Group Theory in Quantum Mechanics

Lecture 15 (3.09.17)

Smallest non-Abelian group D_3 (and isomorphic $C_{3v} \sim D_3$)

(Small non-Abelian group D_3 and isomorphic $C_{3v} \sim D_3$)

(3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:

By group definition $|g\rangle = g|1\rangle$ of position ket $|g\rangle$

By nomograms based on $U(2)$ Hamilton-turns

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution

Global vs Local symmetry and Mock-Mach principle

Global vs Local matrix duality for D_3

Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian

Group theory of equivalence transformations and classes

Lagrange theorems

All-commuting operators and D_3-invariant class algebra (center)

All-commuting projectors and D_3-invariant characters

Group invariant numbers: Centrum, Rank, and Order

(Fig. 15.2.1 QTCA)
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}
D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:

- By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$
- By nomograms based on $U(2)$ Hamilton-turns

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution
- Global vs Local symmetry and Mock-Mach principle
- Global vs Local matrix duality for D_3
 - Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian
- Group theory of equivalence transformations and classes
 - Lagrange theorems
- All-commuting operators and D_3-invariant class algebra
- All-commuting projectors and D_3-invariant characters
- Group invariant numbers: Centrum, Rank, and Order

Crystal-field splitting: $O(3) \supset D_3$ symmetry reduction and $D_3 \downarrow D_3$ splitting
Figure 3.1.1 Crystal point symmetry groups. Models are sketched in circles for the 16 non-Abelian groups. (See also Figure 2.11.1.)
Figure 3.1.1 Crystal point symmetry groups. Models are sketched in circles for the 16 non-Abelian groups. (See also Figure 2.11.1.)
3-Dihedral-axes group \(D_3 \) vs. 3-Vertical-mirror-plane group \(C_{3v} \)

\(D_3 \) and \(C_{3v} \) are isomorphic (\(D_3 \sim C_{3v} \) share product table)

Deriving \(D_3 \sim C_{3v} \) products:

By group definition \(|g\rangle = g|I\rangle \) of position ket \(|g\rangle \)

By nomograms based on U(2) Hamilton-turns

Deriving \(D_3 \sim C_{3v} \) equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution

Global vs Local symmetry and Mock-Mach principle

Global vs Local matrix duality for \(D_3 \)

Global vs Local symmetry expansion of \(D_3 \) Hamiltonian

1st-Stage spectral decomposition of global/local \(D_3 \) Hamiltonian

Group theory of equivalence transformations and classes

Lagrange theorems

All-commuting operators and \(D_3 \)-invariant class algebra

All-commuting projectors and \(D_3 \)-invariant characters

Group invariant numbers: Centrum, Rank, and Order
Fig. 3.1.3 PSDS

3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

isomorphic means mathematically the same abstract group even if physically different action.

Showing that D_3 and C_{3v} are isomorphic* ($D_3 \sim C_{3v}$ share product table)
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

Figure 3.1.3 Pictorial comparison of D_3 and C_{3v} symmetry. A propeller having D_3 symmetry is shown next to a three-plane paddle having C_{3v} symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_3 is a 180° rotation around the y axis, while $I\rho_3 = \sigma_3$ is a reflection through the xz plane. (Here axes are fixed and the objects rotate.)

$180^\circ D_3$-Y-axis-rotation: $\rho_3 = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$ maps to: XZ-mirror-plane reflection: $\sigma_3 = \begin{pmatrix} +1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1 \end{pmatrix}$

isomorphic means mathematically the same abstract group even if physically different action.

Showing that D_3 and C_{3v} are isomorphic* ($D_3 \sim C_{3v}$ share product table)
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

$\rho_3 (180^\circ)$

$\rho_1 (180^\circ)$

$r (120^\circ)$

$\rho_2 (180^\circ)$

$\sigma_3 \rho_3$

$\sigma_1 \rho_3$

$\sigma_2 \rho_3$

$\rho_3 I = I \rho_3$

180° \perp \text{-axial-rotation-inversion} \quad \sigma = R \cdot I = I \cdot R$

$\sigma_3 = \begin{pmatrix} +1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1 \end{pmatrix}$

$\sigma_3 = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$

$\sigma_3 = \begin{pmatrix} +1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1 \end{pmatrix}$

180° D_3-Y-axis-rotation: $\rho_3 = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$ maps to: XZ-mirror-plane reflection: $\sigma_3 = \begin{pmatrix} -1 & \cdot & +1 \\ \cdot & -1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$

*isomorphic means mathematically the same abstract group even if physically different action.

Showing that D_3 and C_{3v} are isomorphic* ($D_3 \sim C_{3v}$ share product table)
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

Figure 3.1.3 PSDS

Mirror-plane-reflection σ equals
180° ⊥-axial-rotation-inversion
$\sigma = R \cdot I = I \cdot R$

$\sigma_3 = \begin{pmatrix} +1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1 \end{pmatrix}$

$= \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix} = \rho_3 \cdot I = I \cdot \rho_3$

$180^\circ D_3$-Y-axis-rotation: $\rho_3 = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$

maps to: XZ-mirror-plane reflection: $\sigma_3 = \begin{pmatrix} +1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1 \end{pmatrix}$

Inversion $I = -1$ commutes with all R

*isomorphic means mathematically the same abstract group even if physically different action.

Showing that D_3 and C_{3v} are isomorphic* ($D_3 \sim C_{3v}$ share product table)
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

Fig. 3.1.3 PSDS

Mirror-plane-reflection σ equals

$180^\circ \perp$-axial-rotation-inversion

$\sigma = R \cdot I = I \cdot R$

$\sigma_3 = \begin{pmatrix} +1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1 \end{pmatrix} = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$

$= \rho_3 \cdot I = I \cdot \rho_3$

$180^\circ D_3$-Y-axis-rotation: $\rho_3 = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$ maps to: XZ-mirror-plane reflection: $\sigma_3 = \begin{pmatrix} +1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1 \end{pmatrix}$

$180^\circ D_3$-ρ_2-axis-rotation: ρ_2 maps to: $\perp \rho_2$-mirror-plane reflection: $\sigma_2 = \rho_2 \cdot I = I \cdot \rho_2$

isomorphic means mathematically the same abstract group even if physically different action.

Showing that D_3 and C_{3v} are isomorphic* ($D_3 \sim C_{3v}$ share product table)
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

Mirror-plane-reflection σ

$180^\circ \perp$-axial-rotation-inversion

$\sigma = R \cdot I = I \cdot R$

$\sigma_3 = \begin{pmatrix} +1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1 \end{pmatrix}$

$= \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$

$= \rho_3 \cdot I = I \cdot \rho_3$

Inversion

$I = -I$ commutes with all R

isomorphic means mathematically the same abstract group even if physically different action.

Showing that D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Fig. 3.1.3 PSDS

Figure 3.1.3 Pictorial comparison of D_3 and C_{3v} symmetry. A propeller having D_3 symmetry is shown next to a three-plane paddle having C_{3v} symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_3 is a 180° rotation around the y axis, while $I \rho_3 = \sigma_3$ is a reflection through the xz plane. (Here axes are fixed and the objects rotate.)

$180^\circ D_3$-Y-axis-rotation: $\rho_3 = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$ maps to: XZ-mirror-plane reflection: $\sigma_3 = \begin{pmatrix} +1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1 \end{pmatrix}$

$180^\circ D_3$-D_2-axis-rotation: ρ_2 maps to: $\perp \rho_2$-mirror-plane reflection: $\sigma_2 = \rho_2 \cdot I = I \cdot \rho_2$

$180^\circ D_3$-D_1-axis-rotation: ρ_1 maps to: $\perp \rho_1$-mirror-plane reflection: $\sigma_1 = \rho_1 \cdot I = I \cdot \rho_1$
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

Fig. 3.1.3 PSDS

$180^\circ D_3$ - Y-axis-rotation: $\rho_3 = \begin{pmatrix} -1 & \cdots & \cdots \\ \cdots & +1 & \cdots \\ \cdots & \cdots & -1 \end{pmatrix}$ maps to: XZ-mirror-plane reflection: $\sigma_3 = \begin{pmatrix} +1 & \cdots & \cdots \\ \cdots & -1 & \cdots \\ \cdots & \cdots & +1 \end{pmatrix}$

$180^\circ D_3$ - ρ_2-axis-rotation: ρ_2

maps to: $\bot \rho_2$ - mirror-plane reflection: $\sigma_2 = \rho_2 \cdot I = I \rho_2$

$180^\circ D_3$ - ρ_1-axis-rotation: ρ_1

maps to: $\bot \rho_1$ - mirror-plane reflection: $\sigma_1 = \rho_1 \cdot I = I \rho_1$

D_3-product: $\rho_1 \rho_2$

maps to: C_{3v}-product: $\sigma_1 \sigma_2 = \rho_1 \cdot I \rho_2 = \rho_1 \rho_2$

*isomorphic means mathematically the same abstract group even if physically different action.

Showing that D_3 and C_{3v} are isomorphic* ($D_3 \sim C_{3v}$ share product table)
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

Figure 3.1.3 Pictorial comparison of D_3 and C_{3v} symmetry. A propeller having D_3 symmetry is shown next to a three-plane paddle having C_{3v} symmetry. The group operations are labeled by arrows, which indicate the effect they have. For example, ρ_3 is a 180° rotation around the y axis, while $I\rho_3 = \sigma_3$ is a reflection through the xz plane. (Here axes are fixed and the objects rotate.)

180°D_3-Y-axis-rotation: $\rho_3 = \begin{pmatrix} -1 & \cdot & \cdot \\ \cdot & +1 & \cdot \\ \cdot & \cdot & -1 \end{pmatrix}$ maps to: XZ-mirror-plane reflection: $\sigma_3 = \begin{pmatrix} +1 & \cdot & \cdot \\ \cdot & -1 & \cdot \\ \cdot & \cdot & +1 \end{pmatrix}$

180°D_3-ρ_2-axis-rotation: ρ_2 maps to: $\bot\rho_2$-mirror-plane reflection: $\sigma_2 = \rho_2\I = \I\rho_2$

180°D_3-ρ_1-axis-rotation: ρ_1 maps to: $\bot\rho_1$-mirror-plane reflection: $\sigma_1 = \rho_1\I = \I\rho_1$

D_3-product: $\rho_1\rho_2$ maps to: C_{3v}-product: $\sigma_1\sigma_2 = \rho_1\I\rho_2 = \rho_1\rho_2$

D_3-product: ρ_1r^p maps to: C_{3v}-product: $\sigma_1r^p = \rho_1\I r^p = \rho_1 r^p \I = \I \rho_1 r^p$

Mirror-plane-reflection σ equals 180° \bot-axial-rotation-inversion $\sigma = R\I = \I R$

Inversion $\I = -\I$ commutes with all R

*Isomorphic means mathematically the same abstract group even if physically different action.

