Group Theory in Quantum Mechanics Lecture 13 (2.28.17)

*Symmetry and Dynamics of C*_N*cyclic systems(contd.)*

(Quantum Theory for the Computer Age - Ch. 6-12 of Unit 5) (Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 3-7 of Ch. 2)

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW)

Comparing spacetime uncertainty (Δx or Δt) with per-spacetime bandwidth ($\Delta \kappa$ or Δv) Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞ -Square-well wave dynamics *SinNx/x wavepacket bandwidth and uncertainty ∞-Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!)* Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products Discrete C_N beat phase dynamics (Characters gone wild!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves SinNx/x wavepacket bandwidth and uncertainty ∞-Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics* Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

It helps to introduce two archetypes of light waves and contrast them.

The first (*PW*) is a *Particle-like Wave* or part of a *Pulse-Wave* train. The second (*CW*) is a *Coherent Wave* or part of a *Continuous-Wave* train.

.. or Cosine Wave ... or Colored Wave

Ideal *CW* shape is a *cosine wave* $(cos(\phi))$

WaveIt Web Simulation - Spectral Components Rightward 1-PW

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) Comparing spacetime uncertainty (Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves SinNx/x wavepacket bandwidth and uncertainty ∞-Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics* Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

Comparing spacetime uncertainty (Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)*

PW widths reduce proportionally with more *CW* terms (greater *Spectral* width)

Comparing spacetime uncertainty (Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)*

PW widths reduce proportionally with more *CW* terms (greater *Spectral* width)

Fourier series worth remembering From Quantum Theory for Computer Age Unit 3 Chapter 7

Harter & LearnIt

Unit 3 Fourier Analysis and Symmetry

----5

Fig. 7.1.2 Fourier series sharing simple integral or derivative relations to each other.

Following page: Fig. 7.1.3 Exotic 1-D electric charge and field distributions.

(+)del(x) (+)(+) *(a)* (†%) (‡)° Charge $\delta(x-3\pi)$ $\delta(x-5\pi)$ δ(x-π) (+)(+)Density δ(x-0) δ(x-2 π) (-) $\delta(x-4\pi)$ (-) (-) δ(x-6π) $\rho(x)$ (-) _{-∞} (-) -∞ (-) (-) (-) (-) box(x)+1 Boxcar E-field +1 +1Electric +I 2π 4π Field -1 E(x)Sawtooth potenial function saw(x)x-11 7/2 + $\pi/2^{\sim}$ x-3 7d2 x-7 nd2/ Potential 5π 2π 3π 4π π $\Phi(x)$ $-x + 9\pi/2$ $-x + 5\pi/2$ $-\pi/2_{-}-x+\pi/2_{-}$

Fourier series worth remembering From Quantum Theory for Computer Age Unit 3 Chapter 7 Following page: Fig. 7.1.3 Exotic 1-D electric charge and field distributions.

Fourier series worth remembering From Quantum Theory for Computer Age Unit 3 Chapter 7

 $Boxcar_1 Potential field$

 3π

-1

 2π

+1

 4π

 5π

-1

E(x)

box(x)

 $\Phi(x)$

Potential +1

+1

π

-1

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞*-Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty* ∞ -Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

Fig. 12.2.6 Comparison of eigensolutions for (a) Infinite square well, and (b) Bohr rotor. From QTCA Unit 5 Ch. 12

 $m=0, \pm 1, \pm 2, \pm 3,...$ are momentum quanta in wavevector formula: $k_m=2\pi m/L$ $(k_m=m \quad if: L=2\pi)$

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty* ∞ -Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

 ∞ -Square well PE (The story of prisoner-M)

Boundary conditions: $k_n W = n\pi$ or: $k_n = n\pi/W$

Energy eigenfunctions: $\langle x | \boldsymbol{\varepsilon}_n \rangle = \boldsymbol{\psi}_n(x) = A \sin(k_n x) = A \sin\left(\frac{n\pi x}{W}\right)$ $(n=1,2,3,...\infty)$

