  *and*  $D_3 \supset C_3$  *local subgroup chains* 

Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces

![](_page_26_Figure_1.jpeg)

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

![](_page_27_Figure_1.jpeg)

Spectral resolution to *irreducible representations* (or "*irreps*") is foretold by *characters* or <u>traces</u>

Spectral resolution to *irreducible representations* (or "*irreps*") is foretold by *characters* or <u>traces</u>

| $R^{G}(1) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $R^G(\mathbf{r}) =$                                                                                                                                                                                                                                                                                                                                                                                                      | $R^G(\mathbf{r}^2) =$                                                                                            | $R^G(\mathbf{i}_1) =$                                                                                                                                                                                                           | $R^G(\mathbf{i}_2) =$                                                                                                                                                                                                                                                | $R^G(\mathbf{i}_3) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ 1 \end{array} \right) , \left( \begin{array}{cccccccc} \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & 1 & \cdot \end{array} \right) $ | $\left  \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                      | $ \left. \begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \cdot \\ 1 \\ \cdot \\ \cdot \\ \cdot \end{array} \right) \left  \begin{array}{c} \cdot \\ \cdot $ | $ \begin{array}{ccc} \cdot & \cdot \\ 1 & \cdot \\ \cdot & 1 \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{array} \right) , \left( \begin{array}{cccc} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot &$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <i>Min-eq. of all</i> <b>P</b> <i>S</i><br><i>Allowed</i> <b>P</b> <i>eigenv</i><br>$\mathbf{P}^{A_1} = (\kappa_1 + \kappa_2 + \kappa_3)/6 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $S : \mathbf{P}^2 = \mathbf{P} \text{ or } (\mathbf{P} - 1)$<br>values: 1 or 0<br>$(1 + \mathbf{r} + \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3)/6 =$                                                                                                                                                                                                                                                     | $\mathbf{P} = 0 \\ \Rightarrow R(\mathbf{P}^{A_{1}}) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ | 111111111111111111111111                                                                                                                                                                                                        | $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $ $/6  TraceR$                                                                                                                                                                                        | $(\mathbf{P}^{A_1}) = 1$ $(1 \cdot \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\mathbf{P}^{A_2} = (\mathbf{\kappa}_1 + \mathbf{\kappa}_2 - \mathbf{\kappa}_3)/6 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = ( <b>1</b> + <b>r</b> + <b>r</b> <sup>2</sup> - <b>i</b> <sub>1</sub> - <b>i</b> <sub>2</sub> - <b>i</b> <sub>3</sub> )/6=                                                                                                                                                                                                                                                                                             | $\Rightarrow R(\mathbf{P}^{A_2}) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                            | $\begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{pmatrix} / 6  Tracel$                                                                                                                                                                                            | $(P^{A_2}) = 1$ $(So: R(P^{A_2}) \text{ reduces to:} \begin{pmatrix} \cdots \cdots \cdots \cdots \\ \cdots \cdots \\ \cdots \cdots \cdots \\ \cdots $ |
| $\mathbf{P}^{E} = (2\kappa_{1} - \kappa_{2} + 0)/3 = (2\kappa_{1} $ | $(21 - r - r^2 + 0 + 0 + 0)/3 =$                                                                                                                                                                                                                                                                                                                                                                                         | $\Rightarrow R(\mathbf{P}^E) = \begin{pmatrix} 2 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                            | $ \begin{vmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1 \end{vmatrix} /3  Trace. $                                                                                                                                                                                            | $R(\mathbf{P}^{E}) = 4$ So: $R(\mathbf{P}^{E})$ reduces to: $\begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Review: Spectral resolution of D<sub>3</sub> Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D<sub>3</sub>-invariant character in tho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: f<sup>(a)</sup>(D<sup>(α)</sup>(G)↓H) Atomic ℓ-level or 2ℓ+1-multiplet splitting D<sub>3</sub> examples for ℓ=1-6 Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ 

*3rd-stage spectral resolution to irreducible representations* (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for*  $D_3 \supset C_2$  *and*  $D_3 \supset C_3$  *local subgroup chains* 

Spectral resolution to *irreducible representations* (or "*irreps*") is foretold by *characters* or <u>traces</u>

Spectral resolution to *irreducible representations* (or "*irreps*") is foretold by *characters* or <u>traces</u>

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

![](_page_33_Figure_1.jpeg)

Spectral resolution to *irreducible representations* (or "*irreps*") foretold by *characters* or *traces* 

![](_page_34_Figure_1.jpeg)

Review:Spectral resolution of  $D_3$  Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D<sub>3</sub>-invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic  $\ell$ -level or  $2\ell$ +1-multiplet splitting D<sub>3</sub> examples for  $\ell$ =1-6 Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ 

*3rd-stage spectral resolution to irreducible representations* (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for*  $D_3 \supset C_2$  *and*  $D_3 \supset C_3$  *local subgroup chains*
Spectral resolution to *irreducible representations* (or "*ireps*") foretold by *characters* or *traces* 

|            | $R^G($      | 1)= | = |   |   |   | ŀ   | R <sup>G</sup> (1 | r)= | = |   |   |     | ŀ | ₹ <sup>G</sup> ( | $\mathbf{r}^2$ | ) = |   |   |   |     | $R^G$ | ( <b>i</b> <sub>1</sub> ) | = |   |   |   |     | $R^G$ | ( <b>i</b> <sub>2</sub> | ) = |   |   |     | ŀ        | ₹ <sup>G</sup> ( | ( <b>i</b> <sub>3</sub> ) | = |   |   |     |
|------------|-------------|-----|---|---|---|---|-----|-------------------|-----|---|---|---|-----|---|------------------|----------------|-----|---|---|---|-----|-------|---------------------------|---|---|---|---|-----|-------|-------------------------|-----|---|---|-----|----------|------------------|---------------------------|---|---|---|-----|
| 1          | ( 1         | •   | • |   | • | • | ) ( | •                 |     | 1 | • |   | . ) | ( | •                | 1              |     |   |   | • | ) ( | •     | •                         |   | 1 |   | • | ) ( | •     |                         |     | • | 1 |     | )(       | •                | •                         |   |   | • | 1   |
| $r^1$      | .           | 1   | • | • | • | • |     | 1                 | •   | • | • | • | •   |   | •                | •              | 1   | • | • |   |     | •     | •                         | • | • | 1 | • |     | •     | •                       | •   | • | • | 1   |          | •                | •                         | • | 1 | • |     |
| $r^2$      | .           | •   | 1 | • | • | • |     | •                 | 1   | • | • | • | •   |   | 1                | •              | •   | • | • | • |     | •     | •                         | • | • | • | 1 |     | •     | •                       | •   | 1 | • | •   |          | •                | •                         | • | • | 1 |     |
| <b>i</b> 1 | .           | •   | • | 1 | • | • | ,   | •                 | •   | • | • | 1 | •   | " | •                | •              | •   | • | • | 1 |     | 1     | •                         | • | • | • | • | '   | •     | •                       | 1   | • | • | •   | <b>"</b> | •                | 1                         | • | • | • |     |
| <b>i</b> 2 | •           | •   | • | • | 1 | • |     | •                 | •   | • | • | • | 1   |   | •                | •              | •   | 1 | • | • |     | •     | 1                         | • | • | • | • |     | 1     | •                       | •   | • | • | •   |          | •                | •                         | 1 | • | • | •   |
| i3         | $( \cdot )$ | •   | • | • | • | 1 |     | •                 | •   | • | 1 | • | • ) |   | •                | •              | •   | • | 1 | • |     | •     | •                         | 1 | • | • | • |     | •     | 1                       | •   | • | • | • ) |          | 1                | •                         | • | • | • | • ) |

 ${R^G(\mathbf{g})}$  has lots of empty space and looks like it could be reduced.

But,  $\{R^G(\mathbf{g})\}$  cannot be diagonalized all-at-once. (Not all  $\mathbf{g}$  commute.)

Nevertheless,  $\{R^G(\mathbf{g})\}$  can be *block-diagonalized all-at-once* into *"ireps"*  $A_1$ ,  $A_2$ , and *two*  $E_1$ 's

 $R(\mathbf{g}) \text{ reduces to:} \\ \begin{pmatrix} D^{A_{1}}(\mathbf{g}) & \ddots & \ddots & \ddots & \ddots \\ & D^{A_{2}}(\mathbf{g}) & \ddots & \ddots & \ddots & \ddots \\ & & D^{A_{2}}(\mathbf{g}) & \ddots & \ddots & \ddots & \ddots \\ & & & D^{E}_{11} & D^{E}_{12} & \ddots & \ddots \\ & & & & D^{E}_{21} & D^{E}_{22} & \ddots & \ddots \\ & & & & & & D^{E}_{11} & D^{E}_{12} \\ & & & & & & & D^{E}_{11} & D^{E}_{12} \\ & & & & & & & & D^{E}_{21} & D^{E}_{22} \end{pmatrix}$ 

Spectral resolution to irreducible representations (or "ireps") foretold by characters or traces

 $\{R^G(\mathbf{g})\}$  has lots of empty space and looks like it could be reduced.

But,  $\{R^G(\mathbf{g})\}$  cannot be diagonalized all-at-once. (Not all  $\mathbf{g}$  commute.)

Nevertheless,  $\{R^G(\mathbf{g})\}$  can be *block-diagonalized* all-at-once into "ireps"  $A_1, A_2$ , and two  $E_1$ 's  $R(\mathbf{g})$  reduces to: We relate traces of  $\{R^G(\mathbf{g})\}$ : D<sup>l</sup>(g) {1} { $\mathbf{r}^1, \mathbf{r}^2$ } { $\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3$ } (**g**) =  $v^{A_2}(g)$  $\chi^{A_1}(\mathbf{g})$ 0  $TraceR^G(\mathbf{g}) = \begin{bmatrix} 6 & 0 \end{bmatrix}$  $D_{_{12}}^{E}$  $+\chi^{A_2}(\mathbf{g})$ -1 to  $D_3$  character table:  $D_{_{22}}^{E}$  $+2\chi^{E_1}(\mathbf{g})$ 2.2 -2.10  $\{1\} \{r^1, r^2\}$  $\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\}$ (**g**) = 0 6 0  $\chi^{A_1}(\mathbf{g}) =$  $\chi^{A_2}(\mathbf{g}) =$ -1  $\chi^{E_1}(\mathbf{g}) =$ 2 0

Spectral resolution to irreducible representations (or "ireps") foretold by characters or traces

 $\{R^G(\mathbf{g})\}$  has lots of empty space and looks like it could be reduced.

But,  $\{R^G(\mathbf{g})\}$  cannot be diagonalized all-at-once. (Not all  $\mathbf{g}$  commute.)

Nevertheless,  $\{R^G(\mathbf{g})\}$  can be *block-diagonalized* all-at-once into "ireps"  $A_1, A_2$ , and two  $E_1$ 's  $R(\mathbf{g})$  reduces to: We relate traces of  $\{R^G(\mathbf{g})\}$ :  $\frac{(\mathbf{g}) = \{\mathbf{1}\} \{\mathbf{r}^1, \mathbf{r}^2\} \{\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\}}{c \rho R^G(\mathbf{g}) = 6 \quad 0 \quad 0} \quad \chi^{A_1}(\mathbf{g})$  $D^{A_2}(\mathbf{g})$  $Trace R^G(\mathbf{g}) = \begin{bmatrix} 6 & 0 \end{bmatrix}$  $D_{12}^{E}$ to  $D_3$  character table:  $D_{_{22}}^{E}$  $+2\chi^{E_1}(\mathbf{g})$ 2·2 –2·1 0  $\{1\} \{r^1, r^2\}$  $\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\}$ (**g**) = 0  $\chi^{A_1}(\mathbf{g}) =$  $\chi^{A_2}(\mathbf{g}) =$  $\boldsymbol{\chi}^{E_1}(\mathbf{g}) = \begin{bmatrix} 2 \end{bmatrix}$ 

So { $R^{G}(\mathbf{g})$ } can be *block-diagonalized* into a *direct sum*  $\oplus$  of *"ireps"*  $R^{G}(\mathbf{g})=D^{A_{I}}(\mathbf{g})\oplus D^{A_{2}}(\mathbf{g})\oplus 2D^{E_{I}}(\mathbf{g})$ 

Review: Spectral resolution of  $D_3$  Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and  $D_3$ -invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic  $\ell$ -level or  $2\ell$ +1-multiplet splitting  $D_3$  examples for  $\ell$ =1-6 Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ 

 $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$  is reducible to:  $T_{reducer} D^{(\alpha)}(H) T^{\dagger}_{reducer} = f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \dots$ 



*The following derives formulae for integral*  $H \subset G$  *correlation coefficients*  $f^{(a)}(D^{(\alpha)}(G) \downarrow H)$ 

 $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$  is reducible to:  $T_{reducer} D^{(\alpha)}(H) T^{\dagger}_{reducer} = f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \dots$ 