Showing that D_3 and C_{3v} are isomorphic* ($D_3 \sim C_{3v}$ share product table)
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:

- **By group definition** $|g\rangle = g |I\rangle$ of position ket $|g\rangle$
- **By nomograms based on $U(2)$ Hamilton-turns**

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution

Global vs Local symmetry and Mock-Mach principle

Global vs Local matrix duality for D_3

Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian

Group theory of equivalence transformations and classes

Lagrange theorems

All-commuting operators and D_3-invariant class algebra

All-commuting projectors and D_3-invariant characters

Group invariant numbers: Centrum, Rank, and Order
Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$
Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$
Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g |1\rangle$ of position ket $|g\rangle$

$\mathbf{r}^1 |1\rangle = |\mathbf{r}^1\rangle$

$\sigma_1 |1\rangle = |\sigma_1\rangle$

$\sigma_2 |1\rangle = |\sigma_2\rangle$
Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g|1\rangle$ of position ket $|g\rangle$

Building C_{3v} Group “slide-rule”
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:

- By group definition $|g\rangle = g|1\rangle$ of position ket $|g\rangle$
- By nomograms based on $U(2)$ Hamilton-turns

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution

Global vs Local symmetry and Mock-Mach principle

Global vs Local matrix duality for D_3

Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian

Group theory of equivalence transformations and classes

Lagrange theorems

All-commuting operators and D_3-invariant class algebra

All-commuting projectors and D_3-invariant characters
Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$

Example: Find C_{3v} product $\sigma_1 r^1|1\rangle = \sigma_1|r^1\rangle$

Using C_{3v} Group "slide-rule"
Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g|1\rangle$ of position ket $|g\rangle$

Example: Find C_{3v} product $\sigma_1 r^1 |1\rangle = \sigma_1 |r^1\rangle$

Using C_{3v} Group “slide-rule”

Result: $\sigma_1 r^1 = \sigma_2$

Factor r^1 on right acts first

Left is last (like Hebrew)
Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g|1\rangle$ of position ket $|g\rangle$

Example: Find C_{3v} product $\sigma_1 r^1 |1\rangle = \sigma_1 |r^1\rangle$

Using C_{3v} Group "slide-rule" result: $\sigma_1 r^1 = \sigma_2$

Other σ_1 results from graph:

$\sigma_1 \{ 1, \ r^1, \ r^2, \ \sigma_1, \ \sigma_2, \ \sigma_3 \} = \{ \sigma_1, \sigma_2, \sigma_3, \ 1, \ r^1, \ r^2 \}$
Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$

Example: Find C_{3v} product $\sigma_1 r^1 |I\rangle = \sigma_1 |r^1\rangle$

Using C_{3v} Group “slide-rule”

Other σ_1 results from graph:

$\sigma_1 \{1, r^1, r^2, \sigma_1, \sigma_2, \sigma_3\} = \{\sigma_1, \sigma_2, \sigma_3, 1, r^1, r^2\}$

....whole C_{3v} group table:
Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle=g|I\rangle$ of position ket $|g\rangle$

D_3 and C_{3v} clearly are isomorphic $D_3\sim C_{3v}$ share group table

...except for notation $\rho_k \leftrightarrow \sigma_k$
Figure 3.1.1 Crystal point symmetry groups. Models are sketched in circles for the 16 non-Abelian groups. (See also Figure 2.11.1.)
Figure 3.1.1 Crystal point symmetry groups. Models are sketched in circles for the 16 non-Abelian groups. (See also Figure 2.11.1.)

Total number N_g of distinct groups

Number N_A are Abelian

D_4 and C_{4v} are related similarly to D_3 and C_{3v}.
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:

- By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$
- By nomograms based on $U(2)$ Hamilton-turns

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution
- Global vs Local symmetry and Mock-Mach principle
- Global vs Local matrix duality for D_3
- Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian
- Group theory of equivalence transformations and classes
 - Lagrange theorems
- All-commuting operators and D_3-invariant class algebra
- All-commuting projectors and D_3-invariant characters
- Group invariant numbers: Centrum, Rank, and Order
Deriving $D_3 \sim C_{3v}$ products by nomograms based on $U(2)$ Hamilton-turns

(Fig. 3.1.5 PSDS)

(Fig. 3.1.6 PSDS)

(From Lect. 8 p. 65-78)
Deriving $D_3 \sim C_{3v}$ products by nomograms based on $U(2)$ Hamilton-turns

(Fig. 3.1.5 PSDS)

Rotation vector Θ
Rotation angle $= \Theta$

1st Mirror plane
2nd Mirror plane

Hamilton Turn
$N_1 \rightarrow N_2$
($\Theta/2$ Arc)

(Fig. 10.A.7 QTCA)

(From Lect. 8 p. 63-78)

(Fig. 3.1.6 PSDS)

(Rotation $R[\Theta'] R[\omega] = R[\omega'']$

(Fig. 10.A.8 QTCA)

(Product $R[\Theta''] = R[\Theta'] R[\Theta]

(From Lect. 8 p. 63-78)
Deriving $D_3 \sim C_{3v}$ products by nomograms based on $U(2)$ Hamilton-turns

Figure 3.1.7 Geometrical definition of symmetry group D_3. (a) Hamilton arc vectors are drawn for rotations r, i_1, and i_3. (b) Group nomogram is obtained by projecting (a) onto the xy plane.

Note $h^2 = r^1$ and $h^4 = r^2$ for D_6 notation

<table>
<thead>
<tr>
<th></th>
<th>h^2</th>
<th>h^4</th>
<th>ρ_1</th>
<th>ρ_2</th>
<th>ρ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>h^4</td>
<td>-1</td>
<td>$-\rho_2$</td>
<td>$-\rho_3$</td>
<td>ρ_1</td>
</tr>
<tr>
<td></td>
<td>h^2</td>
<td>h^4</td>
<td>$-\rho_3$</td>
<td>ρ_1</td>
<td>ρ_2</td>
</tr>
<tr>
<td>ρ_1</td>
<td>ρ_2</td>
<td>ρ_3</td>
<td>-1</td>
<td>$-h^2$</td>
<td>$-h^4$</td>
</tr>
<tr>
<td>ρ_2</td>
<td>ρ_3</td>
<td>$-\rho_1$</td>
<td>h^4</td>
<td>-1</td>
<td>$-h^2$</td>
</tr>
<tr>
<td>ρ_3</td>
<td>$-\rho_1$</td>
<td>$-\rho_2$</td>
<td>h^2</td>
<td>h^4</td>
<td>-1</td>
</tr>
</tbody>
</table>

$U(2)$ result:

$-\rho_1 r^1 = \rho_2$

$R(3)$ result:

$\rho_1 r^1 = \rho_2$
Deriving $D_3 \sim C_{3v}$ products by nomograms based on $U(2)$ Hamilton-turns

Figure 5.7.4 Hamilton arcs and vector nomogram for D_2

\[
\begin{array}{cccc}
1 & R_x & R_y & R_z \\
R_x & -1 & R_z & -R_y \\
R_y & -R_z & -1 & R_x \\
R_z & R_y & -R_x & -1 \\
\end{array}
\]

\[
-i\sigma_B
\]

\[
-i\sigma_C
\]

\[
-i\sigma_A
\]

\[
\mathcal{H}^E(R_x) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, \quad \mathcal{H}^E(R_y) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \mathcal{H}^E(R_z) = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}.
\]
Note $h^2 = r^1$ and $h^4 = r^2$ for $D_6 \supset D_3$ notation

Later we show: $D_6 = D_3 \times C_2$
Later we show:

\[D_6 \supset D_3 \]

Note \(h_2 = r_1 \) and \(h_4 = r_2 \)

for \(D_6 \supset D_3 \) notation

Later we show:

\[D_6 = D_3 \times C_2 \]
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:

By group definition $|g⟩=g|I⟩$ of position ket $|g⟩$

By nomograms based on $U(2)$ Hamilton-turns

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution

Global vs Local symmetry and Mock-Mach principle

Global vs Local matrix duality for D_3

Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian

Group theory of equivalence transformations and classes

Lagrange theorems

All-commuting operators and D_3-invariant class algebra

All-commuting projectors and D_3-invariant characters

Group invariant numbers: Centrum, Rank, and Order
Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Figure 3.2.1 Showing class equivalence using Hamilton’s vectors. Operation R is equivalent to $R' = TRT^{-1}$.

Product $R[\Theta''] = R[\Theta'] \cdot R[\Theta]$

Product $R[\Theta'''] = R[\Theta] \cdot R[\Theta']$

Product $R[\Theta] \cdot R^{-1}[\Theta]$

(Product $R[\Theta'] \cdot R^{-1}[\Theta]$)
Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Transforming D_3 operators using D_3 operators

Example 1: Rotating ρ_3 axis crank using r^1 puts it down onto ρ_1

<table>
<thead>
<tr>
<th>$D_3 \gg_f$†</th>
<th>1</th>
<th>r^2</th>
<th>r^1</th>
<th>ρ_1</th>
<th>ρ_2</th>
<th>ρ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>r^2</td>
<td>r^1</td>
<td>ρ_1</td>
<td>ρ_2</td>
<td>ρ_3</td>
</tr>
<tr>
<td>r^1</td>
<td>r^1</td>
<td>1</td>
<td>r^2</td>
<td>ρ_3</td>
<td>ρ_1</td>
<td>ρ_2</td>
</tr>
<tr>
<td>r^2</td>
<td>r^2</td>
<td>r^1</td>
<td>1</td>
<td>ρ_2</td>
<td>ρ_3</td>
<td>ρ_1</td>
</tr>
<tr>
<td>ρ_1</td>
<td>ρ_1</td>
<td>ρ_3</td>
<td>ρ_2</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>ρ_2</td>
<td>ρ_2</td>
<td>ρ_1</td>
<td>ρ_3</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>ρ_3</td>
<td>ρ_3</td>
<td>ρ_2</td>
<td>ρ_1</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>
Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Transforming D_3 operators using D_3 operators

Example 1: Rotating ρ_3 axis crank using r^1 puts it down onto ρ_1

Seems to imply: $r^1 \rho_3 (r^1)^{-1} = r^1 \rho_3 r^2 = \rho_1$

<table>
<thead>
<tr>
<th>D_3 gg† form</th>
<th>1</th>
<th>r^2</th>
<th>r^1</th>
<th>ρ_1</th>
<th>ρ_2</th>
<th>ρ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>r^2</td>
<td>r^1</td>
<td>ρ_1</td>
<td>ρ_2</td>
<td>ρ_3</td>
</tr>
<tr>
<td>r^1</td>
<td>r^1</td>
<td>1</td>
<td>r^2</td>
<td>ρ_3</td>
<td>ρ_1</td>
<td>ρ_2</td>
</tr>
<tr>
<td>r^2</td>
<td>r^2</td>
<td>r^1</td>
<td>1</td>
<td>ρ_2</td>
<td>ρ_3</td>
<td>ρ_1</td>
</tr>
<tr>
<td>ρ_1</td>
<td>ρ_1</td>
<td>ρ_3</td>
<td>ρ_2</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>ρ_2</td>
<td>ρ_2</td>
<td>ρ_1</td>
<td>ρ_3</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>ρ_3</td>
<td>ρ_3</td>
<td>ρ_2</td>
<td>ρ_1</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>
Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Transforming D_3 operators using D_3 operators