From QTCA Unit 5 Ch. 12

 $\infty-Square well PE \quad (The story of prisoner-M)$ Boundary conditions: $k_n W = n\pi$ or: $k_n = n\pi/W$ Energy eigenfunctions: $\langle x | \varepsilon_n \rangle = \psi_n(x) = A \sin(k_n x) = A \sin(\frac{n\pi x}{W}) \quad (n=1,2,3,...\infty) \qquad \hbar = \frac{h}{2\pi}$

24

 ∞ -Square well PE (The story of prisoner-M)

Boundary conditions: $k_n W = n\pi$ or: $k_n = n\pi/W$ Energy eigenfunctions: $\langle x | \varepsilon_n \rangle = \psi_n(x) = A \sin(k_n x) = A \sin(\frac{n\pi x}{W})$ $(n=1,2,3,...\infty)$ $\hbar = \frac{h}{2\pi}$

Fig. 12.1.2 Exercise in prison. Infinite square well eigensolution combination "sloshes" back and forth.

fundamental Bohr \angle -frequency $\omega_1 = 2\pi \upsilon_1$ lowest transition (beat) frequency $\upsilon_1 = (\varepsilon_1 - \varepsilon_0)/h$ (ε_0 is defined as zero) Tuesday, February 28, 2017 $\omega_1 = 2\pi \upsilon_1 = 2\pi \varepsilon_1/h = 2\pi h/(8MW^2)$

 $v_1 = h/(8MW^2)$

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty* ∞ -Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

SinNx/x wavepackets bandwidth and uncertainty $\delta(x-a) = \langle x | a \rangle$

$$\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle$$

$$\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$$

$$\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$$

$$\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$$

SinNx/x wavepackets bandwidth and uncertainty $\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$ $a_n = \langle \varepsilon_n | a \rangle = (2/W) \sin k_n a$ ($k_n = n\pi/W$) $\Psi(x) = \frac{2}{W} \sum_{n=1}^{N} \frac{\sin k_n a}{\sin k_n x}$ $\rightarrow \frac{2}{W} \int_{0}^{K_{\max}} dk \frac{\Delta n}{\Delta k} \sin ka \sin kx$ 0.8 0.6 0.4 $n=(W/\pi) k_n$ $=\frac{2}{W}\frac{W}{\pi}\int_{0}^{K_{\max}} dk\sin ka\sin kx$ Fig. 12.2.2 Ultra-thin prisoner M. Initial wavepacket combination of 100 energy states. $\Psi(x) \cong \frac{2}{\pi} \int_{-\pi}^{K_{\max}} dk \sin ka \sin kx = \frac{1}{\pi} \int_{0}^{K_{\max}} dk \left(\cos k \left(x - a\right) - \cos k \left(x + a\right)\right)$

SinNx/x wavepackets bandwidth and uncertainty $\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$ $a_n = \langle \varepsilon_n | a \rangle = (2/W) \sin k_n a$ ($k_n = n\pi/W$) $\Psi(x) = \frac{2}{W} \sum_{n=1}^{N} \frac{\sin k_n a}{\sin k_n x}$ $\rightarrow \frac{2}{W} \int_{0}^{K_{\max}} dk \frac{\Delta n}{\Delta k} \sin ka \sin kx$ 0.8 0.4 0.6 $n=(W/\pi) k_n$ $=\frac{2}{W}\frac{W}{\pi}\int_{0}^{K_{\max}} dk\sin ka\sin kx$ Fig. 12.2.2 Ultra-thin prisoner M. Initial wavepacket combination of 100 energy states. $\Psi(x) \cong \frac{2}{\pi} \int_{0}^{K_{\max}} dk \sin ka \sin kx = \frac{1}{\pi} \int_{0}^{K_{\max}} dk \left(\cos k \left(x - a\right) - \cos k \left(x + a\right)\right)$ $\cong \frac{\sin K_{\max}(x-a)}{\pi(x-a)} - \frac{\sin K_{\max}(x+a)}{\pi(x-a)} \cong \frac{\sin K_{\max}(x-a)}{\pi(x-a)} \quad \text{for: } x \approx a$