The following derives formulae for integral  $H \subset G$  correlation coefficients  $f^{(b)}(D^{(\alpha)}(G) \downarrow H)$  $Trace D^{(\alpha)}(\mathbf{P}^{(b)}) = f^{(b)} \cdot \ell^{(b)}$  Since each  $d^{(b)}(\mathbf{P}^{(b)})$  is an  $\ell^{(b)}$ -by- $\ell^{(b)}$ unit matrix

 $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$  is reducible to:  $T_{reducer} D^{(\alpha)}(H) T^{\dagger}_{reducer} = f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \dots$ 



The following derives formulae for integral  $H \subseteq G$  correlation coefficients  $f^{(a)}(D^{(\alpha)}(G) \downarrow H)$   $TraceD^{(\alpha)}(\mathbf{P}^{(b)}) = f^{(b)} \cdot \ell^{(b)}$  Since each  $d^{(b)}(\mathbf{P}^{(b)})$  is an  $\ell^{(b)}$ -by- $\ell^{(b)}$ unit matrix  $f^{(b)} = \frac{1}{\ell^{(b)}} TraceD^{(\alpha)}(\mathbf{P}^{(b)})$ 

 $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$  is reducible to:  $T_{reducer} D^{(\alpha)}(H) T^{\dagger}_{reducer} = f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \dots$ 



The following derives formulae for integral  $H \subset G$  correlation coefficients  $f^{(a)}(D^{(\alpha)}(G) \downarrow H)$  $Trace D^{(\alpha)}(\mathbf{P}^{(b)}) = f^{(b)} \cdot \ell^{(b)}$  Since each  $d^{(b)}(\mathbf{P}^{(b)})$  is an  $\ell^{(b)}$ -by- $\ell^{(b)}u$ 

Class ortho-complete projector relations (p.24)

$$\mathbf{P}^{(\alpha)} = \frac{\ell^{(\alpha)}}{{}^{\circ}G} \sum_{k \in G} \chi_k^{(\alpha)*} \mathbf{\kappa}_k$$
$$\mathbf{P}^{(b)} = \frac{\ell^{(b)}}{{}^{\circ}H} \sum_{k \in H} \chi_k^{(b)*} \mathbf{\kappa}_k$$

$$TraceD^{(\alpha)}(\mathbf{P}^{(b)}) = f^{(b)} \cdot \ell^{(b)} \quad Since \ each \ d^{(b)}(\mathbf{P}^{(b)}) \ is \ an \ \ell^{(b)} - by - \ell^{(b)}unit \ matrix$$
$$f^{(b)} = \frac{1}{\ell^{(b)}} TraceD^{(\alpha)}(\mathbf{P}^{(b)}) = \frac{1}{\ell^{(b)}} \frac{\ell^{(b)}}{\circ H} \sum_{\substack{classes\\ \mathbf{\kappa}_{k} \in H}} \chi_{k}^{(b)*} TraceD^{(\alpha)}(\mathbf{\kappa}_{k})$$

 $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$  is reducible to:  $T_{reducer} D^{(\alpha)}(H) T^{\dagger}_{reducer} = f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \dots$ 



The following derives formulae for integral  $H \subset G$  correlation coefficients  $f^{(a)}(D^{(\alpha)}(G) \downarrow H)$ 

 $Trace D^{(\alpha)}(\mathbf{P}^{(b)}) = f^{(b)} \cdot \ell^{(b)} \quad Since \ each \ d^{(b)}(\mathbf{P}^{(b)}) \ is \ an \ \ell^{(b)} - by - \ell^{(b)} unit \ matrix$ 

Class ortho-complete projector relations (p.24)

$$\mathbf{P}^{(\alpha)} = \frac{\ell^{(\alpha)}}{{}^{\circ}G} \sum_{k \in G} \chi_k^{(\alpha)*} \mathbf{\kappa}_k$$
$$\mathbf{P}^{(b)} = \frac{\ell^{(b)}}{{}^{\circ}H} \sum_{k \in H} \chi_k^{(b)*} \mathbf{\kappa}_k$$

$$f^{(b)} = \frac{1}{\ell^{(b)}} Trace D^{(\alpha)}(\mathbf{P}^{(b)}) = \frac{1}{\ell^{(b)}} \frac{\ell^{(b)}}{{}^{\circ}H} \sum_{\substack{\text{classes}\\ \mathbf{\kappa}_{k} \in H}} \chi_{k}^{(b)*} Trace D^{(\alpha)}(\mathbf{\kappa}_{k})$$
$$\chi^{(\alpha)}(\mathbf{\kappa}_{k}) = {}^{\circ}\kappa_{k} \chi_{k}^{(\alpha)}$$
$$\chi^{(\alpha)}(\mathbf{\kappa}_{k}) = {}^{\circ}\kappa_{k} \chi_{k}^{(\alpha)}$$

Character relation for frequency  $f^{(b)}$  of  $d^{(b)}$  of subgroup H in  $D^{(\alpha)} \downarrow H$  of G

Review: Spectral resolution of  $D_3$  Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and  $D_3$ -invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic  $\ell$ -level or  $2\ell+1$ -multiplet splitting  $D_3$  examples for  $\ell=1-6$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ 

## Atomic $\ell$ -level or $2\ell + 1$ -multiplet splitting Formula from p.44 Example: $(\ell=4)$ $f^{(b)} = \frac{1}{^{\circ}D_3} \sum_{\substack{\text{classes}\\ \kappa_k \in D_3}} {^{\circ}\kappa_k \chi_k^{(b)*} \chi_k^{(\ell)}}$ Crystal-field splitting: $O(3) \supset D_3$ symmetry reduction $G_3 \text{ OR } R_3 \text{ SYMMETRY}$ Fig. 5.6.1 PSDS f(a) f(b) $f(b) = \frac{1}{^{\circ}D_3} \sum_{\substack{\text{classes}\\ \kappa_k \in D_3}} {^{\circ}\kappa_k \chi_k^{(b)*} \chi_k^{(\ell)}}$

28 + 1 DEGENERACY  $\ell = 4 \qquad \begin{array}{c} E_1 \\ A_2 \\ A_1 \\ E_1 \\ E_1 \\ A_1 \end{array}$ 

*ℓ*=0, *s*-singlet 2*ℓ*+1=1 *ℓ*=1, *p*-triplet 2*ℓ*+1=3



 $\ell = 0, s$ -singlet  $2\ell + 1 = 1$   $\ell = 1, p$ -triplet  $2\ell + 1 = 3$   $\ell = 2, d$ -quintet  $2\ell + 1 = 5$ 

 $E_1$ 

 $E_1$ 

 $E_1$  $A_1$ 



 $\ell = 0, s$ -singlet  $2\ell + 1 = 1$   $\ell = 1, p$ -triplet  $2\ell + 1 = 3$   $\ell = 2, d$ -quintet  $2\ell + 1 = 5$   $\ell = 3, f$ -septet  $2\ell + 1 = 7$ 

 $E_1$ 

 $E_1$  $A_1$ 



. . .









Review: Spectral resolution of  $D_3$  Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and  $D_3$ -invariant character ortho-completeness Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic  $\ell$ -level or  $2\ell+1$ -multiplet splitting  $D_3$  examples for  $\ell=1-6$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ 











| Atom                                       | ic l-                            | leve                                  | el o                                 | $r 2\ell + 1$                                                                                     | - <i>mı</i>          | ıltiple                                                                  | t splitti                                                                    | ng                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |                          |                                                                                     | <i>l</i> =                                                                         | =0, s-singlet                                                   |
|--------------------------------------------|----------------------------------|---------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| F<br>E                                     | Forma<br>xample                  | ula <sub>.</sub><br>: (l=             | <b>fro</b><br>4)                     | тр.44                                                                                             | $f^{(b)} =$          | $= \frac{1}{\circ D_3} \sum_{\substack{\text{classe}\\ \kappa_k \in D}}$ | $^{\circ}\kappa_{k}\chi_{k}^{(b)*}\chi_{k}$                                  | (ℓ)                                                                         | <i>l</i> = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | — I<br>— A<br>— E<br>— A | E <sub>1</sub><br>4 <sub>2</sub><br>4 <sub>1</sub><br>5 <sub>1</sub><br>4<br>1<br>1 | 24<br>l=<br>24<br>l=<br>24                                                         | ?+1=1<br>=1, p-triplet<br>?+1=3<br>=2, d-quintet                |
| O3 OR R3 S                                 |                                  | E SACY                                |                                      |                                                                                                   | (α)<br>(β)<br>γ)     | SV                                                                       | $D^{2}(\mathbf{R}) = \left( \right)$                                         | $D_{\varrho,\varrho}^{\varrho} (I)$ $D_{\varrho-1},$ $D_{-\varrho,\varrho}$ | $\begin{array}{c} \mathbf{R} \end{pmatrix}  \dots  D_{\varrho,-\varrho} \\ \varrho \\ \dots  D_{-\varrho,-\varrho} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) ↓m≃                                                          |                          | )]<br>D <sup>β</sup> (R)<br>D <sup>γ</sup> (R                                       | $\ell = 2\ell$ $\ell = 2\ell$ $\ell = 2\ell$ $\ell = \ell$                         | =3, f-septet<br>?+1=7<br>=4, g-nonet<br>?+1=9<br>=5, h-(11)-let |
| U(2) cl<br>from L<br>(or end               | haracter<br>lecture<br>l of this | rs<br>14.5<br>$\frac{1}{2}$<br>$2\pi$ | p.93:<br>.re)                        |                                                                                                   | λ                    | $\chi^{\ell}(\frac{2\pi}{n}) =$                                          | $\frac{\sin\frac{(2\ell+1)\pi}{n}}{\frac{\sin\frac{\pi}{n}}{n}}$             | π<br>i                                                                      | R(3) c<br>where<br>s l-orbita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hara<br>e: 2l<br>al din                                        | cter<br>+1<br>nensi      | on                                                                                  | 2 <i>l</i><br>                                                                     | ?+ <b>1</b> =11                                                 |
| $\chi^{\prime}(\Theta)$ $\ell = 0$ $1$ $2$ | $\Theta = 0$ $1$ $3$ $5$         | 3<br>1<br>0<br>-1                     | $     \pi     1     -1     1     1 $ | and                                                                                               | D3 ch                | $\chi^{\ell}(\Theta) =$                                                  | $\frac{\sin(\ell + \frac{1}{2})\Theta}{\sin\frac{\Theta}{2}}$<br>able from p | o. 24                                                                       | $f^{(\alpha)}(\ell)$ $\ell = 0$ $1$ $4: 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} f^{A_1} \\ 1 \\ \cdot \\ 1 \\ \end{array}$ | $f^{A_2}$ $\cdot$ 1      | $f^{E}$ $\cdot$ $1$ $2$                                                             | $ \begin{array}{c c}  & 1 \\  & 1 \\  & 0 \\  & 1 \\  & 1 \\  & 4 \\ \end{array} $ | $ \bigcirc A_2 \oplus E_1 $ $ \oplus 2E_1 $                     |
| 3<br>4<br>5<br>6<br>7                      | 7<br>9<br>11<br>13<br>15         | 1<br>0<br>-1<br>1<br>0                | -1<br>-1<br>1<br>-1<br>-1            | $(\mathbf{g}) =$ $\chi^{A_1}(\mathbf{g}) =$ $\chi^{A_2}(\mathbf{g}) =$ $\chi^{E_1}(\mathbf{g}) =$ | <pre>{1} 1 1 2</pre> | ${r^{1},r^{2}}$<br>1<br>1<br>-1                                          | $\{\mathbf{i}_{1},\mathbf{i}_{2},\mathbf{i}_{3}\}$<br>1<br>-1<br>0           | _                                                                           | $\frac{1}{2} \chi^{A_1}(\mathbf{g}) = \frac{1}{2} \chi^{A_2}(\mathbf{g}) = \frac{1}$ | 1<br>7<br>1<br>2                                               | 2<br>1<br>1<br>2         | $\begin{array}{c c} 2 \\ \hline 2 \\ \hline 1 \\ \hline -2 \end{array}$             | $\begin{vmatrix} 1A_I \\ 1A_I \end{vmatrix}$                                       | $\oplus 2E_1$<br>$\oplus 2A_2 \oplus 2E_1$                      |
|                                            |                                  |                                       |                                      |                                                                                                   |                      |                                                                          |                                                                              | _                                                                           | $2\chi^{E_1}(\mathbf{g}) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                              | -2                       | 0                                                                                   |                                                                                    |                                                                 |



