Group Theory in Quantum Mechanics
 Lecture $16_{(3.14 .17)}$

Spectral decomposition of groups $D_{3} \sim C_{3 v}$

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 5 Ch. 15)
(PSDS-ch.3) D3 Algebra

Atomic ℓ-level or $2 \ell+1$-multiplet splitting

$$
D_{3} \text { examples for } \ell=1-6
$$

Group invariant numbers: Centrum, Rank, and Order
$2^{\text {nd_Stage spectral decompositions of global/local } D_{3}, ~}$
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
Splitting classes
$3^{r d}$-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

> Review: Spectral resolution of D_{3} Center (Class algebra)
> Group theory of equivalence transformations and classes Lagrange theorems
> All-commuting class projectors and D_{3}-invariant character ortho-completeness
> Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
> Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
> Atomic l-level or $2 \ell+1$-multiplet splitting
> D_{3} examples for $\ell=1-6$
> Group invariant numbers: Centrum, Rank, and Order
> 2nd-Stage spectral decompositions of global/local D_{3} Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
> 3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Review: $1^{\text {st }}$-Stage Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

Review: $1^{\text {st }}$-Stage Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

Review: $1^{\text {st }}$-Stage Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k} \quad$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \kappa_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{\circ} S_{k}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
\boldsymbol{D}_{3} Algebra
Another
Maximal Set
Operators
P_{11}
P_{12}
$\mathbf{P E}_{21}$
${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$

Review: $1^{\text {st }}$-Stage Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3 rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Review: $1^{\text {st}}$-Stage Spectral resolution of \mathbf{D}_{3} Center (Lagrange subgroup/class theorems)

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.

Review: $1^{\text {st}}$-Stage Spectral resolution of \mathbf{D}_{3} Center (Lagrange subgroup/class theorems)

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group s_{k}. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$

Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{K}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k} \quad$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \kappa_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{\circ}{ }_{S_{k}}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
D_{3} Algebra

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group sk. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{t} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$. that is: $\mathbf{g}_{t} \mathbf{g}_{s} \mathbf{g}_{k}\left(\mathbf{g}_{t} \mathbf{g}_{s}\right)^{-1}=\mathbf{g}_{t} g_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}_{t} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$,

Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{K}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k} \quad$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \kappa_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{\circ}{ }_{S_{k}}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
D_{3} Algebra

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }_{S_{k}}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ}{ }_{S k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group $s k$. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime} k$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$.
Subgroup $s_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\ell=\left({ }^{\circ} \kappa_{k}-1\right)$ Left Coset (one coset for each member of class $\left.\kappa_{k}\right)$.

Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{K}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \boldsymbol{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k} \quad$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \boldsymbol{\kappa}_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{\circ}{ }_{S}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
D_{3} Algebra

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ} S_{r}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ} S_{k}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }^{\circ} S_{k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group s_{k}. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{\boldsymbol{t}} g_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} \mathbf{g}_{s}$.
Subgroup $S_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\ell=\left({ }^{\circ} \boldsymbol{\kappa}_{k}-1\right)$ Left Coset (one coset for each member of class $\left.\boldsymbol{\kappa}_{k}\right)$.

They will divide the group ${ }^{S_{k}}$ of order ${ }^{0} D_{3}={ }^{\circ} \kappa_{k} \cdot{ }^{\circ} S_{k}$ evenly into ${ }^{\circ} \kappa_{k}$ subsets each of order ${ }^{\circ}{ }_{S k}$.

Class-sum κ_{k} invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class $\kappa_{k}: \quad\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2,{ }^{\circ} \kappa_{i}=3\right)$
$\mathbf{g}_{t} \mathbf{\kappa}_{k} \mathbf{g}_{t}^{-1}=\boldsymbol{\kappa}_{k} \quad$ where: $\boldsymbol{\kappa}_{\mathbf{k}}=\sum_{j=1}^{j={ }^{\circ} \boldsymbol{\kappa}_{k}} \mathbf{g}_{j}=\frac{1}{{ }^{\circ} S_{k}} \sum_{t=1}^{t={ }^{\circ} G} \mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}^{-1}$
D_{3} Algebra

${ }^{\circ} S_{k}=$ order of \mathbf{g}_{k}-self-symmetry: $\left({ }^{\circ} S_{1}=6,{ }^{\circ}{ }_{S_{r}}=3,{ }^{\circ} S_{i}=2\right)$
${ }^{\circ}{ }_{S_{k}}={ }^{\circ} G /{ }^{\circ} \kappa_{k} \quad{ }_{S k}$ is an integer count of D_{3} operators \mathbf{g}_{s} that commute with \mathbf{g}_{k}.
These operators \mathbf{g}_{s} form the \mathbf{g}_{k}-self-symmetry group s_{k}. Each \mathbf{g}_{s} transforms \mathbf{g}_{k} into itself: $\mathbf{g}_{s} \mathbf{g}_{k} \mathbf{g}_{s}{ }^{-1}=\mathbf{g}_{k}$
If an operator \mathbf{g}_{t} transforms \mathbf{g}_{k} into a different element $\mathbf{g}^{\prime}{ }_{k}$ of its class: $\mathbf{g}_{t} \mathbf{g}_{k} \mathbf{g}_{t}{ }^{-1}=\mathbf{g}^{\prime}{ }_{k}$, then so does $\mathbf{g}_{t} g_{s}$.
Subgroup $s_{k}=\left\{\mathbf{g}_{0}=\mathbf{1}, \mathbf{g}_{1}=\mathbf{g}_{k}, \mathbf{g}_{2}, \ldots\right\}$ has $\ell=\left({ }^{\circ} \kappa_{k}-1\right)$ Left Coset (one coset for each member of class $\left.\kappa_{k}\right)$. ${ }_{\boldsymbol{\kappa}} \boldsymbol{\kappa}_{k} \begin{cases}\mathbf{g}_{1} S_{k}=\mathbf{g}_{1}\left\{\mathbf{g}_{0}=1,\right. & \mathbf{g}_{1}=\mathbf{g}_{k}, \\ \mathbf{g}_{2} S_{k}=\mathbf{g}_{2}\left\{\mathbf{g}_{0}=1,\right. & \mathbf{g}_{1}=\mathbf{g}_{k}, \\ \left.\mathbf{g}_{2}, \ldots\right\}, \ldots\end{cases}$

These results are known as Lagrange's Coset Theorems)
They will divide the group of order ${ }^{\circ} D_{3}={ }^{\circ} \kappa_{k} \cdot{ }^{\circ} S_{k}$ evenly into ${ }^{\circ} \kappa_{k}$ subsets each of order ${ }^{\circ} S_{k}$.

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Review: 1st-Stage Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors)
Class-sum $\mathbf{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\mathbf{K}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class κ_{k} :
$\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2 .{ }^{\circ} \kappa_{i}=3\right)$
Class minimal equation

$$
\begin{aligned}
& \mathbf{\kappa}_{i}^{3}=3 \cdot \mathbf{\kappa}_{r} \boldsymbol{\kappa}_{i}+3 \cdot \boldsymbol{\kappa}_{i}=9 \cdot \mathbf{\kappa}_{i} \\
& 0=\boldsymbol{\kappa}_{i}^{3}-9 \cdot \boldsymbol{\kappa}_{i}=\left(\boldsymbol{\kappa}_{i}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{i}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{i}+3 \cdot \mathbf{1}\right)
\end{aligned}
$$

$$
\mathbf{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}=\mathbf{1} \quad \text { (Completeness) }
$$

$$
\boldsymbol{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbb{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \longleftarrow \boldsymbol{\kappa}_{r}^{2}=\boldsymbol{\kappa}_{r}+2 \cdot \mathbf{1} \Rightarrow\left(\boldsymbol{\kappa}_{r}-2 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{r}+\mathbf{1}\right)=\mathbf{0}
$$

$$
\mathbf{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
$$

Review: 1st-Stage Spectral resolution of \boldsymbol{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \mathbf{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \mathbf{D}_{3} Center (All-commuting class projectors)

Review: 1st-Stage Spectral resolution of \mathbf{D}_{3} Center (All-commuting class projectors)

Class-sum $\boldsymbol{\kappa}_{k}$ commutes with all \mathbf{g}_{t}
Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \mathbf{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class κ_{k} :

$$
\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2 .{ }^{\circ} \kappa_{i}=3\right)
$$

D_{3} Algebra

Class minimal equation

$$
\begin{aligned}
& \text { Class minimal equation } \\
& \mathbf{\kappa}_{i}^{3}=3 \cdot \mathbf{\kappa}_{r} \mathbf{\kappa}_{i}+3 \cdot \mathbf{\kappa}_{i}=9 \cdot \mathbf{\kappa}_{i}{ }^{2}{ }_{i}=3 \cdot \mathbf{\kappa}_{r}+3 \cdot \mathbf{1}
\end{aligned}
$$

$$
0=\mathbf{\kappa}_{i}^{3}-9 \cdot \boldsymbol{\kappa}_{i}=\left(\boldsymbol{\kappa}_{i}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{i}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{i}-0 \cdot \mathbf{1}\right) \text { Class ortho-complete } \mathbf{P} \boldsymbol{\kappa} \text { relations }
$$

$$
\mathbf{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}=\mathbf{1} \quad(\text { Completeness })
$$

$$
\mathbf{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}
$$

$$
\chi_{k}^{(\alpha)}=\operatorname{Trace} D^{(\alpha)}\left(\mathbf{g}_{k}\right)
$$

$$
\boldsymbol{\kappa}_{k}=\sum_{(\alpha)} \frac{{ }^{\circ} \boldsymbol{\kappa}_{k} \chi_{k}^{(\alpha)}}{\ell^{(\alpha)}} \mathbf{P}^{(\alpha)}
$$

$$
\mathbf{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
$$

irrep characters: $\chi_{k}^{(\alpha)}$

$$
\ell^{(\alpha)}=\text { Trace } D^{(\alpha)}(\mathbf{1})
$$ and dimensions: $\ell^{(\alpha)}$

$$
\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\mathbf{\kappa}_{r}+\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\begin{aligned}
\mathbf{P}^{(\alpha)} & =\frac{\ell^{(\alpha)}}{{ }^{\circ} G} \sum_{k} \chi_{k}^{(\alpha)^{*}} \mathbf{\kappa}_{k} \\
& =\frac{\ell^{(\alpha)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{g=1} \chi_{g}^{(\alpha)^{*}} \mathbf{g}
\end{aligned}
$$

See $\mathbf{P}^{(\alpha)}{ }_{v s} \boldsymbol{\kappa}_{k}$ derivation in Lect 17 p. 77-89

Review: 1st-Stage Spectral resolution of \mathbf{D}_{3} Center (All-commuting class projectors)

Class-sum $\boldsymbol{\kappa}_{k}$ commutes with all \mathbf{g}_{t}
Class-sum $\boldsymbol{\kappa}_{k}$ invariance:

$$
\mathbf{g}_{t} \boldsymbol{\kappa}_{k}=\boldsymbol{\kappa}_{k} \mathbf{g}_{t}
$$

${ }^{\circ} G=$ order of group: $\quad\left({ }^{\circ} D_{3}=6\right)$
${ }^{\circ} \kappa_{k}=$ order of class κ_{k} :

$$
\left({ }^{\circ} \kappa_{1}=1,{ }^{\circ} \kappa_{r}=2 .{ }^{\circ} \kappa_{i}=3\right)
$$