Example 1: Rotating ρ_3 axis crank using r^1 puts it down onto ρ_1

Seems to imply: $r^1 \rho_3 (r^1)^{-1} = r^1 \rho_3 r^2 = \rho_1$

Need to check that with table:

$$r^1 \rho_3 r^2 = \rho_2 r^2$$
Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Transforming D_3 operators using D_3 operators

Example 1: Rotating ρ_3 axis crank using r^1 puts it down onto ρ_1

Seems to imply: $r^1 \rho_3 (r^1)^{-1} = r^1 \rho_3 r^2 = \rho_1$

<table>
<thead>
<tr>
<th>D_3 gg† form</th>
<th>1</th>
<th>r^2</th>
<th>r^1</th>
<th>ρ_1</th>
<th>ρ_2</th>
<th>ρ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>r^2</td>
<td>r^1</td>
<td>ρ_1</td>
<td>ρ_2</td>
<td>ρ_3</td>
</tr>
<tr>
<td>r^1</td>
<td>r^1</td>
<td>1</td>
<td>r^2</td>
<td>ρ_3</td>
<td>ρ_1</td>
<td>ρ_2</td>
</tr>
<tr>
<td>r^2</td>
<td>r^2</td>
<td>r^1</td>
<td>1</td>
<td>ρ_2</td>
<td>ρ_3</td>
<td>ρ_1</td>
</tr>
<tr>
<td>ρ_1</td>
<td>ρ_1</td>
<td>ρ_3</td>
<td>ρ_2</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>ρ_2</td>
<td>ρ_2</td>
<td>ρ_1</td>
<td>ρ_3</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>ρ_3</td>
<td>ρ_3</td>
<td>ρ_2</td>
<td>ρ_1</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>

Need to check that with table:

$r^1 \rho_3 r^2 = \rho_2 r^2 = \rho_1$

Checks out!
Deriving \(D_3 \sim C_{3v} \) equivalence transformations and classes

Transforming \(D_3 \) operators using \(D_3 \) operators

Example 2: Rotating \(\rho_3 \) axis crank using \(\rho_1 \) puts it down onto \(\rho_2 \)

Seems to imply:

\[
\rho_1 \rho_3 (\rho_1)^{-1} = \rho_1 \rho_3 \rho_1 = \rho_2
\]

Table:

<table>
<thead>
<tr>
<th>(D_3) gg(^{\dagger}) form</th>
<th>1</th>
<th>(r^2)</th>
<th>(r^1)</th>
<th>(\rho_1)</th>
<th>(\rho_2)</th>
<th>(\rho_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(r^2)</td>
<td>(r^1)</td>
<td>(\rho_1)</td>
<td>(\rho_2)</td>
<td>(\rho_3)</td>
</tr>
<tr>
<td>(r^1)</td>
<td>(r^1)</td>
<td>1</td>
<td>(r^2)</td>
<td>(\rho_3)</td>
<td>(\rho_1)</td>
<td>(\rho_2)</td>
</tr>
<tr>
<td>(r^2)</td>
<td>(r^2)</td>
<td>(r^1)</td>
<td>1</td>
<td>(\rho_2)</td>
<td>(\rho_3)</td>
<td>(\rho_1)</td>
</tr>
<tr>
<td>(\rho_1)</td>
<td>(\rho_1)</td>
<td>(\rho_3)</td>
<td>(\rho_2)</td>
<td>1</td>
<td>(r^1)</td>
<td>(r^2)</td>
</tr>
<tr>
<td>(\rho_2)</td>
<td>(\rho_2)</td>
<td>(\rho_1)</td>
<td>(\rho_3)</td>
<td>(r^2)</td>
<td>1</td>
<td>(r^1)</td>
</tr>
<tr>
<td>(\rho_3)</td>
<td>(\rho_3)</td>
<td>(\rho_2)</td>
<td>(\rho_1)</td>
<td>(r^1)</td>
<td>(r^2)</td>
<td>1</td>
</tr>
</tbody>
</table>

Need to check that with table:

\[
\rho_1 \rho_3 \rho_1 = r^2 \rho_1 = \rho_2
\]

Checks out!
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}
D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)
Deriving $D_3 \sim C_{3v}$ products:
By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$
By nomograms based on $U(2)$ Hamilton-turns
Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_3
Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting operators and D_3-invariant class algebra
All-commuting projectors and D_3-invariant characters
Group invariant numbers: Centrum, Rank, and Order
What has been done so far:

Abelian (Commutative) C_2, C_3, ..., C_6 ...

H diagonalized by r^p symmetry operators that **COMMUTE** with H \((r^p H = H r^p) \),
and with each other \((r^p r^q = r^{p+q} = r^q r^p) \).
What has been done so far:

Abelian (Commutative) $C_2, C_3, \ldots, C_6 \ldots$

H diagonalized by r^p symmetry operators that **COMMUTE** with H \quad ($r^p H = H r^p$),

and with each other ($r^p r^q = r^{p+q} = r^q r^p$).

What we need to learn now:

Non-Abelian (do not commute) D_3, O_h, \ldots

While all H symmetry operations **COMMUTE** with H \quad ($U H = H U$)

most do **not** with each other ($U V \neq V U$).
What has been done so far:

Abelian (Commutative) $C_2, C_2, ..., C_6, ...$

H diagonalized by r^p symmetry operators that **COMMUTE** with H \((r^p H = H r^p) \),

and with each other \((r^p r^q = r^{p+q} = r^q r^p) \).

What we need to learn now:

Non-Abelian (do **not** commute) $D_3, O_h, ...$

While all H symmetry operations **COMMUTE** with H \((U H = H U) \)

most do **not** with each other \((U V \neq V U) \).

Q: So how do we write H in terms of non-commutative U?
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}
D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:
 By group definition $|g\rangle = g |I\rangle$ of position ket $|g\rangle$
 By nomograms based on $U(2)$ Hamilton-turns

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution

Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_3
Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian
Group theory of equivalence transformations and classes
Lagrange theorems
All-commuting operators and D_3-invariant class algebra
All-commuting projectors and D_3-invariant characters
Group invariant numbers: Centrum, Rank, and Order
Global vs Local symmetry and Mock-Mach principle

“Give me a place to stand...
and I will move the Earth”
Archimedes 287-212 B.C.E

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R
Global vs Local symmetry and Mock-Mach principle

“Give me a place to stand... and I will move the Earth”
Archimedes 287-212 B.C.E

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)\(\mathbf{R}\) vs. Body-fixed (Intrinsic-Local)\(\bar{\mathbf{R}}\)
Global vs Local symmetry and Mock-Mach principle

“Give me a place to stand... and I will move the Earth”
Archimedes 287-212 B.C.E

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)\mathbf{R} vs. Body-fixed (Intrinsic-Local)$\overline{\mathbf{R}}$

\mathbf{R} commutes with all $\overline{\mathbf{R}}$
(because they’re independent or “unentangled”)

Global vs Local symmetry and Mock-Mach principle
Global vs Local symmetry and Mock-Mach principle

“Give me a place to stand... and I will move the Earth”
Archimedes 287-212 B.C.E

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)\(R \) vs. Body-fixed (Intrinsic-Local)\(\bar{R} \)

\(R \) commutes with all \(\bar{R} \)
(because they’re independent or “unentangled”)

Mock-Mach relativity principle
\[R|1\rangle = \bar{R}^{-1}|1\rangle \]
...for one state \(|1\rangle \) only!
Global vs Local symmetry and Mock-Mach principle

“Give me a place to stand... and I will move the Earth”
Archimedes 287-212 B.C.E

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global) \(R \) vs. **Body-fixed (Intrinsic-Local)** \(\bar{R} \)

\(R \) commutes with all \(\bar{R} \)
(because they’re independent or “unentangled”)

Mock-Mach relativity principle
\[R |1\rangle = \bar{R}^{-1} |1\rangle \]
...for one state \(|1\rangle \) only!

...But *how* do you actually *make* the \(R \) and \(\bar{R} \) operations?
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}
D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)
Deriving $D_3 \sim C_{3v}$ products:
 By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$
 By nomograms based on $U(2)$ Hamilton-turns
Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_3
Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian
Group theory of equivalence transformations and classes
 Lagrange theorems
All-commuting operators and D_3-invariant class algebra
All-commuting projectors and D_3-invariant characters
Group invariant numbers: Centrum, Rank, and Order
Example of GLOBAL vs LOCAL symmetry algebra for $D_3 \sim C_{3v}$
Example of GLOBAL vs LOCAL symmetry algebra for $D_3 \sim C_{3v}$

D_3-defined local-wave bases

D_3 Group “slide-rule”

Lab-fixed (Extrinsic-Global) operations and rotation axes
Example of RELATIVITY-DUALITY for $D_3 \sim C_{3v}$

To represent external \{..T,U,V,...\} switch $g \leftrightarrow g^\dagger$ on top of group table

$$
R^G(1) = \begin{pmatrix}
1 & \cdots & \cdots & \cdots & 1 \\
. & 1 & \cdots & \cdots & . \\
. & . & 1 & \cdots & . \\
. & . & . & 1 & . \\
. & . & . & . & 1 \\
\end{pmatrix},
R^G(r) = \begin{pmatrix}
1 & \cdots & \cdots & \cdots & 1 \\
1 & 1 & \cdots & \cdots & . \\
. & 1 & \cdots & \cdots & . \\
. & . & 1 & \cdots & . \\
. & . & . & 1 & . \\
\end{pmatrix},
R^G(r^2) = \begin{pmatrix}
1 & \cdots & \cdots & \cdots & 1 \\
. & 1 & \cdots & \cdots & . \\
. & . & 1 & \cdots & . \\
. & . & . & 1 & . \\
. & . & . & . & 1 \\
\end{pmatrix},
R^G(i_1) = \begin{pmatrix}
1 & \cdots & \cdots & \cdots & 1 \\
. & 1 & \cdots & \cdots & . \\
. & . & 1 & \cdots & . \\
. & . & . & 1 & . \\
. & . & . & . & 1 \\
\end{pmatrix},
R^G(i_2) = \begin{pmatrix}
1 & \cdots & \cdots & \cdots & 1 \\
. & 1 & \cdots & \cdots & . \\
. & . & 1 & \cdots & . \\
. & . & . & 1 & . \\
. & . & . & . & 1 \\
\end{pmatrix},
R^G(i_3) = \begin{pmatrix}
1 & \cdots & \cdots & \cdots & 1 \\
. & 1 & \cdots & \cdots & . \\
. & . & 1 & \cdots & . \\
. & . & . & 1 & . \\
. & . & . & . & 1 \\
\end{pmatrix},
$$
Example of RELATIVITY-DUALITY for $D_3 \sim C_{3v}$