| U(2) characters         |              |                  |       |                                         |             |                           |                                                      |               |                    |           |           |           |                                |
|-------------------------|--------------|------------------|-------|-----------------------------------------|-------------|---------------------------|------------------------------------------------------|---------------|--------------------|-----------|-----------|-----------|--------------------------------|
| from Lecture 14.5 p.93: |              |                  |       |                                         |             |                           |                                                      |               |                    |           |           |           |                                |
| (or end                 | l of this    | lectu            | ire)  |                                         |             |                           |                                                      |               |                    |           |           |           |                                |
| $\chi^\ell(\Theta)$     | $\Theta = 0$ | $\frac{2\pi}{3}$ | $\pi$ |                                         |             | $\chi^{\ell}(\Theta) = -$ | $\frac{\sin(\ell+\frac{1}{2})\Theta}{\Theta}$        |               | $f^{(lpha)}(\ell)$ | $f^{A_1}$ | $f^{A_2}$ | $f^{E_1}$ |                                |
| $\ell = 0$              | 1            | 1                | 1     |                                         |             |                           | $\sin\frac{\Theta}{2}$                               | -             | $\ell = 0$         | 1         | •         | •         | $1A_{I}$                       |
| 1                       | 3            | 0                | -1    |                                         |             |                           | 2                                                    |               | 1                  | •         | 1         | 1         | $0A_1 \oplus A_2 \oplus E_1$   |
| 2                       | 5            | -1               | 1     | and                                     | $D_3$ ch    | aracter ta                | able from p                                          | <b>b.</b> 24: | 2                  | 1         | •         | 2         | $1A_1 \oplus 2E_1$             |
| 3                       | 7            | 1                | 1     | ( <b>g</b> ) =                          | <b>{1</b> } | $\{{f r}^1, {f r}^2\}$    | $\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\}$ |               | 3                  | 1         | 2         | 2         | $1A_1 \oplus 2A_2 \oplus 2E_1$ |
| (4                      | 9            | 0                | 1)    | $\gamma^{A_1}(\mathbf{p}) =$            | 1           | 1                         | 1                                                    |               | 4                  | 1         | 2         | 3         |                                |
| 5                       | 11           | -1               | -1    |                                         | 1           | 1                         | 1                                                    |               |                    |           | _         |           | I                              |
| 6                       | 13           | 1                | 1     | $\chi^{n_2}(\mathbf{g}) =$              | 1           | 1                         | -1                                                   |               |                    |           |           |           |                                |
| 7                       | 15           | 0                | -1    | $\boldsymbol{\chi}^{E_1}(\mathbf{g}) =$ | 2           | -1                        | 0                                                    |               |                    |           |           |           |                                |

| F<br>E                | <b>Form</b><br>xample | ula<br>e: (l=-    | <i>fro</i><br>4)<br>1 <b>-</b> | <i>m p.44</i>                                                      | $f^{(b)} = -\frac{1}{c}$ | $\frac{1}{D_3} \sum_{\substack{\text{classes}\\ \mathbf{\kappa}_k \in D_3}} \frac{1}{1}$ | $^{\circ}\kappa_{k}\chi_{k}^{(b)*}\chi_{k}^{(b)}$      | (ℓ)<br>(−1) | <i>ℓ</i> = 4                           |                                                              | $ \begin{array}{c} E_{I} \\ A_{I} \\ A_{I} \\ E_{I} \\ E_{I} \\ A_{I} \\ \end{array} $ | 2                             | $\ell = 4, g-nonet$<br>$2\ell + 1 = 9$                                  |
|-----------------------|-----------------------|-------------------|--------------------------------|--------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|----------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------|
|                       | $f^{(L_1)}$           | " = <u>"</u>      | $D_3 class \kappa_k \in$       | $\sum_{\substack{k \in S \\ ED_3}} {}^{O} \kappa_k \chi_k^{(L_1)}$ | $\chi_k^{(\ell=4)}$      | $=\frac{1}{O_3}(O_3)$                                                                    | $\kappa_{0^{\circ}}\chi_{0^{\circ}}^{(L_1)}\chi_0^{(}$ | •=+) +      | $^{\circ}\kappa_{120^{\circ}}\chi_{1}$ | $\chi_{120^{\circ}}^{(L_1)^{\circ}}\chi_{1}^{(L_1)^{\circ}}$ | $\frac{2}{20^{\circ}}$ +                                                               | <sup>о</sup> К <sub>180</sub> | $ \times \chi_{180^\circ}^{(L_1)^\circ} \chi_{180^\circ}^{(\ell=4)} ) $ |
|                       |                       |                   |                                |                                                                    | =                        | $=\frac{1}{6}(1)$                                                                        | $1\cdot 2^*\cdot 9$                                    | +           | $2 \cdot -1$                           | * • 0                                                        | +                                                                                      | 3                             | $\cdot 0^* \cdot 1 )$                                                   |
|                       |                       |                   |                                |                                                                    |                          |                                                                                          | F                                                      |             | X                                      |                                                              |                                                                                        | 1                             |                                                                         |
| U(2) cl               | haracte               | rs                |                                |                                                                    |                          |                                                                                          |                                                        |             |                                        |                                                              |                                                                                        |                               |                                                                         |
| rom L                 | ecture                | 14.5 j<br>s lectr | p.93:<br>ire)                  |                                                                    |                          |                                                                                          |                                                        |             |                                        |                                                              |                                                                                        |                               |                                                                         |
| $\chi^{\ell}(\Theta)$ | $\Theta = 0$          | $\frac{2\pi}{3}$  | $\pi$                          |                                                                    | 2                        | $\ell^{\ell}(\Theta) = \frac{S}{2}$                                                      | $\sin(\ell + \frac{1}{2})\Theta$                       | 1           | $f^{(lpha)}(\ell)$                     | $f^{A_1}$                                                    | $f^{A_2}$                                                                              | $f^{E_1}$                     |                                                                         |
| $\ell = 0$            | 1                     | 1                 | 1                              |                                                                    | ~                        | , (0)                                                                                    | $\sin \frac{\Theta}{\Theta}$                           | _           | $\frac{\ell}{\ell} = 0$                | J<br>1                                                       | J<br>•                                                                                 | J<br>•                        | $1A_{I}$                                                                |
| 1                     | 3                     | 0                 | -1                             |                                                                    |                          | 7                                                                                        | 2                                                      |             | 1                                      | •                                                            | 1                                                                                      | 1                             | $0A_1 \oplus A_2 \oplus E_1$                                            |
| 2                     | 5                     | -1                | 1                              | and                                                                | D <sub>3</sub> cha       | racter ta                                                                                | ble from p                                             | . 24:       | 2                                      | 1                                                            | •                                                                                      | 2                             | $1A_1 \oplus 2E_1$                                                      |
| 3                     | 7                     | 1                 | _1                             | ( <b>g</b> ) =                                                     | {1}                      | $\{{f r}^1,{f r}^2\}$                                                                    | $\{\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\}$         |             | 3                                      | 1                                                            | 2                                                                                      | 2                             | $1A_1 \oplus 2A_2 \oplus 2E_1$                                          |
| (4                    | 9                     | 0                 | 1)                             | $\chi^{A_1}(\mathbf{g}) =$                                         | 1                        | 1                                                                                        | 1                                                      |             | 4                                      | 1                                                            | 2                                                                                      | 3                             | 1 - 2 - 1                                                               |
| 5                     | 11                    | -1                | -1                             | $\chi^{A_2}(\mathbf{q}) -$                                         |                          | 1                                                                                        | _1                                                     |             |                                        | I                                                            |                                                                                        |                               | 1                                                                       |
| 6                     | 13                    | 1                 | 1                              | $\lambda$ (g) =                                                    |                          | 1                                                                                        |                                                        |             |                                        |                                                              |                                                                                        |                               |                                                                         |
| 7                     | 15                    | 0                 | -1                             | $\chi^{\mathbb{Z}_1}(\mathbf{g}) =$                                | 2                        | -1                                                                                       | 0                                                      |             |                                        |                                                              |                                                                                        |                               |                                                                         |

| F<br>E:                      | <b>Orm</b><br>xample            | ula.<br>: (l=         | <b>fro</b> i<br>4)                                                 | m p.44                                                | $f^{(b)} = -$         | $\frac{1}{D_3} \sum_{\substack{\text{classes}\\ \mathbf{k}_1 \in D_2}} \mathbf{k}_1$ | $\mathbf{\tilde{\kappa}}_{k}\boldsymbol{\chi}_{k}^{(b)*}\boldsymbol{\chi}_{k}$ | (ℓ)           | <i>ℓ</i> = 4                 |                              |                      | 1<br>2<br>1<br>1   | ℓ=4, g-non<br>2ℓ+1=9                                                             | iet    |
|------------------------------|---------------------------------|-----------------------|--------------------------------------------------------------------|-------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------|------------------------------|------------------------------|----------------------|--------------------|----------------------------------------------------------------------------------|--------|
|                              | $f^{\scriptscriptstyle(E_1)}$   | ) = <u>°</u> ]        | $\frac{1}{D_3} \sum_{\substack{clas\\ \kappa_k \in \mathcal{K}}} $ | $\sum_{\substack{ses\\ D_3}} \kappa_k \chi_k^{(E_1)}$ | $^*\chi_k^{(\ell=4)}$ | $=\frac{1}{^{\circ}D_{3}}(^{\circ}$                                                  | $\mathcal{K}_{0^{\circ}}\chi_{0^{\circ}}^{(E_1)^{*}}\chi$                      | , (ℓ=4)<br>0° | + ° <i>K</i> <sub>120°</sub> | $\chi^{(E_1)^*}_{120^\circ}$ | $\chi_{120^{\circ}}$ | <sup>(2=4)</sup> + | $^{\circ}\kappa_{180^{\circ}}\chi_{180^{\circ}}^{(E_{1})^{*}}\chi_{180^{\circ}}$ | (ℓ=4)° |
|                              |                                 |                       |                                                                    |                                                       | $f^{(E_1)} =$         | $= \frac{1}{6} (1)$                                                                  | · 2* · 9                                                                       | +             | 2 · - 1                      | l* • 0                       | +                    | 3                  | $(\cdot 0^* \cdot 1)$                                                            |        |
| U(2) cl<br>from L<br>(or end | naracter<br>ecture<br>l of this | rs<br>14.5 j<br>lectu | p.93:<br>1re)                                                      |                                                       | 5                     |                                                                                      | 1                                                                              | /             |                              |                              |                      | /                  |                                                                                  |        |
| $\chi^\ell(\Theta)$          | $\Theta = 0$                    | $\frac{2\pi}{3}$      | $\pi$                                                              |                                                       | X                     | $\chi^{\ell}(\Theta) = \frac{S}{2}$                                                  | $\frac{in(\ell + \frac{1}{2})\Theta}{\Theta}$                                  | 7             | $f^{(lpha)}(\ell)$           | $f^{A_1}$                    | $f^{A_2}$            | $f^{E_1}$          |                                                                                  |        |
| $\ell = 0$                   | 1                               | 1                     | 1                                                                  |                                                       |                       |                                                                                      | $\sin\frac{\sigma}{2}$                                                         |               | $\ell = 0$                   | 1                            | •                    | •                  | $1A_{1}$                                                                         |        |
| 1                            | 3                               | 0                     | -1                                                                 |                                                       | D                     |                                                                                      |                                                                                | 24.           | 1                            | •                            | 1                    | 1                  | $0A_1 \oplus A_2 \oplus E_1$                                                     |        |
| 2                            | 5                               | -Y                    | I                                                                  | and                                                   | $D_3$ cha             | racter tai                                                                           | ble from p                                                                     | ). 24:        | 2                            | 1                            | •                    | 2                  | $1A_1 \oplus 2E_1$                                                               |        |
| 3                            | /                               | 1                     |                                                                    | ( <b>g</b> ) =                                        | {1}                   | $\{{\bf r}^{_1}, {\bf r}^{_2}\}$                                                     | $\{\mathbf{i}_{1},\mathbf{i}_{2},\mathbf{i}_{3}\}$                             |               | 3                            | 1                            | 2                    | 2                  | $1A_1 \oplus 2A_2 \oplus 2E_1$                                                   |        |
| 4                            | 9                               | 0                     |                                                                    | $\chi^{A_1}(\mathbf{g}) =$                            | 1                     | 1 /                                                                                  | 1                                                                              |               | 4                            | 2                            | 1                    | 3                  | $\oplus 3E_I$                                                                    |        |
| 5<br>6                       | 11                              | -1<br>1               | -1<br>1                                                            | $\chi^{A_2}(\mathbf{g}) =$                            | 1/                    | 1                                                                                    | -1                                                                             |               |                              |                              |                      |                    |                                                                                  |        |
| 7                            | 15                              | 0                     | -1                                                                 | $\boldsymbol{\chi}^{E_1}(\mathbf{g}) =$               | 2                     | -1                                                                                   | 0                                                                              |               |                              |                              |                      |                    |                                                                                  |        |