D_{3} Algebra

Class minimal equation

$$
\begin{aligned}
& \text { Class minimal equation } \\
& \mathbf{\kappa}_{i}^{3}=3 \cdot \mathbf{\kappa}_{r} \mathbf{\kappa}_{i}+3 \cdot \mathbf{\kappa}_{i}=9 \cdot \mathbf{\kappa}_{i}^{2}
\end{aligned} \quad=3 \cdot \mathbf{\kappa}_{r}+3 \cdot \mathbf{1}
$$

$$
0=\mathbf{\kappa}_{i}^{3}-9 \cdot \boldsymbol{\kappa}_{i}=\left(\boldsymbol{\kappa}_{i}-3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{i}+3 \cdot \mathbf{1}\right)\left(\boldsymbol{\kappa}_{i}-0 \cdot \mathbf{1}\right) \text { Class ortho-complete } \mathbf{P} \boldsymbol{\kappa} \text { relations }
$$

$$
\mathbf{\kappa}_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E}=\mathbf{1} \quad(\text { Completeness })
$$

$$
\mathbf{\kappa}_{r}=2 \cdot \mathbf{P}^{A_{1}}+2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E}
$$

$$
\chi_{k}^{(\alpha)}=\operatorname{Trace} D^{(\alpha)}\left(\mathbf{g}_{k}\right)
$$

$$
\mathbf{\kappa}_{i}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
$$

$$
\ell^{(\alpha)}=\text { Trace } D^{(\alpha)}(\mathbf{1})
$$

$$
\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\mathbf{\kappa}_{r}+\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{r}-\boldsymbol{\kappa}_{i}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\mathbf{\kappa}_{r}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}\right) / 3
$$

\[

\]

$$
\begin{aligned}
\mathbf{P}^{(\alpha)} & =\frac{\ell^{(\alpha)}}{{ }^{\circ} G} \sum_{k} \chi_{k}^{(\alpha)^{*}} \mathbf{\kappa}_{k} \\
& =\frac{\ell^{(\alpha)}{ }^{\circ} G}{{ }^{\circ} G} \sum_{g=1} \chi_{g}^{(\alpha)^{*}} \mathbf{g}
\end{aligned}
$$

Find $\chi_{1}^{(\alpha)^{*}}=\ell^{(\alpha)}$ using ${ }_{1}$ coefficient $\mathbf{P}^{(\alpha)}=\frac{\left(\ell^{(\alpha)}\right)^{2}}{{ }^{\circ} G} \kappa_{1}+\ldots$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order

```
2nd-Stage spectral decompositions of global/local \(D_{3}\)
Splitting class projectors using subgroup chains \(D_{3} \supset C_{2}\) and \(D_{3} \supset C_{3}\)
```

3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces

$$
\begin{aligned}
& R^{G}(\mathbf{1})= \\
& R^{G}(\mathbf{r})= \\
& R^{G}\left(\mathbf{r}^{2}\right)= \\
& R^{G}\left(\mathbf{i}_{1}\right)= \\
& R^{G}\left(\mathbf{i}_{2}\right)= \\
& R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\left(\mathbf{\kappa}_{1}+\mathbf{\kappa}_{2}+\mathbf{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \Rightarrow R\left(\mathbf{P}^{A_{1}}\right)=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) / 6 \quad \operatorname{TraceR}\left(\mathbf{P}^{A_{1}}\right)=1
\end{aligned}
$$

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

Min-eq. of all \mathbf{P} 's : $\mathbf{P}^{2}=\mathbf{P}$ or $(\mathbf{P}-\mathbf{1}) \mathbf{P}=\mathbf{0}$ Allowed \mathbf{P} eigenvalues: 1 or 0
$\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{2}+\boldsymbol{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \Rightarrow R\left(\mathbf{P}^{A_{1}}\right)=$

$$
=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) / 6 \quad \operatorname{Trace} R\left(\mathbf{P}^{A_{1}}\right)=1 \quad \text { So: } R\left(\mathbf{P}^{A_{1}}\right) \text { reduces to: }
$$

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces
$R^{G}(\mathbf{1})=$
$R^{G}(\mathbf{r})=$
$R^{G}\left(\mathbf{i}_{1}\right)=$
$R^{G}\left(\mathbf{i}_{2}\right)=$
$R^{G}\left(\mathbf{i}_{3}\right)=$
$\begin{gathered}1 \\ r^{1} \\ r^{2} \\ i_{1} \\ i_{2} \\ i_{2} \\ i_{3}\end{gathered}\left(\begin{array}{cccccc}\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \hline\end{array}\right),\left(\begin{array}{cccccc}\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot\end{array}\right),\left(\begin{array}{cccccc}\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot\end{array}\right),\left(\begin{array}{llllll}\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot\end{array}\right),\left(\begin{array}{llllll}\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot\end{array}\right),\left(\begin{array}{llllll}\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot\end{array}\right)$

Min-eq. of all $\mathbf{P} ' s: \mathbf{P}^{2}=\mathbf{P}$ or $(\mathbf{P}-\mathbf{1}) \mathbf{P}=\mathbf{0}$
Allowed \boldsymbol{P} eigenvalues: 1 or 0
$\mathbf{P}^{A_{1}}=\left(\mathbf{\kappa}_{1}+\mathbf{K}_{2}+\mathbf{K}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \Rightarrow R\left(\mathbf{P}^{A_{1}}\right)=$
$\mathbb{P}^{A_{2}}=\left(\kappa_{1}+\kappa_{2}-\kappa_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \Rightarrow R\left(\mathbb{P}^{A_{2}}\right)=\left(\begin{array}{cccccc}1 & 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 \\ -1 & -1 & -1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 & 1 & 1\end{array}\right) / 6 \quad \operatorname{TraceR}\left(\mathbb{P}^{A_{2}}\right)=1$
$\left(\mathbf{P}^{A_{1}}\right)=1$
So: $R\left(\mathbf{P}^{A_{1}}\right)$ reduces to:

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces
$R^{G}(\mathbf{1})=$
$R^{G}(\mathbf{r})=$
$R^{G}\left(\mathbf{r}^{2}\right)=$
$R^{G}\left(\mathbf{i}_{1}\right)=$
$R^{G}\left(\mathbf{i}_{2}\right)=$
$R^{G}\left(\mathbf{i}_{3}\right)=$

Min-eq. of all \mathbf{P} 's : $\mathbf{P}^{2}=\mathbf{P}$ or $(\mathbf{P}-\mathbf{1}) \mathbf{P}=\mathbf{0}$ Allowed \boldsymbol{P} eigenvalues: 1 or 0 $\mathbf{P}^{A_{1}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{2}+\boldsymbol{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \Rightarrow R\left(\mathbf{P}^{A_{1}}\right)=$

$\mathbb{P}^{A_{2}}=\left(\boldsymbol{\kappa}_{1}+\boldsymbol{\kappa}_{2}-\boldsymbol{\kappa}_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \Rightarrow R\left(\mathbb{P}^{A_{2}}\right)=\left(\begin{array}{cccccc}1 & 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & 1 & -1 & -1 & -1\end{array}\right) / 6 \quad \operatorname{Trace} R\left(\mathbb{P}^{A_{2}}\right)=1$

$$
\text { So: } R\left(\mathbb{P}^{A_{2}}\right) \text { reduces to: }
$$

$$
\mathbf{P}^{E}=\left(2 \mathbf{\kappa}_{1}-\mathbf{\kappa}_{2}+0\right) / 3=\left(2 \mathbf{1}-\mathbf{r}-\mathbf{r}^{2}+0+0+0\right) / 3 \Rightarrow R\left(\mathbf{P}^{E}\right)=\left(\begin{array}{cccccc}
2 & -1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & -1 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right) / 3 \quad \operatorname{TraceR}\left(\mathbf{P}^{E}\right)=4
$$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes Lagrange theorems
All-commuting class projectors and D_{3}-invariant character tho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

$$
\begin{aligned}
& R^{G}(\mathbf{1})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)= \\
& \begin{array}{c}
1 \\
r^{1} \\
r^{2} \\
i_{1} \\
i_{2} \\
i_{3}
\end{array}\left(\begin{array}{cccccc}
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1
\end{array}\right),\left(\begin{array}{cccccc}
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot
\end{array}\right),\left(\begin{array}{ccccc}
\cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot
\end{array}\right)\left(\begin{array}{cccccc}
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{llllll}
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right) \\
& R\left(\mathbf{P}^{A_{1}}\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) / 6 \Rightarrow \operatorname{TraceR}\left(\mathbf{P}^{A_{1}}\right)=1 \quad \text { So: } R\left(\mathbf{P}^{A_{1}} \mathbf{g}\right) \text { reduces to }:\left(\begin{array}{ccccc}
D^{A_{1}}(\mathbf{g}) & . & . & . & . \\
. & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & .
\end{array}\right) \\
& R\left(\mathbb{P}^{A_{2}}\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1
\end{array}\right) / 6 \Rightarrow \operatorname{TraceR}\left(\mathrm{P}^{A_{2}}\right)=1 \\
& R\left(\mathbf{P}^{E}\right)=\left(\begin{array}{cccccc}
2 & -1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & -1 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right) / 3 \quad \Rightarrow \operatorname{TraceR}\left(\mathbf{P}^{E}\right)=4
\end{aligned}
$$

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

$$
\begin{aligned}
& R^{G}(\mathbf{1})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& R\left(\mathbf{P}^{A_{1}}\right)=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) / 6 \Rightarrow \operatorname{TraceR}\left(\mathbf{P}^{A_{1}}\right)=1 \quad \text { So: } R\left(\mathbf{P}^{A_{1}} \mathbf{g}\right) \text { reduces to }:\left(\begin{array}{cccccc}
D^{A_{1}}(\mathbf{g}) & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & .
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R\left(\mathbf{P}^{E}\right)=\left(\begin{array}{cccccc}
2 & -1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & -1 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & -1 & 1
\end{array}\right) / 3 \quad \Rightarrow \operatorname{TraceR}\left(\mathbf{P}^{E}\right)=4
\end{aligned}
$$

Spectral resolution to irreducible representations (or "irreps") is foretold by characters or traces

$$
\begin{aligned}
& R^{G}(\mathbf{1})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& R\left(\mathbf{P}^{A_{1}}\right)=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) / 6 \Rightarrow \operatorname{TraceR}\left(\mathbf{P}^{A_{1}}\right)=1 \quad \operatorname{So:~} R\left(\mathbf{P}^{A_{1}} \mathbf{g}\right) \text { reduces to }:\left(\begin{array}{cccccc}
D^{A_{1}}(\mathbf{g}) & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & .
\end{array}\right)
\end{aligned}
$$

Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces

$\operatorname{Trace} R\left(\mathbf{P}^{A_{1}}\right)=1 \quad$ So: $R\left(\mathbf{P}^{A_{1}} \mathbf{g}\right)$ reduces to:

$\operatorname{Trace} R\left(\mathbb{P}^{A_{2}}\right)=1 \quad$ So: $R\left(\mathbb{P}^{A_{2}} \mathbf{g}\right)$ reduces to:
$\operatorname{Trace} R\left(\mathbf{P}^{E}\right)=4 \quad$ So: $R\left(\mathbf{P}^{E} \mathbf{g}\right)$ reduces to:

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Spectral resolution to irreducible representations (or "ireps") foretold by characters or traces

$\left\{R^{G}(\mathrm{~g})\right\}$ has lots of empty space and looks like it could be reduced.
But, $\left\{R^{G}(\mathrm{~g})\right\}$ cannot be diagonalized all-at-once. (Not all g commute.)
Nevertheless, $\left\{R^{G}(\mathrm{~g})\right\}$ can be block-diagonalized all-at-once into "ireps" A_{1}, A_{2}, and two E_{1} 's

$$
\begin{aligned}
& R(\mathrm{~g}) \text { reduces to: } \\
& \left(\begin{array}{cccccc}
D^{A_{1}}(\mathrm{~g}) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & D^{A_{2}}(\mathrm{~g}) & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & D_{11}^{E} & D_{12}^{E} & \cdot & \cdot \\
\cdot & \cdot & D_{21}^{E} & D_{22}^{E} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & D_{11}^{E} & D_{12}^{E} \\
& & & & D_{21}^{E} & D_{22}^{E}
\end{array}\right)
\end{aligned}
$$

Spectral resolution to irreducible representations (or "ireps") foretold by characters or traces

$\left\{R^{G}(\mathrm{~g})\right\}$ has lots of empty space and looks like it could be reduced.
But, $\left\{R^{G}(\mathrm{~g})\right\}$ cannot be diagonalized all-at-once. (Not all g commute.)
Nevertheless, $\left\{R^{G}(\mathrm{~g})\right\}$ can be block-diagonalized all-at-once into "ireps" A_{1}, A_{2}, and two E_{1} 's

$$
R(\mathbf{g}) \text { reduces to: }
$$

We relate traces of $\left\{R^{G}(\mathrm{~g})\right\}$:

$(\mathrm{g})=$	$\{\mathbf{1}\}$	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
$\operatorname{TraceR}^{G}(\mathrm{~g})=$	6	0	0

$\chi^{A_{1}}(\mathrm{~g})$ $+\chi^{A_{2}}(\mathrm{~g})$	1	1	1
1	1	-1	\cdot

to D_{3} character table:

Spectral resolution to irreducible representations (or "ireps") foretold by characters or traces

$\left\{R^{G}(\mathrm{~g})\right\}$ has lots of empty space and looks like it could be reduced.
But, $\left\{R^{G}(\mathrm{~g})\right\}$ cannot be diagonalized all-at-once. (Not all g commute.)
Nevertheless, $\left\{R^{G}(\mathrm{~g})\right\}$ can be block-diagonalized all-at-once into "ireps" A_{1}, A_{2}, and two E_{1} 's

$$
R(\mathrm{~g}) \text { reduces to: }
$$

We relate traces of $\left\{R^{G}(\mathrm{~g})\right\}$:

$(\mathrm{g})=$	$\{\mathbf{1}\}$	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
$\operatorname{TraceR}^{G}(\mathbf{g})=$	6	0	0

$\chi^{E_{1}}(\mathrm{~g})=$	2	-1	0

So $\left\{R^{G}(\mathrm{~g})\right\}$ can be block-diagonalized into a direct sum \oplus of "ireps" $R^{G}(\mathrm{~g})=D^{A_{1}}(\mathrm{~g}) \oplus D^{A_{2}}(\mathrm{~g}) \oplus 2 D^{E}(\mathrm{~g})$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness

Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$

Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \backslash H\right)$ (irep \equiv irreducible representation)
Symmetry reduction of G to $H \subset G$ involves splitting of G-ireps $D^{(\alpha)}(G)$ into smaller H-ireps $d^{(\alpha)}(H)$ $D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{\text {reducer }} D^{(\alpha)}(H) T_{\text {reducer }}=f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \ldots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$

Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \backslash H\right)$ (irep \equiv irreducible representation)
Symmetry reduction of G to $H \subset G$ involves splitting of G-ireps $D^{(\alpha)}(G)$ into smaller H-ireps $d^{(a)}(H)$
$D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{\text {reducer }} D^{(\alpha)}(H) T_{\text {reducer }}=f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \ldots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(b)}\left(D^{(\alpha)}(G) \downarrow H\right)$ Trace $\boldsymbol{D}^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=f^{(b)} \cdot \ell^{(b)} \quad$ Since each $d^{(b)}\left(\mathbf{P}^{(b)}\right)$ is an $\ell^{(b)}$-by- $\ell^{(b)}$ unit matrix

Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \backslash H\right)$ (irep \equiv irreducible representation)
Symmetry reduction of G to $H \subset G$ involves splitting of G-ireps $D^{(\alpha)}(G)$ into smaller H-ireps $d^{(a)}(H)$
$D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{\text {reducer }} D^{(\alpha)}(H) T_{\text {reducer }}=f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \ldots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$

$$
\operatorname{Trace} D^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=f^{(b)} \cdot \ell^{(b)} \quad \text { Since each } d^{(b)}\left(\mathbf{P}^{(b)}\right) \text { is an } \ell^{(b)} \text {-by- } \ell^{(b)} \text { unit matrix }
$$

$$
f^{(b)}=\frac{1}{\ell^{(b)}} \operatorname{Trace} D^{(\alpha)}\left(\mathbf{P}^{(b)}\right)
$$

Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \backslash H\right)$
(irep \equiv irreducible representation)
Symmetry reduction of G to $H \subset G$ involves splitting of G-ireps $D^{(\alpha)}(G)$ into smaller H-ireps $d^{(a)}(H)$
$D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{\text {reducer }} D^{(\alpha)}(H) T_{\text {reducer }}=f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \ldots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$

Class ortho-complete projector relations (p.24)

$$
\begin{aligned}
& \mathbf{P}^{(\alpha)}=\frac{\ell^{(\alpha)}}{{ }^{\circ} G} \sum_{k \in G} \chi_{k}^{(\alpha)^{*}} \mathbf{\kappa}_{k} \\
& \mathbf{P}^{(b)}=\frac{\ell^{(b)}}{{ }^{\circ} H} \sum_{k \in H} \chi_{k}^{(b)^{*}}{ }^{\kappa^{(}}{ }_{k}
\end{aligned}
$$

$f^{(b)}=\frac{1}{\ell^{(b)}} \operatorname{Trace} D^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=\frac{1}{\ell^{(b)}} \frac{\ell^{(b)}}{{ }^{(b)}} \sum_{\substack{\text { classes } \\ \mathbf{k}_{k} \in H}} \chi_{k}^{(b)^{*}} \operatorname{Trace} D^{(\alpha)}\left(\kappa_{k}\right)$

Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \backslash H\right)$
(irep \equiv irreducible representation)
Symmetry reduction of G to $H \subset G$ involves splitting of G-ireps $D^{(\alpha)}(G)$ into smaller H-ireps $d^{(a)}(H)$
$D^{(\alpha)}(G) \downarrow H \equiv D^{(\alpha)}(H)$ is reducible to: $T_{\text {reducer }} D^{(\alpha)}(H) T_{\text {reducer }}=f^{(a)} d^{(a)}(H) \oplus f^{(b)} d^{(b)}(H) \oplus \ldots$

The following derives formulae for integral $H \subset G$ correlation coefficients $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Class ortho-complete projector relations (p.24)

$$
\text { Trace } \mathbf{D}^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=f^{(b)} \cdot \ell^{(b)} \quad \text { Since each } d^{(b)}\left(\mathbf{P}^{(b)}\right) \text { is an } \ell^{(b)} \text {-by- } \ell^{(b)} \text { unit matrix }
$$

$$
\begin{aligned}
& \mathbf{P}^{(\alpha)}=\frac{\ell^{(\alpha)}}{{ }^{\circ} G} \sum_{k \in G} \chi_{k}^{(\alpha)^{*}} \boldsymbol{\kappa}_{k} \\
& \mathbf{P}^{(b)}=\frac{\ell^{(b)}}{{ }^{\circ} H} \sum_{k \in H} \chi_{k}^{(b)^{*}}{ }_{\kappa^{\prime}}
\end{aligned}
$$

$$
f^{(b)}=\frac{1}{\ell^{(b)}} \operatorname{Trace} \mathbf{D}^{(\alpha)}\left(\mathbf{P}^{(b)}\right)=\frac{1}{\ell^{(b)}} \frac{\ell^{(b)}}{{ }^{\circ} H} \sum_{\substack{\text { classes } \\ \mathbf{\kappa}_{k} \in H}} \chi_{k}^{(b)^{*}} \underbrace{\operatorname{Trace} D^{(\alpha)}\left(\mathbf{\kappa}_{k}\right)}_{\chi^{(\alpha)}\left(\mathbf{\kappa}_{k}\right)={ }^{\circ} \kappa_{k} \chi_{k}^{(\alpha)}}
$$

Character relation for frequency $f^{(b)}$ of $d^{(b)}$ of subgroup H in $D^{(\alpha)} \downarrow H$ of G

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Atomic ℓ-level or $2 \ell+1$-multiplet splitting

$$
\ell=0, s \text {-singlet }
$$

Formula from p. 44

$$
2 \ell+1=1
$$

Example: $(\ell=4)$

$$
\ell=1, \text { p-triplet }
$$

$$
2 \ell+1=3
$$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction
$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet
$2 \ell+1=5$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3} \text { classes }} \sum_{\substack{\kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b)^{*}} \chi_{k}^{(\ell)}
$$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction

$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet

$$
2 \ell+1=3
$$

$$
\ell=2, d \text {-quintet }
$$

$$
2 \ell+1=5
$$

$$
\ell=3, f \text {-septet }
$$

$$
2 \ell+1=7
$$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction

$$
\begin{aligned}
& \ell=0, s \text {-singlet } \\
& 2 \ell+1=1 \\
& \ell=1, p \text {-triplet } \\
& 2 \ell+1=3 \\
& \ell=2, d \text {-quintet } \\
& 2 \ell+l=5 \\
& \ell=3, \text { f-septet } \\
& 2 \ell+l=7 \\
& \ell=4, g \text {-nonet } \\
& 2 \ell+l=9 \\
& \ell=5, h \text {-(ll)-let } \\
& 2 \ell+l=11
\end{aligned}
$$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
$\ell=0, s$-singlet
Formula from p. 44
Example: $(\ell=4)$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\downarrow} \downarrow D_{3}$ splitting $2 \ell+1=1$
$\ell=1$, p-triplet
$2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$
$\ell=3$, f-septet

$$
2 \ell+1=11
$$

$2 \ell+1=7$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\downarrow} \downarrow D_{3}$ splitting
$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$

$U(2)$ characters from Lecture 14.5 p .93 : (or end of this lecture)

$$
\chi^{\ell}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{(2 \ell+1) \pi}{n}}{\sin \frac{\pi}{n}} \quad \begin{gathered}
R(3) \text { character } \\
\text { where: } 2 \ell+1
\end{gathered} \text { is } \ell \text {-orbital dimension }
$$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\downarrow} \downarrow D_{3}$ splitting
$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$
(Fig. 5.6.1 PSDS)
$U(2)$ characters from Lecture 14.5 p.93: (or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$$
\left.\begin{array}{rl}
\chi^{\ell}\left(\frac{2 \pi}{n}\right) & =\frac{\sin \frac{(2 \ell+1) \pi}{n}}{\sin \frac{\pi}{n}} \quad \begin{array}{c}
R(3) \text { character } \\
\text { where: } 2 \ell+1
\end{array} \\
\text { is } \ell \text {-orbital dimension }
\end{array}\right] \begin{aligned}
& \chi^{\ell}(\Theta)
\end{aligned}=\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin \frac{\Theta}{2}} \quad \text {. }
$$

$$
\ell=3, f \text {-septet }
$$

$$
2 \ell+1=7
$$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b))^{*}} \chi_{k}^{(\ell)}
$$

$$
\begin{aligned}
&{ }^{2} E_{l} \\
& \underline{\ell}=4 \\
& \underline{\underline{\underline{\underline{\underline{1}}}}} A_{2} \\
& A_{l} \\
&= E_{l} \\
& E_{l} \\
& A_{l}
\end{aligned}
$$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\mathbf{l}} \downarrow D_{3}$ splitting
$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$
(Fig. 5.6.1 PSDS)

$U(2)$ characters from Lecture 14.5 p. 93 (or end of this lecture)			$\begin{aligned} \chi^{\ell}\left(\frac{2 \pi}{n}\right) & =\frac{\sin \frac{(2 \ell+1) \pi}{n}}{\sin \frac{\pi}{n}} \\ \gamma^{\ell}(\Theta) & =\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{} \end{aligned}$				$R(3)$ character where: $2 \ell+1$ is ℓ-orbital dimension		$2 \ell+1=11$
$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3} \quad \pi$							
$\ell=0$	1	11				$\sin \frac{\Theta}{2}$			
1		$0 \quad-1$				2			
2	5	-1 1	...and	3 ch	aracter ta	ble from p .			
3	7	$1-1$	(g) $=$	\{1\}	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$			
4	9	$0 \quad 1$	$\chi^{A_{1}}(\mathrm{~g})=$		1	1			
5	11	$\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}$	$\chi^{A_{2}}(\mathrm{~g})=$						
6 7	13 15	$\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}$	$\chi^{E_{1}}(\mathrm{~g})=$	2	-1	0			

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
7 D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$
3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ k_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b)^{*}} \chi_{k}^{(\ell)}
$$

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{\mathbf{l}} \downarrow D_{3}$ splitting
$\ell=0, s$-singlet
 $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$
(Fig. 5.6.1 PSDS)

$$
\ell=3, f \text {-septet }
$$

$$
2 \ell+1=7
$$

$$
\begin{aligned}
& \ell=4, g \text {-nonet } \\
& 2 \ell+1=9 \\
& \ell=5, h-(11) \text {-let }
\end{aligned}
$$

$U(2)$ characters

$$
R(3) \text { character }
$$

$$
2 \ell+1=11
$$ from Lecture 14.5 p .93 : (or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$$
\begin{aligned}
\chi^{\ell}\left(\frac{2 \pi}{n}\right) & =\frac{\sin \frac{(2 \ell+1) \pi}{n}}{\sin \frac{\pi}{n}} \\
\chi^{\ell}(\Theta) & =\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin \frac{\Theta}{2}}
\end{aligned}
$$