To represent external $\{..T,U,V,..\}$ switch $g \leftrightarrow g^\dagger$ on top of group table

$$
R^g(1) = R^g(r) = R^g(r^2) = R^g(i_1) = R^g(i_2) = R^g(i_3) =

\begin{array}{ccccccc}
1 & \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1
\end{array}
$$

D_3 global
gg^\dagger-table

To represent internal $\{..\bar{T},\bar{U},\bar{V},..\}$ switch $g \leftrightarrow g^\dagger$ on side of group table

$$
R^g(\bar{1}) = R^g(\bar{r}) = R^g(\bar{r}^2) = R^g(\bar{i}_1) = R^g(\bar{i}_2) = R^g(\bar{i}_3) =

\begin{array}{ccccccc}
1 & \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1
\end{array}
$$

D_3 local
$g^\dagger g$-table
Example of RELATIVITY-DUALITY for $D_3\sim C_{3v}$

To represent *external* \{..$T, U, V, ...$\} switch $g \leftrightarrow g^\dagger$ on **top** of group table

\[
R^G(1) = \begin{pmatrix} 1 & \vdots & \vdots & \vdots \\ \vdots & 1 & \vdots & \vdots \\ \vdots & \vdots & 1 & \vdots \\ \vdots & \vdots & \vdots & 1 \end{pmatrix}, \quad R^G(r) = \begin{pmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \end{pmatrix}, \quad R^G(r^2) = \begin{pmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \end{pmatrix}, \quad R^G(i) = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}, \quad R^G(i_1^2) = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}, \quad R^G(i_2^2) = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}, \quad R^G(i_3^2) = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}
\]

RESULT:
Any $R(T)$ **commute** (Even if T and U do not...) with any $R(U)$...

...and $T \cdot U = V$ if & only if $\overline{T} \cdot \overline{U} = \overline{V}$.

To represent *internal* \{..$\overline{T}, \overline{U}, \overline{V}, ...$\} switch $g \leftrightarrow g^\dagger$ on **side** of group table
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:

- By group definition $|g\rangle = g |1\rangle$ of position ket $|g\rangle$
- By nomograms based on $U(2)$ Hamilton-turns

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution

- Global vs Local symmetry and Mock-Mach principle
- Global vs Local matrix duality for D_3

 Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian

- Group theory of equivalence transformations and classes

 Lagrange theorems

 All-commuting operators and D_3-invariant class algebra

 All-commuting projectors and D_3-invariant characters

Group invariant numbers: Centrum, Rank, and Order
Example of RELATIVITY-DUALITY for \(D_5-C_{3v}\)

To represent *external* \(\{..T,U,V,...\}\) switch \(g \leftrightarrow g^\dagger\) on *top* of group table

\[
\begin{align*}
R^G(\mathbf{1}) &= R^G(\mathbf{r}) = R^G(\mathbf{r}^2) = R^G(\mathbf{i}_1) = R^G(\mathbf{i}_2) = R^G(\mathbf{i}_3) = \\
\begin{pmatrix}
1 & . & . & . & . & . \\
. & 1 & . & . & . & . \\
. & . & 1 & . & . & . \\
. & . & . & 1 & . & . \\
. & . & . & . & 1 & . \\
. & . & . & . & . & 1
\end{pmatrix}
\end{align*}
\]

RESULT:

Any \(R(T)\) commute (Even if \(T\) and \(U\) do not...)

with any \(R(U)\)...

...and \(T \cdot U = V\) if & only if \(\overline{T} \cdot \overline{U} = \overline{V}\).

So an \(H\)-matrix having *Global* symmetry \(D_5\)

\[
H = H_1^0 + r_1 \mathbf{r}_1 + r_2 \mathbf{r}_2^2 + i_1 \mathbf{i}_1 + i_2 \mathbf{i}_2 + i_3 \mathbf{i}_3
\]

is made from *Local* symmetry matrices

To represent *internal* \(\{..\overline{T},\overline{U},\overline{V},...\}\) switch \(g \leftrightarrow g^\dagger\) on *side* of group table

\[
\begin{align*}
R^G(\overline{\mathbf{1}}) &= R^G(\overline{\mathbf{r}}) = R^G(\overline{\mathbf{r}^2}) = R^G(\overline{\mathbf{i}_1}) = R^G(\overline{\mathbf{i}_2}) = R^G(\overline{\mathbf{i}_3}) = \\
\begin{pmatrix}
1 & . & . & . & . & . \\
. & 1 & . & . & . & . \\
. & . & 1 & . & . & . \\
. & . & . & 1 & . & . \\
. & . & . & . & 1 & . \\
. & . & . & . & . & 1
\end{pmatrix}
\end{align*}
\]
Example of RELATIVITY-DUALITY for $D_3 \sim C_{3\nu}$

To represent external $\{..\text{T}, \text{U}, \text{V},...\}$ switch $g \leftrightarrow g^\dagger$ on top of group table

$$\begin{align*}
R^G(\text{1}) &= R^G(\text{r}) = R^G(\text{r}^2) = R^G(\text{i}_1) = R^G(\text{i}_2) = R^G(\text{i}_3) \\
\begin{pmatrix}
1 & \ldots & 1 & \ldots & 1 \\
1 & \ldots & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & \ldots & 1 \\
\end{pmatrix}
\end{align*}$$

RESULT: Any $R(\text{T})$ commute (Even if T and U do not) with any $R(\bar{\text{U}})$...

...and $\text{T} \cdot \text{U} = \text{V}$ if & only if $\bar{\text{T}} \cdot \bar{\text{U}} = \bar{\text{V}}$.

So an \mathbb{H}-matrix having Global symmetry D_3

$$\mathbb{H} = H I^0 r_1 i_1 r_1 + r_2 i_2 r_2 + i_1 i_1 i_1 + i_2 i_2 i_2 + i_3 i_3 i_3$$

is made from Local symmetry matrices

To represent internal $\{..\bar{\text{T}}, \bar{\text{U}}, \bar{\text{V}},...\}$ switch $g \leftrightarrow g^\dagger$ on side of group table

$$\begin{align*}
R^G(\bar{\text{1}}) &= R^G(\bar{\text{r}}) = R^G(\bar{\text{r}}^2) = R^G(\bar{\text{i}}_1) = R^G(\bar{\text{i}}_2) = R^G(\bar{\text{i}}_3) \\
\begin{pmatrix}
1 & \ldots & 1 & \ldots & 1 \\
1 & \ldots & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & \ldots & 1 \\
\end{pmatrix}
\end{align*}$$

Local \mathbb{H} matrix parametrized by g's
Example of RELATIVITY-DUALITY for $D_3\sim C_{3v}$

To represent external $\{..T,U,V,...\}$ switch $g \leftrightarrow g^\dagger$ on top of group table

$$R^G(\mathbf{1}) = R^G(r) = R^G(r^2) = R^G(i_1) = R^G(i_2) = R^G(i_3) =$$

$$\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}$$

RESULT: Any $R(T)$ commute (Even if T and U do not) with any $R(U)$...

...and $T\cdot U = V$ if & only if $\bar{T}\cdot \bar{U} = \bar{V}$.

To represent internal $\{..\bar{T},\bar{U},\bar{V},...\}$ switch $g \leftrightarrow g^\dagger$ on side of group table

$$R^G(\bar{\mathbf{1}}) = R^G(\bar{r}) = R^G(\bar{r}^2) = R^G(\bar{i}_1) = R^G(\bar{i}_2) = R^G(\bar{i}_3) =$$

$$\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}$$

So an H-matrix having Global symmetry D_3

$$H = H\mathbf{1} + r_1 \bar{r}_1 + r_2 \bar{r}_2^* + i_1 \bar{i}_1 + i_2 \bar{i}_2 + i_3 \bar{i}_3$$

is made from Local symmetry matrices

All the global g commute with general local H matrix.
Example of RELATIVITY-DUALITY for D

To represent *external* \{..T,U,V,...\}...

\[R^G(T) = R^G(U) = R^G(V) = R^G(i) = \]

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\]

RESULT:

Any \(R(T) \) commute (Even if \(T \) and \(U \) do not) with any \(R(U) \)...

...and \(T \cdot U = V \) if & only if \(T \cdot \bar{U} = \bar{V} \).

To represent *internal* \{..\bar{T},\bar{U},\bar{V},...\}....

\[R^G(\bar{T}) = R^G(\bar{U}) = R^G(\bar{V}) = R^G(\bar{i}) = \]

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\]

\[
H = \langle 1 | H | 1 \rangle = H^* \\
r_1 = \langle r | H | 1 \rangle = r_2^* \\
r_2 = \langle r^2 | H | 1 \rangle = r_1^* \\
i_1 = \langle i_1 | H | 1 \rangle = i_1^* \\
i_2 = \langle i_2 | H | 1 \rangle = i_2^* \\
i_3 = \langle i_3 | H | 1 \rangle = i_3^* \\
\]

So an \(H \)-matrix having *Global* symmetry\(D_3 \)

\[
H = H1 + r_1 \bar{r}_1 + r_2 \bar{r}_2 + i_1 \bar{i}_1 + i_2 \bar{i}_2 + i_3 \bar{i}_3
\]

is made from *Local* symmetry matrices

\[
\begin{pmatrix}
H & r_1 & r_2 & i_1 & i_2 & i_3 \\
r_1 & H & r_1 & i_2 & i_3 & i_1 \\
r_2 & r_1 & H & i_3 & i_1 & i_2 \\
i_1 & i_2 & i_3 & H & r_1 & r_2 \\
i_2 & i_3 & i_1 & r_2 & H & r_1 \\
i_3 & i_1 & i_2 & r_1 & r_2 & H \\
\end{pmatrix}
\]
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:
- By group definition $|g\rangle = g|1\rangle$ of position ket $|g\rangle$
- By nomograms based on $U(2)$ Hamilton-turns

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution
- Global vs Local symmetry and Mock-Mach principle
- Global vs Local matrix duality for D_3
- Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian

Group theory of equivalence transformations and classes
- Lagrange theorems
- All-commuting operators and D_3-invariant class algebra
- All-commuting projectors and D_3-invariant characters
- Group invariant numbers: Centrum, Rank, and Order
Review: Spectral resolution of D_3 Center (Class algebra)

Class-sum κ_k commutes with all g_i

Class-sum κ_k invariance: $g_i \kappa_k = \kappa_k g_i$
Review: Spectral resolution of D_3 Center (Class algebra)