| F                   | Form         | ula <sub>.</sub> | froi                                                              | m p.44                              |                       | 1 _                                                                              |                                                   |             | $\ell = 4$                   |                               |                      | 1<br>2             | $\ell = 4, g-nonet$<br>$2\ell + 1 = 9$                                              | t   |
|---------------------|--------------|------------------|-------------------------------------------------------------------|-------------------------------------|-----------------------|----------------------------------------------------------------------------------|---------------------------------------------------|-------------|------------------------------|-------------------------------|----------------------|--------------------|-------------------------------------------------------------------------------------|-----|
| E.                  | xample       | : (ℓ=            | 4)                                                                |                                     | $f^{(b)} = -$         | $\frac{1}{^{\circ}D_3}\sum_{classes}$                                            | $^{\circ}\kappa_{k}\chi_{k}^{(b)*}\chi_{k}^{(b)}$ | (ℓ)         |                              |                               | = E $= E$            | 1<br>1<br>1        |                                                                                     |     |
|                     | $f^{(E_1)}$  | ) =              | $\frac{1}{D_3} \sum_{\substack{clas\\ \kappa_k \in \mathbf{K}}} $ | ${}^{\circ}\kappa_k \chi_k^{(E_1)}$ | $^*\chi_k^{(\ell=4)}$ | ${}^{k_{k} \ominus \mathcal{D}_{3}} = \frac{1}{{}^{\circ}\mathcal{D}_{3}} \Big($ | °κ <sub>0°</sub> χ <sup>(E1)*</sup> χ             | (ℓ=4)<br>0° | + ° <i>K</i> <sub>120°</sub> | $\chi^{(E_1)*}_{120^{\circ}}$ | $\chi_{120^{\circ}}$ | <sup>ℓ</sup> =4) + | $^{\circ}\kappa_{180^{\circ}}\chi_{180^{\circ}}^{(E_{1})*}\chi_{180^{\circ}}^{(U)}$ | ℓ=4 |
|                     |              |                  |                                                                   |                                     |                       | $= \frac{1}{6} \left( \frac{1}{6} \right)$                                       | $1\cdot 2^*\cdot 9$                               | +           | $2 \cdot -1$                 | * • 0                         | +                    | 3                  | $0 \cdot 0^* \cdot 1$ )                                                             |     |
|                     |              |                  |                                                                   |                                     | $f^{(E_1)}$           | = 3—                                                                             |                                                   |             |                              |                               |                      |                    |                                                                                     | ٦   |
| U(2) c              | haracte      | rs               |                                                                   |                                     | $f^{(A_2)}$ :         | $=\frac{1}{6}(1)$                                                                | $1 \cdot 1^* \cdot 9$                             | +           | $2 \cdot 1^* \cdot$          | 0                             | +                    | 3 · ·              | $-1^* \cdot 1) = 1$                                                                 |     |
| from L              | ecture       | 14.5             | p.93:                                                             |                                     |                       | 0                                                                                |                                                   |             |                              |                               |                      |                    |                                                                                     |     |
| (or end             | l of this    | lectu            | ire)                                                              |                                     |                       |                                                                                  |                                                   |             |                              |                               |                      |                    |                                                                                     |     |
| $\chi^\ell(\Theta)$ | $\Theta = 0$ | $\frac{2\pi}{3}$ | $\pi$                                                             |                                     |                       | $\chi^{\ell}(\Theta) = \frac{\xi}{2}$                                            | $\sin(\ell + \frac{1}{2})\Theta$                  |             | $f^{(lpha)}(\ell)$           | $f^{A_l}$                     | $f^{A_2}$            | $f^{E_1}$          |                                                                                     |     |
| $\ell = 0$          | 1            | 1                | 1                                                                 |                                     | /                     |                                                                                  | $\sin\frac{\Theta}{2}$                            |             | $\ell = 0$                   | 1                             | •                    | •                  | $1A_I$                                                                              |     |
| 1                   | 3            | 0                | -1                                                                |                                     |                       |                                                                                  | 2                                                 |             | 1                            | •                             | 1                    | 1                  | $0A_1 \oplus A_2 \oplus E_1$                                                        |     |
| 2                   | 5            | -1               | 1                                                                 | and                                 | $D_3$ cha             | iracter ta                                                                       | ble from p                                        | . 24:       | 2                            | 1                             | •                    | 2                  | $1A_I \oplus 2E_I$                                                                  |     |
| 3                   | 7            | 1                | _1                                                                | ( <b>g</b> ) =                      | {1}                   | $\{{f r}^1,{f r}^2\}$                                                            | $\{\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\}$    |             | 3                            | 1                             | 2                    | 2                  | $1A_1 \oplus 2A_2 \oplus 2E_1$                                                      |     |
| 4                   | 9            | 0                |                                                                   | $\chi^{A_1}(\mathbf{g}) =$          | 1/                    | 1                                                                                | 1                                                 |             | 4                            | 2                             | 1                    | 3                  | $\oplus 1A_2 \oplus 3E_I$                                                           |     |
| 5                   | 11           | -1               | -1                                                                | $\gamma^{A_2}(\mathbf{g}) =$        |                       | 1                                                                                | _1                                                |             | I                            |                               |                      |                    |                                                                                     |     |
| 6                   | 13           | 1                | 1                                                                 | $\lambda$ (b)                       |                       | 1                                                                                |                                                   |             |                              |                               |                      |                    |                                                                                     |     |
| 1                   | 15           | 0                | -1                                                                | $\chi^{-}(\mathbf{g}) =$            |                       | -1                                                                               | U                                                 |             |                              |                               |                      |                    |                                                                                     |     |

| F<br>E              | <b>Form</b><br>xample. | µla<br>: (ℓ=-        | <b>fro</b> i<br>4)                                                                     | m p.44                                                       | $f^{(b)} =$               | $\frac{1}{\circ D_3} \sum_{\substack{classes}{\kappa_1 \in D_2}}$ | $^{\circ}\kappa_{k}\chi_{k}^{(b)*}\chi_{k}$                           | (ℓ)         | <i>ℓ</i> = 4                 |                                |                                   | 1<br>2<br>1<br>1   | ℓ=4, g-non<br>2ℓ+1=9                                                             | net        |
|---------------------|------------------------|----------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|------------------------------|--------------------------------|-----------------------------------|--------------------|----------------------------------------------------------------------------------|------------|
|                     | $f^{(E_1)}$            | $=\frac{1}{\circ I}$ | $\frac{1}{D_3}\sum_{\substack{clas\\ \mathbf{\kappa}_k\in \mathbf{k}}}^{\mathbf{k}_k}$ | $\sum_{\substack{ses\\D_3}}^{\circ} \kappa_k \chi_k^{(E_1)}$ | $^{*}\chi_{k}^{(\ell=2)}$ | $^{(4)} = \frac{1}{^{\circ}D_3} ($                                | $\langle {}^{\circ}\kappa_{0^{\circ}}\chi_{0^{\circ}}^{(E_{1})*}\chi$ | (ℓ=4)<br>0° | + ° <i>K</i> <sub>120°</sub> | $\chi_{120^{\circ}}^{(E_1)^*}$ | $^{2}\chi_{120^{\circ}}^{(\ell)}$ | <sup>(2=4)</sup> + | $^{\circ}\kappa_{180^{\circ}}\chi_{180^{\circ}}^{(E_{1})^{*}}\chi_{180^{\circ}}$ | (ℓ=4<br>)° |
|                     |                        |                      |                                                                                        |                                                              | $\mathbf{r}(E_1)$         | $= \frac{1}{6} \left( \right)$                                    | $1 \cdot 2^* \cdot 9$                                                 | +           | <b>2</b> · − 1               | l* • 0                         | +                                 | 3                  | $\cdot 0^* \cdot 1$ )                                                            |            |
| U(2) cl             | haracter               | CS                   | 0.2                                                                                    |                                                              | $\int f^{(A_2)}$          | $= \frac{3}{6}$                                                   | 1 · 1 <sup>*</sup> · 9                                                | +           | $2 \cdot 1^{*} \cdot$        | 0                              | +                                 | 3 · ·              | $-1^* \cdot 1) = 1$                                                              |            |
| from L<br>(or end   | l of this              | 14.5 j<br>lectu      | p.93:<br>ire)                                                                          |                                                              | $f^{(A_1)}$               | $= \frac{1}{6} \Big($                                             | $1 \cdot 1^* \cdot 9$                                                 | +           | $2 \cdot 1^{*} \cdot$        | 0                              | +                                 | 3 •                | $1^* \cdot 1) = 2$                                                               |            |
| $\chi^\ell(\Theta)$ | $\Theta = 0$           | $\frac{2\pi}{3}$     | $\pi$                                                                                  |                                                              |                           | $\chi^{\ell}(\Theta) =$                                           | $\frac{\sin(\ell+\frac{1}{2})\Theta}{\Theta}$                         |             | $f^{(lpha)}(\ell)$           | $f^{A_1}$                      | $f^{A_2}$                         | $f^{E_1}$          |                                                                                  |            |
| $\ell = 0$          | 1                      | 1                    | 1                                                                                      |                                                              |                           |                                                                   | $\sin\frac{\Theta}{2}$                                                |             | $\ell = 0$                   | 1                              | •                                 | •                  | $1A_{I}$                                                                         |            |
| 1                   | 3                      | 0                    | -1                                                                                     |                                                              |                           |                                                                   | 2                                                                     |             | 1                            | •                              | 1                                 | 1                  | $0A_1 \oplus A_2 \oplus E_1$                                                     |            |
| 2                   | 5                      | -1                   | 1                                                                                      | and                                                          | $D_3$ ch                  | aracter ta                                                        | able from p                                                           | . 24:       | 2                            | 1                              | •                                 | 2                  | $1A_I \oplus 2E_I$                                                               |            |
| 3                   | 7                      | 1                    | 1                                                                                      | ( <b>g</b> ) =                                               | {1}                       | $\{\mathbf{r}^1, \mathbf{r}^2\}$                                  | $\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\}$                  |             | 3                            | 1                              | 2                                 | 2                  | $1A_1 \oplus 2A_2 \oplus 2E_1$                                                   |            |
| (4                  | 9                      | 0                    | )                                                                                      | $\chi^{A_1}(\mathbf{g}) =$                                   | 1                         | 1                                                                 | 1                                                                     |             | 4                            | 2                              | 1                                 | 3                  | $2A_1 \oplus 1A_2 \oplus 3E_1$                                                   |            |
| 5                   | 11                     | -1                   | -1                                                                                     | $\gamma^{A_2}(\mathbf{\sigma}) =$                            | 1                         | 1                                                                 | _1                                                                    |             |                              | I                              |                                   |                    | 1                                                                                |            |
| 6                   | 13                     | 1                    | 1                                                                                      | $\mathcal{L}$ (S) -                                          |                           | 1                                                                 |                                                                       |             |                              |                                |                                   |                    |                                                                                  |            |
| 7                   | 15                     | 0                    | -1                                                                                     | $\chi^{-1}(g) =$                                             | 2                         | -1                                                                | 0                                                                     |             |                              |                                |                                   |                    |                                                                                  |            |