...and D_{3} character table from p. 24:

$$
\text { where: } 2 \ell+1
$$

$$
\text { is } \ell \text {-orbital dimension }
$$

$f^{(\alpha)}(\ell)$	$f^{A_{1}}$	$f^{A_{2}}$	$f^{E_{1}}$	
$\ell=0$	1	\cdot	\cdot	$1 A_{l}$
1	\cdot	1	1	$0 A_{l} \oplus A_{2} \oplus E_{l}$

$(\mathrm{g})=$	$\{\mathbf{1}\}$	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
$\chi^{A_{1}}(\mathrm{~g})=$	1	1	1
$\chi^{A_{2}}(\mathbf{g})=$	1	1	-1
$\chi^{E_{1}}(\mathrm{~g})=$	2	-1	0

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b))^{*}} \chi_{k}^{(\ell)}
$$

$U(2)$ characters from Lecture 14.5 p.93: (or end of this lecture)		$\chi^{\ell}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{(2 \ell+1) \pi}{n}}{\sin \frac{\pi}{n}}$				$R(3)$ character where: $2 \ell+1$ is ℓ-orbital dimension			
$\chi^{\ell}(\Theta)$	$\Theta=0 \quad \frac{2 \pi}{3} \pi$								
$\ell=0$	$1 \quad 1$	$\chi^{\ell}(\Theta)=\frac{\text { and }}{\sin \frac{\Theta}{2}} \quad\)\begin{tabular}{cc\|ccc} \(f^{(\alpha)}(\ell)\) & \(f^{A_{1}}\) & \(f^{A_{2}}\) & \(f^{E_{1}}\) \\ \hline\(\ell=0\) & 1 & \(\cdot\) & \(\cdot\) \\ \text {...and }\(D_{3} \text { character table from p. 24: }\) & 1 & \(\cdot\) & 1 & 1 \end{tabular}$							
1	$\begin{array}{llll}3 & 0 & -1\end{array}$								
2	$\begin{array}{llll}5 & -1 & 1\end{array}$								
3	$7 \quad 1 \begin{array}{lll}7 & 1\end{array}$	(g) $=$		$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$				
4	$9 \quad 001$	$\chi^{A_{1}}(\mathrm{~g})=$		1	1	$0 \chi^{A_{1}}(\mathrm{~g})$			
5	$\begin{array}{ccc}11 & -1 & -1 \\ 13 & 1 & 1\end{array}$	$\chi^{A_{2}(\mathrm{~g})}=$		1	-1	$1 \chi^{A_{2}}(\mathrm{~g})$			$1-1$
6	$\begin{array}{ccc}13 & 1 & 1 \\ 15 & 0 & -1\end{array}$	$\chi(\mathrm{g})=$ $\chi^{E_{1}(\mathrm{~g})}=$		-1	-1	$\begin{aligned} & 1 \chi \\ & \chi \\ & 1 \chi^{E_{1}}(\mathrm{~g})\end{aligned} \mathrm{l}=$			$\begin{array}{cc}1 & -1 \\ -1 & 0\end{array}$
7	15 0-1								

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(\ell)}
$$

$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(\ell)}
$$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
Formula from p. 44
Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(\ell)}
$$

$\ell=0, s$-singlet $2 \ell+1=1$
$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet $2 \ell+1=5$

Atomic ℓ-level or $2 \ell+1$-multiplet splitting
$\ell=0, s$-singlet
Formula from p. 44

$$
2 \ell+1=1
$$

Example: $(\ell=4)$

$$
f^{(b)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{(b) *} \chi_{k}^{(\ell)}
$$

$\ell=1$, p-triplet $2 \ell+1=3$
$\ell=2$, d-quintet
$2 \ell+1=5$

Formula from p. 44
Example: $(\ell=4)$

$$
f^{\left(E_{1}\right)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\ \kappa_{k} E_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{\left.\left(E_{1}\right)^{*}\right)^{*}} \chi_{k}^{(\ell=4)}=\frac{1}{{ }^{\circ} D_{3}}\left({ }^{\circ} \kappa_{0^{\circ}} \chi_{0^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{0^{\circ}}^{(\ell=4)}+{ }^{\circ} \kappa_{1200^{\circ}} \chi_{120^{\circ}}^{\left(E_{1}^{* *}\right.} \chi_{120^{\circ}}^{(\ell=4)}+{ }^{\circ} \kappa_{1800^{\circ}} \chi_{180^{\circ}}^{\left(E_{1}^{* *}\right.} \chi_{180^{\circ}}^{(\ell=4)}\right)
$$

$U(2)$ characters from Lecture 14.5 p .93 : (or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

Formula from p. 44
Example: $(\ell=4)$

$$
\begin{aligned}
f^{\left(E_{1}\right)}=\frac{1}{{ }^{\circ} D_{3}} \sum_{\substack{\text { classes } \\
\kappa_{k} \in D_{3}}}{ }^{\circ} \kappa_{k} \chi_{k}^{\left(E_{1}\right)^{*}} \chi_{k}^{(\ell=4)} & =\frac{1}{{ }^{\circ} D_{3}}\left({ }^{\circ} \kappa_{0^{\circ}} \chi_{0^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{0^{\circ}}^{(\ell=4)}+{ }^{\circ} \kappa_{120^{\circ}} \chi_{120^{\circ}}^{\left(E_{1}\right)^{\circ}} \chi_{120^{\circ}}^{(\ell=4)}+{ }^{\circ} \kappa_{180^{\circ}} \chi_{180^{\circ}}^{\left(E_{1}\right)^{*}} \chi_{180^{\circ}}^{(\ell=4)}\right) \\
& =\frac{1}{6}\left(1 \cdot 2^{*} \cdot 9+2 \cdot-1^{*} \cdot 0+3 \cdot 0^{*} \cdot 1\right)
\end{aligned}
$$

$U(2)$ characters from Lecture 14.5 p .93 : (or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

Formula from p. 44
Example: $(\ell=4)$
$\ell=4$, g-nonet
$U(2)$ characters from Lecture 14.5 p .93 :
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$$
\chi^{l}(\Theta)=\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin \frac{\Theta}{2}}
$$

$$
\begin{array}{c|ccc|}
f^{(\alpha)}(\ell) & f^{A_{1}} & f^{A_{2}} & f^{E_{1}} \\
\hline \ell=0 & 1 & \cdot & \cdot \\
\cline { 1 - 2 } & \cdot & 1 & 1 A_{l} \\
0 A_{l} \theta
\end{array}
$$

$$
\text { ...and } D_{3} \text { character table from p. 24: }
$$

$$
\begin{aligned}
& 1 \\
& 2
\end{aligned}
$$

- $15 \begin{array}{lll}15 & 0 & -1\end{array}$

$(\mathrm{g})=$
$\chi^{A_{1}}(\mathrm{~g})=$
$\chi^{A_{2}}(\mathrm{~g})=$
$\chi^{E_{1}}(\mathrm{~g})=$

$$
\begin{aligned}
& =\frac{1}{6}\left(1 \cdot 2^{*} \cdot 9+2 \cdot-1^{*} \cdot 0+3 \cdot 0^{*} \cdot 1\right) \\
& f^{\left(E_{1}\right)}=3
\end{aligned}
$$

Formula from p. 44
Example: $(\ell=4)$
$\ell=4$, g-nonet
$U(2)$ characters

$$
\begin{aligned}
& =\frac{1}{6}\left(1 \cdot 2^{*} \cdot 9+2 \cdot-1^{*} \cdot 0+3 \cdot 0^{*} \cdot 1\right) \\
& f^{\left(E_{1}\right)}= \\
& f^{\left(A_{2}\right)}=\frac{1}{6}\left(1 \cdot 1^{*} \cdot 9+2 \cdot 1^{*} \cdot 0+3 \cdot-1^{*} \cdot 1\right)=1
\end{aligned}
$$

from Lecture 14.5 p .93 :
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$f^{(\alpha)}(\ell)$	$f^{A} /$	$f^{A_{2}}$	$f^{E_{1}}$	
$\ell=0$	1	\cdot	\cdot	
1	\cdot	1	1	
2	1	\cdot	2	$1 A_{l} \oplus A_{2} \oplus E_{l}$
3	1	2	2	$1 A_{l} \oplus 2 A_{2} \oplus 2 E_{l}$
4	2	1	3	$\oplus 1 A_{2} \oplus 3 E_{l}$

Formula from p. 44
Example: $(\ell=4)$

$\ell=4$, g-nonet

$$
=\frac{1}{6}\left(1 \cdot 2^{*} \cdot 9+2 \cdot-1^{*} \cdot 0+3 \cdot 0^{*} \cdot 1\right)
$$

$$
f^{\left(E_{1}\right)}=
$$

$U(2)$ characters
from Lecture 14.5 p .93 : (or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$$
f^{\left(A_{2}\right)}=\frac{1}{6}\left(1 \cdot 1^{*} \cdot 9+2 \cdot 1^{*} \cdot 0+3 \cdot-1^{*} \cdot 1\right)=1
$$

$$
f^{\left(A_{1}\right)}=\frac{1}{6}\left(1 \cdot 1^{*} \cdot 9+2 \cdot 1^{*} \cdot 0+3 \cdot 1^{*} \cdot 1\right)=2-
$$

$$
\chi^{\ell}(\Theta)=\frac{\sin \left(\ell+\frac{1}{2}\right) \Theta}{\sin \frac{\Theta}{2}}
$$

$$
\begin{array}{c|ccc|}
f^{(\alpha)}(\ell) & f^{A_{1}} & f^{A_{2}} & f^{E_{1}} \\
\hline \ell=0 & 1 & \cdot & \cdot \\
\hline 1 & \cdot & 1 & 1
\end{array}{ }^{1 A_{l}} \begin{aligned}
& 0 A_{1} \Theta
\end{aligned}
$$

Formula from p. 44
Example: $(\ell=4)$
$\ell=4$, g-nonet

$$
f^{\left(E_{1}\right)}=
$$

$$
f^{\left(E_{1}\right)}=
$$

$U(2)$ characters
from Lecture 14.5 p .93 :
(or end of this lecture)

$\chi^{\ell}(\Theta)$	$\Theta=0$	$\frac{2 \pi}{3}$	π
$\ell=0$	1	1	1
1	3	0	-1
2	5	-1	1
3	7	1	-1
4	9	0	1
5	11	-1	-1
6	13	1	1
7	15	0	-1

$$
=\frac{1}{6}\left(1 \cdot 2^{*} \cdot 9+2 \cdot-1^{*} \cdot 0+3 \cdot 0^{*} \cdot 1\right)
$$

$$
f^{\left(A_{2}\right)}=\frac{1}{6}\left(1 \cdot 1^{*} \cdot 9+2 \cdot 1^{*} \cdot 0+3 \cdot-1^{*} \cdot 1\right)=1
$$

$$
f^{\left(A_{1}\right)}=\frac{1}{6}\left(1 \cdot 1^{*} \cdot 9+2 \cdot 1^{*} \cdot 0+3 \cdot 1^{*} \cdot 1\right)=2
$$

$f^{(\alpha)}(\ell)$	$f^{A_{1}}$	$f^{A_{2}}$	$f^{E_{1}}$	
$\ell=0$	1	\cdot	\cdot	$1 A_{l}$
1	\cdot	1	1	$0 A_{1}$

Note : $\ell=6\left|\begin{array}{lll}13 & 1 & 1\end{array}\right|=A_{1}\left|\begin{array}{lll}1 & 1 & 1\end{array}\right| \oplus 2 R^{G}\left|\begin{array}{ccc}12 & 0 & 0\end{array}\right|=A_{1} \oplus 2\left[A_{1} \oplus A_{2} \oplus 2 E_{l}\right] \quad\left(\ell=6\right.$ is $1^{\text {st }}$ re-cycling point $)$

Spectral splitting in symmetry breaking foretold by character analysis (on p. 38)

Crystal-field splitting: $O(3) \supset D_{3}$ symmetry reduction and $D^{l} \downarrow D_{3}$ splitting