From QTCA Unit 5 Ch. 12

SinNx/x wavepackets bandwidth and uncertainty $\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$ $a_n = \langle \varepsilon_n | a \rangle = (2/W) \sin k_n a$ ($k_n = n\pi/W$) $\Psi(x) = \frac{2}{W} \sum_{n=1}^{N} \frac{\sin k_n a}{\sin k_n x}$ $\rightarrow \frac{2}{W} \int_{0}^{K_{\text{max}}} dk \frac{\Delta n}{\Delta k} \sin ka \sin kx$ $n = (W/\pi) k_n$ 0.8 0.4 0.6 $=\frac{2}{W}\frac{W}{\pi}\int_{0}^{K_{\max}} dk\sin ka\sin kx$ Fig. 12.2.2 Ultra-thin prisoner M. Initial wavepacket combination of 100 energy states. $\Psi(x) \cong \frac{2}{\pi} \int_{0}^{K_{\max}} dk \sin ka \sin kx = \frac{1}{\pi} \int_{0}^{K_{\max}} dk \left(\cos k \left(x - a\right) - \cos k \left(x + a\right)\right)$ $\cong \frac{\sin K_{\max}(x-a)}{\pi(x-a)} - \frac{\sin K_{\max}(x+a)}{\pi(x+a)} \cong \frac{\sin K_{\max}(x-a)}{\pi(x-a)} \quad \text{for: } x \approx a$

"Last-in-first-out" effect. Last *K*max-value dominates and "inside" K get "smothered" by interference with neighbors.

From QTCA Unit 5 Ch. 12

SinNx/x wavepackets bandwidth and uncertainty $\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$ $a_n = \langle \varepsilon_n | a \rangle = (2/W) \sin k_n a$ ($k_n = n\pi/W$) $\Psi(x) = \frac{2}{W} \sum_{n=1}^{N} \frac{\sin k_n a}{\sin k_n x}$ $\rightarrow \frac{2}{W} \int_{0}^{K_{\text{max}}} dk \frac{\Delta n}{\Delta k} \sin ka \sin kx$ 0.6 0.8 0.4 $n=(W/\pi) k_n$ $=\frac{2}{W}\frac{W}{\pi}\int_{-\infty}^{K_{\max}} dk\sin ka\sin kx$ Fig. 12.2.2 Ultra-thin prisoner M. Initial wavepacket combination of 100 energy states. $\frac{\sin K_{\max}(x-a)}{\cos x} \quad \text{for: } x \approx a$ $\Psi(x) \cong$

"Last-in-first-out" effect. Last *K*_{max}-value dominates and "inside" K get "smothered" by interference with neighbors.

From QTCA Unit 5 Ch. 12

36
SinNx/x wavepackets bandwidth and uncertainty $\delta(x - a) = \sqrt{x} |a| = \sum_{n=1}^{\infty} \sqrt{x} |c| \sqrt{c} |a| = \sum_{n=1}^{\infty} a_n \sin k_n x$

$$\Psi(x) \cong \frac{\sin K_{\max}(x-a)}{\pi(x-a)} \text{ for: } x \approx a$$

$$P(x) \cong \frac{\sin K_{\max}(x-a)}{\pi(x-a)} \text{ for: } x \approx a$$

$$P(x) = \frac{2}{W} \sum_{n=1}^{N} \frac{1}{n} \frac{1}{W} \sum_{n=1}^{N} \frac{1}{W} \sum_{$$

"Last-in-first-out" effect. Last *K*_{max}-value dominates and "inside" K get "smothered" by interference with neighbors.