Class-sum κ_k commutes with all g_i

Class-sum κ_k invariance: $g_i \kappa_k = \kappa_k g_i$

° $G = \text{order of group}$: $(°D_3 = 6)$

° $\kappa_k = \text{order of class } \kappa_k$: $(°\kappa_1 = 1, °\kappa_r = 2, °\kappa_i = 3)$
Review: Spectral resolution of D_3 Center (Class algebra)

Class-sum κ_k commutes with all g_i

Class-sum κ_k invariance:

$$g_i \kappa_k = \kappa_k g_i$$

$^\circ G = $ order of group:

$$^\circ D_3 = 6$$

$^\circ \kappa_k = $ order of class κ_k:

$$^\circ \kappa_1 = 1, \ ^\circ \kappa_r = 2, \ ^\circ \kappa_i = 3$$

$$g_i \kappa_k g_i^{-1} = \kappa_k$$

where:

$$\kappa_k = \sum_{j=1}^{\kappa_j} g_j$$

D₃ Algebra

D_3 class algebra

D_3 Center (All-commuting operators)

$$\kappa_i = i_1 + i_2 + i_3$$

$$\kappa_r = r^2 + r$$

A Maximal Set of Commuting Operators

P_{A1}

P_{A2}

P_{E1}

r^2

r

P_{E12}

$P_{E_{21}}$

$P_{E_{11}}$

$P_{E_{22}}$

i_1

i_2

i_3
Review: Spectral resolution of D_3 Center (Class algebra)

Class-sum κ_k commutes with all g_i

Class-sum κ_k invariance: $g_i \kappa_k = \kappa_k g_i$

- G = order of group: $(^G D_3 = 6)$
- κ_k = order of class κ_k: $(^{\kappa_1 = 1, \kappa_r = 2, \kappa_i = 3})$

$g_i \kappa_k g_i^{-1} = \kappa_k$ where: $\kappa_k = \sum_{j=1}^{^{G \kappa_k}} g_j = \frac{1}{^{S_k}} \sum_{l=1}^{^G} g_l g_k g_l^{-1}$

- s_k = order of g_k-self-symmetry: $(^{s_1 = 6, s_r = 3, s_i = 2})$

$\kappa_i = i_1 + i_2 + i_3$

D_3 Algebra

$\kappa_j = r^2 + r$

D_3 class algebra

P_{A_1}

P_{A_2}

P_{E_1}

P_{E_2}

P_{E_3}

D_3 Center

(All-commuting operators)

A Maximal Set of Commuting Operators

r

r^2

$P E_{11}$

$P E_{22}$

$P E_{12}$

$P E_{21}$

$P E_{xx}$

$P E_{yy}$

$P E_{xy}$

$P E_{yx}$
Review: Spectral resolution of D_3 Center (Class algebra)

D_3 Algebra

<table>
<thead>
<tr>
<th>1</th>
<th>r^2</th>
<th>r</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1</td>
<td>r^2</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
</tr>
<tr>
<td>r^2</td>
<td>r</td>
<td>1</td>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
</tr>
<tr>
<td>i_1</td>
<td>i_3</td>
<td>i_2</td>
<td>1</td>
<td>r</td>
<td>r^2</td>
</tr>
<tr>
<td>i_2</td>
<td>i_1</td>
<td>i_3</td>
<td>r^2</td>
<td>1</td>
<td>r</td>
</tr>
<tr>
<td>i_3</td>
<td>i_2</td>
<td>i_1</td>
<td>r</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>

Class-sum κ_k commutes with all g_i

Class-sum κ_k invariance:

$g_i \kappa_k = \kappa_k g_i$

$\circ G = \text{order of group: } (\circ D_3 = 6)$

$\circ \kappa_k = \text{order of class } \kappa_k : (\circ \kappa_1 = 1, \circ \kappa_r = 2, \circ \kappa_i = 3)$

$g_r \kappa_k g_r^{-1} = \kappa_k \quad \text{where: } \kappa_k = \sum_{j=1}^{\circ \kappa_k} g_j = \frac{1}{\circ s_k} \sum_{t=1}^{\circ G} g_t \kappa_k g_t^{-1}$

$\circ s_k = \text{order of } g_k$-self-symmetry: ($\circ s_1 = 6, \circ s_r = 3, \circ s_i = 2$)

$\circ s_k = \frac{\circ G}{\circ \kappa_k} \quad \circ s_k$ is an integer count of D_3 operators g_s that commute with g_k.

D_3 class algebra

$\kappa_i = i_1 + i_2 + i_3$

$\kappa_r = r^2 + r$

A Maximal Set of Commuting Operators

P_{A_1}

P_{A_2}

P_{E_1}

$P_{E_{11}}$

$P_{E_{21}}$

$P_{E_{22}}$
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}
D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)
Deriving $D_3 \sim C_{3v}$ products:
 By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$
 By nomograms based on $U(2)$ Hamilton-turns
Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_3
 Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian
Group theory of equivalence transformations and classes
 Lagrange theorems
All-commuting operators and D_3-invariant class algebra
All-commuting projectors and D_3-invariant characters
Group invariant numbers: Center, Rank, and Order
Review: Spectral resolution of \(D_3 \) Center (Class algebra)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\text{r}^2)</th>
<th>(\text{r})</th>
<th>(i_1)</th>
<th>(i_2)</th>
<th>(i_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{r})</td>
<td>(\text{r}^2)</td>
<td>(i_3)</td>
<td>(i_1)</td>
<td>(i_2)</td>
<td></td>
</tr>
<tr>
<td>(\text{r}^2)</td>
<td>(\text{r})</td>
<td>(i_2)</td>
<td>(i_3)</td>
<td>(i_1)</td>
<td></td>
</tr>
<tr>
<td>(i_1)</td>
<td>(i_3)</td>
<td>(i_2)</td>
<td>(\text{r})</td>
<td>(\text{r}^2)</td>
<td></td>
</tr>
<tr>
<td>(i_2)</td>
<td>(i_1)</td>
<td>(i_3)</td>
<td>(\text{r}^2)</td>
<td>(\text{r})</td>
<td></td>
</tr>
<tr>
<td>(i_3)</td>
<td>(i_2)</td>
<td>(i_1)</td>
<td>(\text{r})</td>
<td>(\text{r}^2)</td>
<td></td>
</tr>
</tbody>
</table>

\[
\kappa_j = 1, \quad \kappa_r = \text{r} + \text{r}^2, \quad \kappa_i = i_1 + i_2 + i_3
\]

[D3 Algebra Diagram]

Class-sum \(\kappa_k \) commutes with all \(g_i \)

Class-sum \(\kappa_k \) invariance:

\[
g_i \kappa_k = \kappa_k g_i
\]

\(^{\circ}G \) = order of group:

\(^{\circ}D_3 = 6 \)

\(^{\circ}\kappa_k \) = order of class \(\kappa_k \):

\(^{\circ} \kappa_1 = 1, \quad ^{\circ} \kappa_r = 2, \quad ^{\circ} \kappa_i = 3 \)

\[
g_i \kappa_k g_i^{-1} = \kappa_k \quad \text{where:} \quad \kappa_k = \sum_{j=1}^{j=\kappa_k} g_j = \frac{1}{s_k} \sum_{i=1}^{i=\kappa_i} g_i g_k g_i^{-1}
\]

\(s_k \) = order of \(g_k \)-self-symmetry:

\(^{\circ}s_1 = 6, \quad ^{\circ}s_r = 3, \quad ^{\circ}s_i = 2 \)

\(^{\circ}s_k = ^{\circ}G / ^{\circ}\kappa_k \quad ^{\circ}s_k \text{ is an integer count of } D_3 \text{ operators } g_s \text{ that commute with } g_k.\)
Review: Spectral resolution of D_3 Center (Class algebra)

D_3 Algebra

Class-sum κ_k commutes with all g_i

Class-sum κ_k invariance: $g_i \kappa_k = \kappa_k g_i$

G = order of group: ($G = 6$)

κ_k = order of class κ_k: ($\kappa_1 = 1$, $\kappa_r = 2$, $\kappa_i = 3$)

$g_i \kappa_k g_i^{-1} = \kappa_k$ where: $\kappa_k = \sum_{j=1}^{\kappa_k} g_j = \frac{1}{n} \sum_{t=1}^{G} g_t \kappa_k g_t^{-1}$

κ_k = order of g_k-self-symmetry: ($\kappa_1 = 6$, $\kappa_r = 3$, $\kappa_i = 2$)

$\kappa_k = G / \kappa_k$ κ_k is an integer count of D_3 operators g_s that commute with g_k.

These operators g_s form the g_k-self-symmetry group s_k. Each g_s transforms g_k into itself: $g_s g_k g_s^{-1} = g_k$
Review: Spectral resolution of D_3 Center (Class algebra)

D_3 Algebra

Class-sum κ_k commutes with all g_i

- **Class-sum κ_k invariance:** $g_i \kappa_k = \kappa_k g_i$
- **G = order of group:** $|D_3| = 6$
- **κ_k = order of class κ_k:** $|\kappa_1| = 1$, $|\kappa_r| = 2$, $|\kappa_i| = 3$

$$g_i \kappa_k g_i^{-1} = \kappa_k$$

where: $\kappa_k = \sum_{j=1}^{g_i} g_j = \frac{1}{|s_k|} \sum_{t=1}^{G} g_i g_k g_i^{-1}$

- **s_k = order of g_k-self-symmetry:** $|s_1| = 6$, $|s_r| = 3$, $|s_i| = 2$
- **$s_k = |G|/|\kappa_k|$. s_k is an integer count of D_3 operators g_s that commute with g_k.**

These operators g_s form the g_k-self-symmetry group s_k. Each g_s transforms g_k into itself: $g_s g_k g_s^{-1} = g_k$

If an operator g_t transforms g_k into a different element g'_k of its class: $g_t g_k g_t^{-1} = g'_k$, then so does $g_s g_t$. That is: $g_s g_t (g_s g_k g_s^{-1}) = g_s g_t g_s^{-1} g_t^{-1} = g_s g_s^{-1} g_t^{-1} = g'_k$.