$f^{(\alpha)}(\ell)$	$f^{A_{1}}$	$f^{A_{2}}$	$f^{E_{1}}$	
$\ell=0$	1	\cdot	\cdot	$1 A_{1}$
1	\cdot	1	1	$0 A_{1} \oplus A_{2} \oplus E_{l}$
2	1	\cdot	2	$1 A_{1} \quad \oplus 2 E_{1}$
3	1	2	2	$1 A_{1} \oplus 2 A_{2} \oplus 2 E_{l}$
4	2	1	3	$2 A_{1} \oplus 1 A_{2} \oplus 3 E_{l}$
5	1	2	4	$1 A_{1} \oplus 2 A_{2} \oplus 4 E_{l}$
6	3	2	4	$3 A_{1} \oplus 2 A_{2} \oplus 4 E_{l}$
7	2	3	5	$2 A_{1} \oplus 3 A_{2} \oplus 5 E_{l}$

D_{3} character table:

$(\mathrm{g})=$	$\{\mathbf{1}\}$	$\left\{\mathbf{r}^{1}, \mathbf{r}^{2}\right\}$	$\left\{\mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}\right\}$
$\chi^{A_{1}}(\mathbf{g})=$	1	1	1
$\chi^{A_{2}}(\mathrm{~g})=$	1	1	-1
$\chi^{E_{1}}(\mathbf{g})=$	2	-1	0

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness
Spectral resolution to irreducible representations (or "irreps") foretold by characters or traces
Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$
Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
\rightarrow Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D_{3} Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$

3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Important invariant numbers or "characters"

Centrum: $\kappa(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{0}=$ Number of classes, invariants, irrep types, all-commuting ops Rank: $\quad \rho(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{l}=$ Number of irrep idempotents $\mathbf{P}_{n, n}^{(\alpha)}$, mutually-commuting ops
Order: $\quad{ }^{\circ}(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{2}=$ Total number of irrep projectors $\mathbf{P}_{m, n}^{(\alpha)}$ or symmetry ops

$$
\begin{gathered}
\boldsymbol{\kappa}\left(D_{3}\right)=(1)^{0}+(1)^{0}+(2)^{0}=3 \\
\boldsymbol{\rho}\left(D_{3}\right)=(1)^{1}+(1)^{1}+(2)^{1}=4 \\
\circ\left(D_{3}\right)=(1)^{2}+(1)^{2}+(2)^{2}=6
\end{gathered}
$$

```
Review:Spectral resolution of }\mp@subsup{D}{3}{}\mathrm{ Center (Class algebra)
    Group theory of equivalence transformations and classes
        Lagrange theorems
    All-commuting class projectors and D}\mp@subsup{D}{3}{}\mathrm{ -invariant character ortho-completeness
        Subgroup splitting and correlation frequency formula: f(a)}(\mp@subsup{D}{}{(\alpha)}(G)\downarrowH
    Group invariant numbers: Centrum, Rank, and Order
```

2nd-Stage spectral decompositions of global/local D_{3}
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ Splitting classes

3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Spectral reduction of non-commutative "Group-table Hamiltonian"
D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

Spectral reduction of non-commutative "Group-table Hamiltonian" D_{3} Example 2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

$$
\begin{array}{llll}
\boldsymbol{D}_{3} \kappa=\mathbf{1} & \mathbf{r}^{1}+\mathbf{r}^{2} & \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} & \boldsymbol{C}_{2}
\end{array}=\mathbf{1} \quad \mathbf{i}_{3},
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"
D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$
$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=p^{0_{2}}+p^{l_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

$$
\begin{aligned}
& \boldsymbol{C}_{2} \kappa=\mathbf{1} \\
& \mathbf{i}_{3} \\
& \boldsymbol{p}^{0_{2}}=1 \\
& \boldsymbol{p}^{1_{2}}=1 \\
& =1 \\
& \hline 1
\end{aligned} 1_{1 / 2}^{12}
$$

$$
D_{3} \supset C_{2} 0_{2} \quad 1_{2}
$$

$$
\begin{aligned}
& n^{A}=1 \\
& n^{A}= \\
& n^{A}=
\end{aligned} \quad 1 \cdot
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

$$
\begin{aligned}
& \boldsymbol{C}_{2}=\mathbf{1} \\
& \mathbf{i}_{3} \\
& \boldsymbol{p}^{0_{2}}=1 \\
& \boldsymbol{p}^{1_{2}}=1 \\
& \boldsymbol{x}^{1}-1 / 2
\end{aligned}
$$

$$
D_{3} \supset C_{2} \text { Correlation table }
$$ shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies
there will be exactly 4
" C_{2}-friendly" irep projectors

$$
\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)
$$

$\boldsymbol{D}_{3} \supset \boldsymbol{C}_{2} 0_{2} 1_{2}$

$n^{A_{l}}=$| 1 | \cdot |
| :--- | :--- |
| $n^{A_{2}}=$ | |
| $n^{E}=$ | 1 |
| \cdot | 1 |
| 1 | 1 |

$$
=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}
$$

$$
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
\end{aligned}
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

$$
\begin{aligned}
& \boldsymbol{C}_{2}=\mathbf{1} \\
& \mathbf{i}_{3} \\
& \boldsymbol{p}^{0_{2}}=1 \\
& \boldsymbol{p}^{1_{2}}=1 \\
& \boldsymbol{x}^{1}-1 / 2
\end{aligned}
$$

$$
D_{3} \supset C_{2} \text { Correlation table }
$$ shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=p^{0_{2}}+p^{1_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

Rank $\rho\left(\mathbb{D}_{3}\right)=4$ implies
there will be exactly 4
" C_{2}-friendly" irep projectors

$$
\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)
$$

$$
=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}
$$

$\boldsymbol{D}_{\mathbf{3}} \supset \boldsymbol{C}_{2} 0_{2} 1_{2}$

$n^{A l}=$| 1 | \cdot |
| :--- | :--- |
| $n^{A_{2}}=$ | \cdot |
| $n^{E}=$ | 1 |
| 1 | 1 |

$$
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
\end{aligned}
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$
$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $\mathbb{I}=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{l_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies

there will be exactly 4
" C_{2}-friendly" irep projectors

$$
\begin{aligned}
& \mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right) \\
& \downarrow=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)} \\
& \mathbf{P}^{A_{1}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{1}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

```
Review:Spectral resolution of }\mp@subsup{D}{3}{}\mathrm{ Center (Class algebra)
    Group theory of equivalence transformations and classes
        Lagrange theorems
    All-commuting class projectors and D}\mp@subsup{D}{3}{}\mathrm{ -invariant character ortho-completeness
        Subgroup splitting and correlation frequency formula: f(a)}(\mp@subsup{D}{}{(\alpha)}(G)\downarrowH
    Group invariant numbers: Centrum, Rank, and Order
```

2nd-Stage spectral decompositions of global/local D3
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ Splitting classes

3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

Spectral reduction of non-commutative "Group-table Hamiltonian"
D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$

Standing-wave Subroup chain $D_{3} \supset C_{2}\left(\rho_{3}\right)$

Spectral reduction of non-commutative "Group-table Hamiltonian"
D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

Standing-wave Subroup chain $D_{3} \supset C_{2}\left(\rho_{3}\right)$

2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

$$
\begin{aligned}
& \boldsymbol{C}_{2}=\mathbf{1} \\
& \mathbf{i}_{3} \\
& \boldsymbol{p}^{0_{2}}=1 \\
& \boldsymbol{p}^{1_{2}}=1 \\
& 1_{1}-1 / 2
\end{aligned}
$$ $D_{3} \supset C_{2}$ Correlation table

$$
D_{3} \supset C_{2} 0_{2} \quad 1_{2}
$$ shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

Rank $\rho\left(\boldsymbol{D}_{3}\right)=4$ implies

there will be exactly 4
" C_{2}-friendly" irep projectors

$$
\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)
$$

$$
\downarrow=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}
$$

$$
\mathbf{P}^{A_{l}}=\mathbf{P}^{4_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\dot{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbf{P}_{0_{0} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1} \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right)^{\prime} / 6
$$

$$
\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}-\mathbf{2} \mathbf{i}_{3}\right) / 6
$$

$$
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
\end{aligned}
$$

Let:
$\varepsilon=\mathrm{e}^{-2 \pi i / 3}$

		\mathbf{r}^{1}	I	
p^{03}	1	1		
p^{13}	1	ε	ε	
p^{23}	2	ε^{*}	* ε	

2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"
D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)
$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $\mathbb{I}=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

$$
\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4 \text { implies }
$$ there will be exactly 4 " C_{2}-friendly" irep projectors

$$
\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)
$$

$$
\boldsymbol{V}=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}
$$

$$
\mathbf{P}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6
$$

$$
\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
$$

$$
\begin{aligned}
& D_{3} \kappa=1 \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& \begin{array}{rl}
\mathbf{P}^{4 /} & =1 \\
\mathbf{P}^{4}= & 1 \\
1 & 1 \\
\hline
\end{array} 1_{1}-1 / 6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let: } \\
& \varepsilon=\mathrm{e}^{-2 \pi i / 3}
\end{aligned}
$$

Same for Correlation table: $\mathbb{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$

$$
\begin{aligned}
& n^{A l}= \\
& n^{A 2}= \\
& n^{E}=
\end{aligned} \begin{array}{lll}
1 & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & 1
\end{array}
$$

2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

$$
\begin{aligned}
& D_{3} \kappa=1 \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& \begin{array}{l}
\left.\mathbf{P}^{4_{l}}=1 \begin{array}{lll|l}
1 & 1 & 1 & 6 \\
\mathbf{P}^{4_{2}}= & 1 & 1 & -1 / 6 \\
\mathbf{P}^{E} & =1 & -1 & 0
\end{array}\right]
\end{array}
\end{aligned}
$$

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make $\operatorname{IRREDUCIBLE} \mathbf{P}_{n, n}^{(\alpha)}$

$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies

there will be exactly 4
" C_{2}-friendly" irep projectors
$\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)$
$\boldsymbol{V}=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}$
$\mathbf{P}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\mathbb{P}^{4} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$

Let:
$\varepsilon=\mathrm{e}^{-2 \pi i / 3}$

C_{3} к $=$		\mathbf{r}^{1}		${ }^{2}$
$p^{0}{ }^{3}=$	1			1
$p^{13}=$		ε		*
$p^{23}=$		ε		c

Same for Correlation table: $\boldsymbol{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$

$$
\begin{aligned}
& n^{A l}= \\
& n^{A 2}= \\
& n^{E}= \\
& n^{1} \\
& = \\
& 1 \\
& \cdot \\
& \\
& \hline
\end{aligned}
$$

$\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4$ implies
there will be exactly 4
" C_{3}-friendly" irreducible projectors

$$
\begin{aligned}
\mathbf{P}^{(\alpha)} \mathbb{1} & =\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{3}}+\boldsymbol{p}^{1_{3}}+\boldsymbol{p}^{23}\right) \\
& =\mathbf{P}_{0_{2} 2_{2}}^{(\alpha)}+\mathbf{P}_{1_{3}}^{(\alpha)}+\mathbf{P}_{23_{3}}^{(\alpha)}
\end{aligned}
$$

2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"
D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)
$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies

there will be exactly 4
" C_{2}-friendly" irep projectors
$\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)$
$\downarrow=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}$
$\mathbf{P}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6$
$\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$

$$
\begin{aligned}
& D_{3} \kappa=1 \quad \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let: } \\
& \varepsilon=\mathrm{e}^{-2 \pi i / 3}
\end{aligned}
$$

C_{3} к $=$		\mathbf{r}^{1}		
$p^{0_{3}}=$	1	1		
$p^{13}=$		ε		
$p^{23}=$		ε		

Same for Correlation table: $\mathbb{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$

$$
\begin{aligned}
& n^{A l}= \\
& n^{A 2}= \\
& n^{E}= \\
& n^{1} \\
& = \\
& 1 \\
& \cdot \\
& \\
& \hline
\end{aligned}
$$

$\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4$ implies
there will be exactly 4 " C_{3}-friendly" irreducible projectors

$$
\begin{aligned}
\mathbf{P}^{(\alpha)} \mathbb{1} & =\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{3}}+\boldsymbol{p}^{1_{3}}+\boldsymbol{p}^{2_{3}}\right) \\
& =\mathbf{P}_{0_{2} 2_{2}}^{(\alpha)}+\mathbf{P}_{1_{3} 1_{3}}^{(\alpha)}+\mathbf{P}_{\left.\left.2_{3}\right)_{3}\right)}^{(\alpha)}
\end{aligned}
$$