Tuesday, February 28, 2017

SinNx/x wavepackets bandwidth and uncertainty $\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$ $a_n = \langle \varepsilon_n | a \rangle = (2/W) \sin k_n a$ ($k_n = n\pi/W$) $\Psi(x) = \frac{2}{W} \sum_{n=1}^{N_{\text{max}}} \sin k_n a \sin k_n x$ $\rightarrow \frac{2}{W} \int_{0}^{K_{\text{max}}} dk \frac{\Delta n}{\Delta k} \sin ka \sin kx$ $n = (W/\pi) k$ 0.6 0.8 0.4 $=\frac{2}{W}\frac{W}{\pi}\int_{0}^{K_{\max}} dk\sin ka\sin kx$ Fig. 12.2.2 Ultra-thin prisoner M. Initial wavepacket combination of 100 energy states. $\Psi(x) \cong \frac{\sin K_{\max}(x-a)}{\pi(x-a)} \quad \text{for: } x \approx a$ $\Psi(x)$ peaks at (x=a) and goes to zero on either side at $(x=a\pm\Delta x)$ with half-width Δx $\sin K_{\max}(\Delta x)=0$, which implies: $(\Delta x)K_{\max}=\pm\pi$

"Last-in-first-out" effect. Last *K*_{max}-value dominates and "inside" K get "smothered" by interference with neighbors.

SinNx/x wavepackets bandwidth and uncertainty $\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$ $a_n = \langle \varepsilon_n | a \rangle = (2/W) \sin k_n a$ ($k_n = n\pi/W$) $\Psi(x) = \frac{2}{W} \sum_{n=1}^{N} \frac{\sin k_n a}{\sin k_n x}$ $\rightarrow \frac{2}{W} \int_{0}^{K_{\text{max}}} dk \frac{\Delta n}{\Delta k} \sin ka \sin kx$ $n = (W/\pi) k$ 0.4 0.6 0.8 $=\frac{2}{W}\frac{W}{\pi}\int_{-\infty}^{K_{\max}} dk\sin ka\sin kx$ Fig. 12.2.2 Ultra-thin prisoner M. Initial wavepacket combination of 100 energy states. $\Psi(x) \cong \frac{\sin K_{\max}(x-a)}{\pi(x-a)} \quad \text{for: } x \approx a$ $\Psi(x)$ peaks at (x=a) and goes to zero on either side at $(x=a\pm\Delta x)$ with *half-width* Δx $\sin K_{\max}(\Delta x)=0$, which implies: $(\Delta x)K_{\max}=\pm \pi$, or: $\Delta x=\pm \pi / K_{\max}$

"Last-in-first-out" effect. Last *K*max-value dominates and "inside" K get "smothered" by interference with neighbors.

Tuesday, February 28, 2017

SinNx/x wavepackets bandwidth and uncertainty $\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$ $a_n = \langle \varepsilon_n | a \rangle = (2/W) \sin k_n a$ ($k_n = n\pi/W$) $\Psi(x) = \frac{2}{W} \sum_{n=1}^{N_{\text{max}}} \sin k_n a \sin k_n x$ $\rightarrow \frac{2}{W} \int_{0}^{K_{\text{max}}} dk \frac{\Delta n}{\Delta k} \sin ka \sin kx$ $n = (W/\pi) k$ 0.4 0.6 0.8 $=\frac{2}{W}\frac{W}{\pi}\int_{-\infty}^{K_{\max}} dk\sin ka\sin kx$ Fig. 12.2.2 Ultra-thin prisoner M. Initial wavepacket combination of 100 energy states. $\frac{\sin K_{\max}(x-a)}{\pi(x-a)} \quad \text{for: } x \approx a$ $\Psi(x)$ peaks at (x=a) and goes to zero on either side $\Psi(x) \cong$ at $(x=a\pm\Delta x)$ with half-width Δx $\sin K_{\max} (\Delta x) = 0$, which implies: $(\Delta x) K_{\max} = \pm \pi$, or: $\Delta x = \pm \pi / K_{\max}$ $\Delta x \cdot |K_{\max}| = \Delta x \cdot \Delta k = \pi$

"Last-in-first-out" effect. Last *K*max-value dominates and "inside" K get "smothered" by interference with neighbors.