<table>
<thead>
<tr>
<th>D_3 class algebra</th>
<th>D_3 Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_1</td>
<td>$\kappa_r = \kappa_1$</td>
</tr>
<tr>
<td>κ_r</td>
<td>$\kappa_i = \kappa_1 + \kappa_2 + \kappa_3$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>κ_1</th>
<th>κ_1</th>
<th>κ_r</th>
<th>κ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_1</td>
<td>κ_r</td>
<td>κ_i</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s_k</th>
<th>x_k</th>
<th>y_k</th>
<th>z_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>x_1</td>
<td>y_1</td>
<td>z_1</td>
</tr>
<tr>
<td>s_2</td>
<td>x_2</td>
<td>y_2</td>
<td>z_2</td>
</tr>
<tr>
<td>s_3</td>
<td>x_3</td>
<td>y_3</td>
<td>z_3</td>
</tr>
</tbody>
</table>

Another Maximal Set of Commuting Operators

D_3 Center:

- PA_1
- PA_2
- PE_1
- PE_2
- PE_3

A Maximal Set of Commuting Operators:

- $PE_{11} = r$
- $PE_{22} = r^2$
- $PE_{12} = r^3$
- $PE_{21} = r^4$
- $PE_{11} = r^5$

<table>
<thead>
<tr>
<th>PE_{11}</th>
<th>PE_{22}</th>
<th>PE_{12}</th>
<th>PE_{21}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE_{11}</td>
<td>PE_{22}</td>
<td>PE_{12}</td>
<td>PE_{21}</td>
</tr>
</tbody>
</table>
Review: Spectral resolution of **D_3 Center** (Class algebra)

<table>
<thead>
<tr>
<th>1</th>
<th>r^2</th>
<th>1</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1</td>
<td>r^2</td>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
</tr>
<tr>
<td>r^2</td>
<td>1</td>
<td>r</td>
<td>1</td>
<td>i_2</td>
<td>i_3</td>
</tr>
<tr>
<td>i_1</td>
<td>i_3</td>
<td>i_2</td>
<td>1</td>
<td>r</td>
<td>r^2</td>
</tr>
<tr>
<td>i_2</td>
<td>i_1</td>
<td>i_3</td>
<td>r</td>
<td>1</td>
<td>r^2</td>
</tr>
<tr>
<td>i_3</td>
<td>i_2</td>
<td>i_1</td>
<td>r^2</td>
<td>r</td>
<td>1</td>
</tr>
</tbody>
</table>

Class-sum κ_k commutes with all g_r

Class-sum κ_k invariance:
\[g_r \kappa_k = \kappa_k g_r \]

G = order of group:
\[(D_3 = 6) \]

κ_k = order of class κ_k:
\[(\kappa_1 = 1, \kappa_r = 2, \kappa_i = 3) \]

\[g_r \kappa_k g_r^{-1} = \kappa_k \]
where:
\[\kappa_k = \sum_{j=1}^{r_j} g_j = \sum_{l=1}^{r_i} g_l g_s g_i^{-1} \]

s_k = order of g_k-self-symmetry:
\[(s_r = 6, s_r = 3, s_i = 2) \]

$s_k = \frac{G}{\kappa_k}$
s_k is an integer count of D_3 operators g_s that commute with g_k.

These operators g_s form the g_k-self-symmetry group s_k. Each g_s transforms g_k into itself:
\[g_s g_k g_s^{-1} = g_k \]

If an operator g_l transforms g_k into a different element g'_k of its class:
\[g_l g_k g_l^{-1} = g'_k, \]
then so does $g_l g_s$.
that is:

Subgroup $s_k = \{ g_0=1, g_1=g_k, g_2, \ldots \}$ has $l=(\kappa_k-1)$ **Left Cosets** (one coset for each member of class κ_k).

$g_1 s_k = g_l \{ g_0=1, g_1=g_k, g_2, \ldots \}$,
Review: \textbf{Spectral resolution of D_3 Center (Class algebra)}

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
1 & r^2 & r & \(i_1i_2i_3\) \\
\hline
r & 1 & r^2 & $i_1i_2i_3$ \\
\hline
r^2 & 1 & r & $i_1i_2i_3$ \\
\hline
\end{tabular}
\end{center}

Class-sum κ_k commutes with all g_i

Class-sum κ_k invariance:

\[g_i \kappa_k = \kappa_k g_i \]

\begin{itemize}
 \item \(G \) = order of group: \((\kappa D_3 = 6) \)
 \item \(\kappa_k \) = order of class κ_k:
 \((\kappa_1 = 1, \kappa_r = 2, \kappa_i = 3) \)
\end{itemize}

\[g_i \kappa_k g_j^{-1} = \kappa_k \] where: \(\kappa_k = \sum_{j=1}^{r} g_j = \frac{1}{\kappa_k} \sum_{j=1}^{G} g_i \kappa_k g_j^{-1} \)

\(\kappa_k \) = order of g_i self-symmetry: \((\kappa_i = 6, \kappa_r = 3, \kappa_i = 2) \)

\(\kappa_k \) = \(\text{order of } \kappa_k \) = \(\text{order of } G / \kappa_k \)

\(\kappa_k \) is an integer count of D_3 operators g_s that commute with g_k.

These operators g_s form the g_k-self-symmetry group s_k. Each g_s transforms g_k into itself: $g_s g_k g_s^{-1} = g_k$

If an operator g_t transforms g_k into a different element g'_k of its class: $g_t g_k g_t^{-1} = g'_k$, then so does $g_s g_t$.

Subgroup $s_k = \{ g_0 = 1, g_1 = g_k, g_2, \ldots \}$ has \(1 = (\kappa_k - 1) \) \textbf{Left Cosets} (one coset for each member of class κ_k).

\begin{align*}
 g_1 s_k &= g_1 \{ g_0 = 1, g_1 = g_k, g_2, \ldots \}, \\
 g_2 s_k &= g_2 \{ g_0 = 1, g_1 = g_k, g_2, \ldots \}, \\
 \vdots \\
 g_l s_k &= g_l \{ g_0 = 1, g_1 = g_k, g_2, \ldots \}
\end{align*}
Review: Spectral resolution of D_3 Center (Class algebra)

<table>
<thead>
<tr>
<th>κ</th>
<th>r^2</th>
<th>r</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2</td>
<td>r</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
</tr>
<tr>
<td>r</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td></td>
</tr>
<tr>
<td>i_1</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td></td>
</tr>
</tbody>
</table>

Class-sum κ_k commutes with all g_i

Class-sum κ_k invariance: $g_i \kappa_k = \kappa_k g_i$

$G = \text{order of group}$: $(^G D_3 = 6)$

$\kappa_k = \text{order of class} \kappa_k$: $(^\kappa_1 = 1, ^\kappa_r = 2, ^\kappa_i = 3)$

$g_k \kappa_k g_i^{-1} = \kappa_k$ where: $\kappa_k = \sum_{j=1}^{j=\kappa_k} g_j = \frac{1}{\kappa_k} \sum_{i=1}^{i=\kappa_k} g_i g_k g_i^{-1}$

$\kappa_j = \text{order of } g_k$-self-symmetry: $(^\kappa_1 = 6, ^\kappa_r = 3, ^\kappa_i = 2)$

$\kappa_s = ^G / ^\kappa_k$ κ_s is an integer count of D_3 operators g_s that commute with g_k.

These operators g_s form the g_k-self-symmetry group s_k. Each g_s transforms g_k into itself: $g_s g_k g_s^{-1} = g_k$

If an operator g_t transforms g_k into a different element g'_k of its class: $g_t g_k g_t^{-1} = g'_k$, then so does $g_s g_t$.

Subgroup $s_k = \{g_0=1, \ g_1=g_k, \ g_2, \ldots\}$ has $l = (^{\kappa_k-1})$ Left Cosets (one coset for each member of class κ_k).

$g_1 s_k = g_1 \{g_0=1, \ g_1=g_k, \ g_2, \ldots\}$,

$g_2 s_k = g_2 \{g_0=1, \ g_1=g_k, \ g_2, \ldots\}$, ...

They will divide the group of order $^G D_3 = ^\kappa_k \cdot ^{\kappa_s}$ evenly into $^\kappa_k$ subsets each of order $^\kappa_s$.
Review: Spectral resolution of **D₃ Center** (Class algebra)

Class-sum κ_k commutes with all g_i

Class-sum κ_k invariance: $g_i \kappa_k = \kappa_k g_i$

$^\circ G$ = order of group: $(^\circ D_3 = 6)$

$^\circ \kappa_k$ = order of class κ_k: $(^\circ \kappa_1 = 1, ^\circ \kappa_r = 2, ^\circ \kappa_i = 3)$

\[
g_i g_k g_l^{-1} = g_k \quad \text{where:} \quad \kappa_k = \sum_{j=1}^{^\circ \kappa_k} g_j = \frac{1}{^\circ \kappa_k} \sum_{i=1}^{^\circ G} g_i g_k g_l^{-1}
\]

$^\circ s_k$ = order of g_k-self-symmetry: $(^\circ s_1 = 6, ^\circ s_r = 3, ^\circ s_i = 2)$

$^\circ s_k = ^\circ G / ^\circ \kappa_k$

$^\circ s_k$ is an integer count of D_3 operators g_s that commute with g_k.

These operators g_s form the g_k-self-symmetry group s_k. Each g_s transforms g_k into itself: $g_s g_k g_l^{-1} = g_k$

If an operator g_l transforms g_k into a different element g'_k of its class: $g_s g_l g_l^{-1} = g'_k$, then so does $g_l g_s$.

That is:

Subgroup $s_k = \{g_0=1, g_1=g_k, g_2,\ldots\}$ has $l=(^\circ \kappa_k-1)$ **Left Cosets** (one coset for each member of class κ_k).

$g_1 s_k = g_1 \{g_0=1, g_1=g_k, g_2,\ldots\}$,

$g_2 s_k = g_2 \{g_0=1, g_1=g_k, g_2,\ldots\}$,

These results are known as **Lagrange’s Coset Theorem(s)**

They will divide the group of order $^\circ D_3 = ^\circ \kappa_k \cdot ^\circ s_k$ evenly into $^\circ \kappa_k$ subsets each of order $^\circ s_k$.

D₃ Algebra

D₃ class algebra

- **All-commuting operators**
 - $\kappa_{i} = i_{1} + i_{2} + i_{3}$
 - $\kappa_{r} = r^{2} + r$

A Maximal Set of Commuting Operators

- $P_{A_{1}}$
- $P_{A_{2}}$
- $P_{E_{1}}$

Center

- $\kappa_{r} = r^{2} + r$
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:

By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$

By nomograms based on $U(2)$ Hamilton-turns

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution

Global vs Local symmetry and Mock-Mach principle

Global vs Local matrix duality for D_3

Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian

Group theory of equivalence transformations and classes

Lagrange theorems

All-commuting operators and D_3-invariant class algebra

All-commuting projectors and D_3-invariant characters

Group invariant numbers: Centrum, Rank, and Order
Spectral analysis of non-commutative “Group-table Hamiltonian”

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

<table>
<thead>
<tr>
<th></th>
<th>r^1</th>
<th>r^2</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
</tr>
<tr>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>
Spectral analysis of non-commutative “Group-table Hamiltonian”

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

<table>
<thead>
<tr>
<th>1</th>
<th>r^1</th>
<th>r^2</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
</tr>
<tr>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
</tr>
<tr>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>

Each class-sum κ_k commutes with all of D_3.