2nd-Stage

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

$D_{3} \supset C_{2}$ Correlation table shows which products of class projector $\mathbf{P}^{(\alpha)}$ with C_{2}-unit $1=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$ will make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$
$\operatorname{Rank} \rho\left(\mathbb{D}_{3}\right)=4$ implies
there will be exactly 4
" C_{2}-friendly" irep projectors
$\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}\right)$
$\downarrow=\mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{2} 1_{2}}^{(\alpha)}$
$\mathbf{P}^{A_{l}}=\mathbf{P}^{4}{ }^{1} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{0_{0} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6$
$\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$

Let:
$\varepsilon=\mathrm{e}^{-2 \pi i / 3}$

C_{3} к $=$		\mathbf{r}^{1}		\mathbf{r}^{2}
$p^{0}{ }^{0}=$	1			1
$p^{13}=$		ε		ε^{*}
$p^{23}=$		ε		ε

Same for Correlation table: $\boldsymbol{D}_{3} \supset C_{3} 0_{3} 1_{3} 2_{3}$

$$
\left.\begin{array}{l}
n^{A_{1}}= \\
n^{A_{2}}= \\
n^{E}=
\end{array} \begin{array}{lll}
1 & \cdot & \cdot \\
1 & \cdot & \cdot \\
\cdot & 1 & 1
\end{array}\right]
$$

$\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4$ implies
there will be exactly 4
" C_{3}-friendly" irreducible projectors
$\mathbf{P}^{(\alpha)} \mathbb{1}=\mathbf{P}^{(\alpha)}\left(p^{0_{3}}+\boldsymbol{p}^{1_{3}}+p^{2_{3}}\right)$
$=\quad \mathbf{P}_{0_{2} 0_{2}}^{(\alpha)}+\mathbf{P}_{1_{3} 1_{3}}^{(\alpha)}+\mathbf{P}_{2_{3}{ }_{3}}^{(\alpha)}$
$\mathbf{P}^{E}={ }^{\cdot} \stackrel{P}{1}_{1_{3} 1_{3}}^{E} \quad \mathbf{P}_{2_{3} 2_{3}}^{E}$
$\mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{4_{1}}\left(\mathbf{1}+\mathbf{r}^{l^{l}}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$
$\mathbb{P}_{0_{3}}^{A_{3}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbf{P}_{1_{3}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{3}}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{l^{\prime}}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon \mathbf{r}^{l}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3$
$\mathbf{R}_{3^{2} 3}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{23}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 3$

Review:Spectral resolution of \boldsymbol{D}_{3} Center (Class algebra)
Group theory of equivalence transformations and classes Lagrange theorems
All-commuting class projectors and D_{3}-invariant character ortho-completeness Subgroup splitting and correlation frequency formula: $f^{(a)}\left(D^{(\alpha)}(G) \downarrow H\right)$ Atomic ℓ-level or $2 \ell+1$-multiplet splitting
D_{3} examples for $\ell=1-6$
Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
Splitting class projectors using subgroup chains $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ Splitting classes

3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

2nd Step: (contd.)While some class projectors $\mathbb{P}^{(\alpha)}$ split in two,

$$
\text { o, } \quad D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{1}+\mathbf{r}^{2} \dot{i}_{1}+\dot{i}_{2}+\mathbf{i}_{3}
$$ so ALSO DO some classes K_{k}

$\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4$
idempotents
$\mathbf{P}^{(\alpha)}$

${ }^{-} \mathbf{P}_{n, n}^{(\alpha)}$

$$
\mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{4} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{4_{1}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{0_{3} \sigma_{3}}^{A_{3}}=\mathbb{P}^{42} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right)^{2} / 6
$$

$$
\mathbb{P}_{3_{3}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{\left.l^{2}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3}{ }_{\varepsilon=\mathrm{e}^{-2 \pi i / 3}}\right.
$$

$$
\mathbf{P}_{2_{3}^{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{23}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{l}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3^{\varepsilon}
$$

\mathbb{P}^{E} splits into $\mathbb{P}^{E}=\mathbb{P}_{1_{3}{ }^{1}}^{E}+\mathbf{P}_{2_{3}, 3}^{E}$ class $\mathrm{K}_{\mathbf{r}}$ splits into $\mathrm{K}_{\mathbf{r} 1}$ and $\mathrm{K}_{\mathbf{r} 2}$

2nd-Stage

2nd Step: (contd.) While some class projectors $\mathbb{P}^{(\alpha)}$ split in two, so ALSO DO some classes κ_{k}
Rank $\rho\left(\boldsymbol{D}_{3}\right)=4$
idempotents
$\downarrow^{(\alpha)}$
$\mathbf{P}^{(\alpha)}$ class $\mathrm{K}_{\mathbf{i}}$ splits into K_{12} and $\mathrm{K}_{\mathbf{i}_{3}}$

4 different idempotent

${ }^{\wedge} \mathbf{P}_{n, n}^{(\alpha)}$
$\mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{4} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=(\mathbf{1}+\sqrt[\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}]{ }) / 6$
$\mathbb{P}_{0_{3} \sigma_{3}}^{A_{2}}=\mathbb{P}^{4} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(\sqrt{\mathbf{1}}+\overline{\mathbf{r}^{1}+\mathbf{r}^{2}}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$
$\mathbf{P}_{1_{3}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{3}}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3 \quad \varepsilon=e^{-2 \pi i / 3}$
$\mathbf{R}_{2_{3}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{23}=\mathbb{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{l}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{\prime}+\varepsilon \mathbf{r}^{2}\right) / 3 \quad \varepsilon=\mathrm{e}^{-2 \pi i / 3}$ class $\kappa_{\mathbf{r}}$ splits into $\kappa_{\mathbf{r} 1}$ and $\mathrm{K}_{\mathbf{r} 2}$

$r=r_{2}$	$i=i_{2}$
must	must
equal	equal
r_{1}	i_{1}
For Local	
$D_{3} \supset C_{2}\left(\mathbf{i}_{3}\right)$	
symmetry	
i_{3} is free parameter	

$$
i=i_{1}=i_{2}=i_{3}
$$

For Local

$$
D_{3} \supset C_{3}\left(\mathbb{r}^{p}\right)
$$

symmetry

$$
r_{1} \text { and } r_{2} \text { are free }
$$

```
Review:Spectral resolution of }\mp@subsup{D}{3}{}\mathrm{ Center (Class algebra)
    Group theory of equivalence transformations and classes
        Lagrange theorems
        All-commuting class projectors and D}\mp@subsup{D}{3}{}\mathrm{ -invariant character ortho-completeness
            Subgroup splitting and correlation frequency formula: f(a)}(\mp@subsup{D}{}{(\alpha)}(G)\downarrowH
    Group invariant numbers: Centrum, Rank, and Order
2nd-Stage spectral decompositions of global/local D3
    Splitting class projectors using subgroup chains D D \supsetC C2 and D D DC C
            Splitting classes
```

3rd-stage spectral resolution to irreducible representations (ireps) and Hamiltonian eigensolutions Tunneling modes and spectra for $D_{3} \supset C_{2}$ and $D_{3} \supset C_{3}$ local subgroup chains

$\text { Centrum } \kappa\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$	$D_{3} \kappa=1 \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}$
idempotents $\mathbf{P}^{(\alpha)}$	$\mathbf{P}^{4_{1}=} \begin{array}{\|lll} 1 & 1 & 1 \end{array} / 6$
	$\mathbb{P}^{42}=1 \quad 1 \quad 1 \quad-1 / 6$
	$\mathbb{P}^{E}=2 \begin{array}{lll}2 & -1 & 0\end{array}$

$$
\begin{aligned}
& \operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4 \\
& \text { idempotents }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbb{P}_{1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

3rd and Final Step:
Spectral resolution of $A L L 6$ of D_{3} :

$\text { Centrum } \mathrm{K}\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$ idempotents	$D_{3} \kappa=\mathbf{1}$ [$\mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$
$\mathbf{P}^{(\alpha)}$	$\mathbf{P}^{A_{l}}=\begin{array}{lll}1 & 1 & 1 / 6\end{array}$
	$\mathbb{P}^{A_{2}}=1 \begin{array}{lll}1 & 1 & -1 / 6\end{array}$
	$\mathbf{P}^{E}=\begin{array}{llll}2 & -1 & 0\end{array}$

3rd and Final Step:

$$
\begin{aligned}
& \operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4 \\
& \text { idempotents } \\
& \left.\mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{4}{ }_{1} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}\left(\mathbf{1}+\mathbf{i}_{3}\right.}\right)^{(\alpha)} / 2=\left(1+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\dot{\mathbf{i}}_{3}\right) / 6 \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{L_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbb{P}_{1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

Spectral resolution of ALL 6 of D_{3} :
The old ' g -equals-1-times-g-times-1' Trick

$$
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{t_{1}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{t_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right)
$$

Centrum $\kappa\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$
idempotents
$\mathbb{P}^{(\alpha)}$

$$
\begin{aligned}
\mathbb{D}_{3} \kappa & =\mathbf{1} \\
\mathbf{r}^{1}+\mathbf{r}^{2} & \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
\mathbf{P}_{l}^{A_{l}} & =1 \begin{array}{lcc}
1 & 1 & 1
\end{array} / 6 \\
\mathbb{P}^{A_{2}} & =1 \\
1 & -1
\end{aligned} / 6
$$

$$
\begin{aligned}
& \mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}=\mathbf{P}^{A_{1}} \mathbf{p}^{0_{2}}=\begin{array}{c}
\begin{array}{c}
\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4 \\
\text { idempotents } \\
\mathbf{P}_{n, n}^{(\alpha)}
\end{array} \\
\left.\mathbf{1}^{\left(\mathbf{1}+\mathbf{i}_{3}\right.}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}}\right) / 6
\end{array} \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} \mathrm{I}_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{12}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

3 rd and Final Step:

Spectral resolution of ALL 6 of D_{3} :

The old ' g -equals-1-times-g-times-1' Trick

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}+0 \quad+\quad 0 \quad+0 \\
& +0+\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}+0 \quad+0 \\
& +0+0 \quad+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E} \\
& +0 \quad \mathbf{0}+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

idempotents
$\mathbb{P}^{(\alpha)}$

3rd and Final Step:

Spectral resolution of ALL 6 of D_{3} :

The old ' g -equals-1-times-g-times-1' Trick

$$
\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}=D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}
$$

where:

$$
\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}
$$

$$
\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}
$$

$$
\begin{aligned}
& \mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
& \mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

Need to Define 6 Irreducible

$$
\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
$$ Projectors $\mathbf{P}_{m, n}^{(\alpha)}$ $\operatorname{Order}^{\circ}\left(D_{3}\right)=6$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}+0 \quad+\quad 0 \quad+0 \\
& +0+\mathbf{P}_{y, y}^{t_{2}} \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}+0+0 \\
& +0+0+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E} \\
& +0+0+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}_{\dot{p}, y}^{A_{2}}=\mathbb{P}_{1_{2} \mathbb{P}_{2}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{y, y}^{E}=\mathbb{P}_{1_{2}^{1}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

idempotents
$\mathbb{P}^{(\alpha)}$

3rd and Final Step:

Spectral resolution of ALL 6 of D_{3} :

The old ' g -equals-1-times-g-times-1' Trick
where:

$$
\begin{array}{lll}
\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}} & +0 & +0 \\
\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}=D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}} & +0+D_{x,}^{E}+0 \\
\mathbf{P}_{x, x}^{E} \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E} & +D_{y,}^{E} & \mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
\mathbf{P}_{y, y}^{E} \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E} & \mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{array}
$$

$$
+0+0+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}
$$

$$
+0+0+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
$$

Need to Define 6 Irreducible Projectors $\mathbf{P}_{m, n}^{(\alpha)}$ $\operatorname{Order}^{\circ}\left(D_{3}\right)=6$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+0 \quad+0 \quad+0 \\
& +0+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+0+0
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{L_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{y, y}^{E}=\mathbb{P}_{1_{2}^{1}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

idempotents
$\mathbb{P}^{(\alpha)}$

$$
\begin{array}{rl}
\mathbb{D}_{3} \kappa & =\mathbf{1} \\
\mathbf{r}^{l}+\mathbf{r}^{2} & \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
\mathbf{P}^{A_{1}} & =1 \\
\mathbb{P}^{A_{2}} & =1 \\
1 & 1 \\
1 & 1 \\
\hline & -1
\end{array} / 6
$$

$$
\begin{aligned}
& \mathbf{P}_{x, x}^{A_{1}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{1}}=\mathbf{P}^{A_{1}} \mathbf{p}^{0_{2}}=\mathbf{P}^{\begin{array}{c}
\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4 \\
\text { idempotents } \\
\mathbf{P}_{n, n}^{(\alpha)}
\end{array}} \begin{array}{l}
\left.\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l^{\prime}+\mathbf{r}^{2}}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
\end{array} \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} \mathbb{I}_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{0} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{12}=\mathbf{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
\end{aligned}
$$