Tuesday, February 28, 2017

SinNx/x wavepackets bandwidth and uncertainty $\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$ $a_n = \langle \varepsilon_n | a \rangle = (2/W) \sin k_n a$ ($k_n = n\pi/W$) $2 \Delta x = 2\pi/100$ $\Psi(x) = \frac{2}{W} \sum_{n=1}^{N} \frac{1}{2} \sin k_n a \sin k_n x$ $\rightarrow \frac{2}{W} \int_{0}^{K_{\text{max}}} dk \frac{\Delta n}{\Delta k} \sin ka \sin kx$ $n = (W/\pi) k$ 0.6 0.8 0.4 $=\frac{2}{W}\frac{W}{\pi}\int_{-\infty}^{K_{\max}} dk\sin ka\sin kx$ Fig. 12.2.2 Ultra-thin prisoner M. Initial wavepacket combination of 100 energy states. $\Psi(x) \cong \frac{\sin K_{\max}(x-a)}{\pi(x-a)} \quad \text{for: } x \approx a$ $\Psi(x)$ peaks at (x=a) and goes to zero on either side at $(x=a\pm\Delta x)$ with *half-width* Δx $\sin K_{\max} (\Delta x) = 0$, which implies: $(\Delta x) K_{\max} = \pm \pi$, or: $\Delta x = \pm \pi / K_{\max}$ $\Delta x \cdot |K_{\max}| = \Delta x \cdot \Delta k = \pi$ or: $\Delta x \cdot \Delta p = \pi \hbar = h/2$ ∞ -*Well uncertainty relation*

"Last-in-first-out" effect. Last *K*max-value dominates and "inside" K get "smothered" by interference with neighbors.

Tuesday, February 28, 2017

SinNx/x wavepackets bandwidth and uncertainty $\delta(x-a) = \langle x | a \rangle = \sum_{n=1}^{\infty} \langle x | \varepsilon_n \rangle \langle \varepsilon_n | a \rangle = \sum_{n=1}^{\infty} a_n \sin k_n x$ $a_n = \langle \varepsilon_n | a \rangle = (2/W) \sin k_n a$ ($k_n = n\pi/W$) $2 \Delta x = 2\pi/100$ $\Psi(x) = \frac{2}{W} \sum_{n=1}^{N} \frac{1}{N} \sin k_n a \sin k_n x$ $\rightarrow \frac{2}{W} \int_{0}^{K_{\text{max}}} dk \frac{\Delta n}{\Delta k} \sin ka \sin kx$ $n = (W/\pi) k$ 0.6 0.8 0.4 $= \frac{2}{W} \frac{W}{\pi} \int_{-\infty}^{K_{\text{max}}} dk \sin ka \sin kx$ Fig. 12.2.2 Ultra-thin prisoner M. Initial wavepacket combination of 100 energy states. $\Psi(x) \cong \frac{\sin K_{\max}(x-a)}{\pi(x-a)} \quad \text{for: } x \approx a$ $\Psi(x)$ peaks at (x=a) and goes to zero on either side at $(x=a\pm\Delta x)$ with *half-width* Δx $\sin K_{\max}(\Delta x)=0$, which implies: $(\Delta x)K_{\max}=\pm \pi$, or: $\Delta x=\pm \pi / K_{\max}$ $\Delta x \cdot \Delta p = \pi \hbar = h/2$ $\Delta x \cdot |K_{\max}| = \Delta x \cdot \Delta k = \pi$ or: ∞ -*Well uncertainty relation* $\Delta x \cdot \Delta \kappa = 1/2$ if $p = h\kappa$

"Last-in-first-out" effect. Last *K*max-value dominates and "inside" K get "smothered" by interference with neighbors.