| F                      | orm                            | ula              | froi                                                    | m p.44                                   | $f^{(b)} =$               | <u> </u>                                             | $^{\circ}\mathbf{K}_{I}\boldsymbol{\chi}_{I}^{(b)*}\boldsymbol{\chi}_{I}$  | (ℓ)                         | <i>l</i> = 4                |                                       | E E A A A A A A A A A A A A A A A A A A | 1<br>-2<br>-1       | ℓ=4, g-r<br>2ℓ+1=9                                             | ionet          |
|------------------------|--------------------------------|------------------|---------------------------------------------------------|------------------------------------------|---------------------------|------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------|-----------------------------|---------------------------------------|-----------------------------------------|---------------------|----------------------------------------------------------------|----------------|
| L.                     | латріе                         | · (1 ·           | <b>-</b> )                                              | U                                        | ,                         | $^{\circ}D_{3 \text{ classe}}$<br>$\kappa_{k} \in D$ | <i>K V K V K</i>                                                           |                             |                             | ·····                                 | E                                       | 1<br>1<br>1         |                                                                |                |
|                        | $f^{\scriptscriptstyle (E_1)}$ | <sup>)</sup> =   | $\frac{1}{D_3} \sum_{\substack{clas.\\ \kappa_k \in }}$ | ${}^{\circ}\kappa_{k}\chi_{k}^{(E_{1})}$ | $^{k}\chi_{k}^{(\ell=4)}$ | $= \frac{1}{^{\circ}D_3}$                            | $\left({}^{\circ}\kappa_{0^{\circ}}\chi_{0^{\circ}}^{(E_{1})*}\chi\right)$ | (ℓ=4                        | $+ {}^{\circ} \kappa_{120}$ | $\sim \chi_{120^{\circ}}^{(E_1)^{*}}$ | <sup>*</sup> χ <sub>120°</sub> (        | <sup>(l=4)</sup> +  | $^{\circ}\kappa_{180^{\circ}}\chi_{180^{\circ}}^{(E_{1})^{*}}$ | ( <i>l</i> =4) |
|                        |                                |                  |                                                         |                                          |                           | $= \frac{1}{6} \Big($                                | $1 \cdot 2^* \cdot 9$                                                      | +                           | 2 • - 2                     | $1^* \cdot 0$                         | +                                       | 3                   | $3 \cdot 0^* \cdot 1$                                          | )              |
|                        |                                |                  |                                                         |                                          | $f^{(E_1)}$               | = 3—                                                 |                                                                            |                             |                             |                                       |                                         |                     |                                                                |                |
| <i>U(2)</i> c          | haracte                        | rs               |                                                         |                                          | $f^{(A_2)}$               | $=\frac{1}{6}$ (                                     | $1 \cdot 1^* \cdot 9$                                                      | +                           | $2 \cdot 1^*$ ·             | 0                                     | +                                       | 3 •                 | $(-1^* \cdot 1) = 1$                                           |                |
| from L                 | ecture                         | 14.5             | p.93:                                                   |                                          | $f(A_1)$                  | 1 (                                                  | $1 \cdot 1^* \cdot 0$                                                      |                             | <b>0</b> . 1* .             | 0                                     |                                         | 2.                  | $1^*, 1)$ 2                                                    |                |
| (or end                | l of this                      | s lectu          | ıre)                                                    |                                          | J                         | $= \frac{1}{6}$                                      | 1.1.9                                                                      | +                           | 2 • 1 •                     | 0                                     | +                                       | 3.                  | $(1, 1) = 2^{-1}$                                              |                |
| $\chi^\ell(\Theta)$    | $\Theta = 0$                   | $\frac{2\pi}{3}$ | $\pi$                                                   |                                          |                           | $\gamma^{\ell}(\Theta) =$                            | $\underline{\sin(\ell + \frac{1}{2})\Theta}$                               |                             | $f^{(lpha)}(\ell)$          | $\int f^{\mathbf{A_{l}}}$             | $f^{A_2}$                               | $f^{E_1}$           |                                                                |                |
| $\ell = 0$             | 1                              | 1                | 1                                                       |                                          |                           |                                                      | $\sin \frac{\Theta}{\Theta}$                                               | -                           | $\ell = 0$                  | 1                                     | •                                       | •                   | $1A_1$                                                         |                |
| 1                      | 3                              | 0                | -1                                                      |                                          |                           |                                                      | 2                                                                          |                             | 1                           | •                                     | 1                                       | 1                   | $0A_1 \oplus A_2 \oplus E_1$                                   |                |
| 2                      | 5                              | -1               | 1                                                       | and                                      | $D_3$ ch                  | aracter t                                            | able from p                                                                | <b>b.</b> 24                | 2                           | 1                                     | •                                       | 2                   | $1A_I \oplus 2E_I$                                             |                |
| 3                      | 7                              | 1                | -1                                                      | ( <b>g</b> ) =                           | <b>{1</b> }               | $\{{f r}^1,{f r}^2\}$                                | $\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\}$                       |                             | 3                           | 1                                     | 2                                       | 2                   | $1A_1 \oplus 2A_2 \oplus 2E$                                   | ,              |
| 4                      | 9                              | 0                | 1                                                       | $\chi^{A_1}(\mathbf{g}) =$               | 1                         | 1                                                    | 1                                                                          |                             | 4                           | 2                                     | 1                                       | 3                   | $2A_1 \oplus 1A_2 \oplus 3E$                                   | 1              |
| 5                      | 11                             | -1               | 1                                                       | $\chi^{A_2}(\mathbf{q}) -$               | 1                         | 1                                                    | _1                                                                         |                             | 5                           | 1                                     | 2                                       | 4                   | $1A_1 \oplus 2A_2 \oplus 4E$                                   |                |
| 6                      | 13                             | 1                | 1)                                                      | $\mathcal{K}$ (g) -                      | 1                         | 1                                                    | -1                                                                         |                             | (6                          | 3                                     | 2                                       | 4                   | $3A_1 \oplus 2A_2 \oplus 4E$                                   | (1)            |
| 7                      | 15                             | 0                |                                                         | $\chi^{-1}(\mathbf{g}) =$                | 2                         | -1                                                   | 0                                                                          |                             | 7                           | 2                                     | 3                                       | 5                   | $2A_1 \oplus 3A_2 \oplus 5E$                                   |                |
| <i>Note</i> : $\ell$ = | 6 13                           | 1 1              | $  = A_{\rm I}$                                         | 1 1 1                                    | <b>⊕2</b>                 | $\mathbf{R}^{G}$ 12                                  | $0  0 = A_{I} \oplus$                                                      | )2[ <i>A</i> <sub>1</sub> ( | $\oplus A_2 \oplus 2E_1$ ]  | (                                     | $\ell = 6$ is                           | s 1 <sup>st</sup> r | e-cycling p                                                    | oint)          |





 $R(3) \supset D_3$ 

 $R^{G}(U(6))\downarrow D_{3} = D^{A_{I}}(\mathbf{g}) \oplus D^{A_{2}}(\mathbf{g}) \oplus 2D^{E_{I}}(\mathbf{g})$ 



*Crystal-field splitting:*  $O(3) \supset D_3$  *symmetry reduction and*  $D^{\dagger} \downarrow D_3$  *splitting* 

| $f^{(lpha)}(\ell)$ | $f^{A_1}$ | $f^{A_2}$ | $f^{E_1}$ |                                      |
|--------------------|-----------|-----------|-----------|--------------------------------------|
| $\ell = 0$         | 1         | •         | •         | $1A_1$                               |
| 1                  | •         | 1         | 1         | $0A_1 \oplus A_2 \oplus E_1$         |
| 2                  | 1         | •         | 2         | $1A_I \oplus 2E_I$                   |
| 3                  | 1         | 2         | 2         | $1A_1 \oplus 2A_2 \oplus 2E_1$       |
| 4                  | 2         | 1         | 3         | $2A_{I} \oplus 1A_{2} \oplus 3E_{I}$ |
| 5                  | 1         | 2         | 4         | $1A_1 \oplus 2A_2 \oplus 4E_1$       |
| 6                  | 3         | 2         | 4         | $3A_1 \oplus 2A_2 \oplus 4E_1$       |
| 7                  | 2         | 3         | 5         | $2A_1 \oplus 3A_2 \oplus 5E_1$       |

## $D_3$ character table:

| ( <b>g</b> ) =             | <b>{1}</b> | $\{{f r}^1,{f r}^2\}$ | $\{\mathbf{i}_1, \mathbf{i}_2, \mathbf{i}_3\}$ |
|----------------------------|------------|-----------------------|------------------------------------------------|
| $\chi^{A_1}(\mathbf{g}) =$ | 1          | 1                     | 1                                              |
| $\chi^{A_2}(\mathbf{g}) =$ | 1          | 1                     | -1                                             |
| $\chi^{E_1}(\mathbf{g}) =$ | 2          | -1                    | 0                                              |



Review: Spectral resolution of D<sub>3</sub> Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D<sub>3</sub>-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces Subgroup splitting and correlation frequency formula: f<sup>(a)</sup>(D<sup>(Q)</sup>(G)↓H) Atomic ℓ-level or 2ℓ+1-multiplet splitting D<sub>3</sub> examples for ℓ=1-6
Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ 



Review:Spectral resolution of  $D_3$  Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D<sub>3</sub>-invariant character ortho-completeness Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ Splitting classes

## Spectral reduction of non-commutative "Group-table Hamiltonian" $D_3$ Example2nd Step: Spectral resolution of Class Projector(s) of $D_3$ Correlate $D_3$ characters with its subgoup(s) $C_2(\mathbf{i})$


Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$ 

| <b>D</b> <sub>3</sub> κ = | =1 | <b>r</b> <sup>1</sup> + <b>r</b> <sup>2</sup> | <sup>2</sup> <b>i</b> <sub>1</sub> + | $-i_2 + i_3$ |
|---------------------------|----|-----------------------------------------------|--------------------------------------|--------------|
| $\mathbf{P}^{A_{l}} =$    | 1  | 1                                             | 1                                    | /6           |
| $\mathbf{P}^{A_2}$        | 1  | 1                                             | -1                                   | /6           |
| $\mathbf{P}^E =$          | 2  | -1                                            | 0                                    | /3           |

 $C_{2} \kappa = 1 i_{3}$  $p^{0_2} = \begin{bmatrix} 1 & 1 \\ 2 \end{bmatrix} / 2$  $p^{l_2} = \begin{bmatrix} 1 & -1 \\ 2 \end{bmatrix} / 2$ 

- - -

. . .

Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$ 

| <b>Д</b> <sub>3</sub> к=1 | <b>r</b> <sup>1</sup> + <b>r</b> | • <sup>2</sup> $\mathbf{i}_{1}$ + | - <b>i</b> <sub>2</sub> + <b>i</b> <sub>3</sub> |
|---------------------------|----------------------------------|-----------------------------------|-------------------------------------------------|
| $\mathbf{P}^{A_{l}}=1$    | 1                                | 1                                 | /6                                              |
| $\mathbf{P}^{A_2} = 1$    | 1                                | -1                                | /6                                              |
| $\mathbf{P}^E = 2$        | -1                               | 0                                 | /3                                              |



- - -

Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$ 

| <b>D</b> <sub>3</sub> к=1 | $\mathbf{r}^{l}$ +] | $r^2 i_1 +$ | <b>i</b> <sub>2</sub> + <b>i</b> <sub>3</sub> |
|---------------------------|---------------------|-------------|-----------------------------------------------|
| $\mathbf{P}^{A_l} = 1$    | 1                   | 1           | /6                                            |
| $\mathbf{P}^{A_2} = 1$    | 1                   | -1          | /6                                            |
| $\mathbf{P}^E = 2$        | -1                  | 0           | /3                                            |

 $D_3 \supset C_2$  Correlation table shows which products of class projector  $\mathbf{P}^{(\alpha)}$  with  $C_2$ -unit  $1 = p^{0_2} + p^{1_2}$  will make **IRREDUCIBLE**  $\mathbf{P}_{n,n}^{(\alpha)}$ 

Rank  $\rho(D_3)$ =4 implies there will be exactly 4 " $C_2$ -friendly" irep projectors  $P^{(\alpha)} I = P^{(\alpha)} (p^{0_2} + p^{1_2})$  $= P_{0_2 0_2}^{(\alpha)} + P_{1_2 1_2}^{(\alpha)}$ 



- - -

Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$ 

| <b>Д</b> <sub>3</sub> к=1 | <b>r</b> <sup>1</sup> + <b>r</b> | • <sup>2</sup> $\mathbf{i}_{1}$ + | - <b>i</b> <sub>2</sub> + <b>i</b> <sub>3</sub> |
|---------------------------|----------------------------------|-----------------------------------|-------------------------------------------------|
| $\mathbf{P}^{A_{l}}=1$    | 1                                | 1                                 | /6                                              |
| $\mathbf{P}^{A_{2}} = 1$  | 1                                | -1                                | /6                                              |
| $\mathbf{P}^E = 2$        | -1                               | 0                                 | /3                                              |

 $D_3 \supset C_2$  Correlation table shows which products of class projector  $\mathbf{P}^{(\alpha)}$  with  $C_2$ -unit  $1 = p^{0_2} + p^{1_2}$  will make **IRREDUCIBLE**  $\mathbf{P}_{n,n}^{(\alpha)}$ Rank  $\rho(D_3)=4$  implies

there will be exactly 4 " $C_2$ -friendly" irep projectors  $\mathbf{P}^{(\alpha)}\mathbf{1} = \mathbf{P}^{(\alpha)}(\mathbf{p}^{0_2} + \mathbf{p}^{1_2})$  $= \mathbf{P}_{0_2 0_2}^{(\alpha)} + \mathbf{P}_{1_2 1_2}^{(\alpha)}$ 



 $\mathbf{P}^E = |$ 

- - -

 $\mathbf{P}_{0_{2}0_{2}}^{E} \mathbf{P}_{1_{2}1}^{E}$ 

. . .

Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$ 

| <b>D</b> <sub>3</sub> к=1 | <b>r</b> <sup>1</sup> + <b>r</b> | • <sup>2</sup> $\mathbf{i}_{l}$ + | - <b>i</b> <sub>2</sub> + <b>i</b> <sub>3</sub> |
|---------------------------|----------------------------------|-----------------------------------|-------------------------------------------------|
| $\mathbf{P}^{A_{l}}=1$    | 1                                | 1                                 | /6                                              |
| $\mathbf{P}^{A_{2}} = 1$  | 1                                | -1                                | /6                                              |
| $\mathbf{P}^E = 2$        | -1                               | 0                                 | /3                                              |

 $D_3 \supset C_2$  Correlation table shows which products of class projector  $\mathbf{P}^{(\alpha)}$  with  $C_2$ -unit  $1 = p^{0_2} + p^{1_2}$  will make **IRREDUCIBLE**  $\mathbf{P}_{n,n}^{(\alpha)}$ 

Rank  $\rho(D_3)$ =4 implies there will be exactly 4 " $C_2$ -friendly" irep projectors  $P^{(\alpha)} \mathbf{1} = P^{(\alpha)} (p^{\theta_2} + p^{1_2})$ 

 $= \mathbf{P}_{0_{2}0_{2}}^{(\alpha)} + \mathbf{P}_{1_{2}1_{2}}^{(\alpha)}$ 



 $C_{2} \kappa = 1 i_{3}$ 



 $\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} p^{\theta_{2}} = \mathbf{P}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6$   $\mathbf{P}^{A_{2}} = \mathbf{P}^{A_{2}} p^{I_{2}} = \mathbf{P}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} - \mathbf{i}_{3})/6$   $\mathbf{P}^{E}_{\mathbf{0}_{2}\mathbf{0}_{2}} = \mathbf{P}^{E} p^{\theta_{2}} = \mathbf{P}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6$  $\mathbf{P}^{E}_{\mathbf{1}_{2}\mathbf{1}_{2}} = \mathbf{P}^{E} p^{I_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6$  . . . .