3rd and Final Step:

Spectral resolution of $A L L 6$ of D_{3} :

The old 'g-equals-1-times-g-times-1' Trick

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{(}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{1}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g = 1} \cdot \mathbf{g} \cdot \mathbf{1}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
&+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{aligned}
$$

where:

$$
\begin{array}{ll}
\mathbf{P}_{x, x}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{A_{1}}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}} & \\
\mathbf{P}_{y, y}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{A_{2}}=D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}} & \\
\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E} & \mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E} \\
\mathbf{P}_{y, y}^{E} \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}=D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E} & \mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}=D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}
\end{array}
$$

Need to Define 6 Irreducible Projectors $\mathbf{P}_{m, n}^{(\alpha)}$ $\operatorname{Order}^{\circ}\left(D_{3}\right)=6$

Centrum $\mathrm{K}\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$
idempotents
$\mathbb{P}^{(\alpha)}$

$$
\begin{array}{rl}
\boldsymbol{D}_{3} \kappa & \kappa \mathbf{1} \\
\mathbf{r}^{l}+\mathbf{r}^{2} & \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
\mathbf{P}^{4}= & 1 \\
1 & 1 \\
1 & 1 / 6 \\
\mathbb{P}^{4_{2}} & =1 \\
1 & -1 / 6 \\
\mathbb{P}^{E} & =2
\end{array}-1 \quad 0 / 1 / 3
$$

$$
\begin{aligned}
& \mathbf{P}_{n, n}^{(\alpha)} \\
& \mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} \mathrm{I}_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbf{P}_{1_{2}{ }_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1} \mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6 \\
& \text { idempotents } \\
& \mathbf{P}_{n, n}^{(\alpha)}
\end{aligned}
$$

3rd and Final Step:

Spectral resolution of ALL 6 of D_{3} :

The old ' g -equals-1-times-g-times-1' Trick

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{t_{y}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{t_{y}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=D^{4}(\mathbf{g}) \mathbf{P}^{4}+D^{1}(\mathbf{g}) \mathbf{P}_{y, y}^{t}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E} \\
& \text { Six } D_{3} \text { projectors: } 4 \text { idempotents }+2 \text { nilpotents (off-diag.) }
\end{aligned}
$$

Centrum $\mathrm{K}\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$
idempotents
$\mathbb{P}^{(\alpha)}$

$$
\begin{array}{rl}
\boldsymbol{D}_{3} \kappa & \kappa \mathbf{1} \\
\mathbf{r}^{l}+\mathbf{r}^{2} & \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
\mathbf{P}^{4}= & 1 \\
1 & 1 \\
1 & 1 / 6 \\
\mathbb{P}^{4_{2}} & =1 \\
1 & -1 / 6 \\
\mathbb{P}^{E} & =2
\end{array}-1 \quad 0 / 1 / 3
$$

$\mathbf{P}_{n, n}^{(\alpha)}$

$$
\mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} I_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l_{1}+\mathbf{r}^{2}}-\overline{\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}}\right) / 6
$$

$$
\mathbb{P}_{x, x}^{E}=\mathbf{P}_{0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{E}=\mathbf{P}_{1_{2} 1_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
$$

$3^{r d}$ and Final Step:

Spectral resolution of ALL 6 of D_{3} :

The old 'g-equals-1-times-g-times-1' Trick

$$
\mathbf{g}=\Sigma_{m} \Sigma_{e} \Sigma_{b} D_{e b}^{(m)} k_{g} \mathbf{P}_{e b}^{(m)}
$$

$$
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right)
$$

$$
\mathbf{g}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
$$

Six D_{3} projectors: 4 idempotents +2 nilpotents (off-diag.)

Centrum $\mathrm{k}\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$
idempotents
$\mathbb{P}^{(\alpha)}$

$$
\begin{aligned}
& D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& \mathbf{P}^{4}=\begin{array}{lll}
1 & 1 & 1
\end{array} / 6 \\
& \begin{array}{l|lll|l}
\mathbb{P}^{4}= & 1 & 1 & -1 & 6 \\
\mathbf{P}^{E}= & -1 & 0 & 1 / 3
\end{array}
\end{aligned}
$$

$\mathbf{P}_{n, n}^{(\alpha)}$

$$
\mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{1}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{A_{1}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l_{1}+\mathbf{r}^{2}}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{x, x}^{E}=\mathbb{P}_{0_{2} 0_{2}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbb{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{E}=\mathbf{P}_{1_{2}^{1}}^{E}=\mathbb{P}^{E} \boldsymbol{p}^{1_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
$$

3rd and Final Step:

Spectral resolution of $A L L 6$ of D_{3} :

The old 'g-equals-1-times-g-times-1' Trick

$$
\begin{aligned}
& \mathbf{g}=\Sigma_{m} \Sigma_{e} \Sigma_{b} D_{e b}^{(m)}(g) \mathbf{P}_{e b}^{(m)} \\
& \mathbf{P}_{e b}^{(m)}=(n o r m) \Sigma_{\mathbf{g}} D_{e b}^{(m)}{ }_{e}^{(m)} \mathbf{g}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{1}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{1}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
& \mathbf{g}=D^{A_{1}}(\mathbf{g}) \mathbf{P}_{x, x}^{A_{1}}+D^{A_{2}}(\mathbf{g}) \mathbf{P}_{y, y}^{A_{2}}+D_{x, x}^{E}(\mathbf{g}) \mathbf{P}_{x, x}^{E}+D_{y, y}^{E}(\mathbf{g}) \mathbf{P}_{y, y}^{E}+D_{x, y}^{E}(\mathbf{g}) \mathbf{P}_{x, y}^{E}+D_{y, x}^{E}(\mathbf{g}) \mathbf{P}_{y, x}^{E}
\end{aligned}
$$

Six D_{3} projectors: 4 idempotents +2 nilpotents (off-diag.)

$$
\text { are: } \quad D^{A_{1}}(\mathbf{g})=+1, \quad D^{A_{1}}(\mathbf{g})= \pm 1
$$

$$
D^{E}(1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), D^{E}(\mathbf{r})=\left(\begin{array}{cc}
-\frac{1}{2} & -\sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & -\frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{r}^{2}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
-\sqrt{\frac{3}{4}} & -\frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{i}_{1}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & -\sqrt{\frac{3}{4}} \\
-\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{i}_{2}\right)=\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right), D^{E}\left(\mathbf{i}_{3}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states Local (BOD) symmetry

$$
\mathbb{P}_{y, y}^{A 2}=\frac{\begin{array}{lllll}
\mathbf{1} & \mathbf{r}^{1} & \mathbf{r}^{2} & \mathbf{i}_{1} & \mathbf{i}_{2} \\
\mathbf{l} & \mathbf{i}_{3} \\
1 & 1 & 1 & -1 & -1
\end{array}}{}
$$

$$
\mathbf{P}_{x, y}^{E}=\left(\begin{array}{lllll}
0 & -1 & 1 & -1+1 & 0
\end{array}\right) / \sqrt{3} / 2
$$

$$
\mathbb{P}_{y, y}^{E}=\overline{(2-1-1+1+1-2) / 6}
$$

Set norm factors detailed in Lect. 17 p.23-30

$$
\begin{aligned}
& \mathbb{P}_{x, x}^{E}=\begin{array}{llllll}
=\left(\begin{array}{llllll}
2 & -1 & -1 & -1 & -1 & +2
\end{array}\right) / 6 \\
\mathbb{P}_{y, x}^{E}= \\
\left.=\begin{array}{lllllll}
0 & 1 & -1 & -1 & +1 & 0
\end{array}\right) / \sqrt{3} / 2
\end{array} \\
& \mathbf{P}_{x, x}^{A_{l}}=\overline{\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)} 6
\end{aligned}
$$

(x) symmetry

$$
\left.D^{A_{1}(\mathbf{g})=+1, D^{A_{2}}\left(\mathbf{r}^{p}\right)=+1, D^{A_{2}}\left(\mathbf{i}_{q}\right)=-1 \quad D^{E}(1)=0} \begin{array}{l}
D \\
0
\end{array}\right)
$$

$$
\left.\begin{array}{cc}
D^{E}(\mathbf{r})= & \\
\left(\begin{array}{cc}
-\frac{1}{2} & -\sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & -\frac{1}{2}
\end{array}\right) & \left.\begin{array}{cc}
D^{E}\left(\mathbf{r}^{2}\right)= & D^{E}\left(\mathbf{i}_{1}\right)= \\
\left(\begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
-\sqrt{\frac{3}{4}} & -\frac{1}{2}
\end{array}\right) & D^{E}\left(\mathbf{i}_{2}\right)= \\
-\frac{1}{2} & -\sqrt{\frac{3}{4}} \\
-\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right)
\end{array} \begin{array}{cc}
-\frac{1}{2} & \sqrt{\frac{3}{4}} \\
\sqrt{\frac{3}{4}} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=
$$

$$
\begin{array}{cc}
\left|\begin{array}{c}
m \\
e b
\end{array}\right\rangle= & \mathbf{P}(m)|\mathbf{P}\rangle \\
\text { external LAB } & \text { internal BOD } \\
\text { symmety label-e } & \text { symmety label-b } \\
\text { GLOBAL } & \text { LOCAL }
\end{array}
$$

$$
\mathbf{P}_{m n}^{(\omega)}=\frac{l^{(\mu)} \sum_{\mathrm{g}} D_{m n}^{(\mu)}(\underline{\mathrm{g}}) \mathrm{g}}{}
$$

Spectral Efficiency: Same $D(a)_{m n}$ projectors give a lot!

-Local symmetery eigenvalue formulae (Local Symmetry \Rightarrow off-diagonal $=0$)

$$
\begin{aligned}
& r_{1}=r_{2}=r_{1}^{*}=r, i_{1}=i_{2}=i_{1} *=i \\
& A_{1} \text {-level: } H+2 r+2 i+\dot{3} \\
& \text { gives: } A_{2} \text {-level: } H+2 r-2 i-\dot{H}_{3} \\
& E_{x} \text {-level: } H-r-i+j_{3} \\
& E_{y} \text {-level: } H-r+i-i_{3} \\
& \hline
\end{aligned}
$$

Rigorous Global vs Local Calculus begins on p. 90 of Lecture 17. Matrix forms on p. 125-129 and p. 130-146.

Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states Local (BOD) symmetry

$$
\begin{aligned}
& =(-1)^{e}|(m)\rangle \\
& \left|{ }_{e b}^{(m)}\right\rangle=\mathbf{P}_{e b}^{(m)}|1\rangle \\
& \overline{\mathbf{i}_{3}}|e b\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(n)} \overline{\mathbf{i}_{3}}|1\rangle \\
& \left.=\mathbf{P}_{e b}^{(m) \mathbf{i n}_{3}^{\dagger}}{ }^{\dagger}|1\rangle=\left.(-1)^{b}\right|^{(m)}\right\rangle
\end{aligned}
$$

When there is no there, there...