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty* ∞ -Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) *Bohr-rotor wave dynamics* Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty ∞-Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics* Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

Wavepacket explodes! (Then revives)

Zero-point period τ_1 is just enough time for "particle" in ε_n -level to make 2*n* round trips.

$$\tau_1 = 2n T_n(2W) = \frac{8ML^2}{h}$$

In time τ_1 ground ϵ_1 -level particle does 2 round trips,

 ε_2 -level particle makes 4 round trips,

ε₃-level particle makes 6 round trips,..,

At time τ_1 , *M* undergoes a *full revival* and "unexplodes" into his original spike at x=0.2W,

Wavepacket explodes! (Then revives)

Zero-point period τ_1 is just enough time for "particle" in ε_n -level to make 2n round trips.

$$\tau_1 = 2n T_n(2W) = \frac{8ML^2}{h}$$

In time τ_1 ground ϵ_1 -level particle does 2 round trips,

 ϵ_2 -level particle makes 4 round trips,

ε₃-level particle makes 6 round trips,..,

At time τ_1 , *M* undergoes a *full revival* and "unexplodes" into his original spike at x=0.2W,

Wavepacket explodes! (Then revives)

Zero-point period τ_1 is just enough time for "particle" in ε_n -level to make 2n round trips.

$$\tau_1 = 2n T_n(2W) = \frac{8ML^2}{h}$$

In time τ_1 ground ϵ_1 -level particle does 2 round trips,

 ϵ_2 -level particle makes 4 round trips,

ε₃-level particle makes 6 round trips,..,

At time τ_1 , *M* undergoes a *full revival* and "unexplodes" into his original spike at x=0.2W,

Review: ∞ -Square well PE paths analyzed using Bohr rotor paths

All ∞ -well peak must be made of sine wave components.

(a) Infinite Square Well at t=0

Review: ∞ -Square well PE paths analyzed using Bohr rotor paths

1.

All ∞ -well peak must be made of sine wave components.

2. Bohr rotor peak made of *sine* wave components is *anti*-symmetric, so an *upside-down mirror* image peak must accompany any peak.

as it makes an upside down-delta function around x=0.8W.

3. So how is the ∞ -well "flipped revival explained?

4. Bohr rotor half-time revival is *same*-side-up copy of initial peak on *opposite* side of ring. So that upside-down Bohr-image will appear upside-down on the other side at half-time revival.

Fig. 12.2.5 The "Dance of the deltas." Mini-Revivals for prisoner M's wavepacket envelope function.

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty ∞-Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!)* Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

and lowest *transition (beat) frequency* $v_1 = (E_1 - E_0)/h$

and lowest *transition (beat) frequency* $v_1 = (E_1 - E_0)/h$

Fundamental Beats and 2-Level Transitions: The "Mother of all symmetry" is C2

(sinNx)/x has a "boxcar spectrum" with very complicated space-time revival paths

<u>WaveIt Web Simulation</u> <u>"Boxcar" distribution</u>

Gaussian wave has a Gaussian spectrum with comparatively simple space-time revival paths

> (Gaussian wave properties are derived in several pages below...)

WaveIt Web Simulation **1 PW Gaussian distribution** w/Linear Dispersion

WaveIt Web Simulation Gaussian distribution *w/ component waves*

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty ∞-Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!)* Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

Suppose we excite a Gaussian combination of Bohr momentum-*m* plane waves:

$$\Psi(\phi, t=0) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_p}\right)^2} e^{im\phi}$$

Let constant Δ_p be momentum-m "spread"

Suppose we excite a Gaussian combination of Bohr momentum-*m* plane waves:

$$\Psi(\phi, t=0) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2}} e^{im\phi} = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi}$$

Complete the square in exponent to simplify ϕ -angle wavefunction.

or uncertainty
$$\Psi(\phi, t=0) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2}} e^{im\phi} = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi}$$
$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi + \left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

or uncertainty

Complete the square in exponent to simplify ϕ -angle wavefunction.

Add and subtract :
$$\left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}$$

in exponent...

$$\Psi(\phi, t=0) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2}} e^{im\phi}$$
$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi + \left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$
$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

or uncertainty

Complete the square in exponent to simplify ϕ -angle wavefunction.

Add and subtract :
$$\left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}$$

in exponent...

 $-\left(\frac{m}{\Delta_{\rm p}}-i\frac{\Delta_{\rm p}}{2}\phi\right)$ Extract binomia

$$\Psi(\phi, t=0) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2}} e^{im\phi}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi + \left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{A(\Delta_{p}, \phi)}{2\pi} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

Complete the square in exponent to simplify ϕ -angle wavefunction.