<table>
<thead>
<tr>
<th>$\kappa_1 = 1$</th>
<th>$\kappa_2 = r^1 + r^2$</th>
<th>$\kappa_3 = i_1 + i_2 + i_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_2</td>
<td>$2\kappa_1 + \kappa_2$</td>
<td>$2\kappa_3$</td>
</tr>
<tr>
<td>κ_3</td>
<td>$2\kappa_3$</td>
<td>$3\kappa_1 + 3\kappa_2$</td>
</tr>
</tbody>
</table>

κ_g's are mutually commuting with respect to themselves and all-commuting with respect to the whole group.

$$r \ \kappa_i \ r^{-1} = i_2 + i_3 + i_1 = \kappa_i \quad \text{or:} \quad r \ \kappa_i = \kappa_i \ r$$

$$\sum_{h=1}^{G} h g h^{-1} = v_g \ \kappa_g \ , \quad \text{where:} \quad v_g = \frac{G}{\kappa_g} = \text{integer}$$

$^G \kappa_g$ is order of class κ_g and must evenly divide group order $^G G$.

Spectral analysis of non-commutative “Group-table Hamiltonian”

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

<table>
<thead>
<tr>
<th>1</th>
<th>r^1</th>
<th>r^2</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
</tr>
<tr>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
</tr>
<tr>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>

Each class-sum κ_k commutes with all of D_3.

<table>
<thead>
<tr>
<th>$\kappa_1 = 1$</th>
<th>$\kappa_2 = r^1 + r^2$</th>
<th>$\kappa_3 = i_1 + i_2 + i_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_2</td>
<td>$2\kappa_1 + \kappa_2$</td>
<td>$2\kappa_3$</td>
</tr>
<tr>
<td>κ_3</td>
<td>$2\kappa_3$</td>
<td>$3\kappa_1 + 3\kappa_2$</td>
</tr>
</tbody>
</table>

Note also:

$\kappa_2^2 - \kappa_2 - 2 \cdot 1 = 0$

$\kappa_3^2 = 3\cdot \kappa_2 + 3 \cdot 1$
Spectral analysis of non-commutative "Group-table Hamiltonian"

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

<table>
<thead>
<tr>
<th></th>
<th>r^1</th>
<th>r^2</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
</tr>
<tr>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
</tr>
<tr>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>

Each class-sum \(\kappa_k \) commutes with all of D_3.

<table>
<thead>
<tr>
<th>(\kappa_1)</th>
<th>(\kappa_2)</th>
<th>(\kappa_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$r^1 + r^2$</td>
<td>$i_1 + i_2 + i_3$</td>
</tr>
</tbody>
</table>

Class products give spectral polynomial and all-commuting projectors $P^{(\alpha)}$

\[
0 = \kappa_3^3 - 9\kappa_3 = (\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1) \\
\kappa_3 = 3 \cdot \kappa_2 + 3 \cdot 1
\]

Note also:

\[
\kappa_2^2 - \kappa_2 - 2 \cdot 1 = 0 \\
0 = (\kappa_2 - 2 \cdot 1)(\kappa_2 + 1)
\]
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}

D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)

Deriving $D_3 \sim C_{3v}$ products:

- By group definition $|g\rangle = g|1\rangle$ of position ket $|g\rangle$
- By nomograms based on $U(2)$ Hamilton-turns

Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution

- Global vs Local symmetry and Mock-Mach principle
- Global vs Local matrix duality for D_3
- Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Stage spectral decomposition of global/local D_3 Hamiltonian

Group theory of equivalence transformations and classes

Lagrange theorems

- All-commuting operators and D_3-invariant class algebra
- All-commuting projectors and D_3-invariant characters

Group invariant numbers: Centrum, Rank, and Order
1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

<table>
<thead>
<tr>
<th>1</th>
<th>r^1</th>
<th>r^2</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
</tr>
<tr>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
</tr>
<tr>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>

Each class-sum κ_k commutes with all of D_3.

<table>
<thead>
<tr>
<th>$\kappa_1 = 1$</th>
<th>$\kappa_2 = r^1 + r^2$</th>
<th>$\kappa_3 = i_1 + i_2 + i_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_2</td>
<td>$2\kappa_1 + \kappa_2$</td>
<td>$2\kappa_3$</td>
</tr>
<tr>
<td>κ_3</td>
<td>$2\kappa_3$</td>
<td>$3\kappa_1 + 3\kappa_2$</td>
</tr>
</tbody>
</table>

Class products give spectral polynomial and all-commuting projectors $P^{(\alpha)} = P^{A_1}$, P^{A_2}, and P^E

Note also:

$\kappa^2_2 - \kappa_2 - 2 \cdot 1 = 0$

$0 = \kappa^3_3 - 9\kappa_3 = (\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)$

$0 = (\kappa_2 - 2 \cdot 1)(\kappa_2 + 1)$
Spectral analysis of non-commutative “Group-table Hamiltonian”

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>r^1</th>
<th>r^2</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
<td></td>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
</tr>
<tr>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
<td></td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
</tr>
<tr>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td>r^1</td>
<td>1</td>
<td>r^2</td>
<td></td>
</tr>
<tr>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
<td></td>
</tr>
<tr>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Each class-sum κ_k commutes with all of D_3.

\[
\begin{array}{|c|c|c|}
\hline
\kappa_1 & \kappa_2 & \kappa_3 \\
\hline
1 & r^1 + r^2 & i_1 + i_2 + i_3 \\
\hline
\kappa_2 & 2\kappa_1 + \kappa_2 & 2\kappa_3 \\
\hline
\kappa_3 & 2\kappa_3 & 3\kappa_1 + 3\kappa_2 \\
\hline
\end{array}
\]

Class products give spectral polynomial and all-commuting projectors $P^{(\alpha)} = P^{A_1}$, P^{A_2}, and P^E

\[
\begin{align*}
\kappa_2^2 - \kappa_2 - 2 \cdot 1 &= 0 \\
0 &= \kappa_3^3 - 9\kappa_3 = (\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1) \\
0 &= (\kappa_2 - 2 \cdot 1)(\kappa_2 + 1) \\
0 &= (\kappa_3 - 3 \cdot 1)P^{A_1} \\
\kappa_3 P^{A_1} &= +3 \cdot P^{A_1} \\
\end{align*}
\]

\[
P^{A_1} = \frac{(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)}{(+3 + 3)(+3 - 0)}
\]
Spectral analysis of non-commutative “Group-table Hamiltonian”

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

<table>
<thead>
<tr>
<th></th>
<th>r^1</th>
<th>r^2</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2</td>
<td>r^1</td>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td></td>
</tr>
<tr>
<td>r^1</td>
<td>r^2</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td></td>
</tr>
<tr>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td>r^1</td>
<td>r^2</td>
<td></td>
</tr>
<tr>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td>r^2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>r^1</td>
<td>r^2</td>
<td></td>
</tr>
</tbody>
</table>

Each class-sum κ_k commutes with all of D_3.

<table>
<thead>
<tr>
<th></th>
<th>$\kappa_1 = 1$</th>
<th>$\kappa_2 = r^1 + r^2$</th>
<th>$\kappa_3 = i_1 + i_2 + i_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_2</td>
<td>$2\kappa_1 + \kappa_2$</td>
<td>$2\kappa_3$</td>
<td></td>
</tr>
<tr>
<td>κ_3</td>
<td>$2\kappa_3$</td>
<td>$3\kappa_1 + 3\kappa_2$</td>
<td></td>
</tr>
</tbody>
</table>

Class products give spectral polynomial and
all-commuting projectors $P^{(\alpha)} = P^{A_1}$, P^{A_2}, and P^E

Note also:

$\kappa_2 - \kappa_2 - 2\cdot 1 = 0$

$0 = \kappa_3^2 - 9\kappa_3 = (\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)$

$0 = (\kappa_2 - 2 \cdot 1)(\kappa_2 + 1)$

$\kappa_3 P^{A_1} = +3 \cdot P^{A_1}$

$0 = (\kappa_3 + 3 \cdot 1)P^{A_2}$

$\kappa_3 P^{A_2} = -3 \cdot P^{A_2}$

$P^{A_1} = \frac{(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)}{(+3 + 3)(+3 - 0)}$

$P^{A_2} = \frac{(\kappa_3 - 3 \cdot 1)(\kappa_3 - 0 \cdot 1)}{(-3 - 3)(-3 - 0)}$
Spectral analysis of non-commutative “Group-table Hamiltonian”

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

<table>
<thead>
<tr>
<th>1</th>
<th>r^1</th>
<th>r^2</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
</tr>
<tr>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
</tr>
<tr>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>

Note also:

$\kappa_2^2 - \kappa_2 - 2 \cdot 1 = 0 \quad \Rightarrow \quad \kappa_2 = r^1 + r^2$

$\kappa_3 = i_1 + i_2 + i_3$

Each class-sum κ_k commutes with all of D_3.

<table>
<thead>
<tr>
<th>$\kappa_1 = 1$</th>
<th>$\kappa_2 = r^1 + r^2$</th>
<th>$\kappa_3 = i_1 + i_2 + i_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_2</td>
<td>$2\kappa_1 + \kappa_2$</td>
<td>$2\kappa_3$</td>
</tr>
<tr>
<td>κ_3</td>
<td>$2\kappa_3$</td>
<td>$3\kappa_1 + 3\kappa_2$</td>
</tr>
</tbody>
</table>

Class products give spectral polynomial and all-commuting projectors $P^{(\alpha)} = P^{A_1}$, P^{A_2}, and P^E

$0 = (\kappa_3 - 3 \cdot 1)P^{A_1}$

$\kappa_3 P^{A_1} = +3 \cdot P^{A_1}$

$0 = (\kappa_3 + 3 \cdot 1)P^{A_2}$

$\kappa_3 P^{A_2} = -3 \cdot P^{A_2}$

$0 = (\kappa_3 - 0 \cdot 1)P^E$

$\kappa_3 P^E = +0 \cdot P^E$

$P^{A_1} = \frac{(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)}{(+3 + 3)(+3 - 0)}$

$P^{A_2} = \frac{(\kappa_3 - 3 \cdot 1)(\kappa_3 - 0 \cdot 1)}{(-3 - 3)(-3 - 0)}$

$P^E = \frac{(\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)}{(+0 - 3)(+0 + 3)}$
Spectral analysis of non-commutative “Group-table Hamiltonian”

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

<table>
<thead>
<tr>
<th></th>
<th>r^1</th>
<th>r^2</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
</tr>
<tr>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
</tr>
<tr>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>

Note also:

$\kappa^2 - \kappa - 2 \cdot 1 = 0 \quad 0 = \kappa^3 - 9 \kappa_3 = (\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)$

Each class-sum κ_k commutes with all of D_3.