Nobody Home
where LOCAL and GLOBAL

(a) Local $D_{3} \supset C_{2}\left(i_{3}\right)$ model

(b) Mixed local symmetry D_{3} model

See p. 12-45 of
See p. 12-45 of
Lecture 18
Lecture 18
MolVibes Web Application: http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html

(a) Local $D_{3} \supset C_{2}\left(i_{3}\right)$ model

See p. 12-45 of Lecture 18

MolVibes Web Simulation 3 Atom with C3v symmetry

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$
is an $\left(\ell^{j}=2 j+1\right)$-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

$$
\chi_{(\text {spinor- } j=1 / 2)}^{1 / 2}(\Theta)=\operatorname{trace} D^{1 / 2}(\Theta)=\operatorname{trace}\left(\begin{array}{cc}
e^{-i \theta / 2} & \cdot \\
\cdot & e^{+i \theta / 2}
\end{array}\right) \quad \chi_{(\text {vector }-j=1)}^{1}(\Theta)=\operatorname{trace} D^{1}(\Theta)=\operatorname{trace}\left(\begin{array}{ccc}
e^{-i \theta} & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & e^{-i \theta}
\end{array}\right)
$$

Excerpts from Lecture 13 page 135-146 (also Lecture 14.5 p. 93-104)

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$
is an ($\ell^{j}=2 j+1$)-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.
$\chi^{j}(\Theta)$ involves a sum of $2 \cos (m \Theta / 2)$ for $m \geq 0$ up to $m=j$.

$$
\begin{array}{ll}
\chi^{1 / 2}(\Theta)=e^{-i \frac{\Theta}{2}}+e^{i \frac{\Theta}{2}} & =2 \cos \frac{\Theta}{2} \\
\chi^{3 / 2}(\Theta)=e^{-i \frac{3 \Theta}{2}}+\ldots & +e^{i \frac{3 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2} \\
\chi^{5 / 2}(\Theta)=e^{-i \frac{5 \Theta}{2}}+\ldots & +e^{i \frac{5 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2}+2 \cos \frac{5 \Theta}{2}
\end{array}
$$

Excerpts from Lecture 13 page 135-146

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$
is an ($\ell^{j}=2 j+1$)-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

$$
\begin{aligned}
& \chi^{j}(\Theta) \text { involves a sum of } 2 \cos (m \Theta / 2) \text { for } m \geq 0 \text { up to } m=j \text {. }
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\chi^{1 / 2}(\Theta)=e^{-i \frac{\Theta}{2}}+e^{i \frac{\Theta}{2}} & =2 \cos \frac{\Theta}{2} \quad \chi^{0}(\Theta)=e^{-i \Theta \cdot 0} \\
\chi^{3 / 2}(\Theta)=e^{-i \frac{3 \Theta}{2}}+\ldots & +e^{i \frac{3 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2} \\
\chi^{5 / 2}(\Theta)=e^{-i \frac{5 \Theta}{2}}+\ldots & +e^{i \frac{5 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2}+2 \cos \frac{5 \Theta}{2}
\end{array} \quad \chi^{1}(\Theta)=e^{-i \Theta}+1+e^{i \Theta}=1+2 \cos \Theta \quad \text { (vealar- } j=0 \text {) }\right)
$$

Excerpts from Lecture 13 page 135-146

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$
is an $\left(\ell^{j}=2 j+1\right)$-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

$$
\begin{array}{ll}
\chi^{1 / 2}(\Theta)=e^{-i \frac{\Theta}{2}}+e^{i \frac{\Theta}{2}} & =2 \cos \frac{\Theta}{2} \\
\chi^{3 / 2}(\Theta)=e^{-i \frac{3 \Theta}{2}}+\ldots & +e^{i \frac{3 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2} \\
\chi^{5 / 2}(\Theta)=e^{-i \frac{5 \Theta}{2}}+\ldots & +e^{i \frac{i \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2}+2 \cos \frac{5 \Theta}{2}
\end{array}
$$

$$
\chi^{0}(\Theta)=e^{-i \Theta \cdot 0} \quad=1
$$

$$
(\text { scalar }-j=0)
$$

$$
\chi^{1}(\Theta)=e^{-i \Theta}+1+e^{i \Theta}=1+2 \cos \Theta
$$

$$
(\text { vector }-j=1)
$$

$$
\chi^{2}(\Theta)=e^{-i 2 \Theta}+\ldots e^{i 2 \Theta}=1+2 \cos \Theta+2 \cos 2 \Theta
$$

$\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i \Theta}$ between each successive term.
(tensor-j=2)
$\chi^{j}(\Theta)=\operatorname{Trace} D^{(j)}(\Theta)=e^{-i \Theta j}+e^{-i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}+e^{+i \Theta j}$
$\chi^{j}(\Theta) e^{-i \Theta}=e^{-i \Theta(j+1)}+e^{-i \Theta j}+e^{-i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}$
Subtracting gives:
$\chi^{j}(\Theta)\left(1-e^{-i \Theta}\right)=-e^{-i \Theta(j+1)}$
$+$
$e^{+i \Theta j}$

Excerpts from Lecture 13 page 135-146

$$
\begin{aligned}
& \chi^{1 / 2}(\Theta)=\underset{(\text { spinor }-j=1 / 2)}{\operatorname{trace} D^{1 / 2}(\Theta)=\operatorname{trace}}\left(\begin{array}{cc}
e^{-i \theta / 2} & \cdot \\
\cdot & e^{+i \theta / 2}
\end{array}\right) \quad \chi_{\text {(vector-j-1) }}^{1}(\Theta)=\operatorname{trace} D^{1}(\Theta)=\operatorname{trace}\left(\begin{array}{ccc}
e^{-i \theta} & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & e^{-i \theta}
\end{array}\right) \\
& \chi^{j}(\Theta) \text { involves a sum of } 2 \cos (m \Theta / 2) \text { for } m \geq 0 \text { up to } m=j \text {. }
\end{aligned}
$$

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$
is an $\left(\ell^{j}=2 j+1\right)$-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

$$
\begin{array}{ll}
\chi^{1 / 2}(\Theta)=e^{-i \frac{\Theta}{2}}+e^{i \frac{\Theta}{2}} & =2 \cos \frac{\Theta}{2} \\
\chi^{3 / 2}(\Theta)=e^{-i \frac{3 \Theta}{2}}+\ldots & +e^{i \frac{3 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2} \\
\chi^{5 / 2}(\Theta)=e^{-i \frac{5 \Theta}{2}}+\ldots & +e^{i \frac{i \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2}+2 \cos \frac{5 \Theta}{2}
\end{array}
$$

$$
\chi^{0}(\Theta)=e^{-i \Theta \cdot 0} \quad=1
$$

$$
(\text { scalar-j=0) }
$$

$$
\chi^{1}(\Theta)=e^{-i \Theta}+1+e^{i \Theta}=1+2 \cos \Theta
$$

$$
(\text { vector }-j=1)
$$

$$
\chi^{2}(\Theta)=e^{-i 2 \Theta}+\ldots e^{i 2 \Theta}=1+2 \cos \Theta+2 \cos 2 \Theta
$$

$\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i \Theta}$ between each successive term.
(tensor-j=2)
$\chi^{j}(\Theta)=\operatorname{Trace} D^{(j)}(\Theta)=e^{-i \Theta j}+e^{-i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}+e^{+i \Theta j}$
$\chi^{j}(\Theta) e^{-i \Theta}=e^{-i \Theta(j+1)}+e^{-i \Theta j}+e^{i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}$
Subtracting/dividing gives $\chi^{j}(\Theta)$ formula.

$$
\chi^{j}(\Theta)=\frac{e^{+i \Theta j}-e^{-i \Theta(j+1)}}{1-e^{-i \Theta}}=\frac{e^{+i \Theta\left(j+\frac{1}{2}\right)}-e^{-i \Theta\left(j+\frac{1}{2}\right)}}{e^{+i \frac{\Theta}{2}}-e^{-i \frac{\Theta}{2}}}=\frac{\sin \Theta\left(j+\frac{1}{2}\right)}{\sin \frac{\Theta}{2}}
$$

Excerpts from Lecture 13 page 135-146

$$
\begin{aligned}
& \chi^{1 / 2}(\Theta)=\underset{\text { (spinor- }-1 / 2)}{\operatorname{trace} D^{1 / 2}(\Theta)=\operatorname{trace}}\left(\begin{array}{cc}
e^{-i \theta / 2} & \cdot \\
\cdot & e^{+i \theta / 2}
\end{array}\right) \quad \chi_{\text {(vector-j-1) }}^{1}(\Theta)=\operatorname{trace} D^{1}(\Theta)=\operatorname{trace}\left(\begin{array}{ccc}
e^{-i \theta} & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & e^{-i \theta}
\end{array}\right) \\
& \chi^{j}(\Theta) \text { involves a sum of } 2 \cos (m \Theta / 2) \text { for } m \geq 0 \text { up to } m=j \text {. }
\end{aligned}
$$

Polygonal geometry of $U(2) \supset C_{N}$ character spectral function

 Trace-character $\chi^{j}(\Theta)$ of $\mathrm{U}(2)$ rotation by C_{n} angle $\Theta=2 \pi / n$is an $\left(\ell^{j}=2 j+1\right)$-term sum of $\mathrm{e}^{-i m \Theta}$ over allowed m-quanta $m=\{-j,-j+1, \ldots, j-1, j\}$.

$$
\begin{array}{ll}
\chi^{1 / 2}(\Theta)=e^{-i \frac{\Theta}{2}}+e^{i \frac{\Theta}{2}} & =2 \cos \frac{\Theta}{2} \\
\chi^{3 / 2}(\Theta)=e^{-i \frac{3 \Theta}{2}}+\ldots & +e^{i \frac{3 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2} \\
\chi^{5 / 2}(\Theta)=e^{-i \frac{5 \Theta}{2}}+\ldots & +e^{i \frac{5 \Theta}{2}}=2 \cos \frac{\Theta}{2}+2 \cos \frac{3 \Theta}{2}+2 \cos \frac{5 \Theta}{2}
\end{array}
$$

$$
\chi^{0}(\Theta)=e^{-i \Theta \cdot 0} \quad=1
$$

$$
(\text { scalar-j=0) }
$$

$$
\chi^{1}(\Theta)=e^{-i \Theta}+1+e^{i \Theta}=1+2 \cos \Theta
$$

$$
(\text { vector }-j=1)
$$

$$
\chi^{2}(\Theta)=e^{-i 2 \Theta}+\ldots e^{i 2 \Theta}=1+2 \cos \Theta+2 \cos 2 \Theta
$$

$$
(\text { tensor }-j=2)
$$

$\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i \Theta}$ between each successive term.
$\chi^{j}(\Theta)=\operatorname{Trace} D^{(j)}(\Theta)=e^{-i \Theta j}+e^{-i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}+e^{+i \Theta j}$
$\chi^{j}(\Theta) e^{-i \Theta}=e^{-i \Theta(j+1)}+e^{-i \Theta j}+e^{-i \Theta(j-1)}+e^{-i \Theta(j-2)}+\ldots+e^{+i \Theta(j-2)}+e^{+i \Theta(j-1)}$
Subtracting/dividing gives $\chi^{j}(\Theta)$ formula.

$$
\chi^{j}(\Theta)=\frac{e^{+i \Theta j}-e^{-i \Theta(j+1)}}{1-e^{-i \Theta}}=\frac{e^{+i \Theta\left(j+\frac{1}{2}\right)}-e^{-i \Theta\left(j+\frac{1}{2}\right)}}{e^{+i \frac{\Theta}{2}}-e^{-i \frac{\Theta}{2}}}=\frac{\sin \Theta\left(j+\frac{1}{2}\right)}{\sin \frac{\Theta}{2}}, ~
$$

For C_{n} angle $\Theta=2 \pi / n$ this χ^{j} has a lot of geometric significance.

$$
\chi^{j}\left(\frac{2 \pi}{n}\right)=\frac{\sin \frac{\pi}{n}(2 j+1)}{\sin \frac{\pi}{n}}=\frac{\sin \frac{\pi \ell^{j}}{n}}{\sin \frac{\pi}{n}}
$$

Character Spectral Function where: $\ell^{j}=2 j+1$ is $U(2)$ irrep dimension

$$
\begin{aligned}
& \chi^{1 / 2}(\Theta)=\underset{(\text { spinor }-j=1 / 2)}{\operatorname{trace} D^{1 / 2}}(\Theta)=\operatorname{trace}\left(\begin{array}{cc}
e^{-i \theta / 2} & \cdot \\
\cdot & e^{+i \theta / 2}
\end{array}\right) \quad \chi_{\text {(vector }-j=1)}^{1}(\Theta)=\operatorname{trace} D^{1}(\Theta)=\operatorname{trace}\left(\begin{array}{ccc}
e^{-i \theta} & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & e^{-i \theta}
\end{array}\right) \\
& \chi^{j}(\Theta) \text { involves a sum of } 2 \cos (m \Theta / 2) \text { for } m \geq 0 \text { up to } m=j \text {. }
\end{aligned}
$$

Polygonal geometry of $U(, 2) \supset C_{N}$ character spectral function

Excerpts from Lecture 14.5 page 93-103
$(j)^{\text {th }}$ n-gon segments