Review: Spectral resolution of  $D_3$  Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D<sub>3</sub>-invariant character ortho-completeness Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ Splitting classes

*3rd-stage spectral resolution to irreducible representations* (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for*  $D_3 \supset C_2$  *and*  $D_3 \supset C_3$  *local subgroup chains* 

2nd-StageSpectral reduction of non-commutative "Group-table Hamiltonian" $D_3$  Example2nd Step: Spectral resolution of Class Projector(s) of  $D_3$ Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$ 



2nd-StageSpectral reduction of non-commutative "Group-table Hamiltonian" $D_3$  Example2nd Step: Spectral resolution of Class Projector(s) of  $D_3$ Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$  or ELSE  $C_3(\mathbf{r})$  ( $C_2$  and  $C_3$  don't commute)



 $D_3$  Example 2nd Step: Spectral resolution of Class Projector(s) of  $D_3$ 

Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$  or ELSE  $C_3(\mathbf{r})$  ( $C_2$  and  $C_3$  don't commute)

| <b>D</b> <sub>3</sub> к=1 | <b>r</b> <sup><i>l</i></sup> + <b>r</b> | -2 <b>i</b> <sub>1</sub> + | $-i_2 + i_3$ |
|---------------------------|-----------------------------------------|----------------------------|--------------|
| $\mathbf{P}^{A_{l}}=1$    | 1                                       | 1                          | /6           |
| $\mathbf{P}^{A_{2}} = 1$  | 1                                       | -1                         | /6           |
| $\mathbf{P}^E = 2$        | -1                                      | 0                          | /3           |

 $D_3 \supset C_2$  Correlation table shows which products of class projector  $\mathbf{P}^{(\alpha)}$  with  $C_2$ -unit  $1 = p^{0_2} + p^{1_2}$  will make **IRREDUCIBLE**  $\mathbf{P}_{n,n}^{(\alpha)}$ 

Rank  $\rho(D_3)$ =4 implies there will be exactly 4 " $C_2$ -friendly" irep projectors  $P^{(\alpha)} I = P^{(\alpha)} (p^{0_2} + p^{1_2})$  $= P_{0_2 0_2}^{(\alpha)} + P_{1_2 1_2}^{(\alpha)}$ 

 $\mathbf{P}^{A_{l}} = \mathbf{P}^{A_{l}} \mathbf{p}^{0_{2}} = \mathbf{P}^{A_{l}} (1+\mathbf{i}_{3})/2 = (1+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3})/6$   $\mathbf{P}^{A_{2}} = \mathbf{P}^{A_{2}} \mathbf{p}^{l_{2}} = \mathbf{P}^{A_{2}} (1-\mathbf{i}_{3})/2 = (1+\mathbf{r}^{l}+\mathbf{r}^{2}-\mathbf{i}_{l}-\mathbf{i}_{2}-\mathbf{i}_{3})/6$   $\mathbf{P}^{E}_{0_{2}0_{2}} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} (1+\mathbf{i}_{3})/2 = (21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{l}-\mathbf{i}_{2}+2\mathbf{i}_{3})/6$  $\mathbf{P}^{E}_{1_{2}1_{2}} = \mathbf{P}^{E} \mathbf{p}^{l_{2}} = \mathbf{P}^{E} (1-\mathbf{i}_{3})/2 = (21-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}-2\mathbf{i}_{3})/6$ 

| $C_2 \kappa =$<br>$p^{0_2} =$<br>$p^{l_2} =$                                                                        | $= 1  \mathbf{i}_{3}$<br>= 1 1 /2<br>= 1 -1 /2                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $     \begin{array}{l}       D_{3} \supset C \\       n^{A_{1}} = \\       n^{A_{2}} = \\       F     \end{array} $ | $   \begin{bmatrix}     2 & 0_2 & 1_2 \\     1 & \cdot \\     & \cdot & 1 \\     1 & 1   \end{bmatrix} $                                                                                                        |
| n  <br>1                                                                                                            | $p^{0_2} + p^{1_2}$                                                                                                                                                                                             |
| $\mathbf{P}^{A_{l}} = \mathbf{P}^{A_{2}} = \mathbf{P}^{E} =$                                                        | $     \begin{array}{c}             \mathbf{P}^{A_{1}} \cdot \\             \cdot  \mathbf{P}^{A_{2}}_{1_{2}1_{2}} \\             \mathbf{P}^{E}_{0_{2}0_{2}}  \mathbf{P}^{E}_{1_{2}1_{2}}     \end{array}     $ |
| $\mathbf{r}^2 + \mathbf{i}_1 + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_1$                                          | $(\mathbf{i}_{2}+\mathbf{i}_{3})/6$<br>$(\mathbf{i}_{2}-\mathbf{i}_{3})/6$                                                                                                                                      |

Let:  $\varepsilon = e^{-2\pi i/3}$   $c_{3} \kappa = 1$   $r^{1}$   $r^{2}$   $p^{0_{3}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \varepsilon & \varepsilon^{*} \end{bmatrix} / 3$  $p^{I_{3}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \varepsilon & \varepsilon^{*} \end{bmatrix} / 3$ 

$$p^{23} = 2 \epsilon^* \epsilon /3$$

 $D_3$  Example 2nd Step: Spectral resolution of Class Projector(s) of  $D_3$ 

Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$  or ELSE  $C_3(\mathbf{r})$  ( $C_2$  and  $C_3$  don't commute)

| <b>Д</b> <sub>3</sub> к=1 | $\mathbf{r}^{l} + \mathbf{r}^{l}$ | <sup>2</sup> <b>i</b> <sub>1</sub> + | $-i_2+i_3$ |
|---------------------------|-----------------------------------|--------------------------------------|------------|
| $\mathbf{P}^{A_{l}}=1$    | 1                                 | 1                                    | /6         |
| $\mathbf{P}^{A_2} = 1$    | 1                                 | -1                                   | /6         |
| $\mathbf{P}^E = 2$        | -1                                | 0                                    | /3         |

 $D_3 \supset C_2$  Correlation table shows which products of class projector  $\mathbf{P}^{(\alpha)}$  with  $C_{2}$ -unit 1 =  $p^{0_{2}} + p^{1_{2}}$  will  $n^E =$ make **IRREDUCIBLE**  $P_{n,n}^{(\alpha)}$ 

Rank  $\rho(D_3)=4$  implies there will be exactly 4 " $C_2$ -friendly" irep projectors  $\mathbf{P}^{(\alpha)}\mathbf{I} = \mathbf{P}^{(\alpha)}(\mathbf{p}^{0_2} + \mathbf{p}^{1_2})$ 

 $= \mathbf{P}_{0_{2}0_{2}}^{(\alpha)} + \mathbf{P}_{1_{2}1_{2}}^{(\alpha)}$ 

 $\mathbf{P}^{A_{l}} = \mathbf{P}^{A_{l}} \mathbf{p}^{\theta_{2}} = \mathbf{P}^{A_{l}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{l} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6$  $\mathbf{P}^{A_2} = \mathbf{P}^{A_2} \mathbf{p}^{I_2} = \mathbf{P}^{A_2} (\mathbf{1} \cdot \mathbf{i}_3) / 2 = (\mathbf{1} + \mathbf{r}^1 + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3) / 6$  $\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} (1 + \mathbf{i}_{2})/2 = (21 - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6$  $\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \mathbf{p}^{I_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{I} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6$ 

| $C_2 \kappa = 1$    | i <sub>3</sub> |  |
|---------------------|----------------|--|
| $p^{\theta_2} = 1$  | 1 /2           |  |
| $p^{l_2} = 1$       | -1 /2          |  |
| $D_2 \supset C_2 0$ | $-1_{2}$       |  |

 $n^{A_l} =$ 

 $n^{A_2} =$ 

Same for Correlation table:  $D_2 \supset C_2$ ,  $0_2$ ,  $1_2$ ,  $2_2$ 

Let:

 $\epsilon = e^{-2\pi i/3}$ 

| 3 |
|---|
| • |
| • |
| 1 |
|   |

 $C_3 \kappa = 1 r^2 r^2$ 

/3

/3

1  $\varepsilon \varepsilon^*/3$ 

1 ε\* ε

 $\mathbf{D}^{\theta_{3}}=$ 

 $\mathbf{D}^{I_3} =$ 

 $p^{23} =$ 



 $D_3$  Example 2nd Step: Spectral resolution of Class Projector(s) of  $D_3$ 

Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$  or ELSE  $C_3(\mathbf{r})$  ( $C_2$  and  $C_3$  don't commute)

| <b>Д</b> <sub>3</sub> к=1 | $\mathbf{r}^{1}+\mathbf{r}^{2}$ | ? <b>i</b> _1- | + <b>i</b> <sub>2</sub> + <b>i</b> <sub>3</sub> |
|---------------------------|---------------------------------|----------------|-------------------------------------------------|
| $\mathbf{P}^{A_{l}}=1$    | 1                               | 1              | /6                                              |
| $\mathbf{P}^{A_2} = 1$    | 1                               | -1             | /6                                              |
| $\mathbf{P}^E = 2$        | -1                              | 0              | /3                                              |

 $D_3 \supset C_2$  Correlation table shows which products of class projector  $\mathbf{P}^{(\alpha)}$  with  $C_2$ -unit  $1 = p^{0_2} + p^{1_2}$  will make **IRREDUCIBLE**  $\mathbf{P}_{n,n}^{(\alpha)}$ 

Rank  $\rho(D_3)$ =4 implies there will be exactly 4 " $C_2$ -friendly" irep projectors  $P^{(\alpha)} \mathbf{1} = P^{(\alpha)} (p^{0_2} + p^{1_2})$  $= P_{0_2 0_2}^{(\alpha)} + P_{1_2 1_2}^{(\alpha)}$ 

 $\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} p^{0_{2}} = \mathbf{P}^{A_{1}} (1+\mathbf{i}_{3})/2 = (1+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3})/6$   $\mathbf{P}^{A_{2}} = \mathbf{P}^{A_{2}} p^{I_{2}} = \mathbf{P}^{A_{2}} (1-\mathbf{i}_{3})/2 = (1+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3})/6$   $\mathbf{P}^{E}_{0_{2}0_{2}} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (1+\mathbf{i}_{3})/2 = (21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2\mathbf{i}_{3})/6$  $\mathbf{P}^{E}_{1_{2}1_{2}} = \mathbf{P}^{E} p^{I_{2}} = \mathbf{P}^{E} (1-\mathbf{i}_{3})/2 = (21-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2\mathbf{i}_{3})/6$ 

| $D_3 \supset C_2 \ 0_2 \ 1_2$               |
|---------------------------------------------|
| $n^{A_l} = 1 \cdot$                         |
| $n^{A_2} - \cdot 1$                         |
| $n^E = \begin{bmatrix} 1 & 1 \end{bmatrix}$ |

 $C_{\kappa} \kappa = 1$  i

$$\begin{array}{l} 1 = p^{0_2} + p^{1_2} \\
 P^{A_1} = P^{A_1} & \cdot \\
 P^{A_2} = P^{A_2} \\
 P^E = P^E_{0_2 0_2} P^E_{1_2 1_2}
 \end{array}$$

**Same for** Correlation table:  $D_2 \supset C_2 = 0_2 = 1_2 = 2$ 

Let:

 $\epsilon = e^{-2\pi i/3}$ 

| $J_3 \cup C_3$ | <b>3 U</b> <sub>3</sub> | <sup>1</sup> 3 | $2_3$ |
|----------------|-------------------------|----------------|-------|
| $i^{A_l} =$    | 1                       | •              | •     |
| $i^{A_2} =$    | 1                       | •              | •     |
| $i^E =$        | •                       | 1              | 1     |
|                |                         |                |       |

 $C_3 \kappa = 1 r^{1} r^{2}$ 

1 1

1  $\varepsilon \varepsilon^*/3$ 

1  $\varepsilon^* \varepsilon$  /3

1 /3

 $p^{\theta_3} =$ 

 $\mathbf{D}^{I_{3}} =$ 

 $p^{23} =$ 

Rank  $\rho(D_3)=4$  implies there will be exactly 4 " $C_3$ -friendly" irreducible projectors  $\mathbf{P}^{(\alpha)}\mathbf{1} = \mathbf{P}^{(\alpha)}(\mathbf{p}^{0_3} + \mathbf{p}^{1_3} + \mathbf{p}^{2_3})$  $= \mathbf{P}^{(\alpha)}_{0_2 0_2} + \mathbf{P}^{(\alpha)}_{1_3 1_3} + \mathbf{P}^{(\alpha)}_{2_3 2_3}$ 

. \_ .