<table>
<thead>
<tr>
<th>κ_1</th>
<th>κ_2</th>
<th>κ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$r^1 + r^2$</td>
<td>$i_1 + i_2 + i_3$</td>
</tr>
<tr>
<td>$2\kappa_1 + \kappa_2$</td>
<td>$2\kappa_3$</td>
<td></td>
</tr>
<tr>
<td>$2\kappa_3$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Class products give spectral polynomial and all-commuting projectors $P^{(\alpha)} = P^{A_1}$, P^{A_2}, and P^E

Class resolution into sum of eigenvalue \cdot Projector

$\kappa_1 = 1 \cdot P^{A_1} + 1 \cdot P^{A_2} + 1 \cdot P^E$

$\kappa_r = 2 \cdot P^{A_1} + 2 \cdot P^{A_2} - 1 \cdot P^E$

$\kappa_i = 3 \cdot P^{A_1} - 3 \cdot P^{A_2} + 0 \cdot P^E$

Note also:

$\kappa^2 - \kappa - 2 \cdot 1 = 0 \quad 0 = (\kappa_2 - 2 \cdot 1)(\kappa_2 + 1)$
Spectral analysis of non-commutative “Group-table Hamiltonian”

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

Each class-sum κ_k commutes with all of D_3.

<table>
<thead>
<tr>
<th>κ_1</th>
<th>κ_2</th>
<th>κ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$r^1 + r^2$</td>
<td>$i_1 + i_2 + i_3$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>κ_2</th>
<th>$2\kappa_1 + \kappa_2$</th>
<th>$2\kappa_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_3</td>
<td>$2\kappa_3$</td>
<td>$3\kappa_1 + 3\kappa_2$</td>
</tr>
</tbody>
</table>

Note also:

$\kappa_2^2 - \kappa_2 - 2 \cdot 1 = 0$

$0 = \kappa_3^3 - 9\kappa_3 = (\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)$

$0 = (\kappa_2 - 2 \cdot 1)(\kappa_2 + 1)$

$0 = (\kappa_3 - 3 \cdot 1)P^{A_1}$

$\kappa_3P^{A_1} = +3 \cdot P^{A_1}$

$0 = (\kappa_3 + 3 \cdot 1)P^{A_2}$

$\kappa_3P^{A_2} = -3 \cdot P^{A_2}$

$0 = (\kappa_3 - 0 \cdot 1)P^E$

$\kappa_3P^E = +0 \cdot P^E$

Class resolution into sum of eigenvalue \cdot Projector

$\kappa_1 = 1 \cdot P^{A_1} + 1 \cdot P^{A_2} + 1 \cdot P^E$

$\kappa_r = 2 \cdot P^{A_1} + 2 \cdot P^{A_2} - 1 \cdot P^E \quad \kappa^2_r = \kappa_r + 2 \cdot 1 \Rightarrow (\kappa_r - 2 \cdot 1)(\kappa_r + 1) = 0$

$\kappa_i = 3 \cdot P^{A_1} - 3 \cdot P^{A_2} + 0 \cdot P^E$

Inverse resolution gives D_3 Character Table

$P^{A_1} = (\kappa_1 + \kappa_2 + \kappa_3)/6 = (1 + r + r^2 + i_1 + i_2 + i_3)/6$

$P^{A_2} = (\kappa_1 + \kappa_2 + \kappa_3)/6 = (1 + r + r^2 - i_1 - i_2 - i_3)/6$

$P^E = (2\kappa_1 - \kappa_2 + 0)/3 = (21 - r - r^2)/3$
Spectral analysis of non-commutative “Group-table Hamiltonian”

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

Each class-sum κ_k commutes with all of D_3.

Class products give spectral polynomial and all-commuting projectors $P^{(\alpha)} = P^{A_1}, P^{A_2}$, and P^E

Class resolution into sum of eigenvalue · Projector

$\kappa_1 = 1 \cdot P^{A_1} + 1 \cdot P^{A_2} + 1 \cdot P^E$

$\kappa_r = 2 \cdot P^{A_1} + 2 \cdot P^{A_2} - 1 \cdot P^E \quad \iff \quad \kappa_r^2 = \kappa_r + 2 \cdot 1 \Rightarrow (\kappa_r - 2 \cdot 1)(\kappa_r + 1) = 0$

$\kappa_i = 3 \cdot P^{A_1} - 3 \cdot P^{A_2} + 0 \cdot P^E$

Inverse resolution gives D_3 Character Table

$P^{A_1} = (\kappa_1 + \kappa_2 + \kappa_3)/6 = (1 + r + r^2 + i_1 + i_2 + i_3)/6$

$P^{A_2} = (\kappa_1 + \kappa_2 - \kappa_3)/6 = (1 + r + r^2 - i_1 - i_2 - i_3)/6$

$P^E = (2\kappa_1 - \kappa_2 + 0)/3 = (21 - r - r^2)/3$
Spectral analysis of non-commutative “Group-table Hamiltonian”

1st Step: Spectral resolution of D_3-Center (Class algebra of D_3)

<table>
<thead>
<tr>
<th>r^1</th>
<th>r^2</th>
<th>r^3</th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
</tr>
<tr>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
</tr>
<tr>
<td>i_1</td>
<td>i_2</td>
<td>i_3</td>
<td>1</td>
<td>r^1</td>
<td>r^2</td>
</tr>
<tr>
<td>i_2</td>
<td>i_3</td>
<td>i_1</td>
<td>r^2</td>
<td>1</td>
<td>r^1</td>
</tr>
<tr>
<td>i_3</td>
<td>i_1</td>
<td>i_2</td>
<td>r^1</td>
<td>r^2</td>
<td>1</td>
</tr>
</tbody>
</table>

Each class-sum κ_k commutes with all of D_3.

<table>
<thead>
<tr>
<th>$\kappa_1 = 1$</th>
<th>$\kappa_2 = r^1 + r^2$</th>
<th>$\kappa_3 = i_1 + i_2 + i_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_2</td>
<td>$2\kappa_1 + \kappa_2$</td>
<td>$2\kappa_3$</td>
</tr>
<tr>
<td>κ_3</td>
<td>$2\kappa_3$</td>
<td>$3\kappa_1 + 3\kappa_2$</td>
</tr>
</tbody>
</table>

Class products give spectral polynomial and all-commuting projectors $P^{(\alpha)} = P^{A_1}, P^{A_2},$ and P^E

\[
0 = \kappa_3^3 - 9\kappa_3 = (\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)
\]

\[
0 = (\kappa_3 - 3 \cdot 1)P^{A_1}
\]
\[
\kappa_3 P^{A_1} = +3 \cdot P^{A_1}
\]
\[
0 = (\kappa_3 + 3 \cdot 1)P^{A_2}
\]
\[
\kappa_3 P^{A_2} = -3 \cdot P^{A_2}
\]
\[
0 = (\kappa_3 - 0 \cdot 1)P^E
\]
\[
\kappa_3 P^E = +0 \cdot P^E
\]

Class resolution into sum of eigenvalue · Projector

$\kappa_1 = 1 \cdot P^{A_1} + 1 \cdot P^{A_2} + 1 \cdot P^E$

$\kappa_2 = 2 \cdot P^{A_1} + 2 \cdot P^{A_2} - 1 \cdot P^E$

$\kappa_3 = 3 \cdot P^{A_1} - 3 \cdot P^{A_2} + 0 \cdot P^E$

Inverse resolution gives D_3 Character Table

$P^{A_1} = (\kappa_1 + \kappa_2 + \kappa_3)/6 = (1 + r + r^2 + i_1 + i_2 + i_3)/6$

$P^{A_2} = (\kappa_1 + \kappa_2 - \kappa_3)/6 = (1 + r + r^2 - i_1 - i_2 - i_3)/6$

$P^E = (2\kappa_1 - \kappa_2 + 0)/3 = (21 - r - r^2)/3$

Irreducible characters are traces $\chi^\alpha_r = Tr D^{(\alpha)}(r_k)$ of irreducible representations $D^{(\alpha)}(r_k)$

<table>
<thead>
<tr>
<th>α</th>
<th>χ_1^α</th>
<th>χ_2^α</th>
<th>χ_3^α</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
3-Dihedral-axes group D_3 vs. 3-Vertical-mirror-plane group C_{3v}
D_3 and C_{3v} are isomorphic ($D_3 \sim C_{3v}$ share product table)
Deriving $D_3 \sim C_{3v}$ products:
By group definition $|g\rangle = g|1\rangle$ of position ket $|g\rangle$
By nomograms based on $U(2)$ Hamilton-turns
Deriving $D_3 \sim C_{3v}$ equivalence transformations and classes

Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D_3
Global vs Local symmetry expansion of D_3 Hamiltonian

1st-Step in spectral analysis of D_3 “group-table” Hamiltonian: Algebra of D_3 Center(Classes)
All-commuting operators and D_3-invariant class algebra
All-commuting projectors and D_3-invariant characters
Group invariant numbers: Centrum, Rank, and Order
Important invariant numbers or “characters”

\[\ell^\alpha = \text{Irreducible representation (irrep) dimension or level degeneracy} \]

For symmetry group or algebra \(G \)

Centrum: \(\kappa(G) = \sum_{\text{irrep}(\alpha)} (\ell^\alpha)^0 = \text{Number of classes, invariants, irrep types, all-commuting ops} \)

Rank: \(\rho(G) = \sum_{\text{irrep}(\alpha)} (\ell^\alpha)^1 = \text{Number of irrep idempotents } P_{n,n}^{(\alpha)}, \text{mutually-commuting ops} \)

Order: \(o(G) = \sum_{\text{irrep}(\alpha)} (\ell^\alpha)^2 = \text{Total number of irrep projectors } P_{m,n}^{(\alpha)} \text{ or symmetry ops} \)
Important invariant numbers or “characters”

\[\ell^\alpha = \text{Irreducible representation (irrep) dimension or level degeneracy} \]

For symmetry group or algebra \(G \)

Centrum: \(\kappa(G) = \sum_{\text{irrep}(\alpha)} (\ell^\alpha)^0 \) = Number of classes, invariants, irrep types, **all-commuting** ops

Rank: \(\rho(G) = \sum_{\text{irrep}(\alpha)} (\ell^\alpha)^1 \) = Number of irrep idempotents \(P_{n,n}^{(\alpha)} \), **mutually-commuting** ops

Order: \(\circ(G) = \sum_{\text{irrep}(\alpha)} (\ell^\alpha)^2 \) = **Total** number of irrep projectors \(P_{m,n}^{(\alpha)} \) or symmetry ops

\[
\kappa(D_3) = (1)^0 + (1)^0 + (2)^0 = 3 \\
\rho(D_3) = (1)^1 + (1)^1 + (2)^1 = 4 \\
\circ(D_3) = (1)^2 + (1)^2 + (2)^2 = 6
\]