 $D_3$  Example 2nd Step: Spectral resolution of Class Projector(s) of  $D_3$ 

Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$  or ELSE  $C_3(\mathbf{r})$  ( $C_2$  and  $C_3$  don't commute)

| <b>Д</b> <sub>3</sub> к=1 | <b>r</b> <sup><i>l</i></sup> + <b>r</b> | $\mathbf{i}_{l}$ | $-i_2+i_3$ |
|---------------------------|-----------------------------------------|------------------|------------|
| $\mathbf{P}^{A_{l}}=1$    | 1                                       | 1                | /6         |
| $\mathbf{P}^{A_{2}}=1$    | 1                                       | -1               | /6         |
| $\mathbf{P}^E = 2$        | -1                                      | 0                | /3         |

 $D_3 \supset C_2$  Correlation table shows which products of class projector  $\mathbf{P}^{(\alpha)}$  with  $C_2$ -unit  $1 = p^{0_2} + p^{1_2}$  will make **IRREDUCIBLE**  $\mathbf{P}_{n,n}^{(\alpha)}$ 

Rank  $\rho(D_3)$ =4 implies there will be exactly 4 " $C_2$ -friendly" irep projectors  $P^{(\alpha)} I = P^{(\alpha)} (p^{0_2} + p^{1_2})$  $= P_{0_2 0_2}^{(\alpha)} + P_{1_2 1_2}^{(\alpha)}$ 

 $\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} p^{0_{2}} = \mathbf{P}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6$   $\mathbf{P}^{A_{2}} = \mathbf{P}^{A_{2}} p^{I_{2}} = \mathbf{P}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} - \mathbf{i}_{3})/6$   $\mathbf{P}^{E}_{\mathbf{0}_{2}\mathbf{0}_{2}} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6$  $\mathbf{P}^{E}_{\mathbf{1}_{2}\mathbf{1}_{2}} = \mathbf{P}^{E} p^{I_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6$ 

| <b>С</b> 2 к = | 1 | <b>i</b> <sub>3</sub> |    |
|----------------|---|-----------------------|----|
| $p^{0_2} =$    | 1 | 1                     | /2 |
| $p^{l_2} =$    | 1 | -1                    | /2 |

| $D_3 \supset C$ | $C_{2} 0_{2}$ | 12 |
|-----------------|---------------|----|
| $n^{A_l} =$     | 1             | •  |
| $n^{A_2} =$     | •             | 1  |
| $n^E =$         | 1             | 1  |

$$\begin{array}{l} \mathbf{1} = \mathbf{p}^{0_2} + \mathbf{p}^{1_2} \\ \mathbf{P}^{A_1} = \mathbf{P}^{A_1} \cdot \\ \mathbf{P}^{A_2} = \cdot \mathbf{P}^{A_2}_{0_2 0_2} \cdot \\ \mathbf{P}^{E} = \mathbf{P}^{E}_{0_2 0_2} \mathbf{P}^{E}_{1_2 1_2} \end{array}$$

Same for Correlation table:  $D_3 \supset C_3 \ 0_3 \ 1_3 \ 2_3$  $n^{A_l} = 1 \ \cdot \ \cdot$ 

Let:

 $\epsilon = e^{-2\pi i/3}$ 

| Rank $\rho(D_3)=4$ implies                                                                               |
|----------------------------------------------------------------------------------------------------------|
| there will be exactly 4                                                                                  |
| $C_3$ -friendly" irreducible projectors                                                                  |
| $\mathbf{P}^{(\alpha)}1 = \mathbf{P}^{(\alpha)}(\mathbf{p}^{0_3} + \mathbf{p}^{1_3} + \mathbf{p}^{2_3})$ |
| $= \mathbf{P}_{0_2 0_2}^{(\alpha)} + \mathbf{P}_{1_3 1_3}^{(\alpha)} + \mathbf{P}_{2_3 2_3}^{(\alpha)}$  |



 $C_3 \kappa = 1 r^{1} r^{2}$ 

1 /3

1  $\varepsilon \varepsilon^*/3$ 

1  $\varepsilon^* \varepsilon$  /3

 $D^{\theta_3} =$ 

 $\mathbf{D}^{I_{3}} =$ 

 $p^{23} =$ 

 $n^{A_2} =$ 

 $n^E = |$ 

 $D_3$  Example 2nd Step: Spectral resolution of Class Projector(s) of  $D_3$ 

Correlate  $D_3$  characters with its subgoup(s)  $C_2(\mathbf{i})$  or ELSE  $C_3(\mathbf{r})$  ( $C_2$  and  $C_3$  don't commute)

| <b>Д</b> <sub>3</sub> к=1 | <b>r</b> <sup><i>l</i></sup> + <b>r</b> | $\mathbf{i}_{1}^{2}$ | $-i_2+i_3$ |
|---------------------------|-----------------------------------------|----------------------|------------|
| $\mathbf{P}^{A_{l}}=1$    | 1                                       | 1                    | /6         |
| $\mathbf{P}^{A_2} = 1$    | 1                                       | -1                   | /6         |
| $\mathbf{P}^E = 2$        | -1                                      | 0                    | /3         |

 $D_3 \supset C_2$  Correlation table shows which products of class projector  $\mathbf{P}^{(\alpha)}$  with  $C_2$ -unit  $1 = p^{0_2} + p^{1_2}$  will make **IRREDUCIBLE**  $\mathbf{P}_{n,n}^{(\alpha)}$ 

Rank  $\rho(D_3)$ =4 implies there will be exactly 4 " $C_2$ -friendly" irep projectors  $P^{(\alpha)} \mathbf{1} = P^{(\alpha)} (p^{0_2} + p^{1_2})$  $= P_{0_2 0_2}^{(\alpha)} + P_{1_2 1_2}^{(\alpha)}$ 

 $\mathbf{P}^{A_{1}} = \mathbf{P}^{A_{1}} \mathbf{p}^{0_{2}} = \mathbf{P}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3})/6$   $\mathbf{P}^{A_{2}} = \mathbf{P}^{A_{2}} \mathbf{p}^{1_{2}} = \mathbf{P}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{1} + \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} - \mathbf{i}_{3})/6$   $\mathbf{P}^{E}_{\mathbf{0}_{2}\mathbf{0}_{2}} = \mathbf{P}^{E} \mathbf{p}^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} - \mathbf{i}_{1} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6$   $\mathbf{P}^{E}_{\mathbf{1}_{2}\mathbf{1}_{2}} = \mathbf{P}^{E} \mathbf{p}^{1_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{1} - \mathbf{r}^{2} + \mathbf{i}_{1} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6$ 

| <b>С</b> 2 к =  | = <b>1</b> i | i <sub>3</sub> |
|-----------------|--------------|----------------|
| $p^{0_2} =$     | 1            | 1 /2           |
| $p^{l_2} =$     | 1 -          | 1 /2           |
| _               |              |                |
| $D_3 \supset C$ | $C_2 0_2$    | 12             |
| $n^{A_l} =$     | 1            | •              |
| $n^{A_2} =$     | •            | 1              |
| $n^E =$         | 1            | 1              |
|                 |              |                |

$$\begin{array}{c}
 1 = p^{0_2} + p^{1_2} \\
 \mathbf{P}^{A_1} = \mathbf{P}^{A_1} \cdot \\
 \mathbf{P}^{A_2} = \mathbf{P}^{A_2} \cdot \mathbf{P}^{A_2}_{1_2 1_2} \\
 \mathbf{P}^E = \mathbf{P}^E_{0_2 0_2} \mathbf{P}^E_{1_2 1_2}
 \end{array}$$

**Same for** Correlation table:  $D_3 \supset C_3 \cup 0_3 \cup 1_3$ 

Let:

 $\epsilon = e^{-2\pi i/3}$ 

| $D_3 \cup C_3$ | <b>3 0</b> <sub>3</sub> | 13 | $2_3$ |
|----------------|-------------------------|----|-------|
| $n^{A_1} =$    | 1                       | •  | •     |
| $n^{A_2} =$    | 1                       | •  | •     |
| $n^E =$        | •                       | 1  | 1     |
|                |                         |    |       |

 $C_3 \kappa = 1 r^{1} r^{2}$ 

/3

|/3|

1  $\varepsilon \varepsilon^*/3$ 

3

**\***3

 $p^{\theta_{3=}}$ 

 $D^{I_{3}} =$ 

 $p^{23} =$ 

Rank  $\rho(D_3)=4$  implies there will be exactly 4 " $C_3$ -friendly" irreducible projectors  $\mathbf{P}^{(\alpha)}\mathbf{1} = \mathbf{P}^{(\alpha)}(\mathbf{p}^{0_3} + \mathbf{p}^{1_3} + \mathbf{p}^{2_3})$  $= \mathbf{P}^{(\alpha)}_{0_2 0_2} + \mathbf{P}^{(\alpha)}_{1_3 1_3} + \mathbf{P}^{(\alpha)}_{2_3 2_3}$ 



 $P_{0_{3}0_{3}}^{A_{1}} = P^{A_{1}}p^{0_{3}} = P^{A_{1}}(1 + r^{1} + r^{2})/3 = (1 + r^{1} + r^{2} + i_{1} + i_{2} + i_{3})/6$   $P_{0_{3}0_{3}}^{A_{2}} = P^{A_{2}}p^{0_{3}} = P^{A_{2}}(1 + r^{1} + r^{2})/3 = (1 + r^{1} + r^{2} - i_{1} - i_{2} - i_{3})/6$   $P_{1_{3}1_{3}}^{E} = P^{E}p^{1_{3}} = P^{E}(1 + \epsilon r^{1} + \epsilon r^{2})/3 = (1 + \epsilon r^{1} + \epsilon r^{2})/3$   $P_{2_{3}2_{3}}^{E} = P^{E}p^{2_{3}} = P^{E}(1 + \epsilon r^{1} + \epsilon r^{2})/3 = (1 + \epsilon r^{1} + \epsilon r^{2})/3$ 

Review: Spectral resolution of  $D_3$  Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and D<sub>3</sub>-invariant character ortho-completeness Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Atomic  $\ell$ -level or  $2\ell+1$ -multiplet splitting D<sub>3</sub> examples for  $\ell=1-6$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local D<sub>3</sub>
 Splitting class projectors using subgroup chains D<sub>3</sub>⊃C<sub>2</sub> and D<sub>3</sub>⊃C<sub>3</sub>
 Splitting classes

*3rd-stage spectral resolution to irreducible representations* (*ireps*) *and Hamiltonian eigensolutions Tunneling modes and spectra for*  $D_3 \supset C_2$  *and*  $D_3 \supset C_3$  *local subgroup chains* 



#### Compare ahead to Lect.17 p. 12



Review: Spectral resolution of  $D_3$  Center (Class algebra) Group theory of equivalence transformations and classes Lagrange theorems All-commuting class projectors and  $D_3$ -invariant character ortho-completeness Subgroup splitting and correlation frequency formula:  $f^{(a)}(D^{(\alpha)}(G)\downarrow H)$ Group invariant numbers: Centrum, Rank, and Order

2nd-Stage spectral decompositions of global/local  $D_3$ Splitting class projectors using subgroup chains  $D_3 \supset C_2$  and  $D_3 \supset C_3$ Splitting classes

3rd-stage spectral resolution to *irreducible representations* (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for  $D_3 \supset C_2$  and  $D_3 \supset C_3$  local subgroup chains



3rd and Final Step:

Spectral resolution of ALL 6 of D<sub>3</sub> :



3rd and Final Step:

Spectral resolution of ALL 6 of D<sub>3</sub> :

The old 'g-equals-1-times-g-times-1' Trick

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot \mathbf{g} \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$$

Compare ahead to Lect.17 p.14



Spectral resolution of ALL 6 of D3 : The old 'g-equals-1-times-g-times-1' Trick  $g = 1 \cdot g \cdot 1 = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot g \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$   $g = 1 \cdot g \cdot 1 = \mathbf{P}_{x,x}^{A_1} \cdot g \cdot \mathbf{P}_{x,x}^{A_1} + 0 + 0 + 0$   $+ 0 + \mathbf{P}_{y,y}^{A_2} \cdot g \cdot \mathbf{P}_{y,y}^{A_2} + 0 + 0$   $+ 0 + \mathbf{P}_{x,x}^{E} \cdot g \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{x,x}^{E} \cdot g \cdot \mathbf{P}_{y,y}^{E}$   $+ 0 + 0 + \mathbf{P}_{x,y}^{E} \cdot g \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot g \cdot \mathbf{P}_{y,y}^{E}$ 

 $\mathbf{P}^{\mu}_{mn}$  g-expansion in Lect. 17 p. 35-51

*Compare ahead to Lect.* 17 *p.* 14-18



The old 'g-equals-1-times-g-times-1' Trick

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot \mathbf{g} \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = \mathbf{P}_{x,x}^{A_1} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{A_1} + 0 + 0 + 0$$

$$+ 0 + \mathbf{P}_{y,y}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{A_2} + 0 + 0$$

$$+ 0 + \mathbf{P}_{y,y}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{A_2} + 0 + 0$$

$$+ 0 + 0 + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ \mathbf{P}_{y,y}^{E} \cdot \mathbf{P}_{y,y}^{E} \cdot \mathbf{P}_{y,y}^{E} \cdot \mathbf{P}_{y,y}^{E} \cdot \mathbf{P}_{y,y}^{E} \cdot \mathbf{P}_{y,y}^{E} \cdot \mathbf{P}_{y,y}^{E}$$

$$+ 0 + \mathbf{P}_{y,y}^{E} \cdot \mathbf{P}$$

$$\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{x,y}^{E}(\mathbf{g})\mathbf{P}_{x,y}^{E}$$

$$\mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{y,y}^{E}(\mathbf{g})\mathbf{P}_{y,y}^{E}$$

$$\mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{y,y}^{E}(\mathbf{g})\mathbf{P}_{y,y}^{E}$$

$$Order \circ (D_{3}) =$$

where:

 $\mathbf{P}_{x,x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{A_{1}} = D^{A_{1}}(\mathbf{g})\mathbf{P}_{x,x}^{A_{1}}$  $\mathbf{P}_{y,y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{A_{2}} = D^{A_{2}}(\mathbf{g})\mathbf{P}_{y,y}^{A_{2}}$  $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E}$  $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E}$ 



The old 'g-equals-1-times-g-times-1' Trick

$$g = 1 \cdot g \cdot 1 = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot g \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$$

$$g = 1 \cdot g \cdot 1 = D^{A_1}(g) \mathbf{P}_{x,x}^{A_1} + 0 + 0 + 0$$

$$+ 0 + D^{A_2}(g) \mathbf{P}_{y,y}^{A_2} + 0 + 0$$

$$+ 0 + 0 + D^{E_1}(g) \mathbf{P}_{x,x}^{E} + D^{E_1}(g) \mathbf{P}_{x,y}^{E} + D^{E_1}(g) \mathbf{P}_{x,y}^{E}$$

$$(g) \mathbf{P}_{x,x}^{A_1} + 0 + 0 + D^{E_1}(g) \mathbf{P}_{y,x}^{E} + D^{E_1}(g) \mathbf{P}_{x,y}^{E}$$

Need to Define

$$\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{x,y}^{E}(\mathbf{g})\mathbf{P}_{x,y}^{E}$$

$$\mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{y,y}^{E}(\mathbf{g})\mathbf{P}_{y,y}^{E}$$

$$\mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{y,y}^{E}(\mathbf{g})\mathbf{P}_{y,y}^{E}$$

$$Order \circ (D_{3}) = 6$$

where:

 $\mathbf{P}_{x,x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{A_{1}} = D^{A_{1}}(\mathbf{g})\mathbf{P}_{x,x}^{A_{1}}$  $\mathbf{P}_{y,y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{A_{2}} = D^{A_{2}}(\mathbf{g})\mathbf{P}_{y,y}^{A_{2}}$  $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E}$  $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E}$ 



So a and Final Step: Spectral resolution of ALL 6 of D3 : The old 'g-equals-1-times-g-times-1' Trick  $g = 1 \cdot g \cdot 1 = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot g \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$   $g = 1 \cdot g \cdot 1 = D^{A_1}(g)\mathbf{P}_{x,x}^{A_1} + D^{A_2}(g)\mathbf{P}_{y,y}^{A_2} + D_{x,x}^{E}(g)\mathbf{P}_{x,x}^{E} + D_{x,y}^{E}(g)\mathbf{P}_{x,y}^{E}$   $+ D_{y,x}^{E}(g)\mathbf{P}_{y,x}^{E} + D_{y,y}^{E}(g)\mathbf{P}_{y,y}^{E}$ 

where:

 $\mathbf{P}_{x,x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{A_{1}} = D^{A_{1}}(\mathbf{g})\mathbf{P}_{x,x}^{A_{1}}$   $\mathbf{P}_{x,x}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{A_{2}} = D^{A_{2}}(\mathbf{g})\mathbf{P}_{y,y}^{A_{2}}$   $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E}$   $\mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{x,x}^{E}(\mathbf{g})\mathbf{P}_{x,x}^{E}$   $\mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} = D_{y,x}^{E}(\mathbf{g})\mathbf{P}_{y,x}^{E}$   $\mathbf{P}_{y,y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E} = D_{y,y}^{E}(\mathbf{g})\mathbf{P}_{y,y}^{E}$ 

Need to Define <u>6</u> Irreducible Projectors  $\mathbf{P}_{m,n}^{(\alpha)}$ *Order*  $^{\circ}(D_3) = 6$ 



Compare ahead to Lect.17 p.18-21



*Compare ahead to Lect. 17 p. 18-21* 







 $\mathbf{P}_{mn}^{(\mu)} = \frac{l_{oC}^{(\mu)}}{\Sigma_{g}} D_{mn}^{(\mu)*} \mathbf{g}$ 

#### Spectral Efficiency: Same D(a)<sub>mn</sub> projectors give a lot!





#### When there is no there, there...





See p. 12-45 of Lecture 18

MolVibes Web Simulation 3 Atom with C3v symmetry

MolVibes Web Application: http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html





See p. 12-45 of Lecture 18

MolVibes Web Simulation 3 Atom with C3v symmetry  $\begin{array}{l} Polygonal \ geometry \ of \ U(2) \supset C_N \ character \ spectral \ function \\ Trace-character \ \chi^j(\Theta) \ of \ U(2) \ rotation \ by \ C_n \ angle \ \Theta = 2\pi/n \\ is \ an \ (\ell^j = 2j+1) \ term \ sum \ of \ e^{-im\Theta} \ over \ allowed \ m-quanta \ m = \{-j, \ -j+1, \dots, \ j-1, \ j\}. \\ \chi^{1/2}(\Theta) = trace D^{1/2}(\Theta) = trace \left(\begin{array}{c} e^{-i\theta/2} & \cdot \\ \cdot & e^{+i\theta/2} \end{array}\right) \qquad \chi^1(\Theta) = trace D^1(\Theta) = trace \left(\begin{array}{c} e^{-i\theta} & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & e^{-i\theta} \end{array}\right) \\ (vector-j=1) \qquad (vector-j=1) \end{array}$ 

Excerpts from Lecture 13 page 135-146 (also Lecture 14.5 p. 93-104)

Polygonal geometry of  $U(2) \supset C_N$  character spectral function *Trace-character*  $\chi^{j}(\Theta)$  of U(2) rotation by  $C_n$  angle  $\Theta = 2\pi/n$ is an  $(\ell^{j}=2j+1)$ -term sum of  $e^{-im\Theta}$  over allowed *m*-quanta  $m=\{-j, -j+1, ..., j-1, j\}$ .  $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ & \cdot & e^{+i\theta/2} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & & (vector-j=1) \end{pmatrix} \qquad (vector-j=1)$  $\chi^{j}(\Theta)$  involves a sum of  $2\cos(m \Theta/2)$  for  $m \ge 0$  up to m=j.  $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$  $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$  $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$ 

Excerpts from Lecture 13 page 135-146

Polygonal geometry of  $U(2) \supset C_N$  character spectral function *Trace-character*  $\chi^{j}(\Theta)$  of U(2) rotation by  $C_n$  angle  $\Theta = 2\pi/n$ is an  $(\ell^{j}=2j+1)$ -term sum of  $e^{-im\Theta}$  over allowed *m*-quanta  $m=\{-j, -j+1, ..., j-1, j\}$ .  $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ & \cdot & e^{+i\theta/2} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & & (vector-j=1) \end{pmatrix} \qquad (vector-j=1)$  $\chi^{j}(\Theta)$  involves a sum of  $2\cos(m \Theta/2)$  for  $m \ge 0$  up to m=j.  $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$  $\chi^{0}(\Theta) = e^{-i\Theta \cdot 0} = 1$ (scalar-j=0)  $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$  $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1)  $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$  $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2)

#### Excerpts from Lecture 13 page 135-146
Polygonal geometry of  $U(2) \supset C_N$  character spectral function *Trace-character*  $\chi^{j}(\Theta)$  of U(2) rotation by  $C_n$  angle  $\Theta = 2\pi/n$ is an  $(\ell^{j}=2j+1)$ -term sum of  $e^{-im\Theta}$  over allowed *m*-quanta  $m=\{-j, -j+1, ..., j-1, j\}$ .  $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ & \cdot & e^{+i\theta/2} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & & (vector-j=1) \end{pmatrix} \qquad (vector-j=1)$  $\chi^{j}(\Theta)$  involves a sum of  $2\cos(m \Theta/2)$  for  $m \ge 0$  up to m=j.  $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$  $\chi^{0}(\Theta) = e^{-i\Theta \cdot 0} = 1$ (scalar-j=0)  $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$  $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1)  $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$  $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$  is a geometric series with ratio  $e^{i\Theta}$  between each successive term.  $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta j} + e^{-i\Theta j} + e^{-i\Theta$  $\chi^{j}(\Theta)e^{-i\Theta} = e^{-i\Theta(j+1)} + e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} +$ Subtracting gives:  $e^{+i\Theta j}$  $\chi^{j}(\Theta)(1-e^{-i\Theta}) = -e^{-i\Theta(j+1)}$ +

## Excerpts from Lecture 13 page 135-146

Polygonal geometry of  $U(2) \supset C_N$  character spectral function *Trace-character*  $\chi^{j}(\Theta)$  of U(2) rotation by  $C_n$  angle  $\Theta = 2\pi/n$ is an  $(\ell^{j}=2j+1)$ -term sum of  $e^{-im\Theta}$  over allowed *m*-quanta  $m=\{-j, -j+1, ..., j-1, j\}$ .  $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ & \cdot & e^{+i\theta/2} \end{pmatrix}$   $\chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & & \cdot & e^{-i\theta} \end{pmatrix}$  $\chi^{j}(\Theta)$  involves a sum of  $2\cos(m \Theta/2)$  for  $m \ge 0$  up to m=j.  $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2}$  (spinor-j=1/2)  $\chi^0(\Theta) = e^{-i\Theta \cdot 0} \qquad = 1$ (scalar-j=0)  $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$  $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1)  $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$  $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$  is a geometric series with ratio  $e^{i\Theta}$  between each successive term.  $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta(j-1)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} + e^{ \chi^{j}(\Theta)e^{-i\Theta} = e^{-i\Theta(j+1)} + e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} +$ Subtracting/dividing gives  $\chi^{j}(\Theta)$  formula.  $\chi^{j}(\Theta) = \frac{e^{+i\Theta j} - e^{-i\Theta(j+1)}}{1 - e^{-i\Theta}} = \frac{e^{+i\Theta(j+\frac{1}{2})} - e^{-i\Theta(j+\frac{1}{2})}}{e^{+i\frac{\Theta}{2}} - e^{-i\frac{\Theta}{2}}} = \frac{\sin\Theta(j+\frac{1}{2})}{\sin\frac{\Theta}{2}}$ 

Excerpts from Lecture 13 page 135-146

Polygonal geometry of  $U(2) \supset C_N$  character spectral function *Trace-character*  $\chi^{j}(\Theta)$  of U(2) rotation by  $C_n$  angle  $\Theta = 2\pi/n$ is an  $(\ell^j = 2j+1)$ -term sum of e<sup>-im $\Theta$ </sup> over allowed *m*-quanta  $m = \{-j, -j+1, ..., j-1, j\}$ .  $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \ddots \\ & e^{+i\theta/2} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \ddots \\ & \ddots & e^{+i\theta/2} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & & \ddots & e^{-i\theta} \end{pmatrix}$  $\chi^{j}(\Theta)$  involves a sum of  $2\cos(m \Theta/2)$  for  $m \ge 0$  up to m=j.  $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$  $\chi^0(\Theta) = e^{-i\Theta \cdot 0}$ = 1 (scalar-j=0) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$  $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1)  $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$  $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos 2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$  is a geometric series with ratio  $e^{i\Theta}$  between each successive term.  $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta j} + e^{-i\Theta j} + e^{-i\Theta$  $\chi^{j}(\Theta)e^{-i\Theta} = e^{-i\Theta(j+1)} + e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} +$ Subtracting/dividing gives  $\chi^{j}(\Theta)$  formula.  $\chi^{j}(\Theta) - e^{-i\Theta(j+1)} - e^{-i$  $\chi^{j}(\Theta) = \frac{e}{1 - e^{-i\Theta}} = \frac{1}{e^{-i\Theta}} = \frac{1}{e^{-i\Theta}}$  $\chi^{j}(\frac{2\pi}{n}) = \frac{\sin\frac{\pi}{n}(2j+1)}{\sin\frac{\pi}{n}} = \frac{\sin\frac{\pi\ell^{j}}{n}}{\sin\frac{\pi}{n}} \qquad \begin{array}{l} Character Spectral Function \\ where: \ \ell^{j} = 2j+1 \\ is \ U(2) \ irrep \ dimension \end{array}$ Character Spectral Function For  $C_n$  angle  $\Theta = 2\pi/n$  this  $\chi^j$  has a lot of geometric significance.

## Polygonal geometry of $U(2) \supset C_N$ character spectral function