Add and subtract :
$$\left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}$$

in exponent...

 $-\left(\frac{m}{\Delta_{\rm p}}-i\frac{\Delta_{\rm p}}{2}\phi\right)^2$ Extract binomia

where:

$$A(\Delta_{p},\phi) = \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$\Psi(\phi,t=0) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2}} e^{im\phi}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi + \left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{A\left(\Delta_{p},\phi\right)}{2\pi} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$
where:
$$A\left(\Delta_{p},\phi\right) = \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}} \xrightarrow{\Delta_{p} > 1} \int_{-\infty}^{\infty} dk \ e^{-\left(\frac{k}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

or uncertainty

Complete the square in exponent to simplify ϕ -angle wavefunction.

Add and subtract :
$$\left(\frac{\Delta_{\rm p}}{2}\phi\right)^2 - \left(\frac{\Delta_{\rm p}}{2}\phi\right)^2$$

in exponent...

 $-\left(\frac{m}{\Delta_{\rm p}}-i\frac{\Delta_{\rm p}}{2}\phi\right)^2$

 $m=0, \pm 1, \pm 2, \pm 3,...$ are momentum quanta in wavevector formula: $k_m=2\pi m/L$ ($k_m=m$ if: $L=2\pi$)

$$\Psi(\phi, t=0) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2}} e^{im\phi}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi + \left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{A(\Delta_{p}, \phi)}{2\pi} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

or uncertainty

Complete the square in exponent to simplify ϕ -angle wavefunction.

Add and subtract :
$$\left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}$$

in exponent...

 $-\left(\frac{m}{\Delta_{\rm p}}-i\frac{\Delta_{\rm p}}{2}\phi\right)^2$

where: $A(\Delta_{p},\phi) = \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}} \xrightarrow{\Delta_{p} >>1} \int_{-\infty}^{\infty} dk \ e^{-\left(\frac{k}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}} \left[\text{let: } K = \frac{k}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi \text{ so: } dk = \Delta_{p}dK \right]$ $m=0, \pm 1, \pm 2, \pm 3,...$ are momentum quanta in wavevector formula: $k_m=2\pi m/L$ ($k_m=m$ if: $L=2\pi$)

or uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-*m* plane waves:

$$\Psi(\phi,t=0) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2}} e^{im\phi}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi + \left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{A(\Delta_{p},\phi)}{2\pi} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{A(\Delta_{p},\phi)}{2\pi} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{A(\Delta_{p},\phi)}{2\pi} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

et constant Δ_p be momentum-m "spread" or uncertainty entum-m plane waves:

Suppose we excite a Gaussian combination of Bohr momentum-*m* plane waves:

$$\Psi(\phi,t=0) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2}} e^{im\phi}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi + \left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}} = \left(\frac{\Delta_{p}}{2\sqrt{\pi}}\right)^{2}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{A(\Delta_{p},\phi)}{2\pi} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} = e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$It is a Gaussian/distribution, too$$

$$= \frac{A(\Delta_{p},\phi)}{2\pi} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} = e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$\left[\text{let: } K = \frac{k}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi \text{ so: } dk = \Delta_{p}dK \right] \text{ then: } A(\Delta_{p},\phi) \approx \Delta_{p} \int_{-\infty}^{\infty} dK e^{-(K)^{2}} = \Delta_{p}\sqrt{\pi}$$

$$m=0, \pm l, \pm 2, \pm 3, \dots \text{ are momentum quanta in wavevector formula: } k_{m} = 2\pi m/L \quad (k_{m} = m \text{ if: } L = 2\pi)$$

et constant Δ_p be momentum-m "spread" or uncertainty entum-m plane waves:

Suppose we excite a Gaussian combination of Bohr momentum-*m* plane waves:

$$\begin{split} \Psi(\phi,t=0) &= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2}} e^{im\phi} \\ &= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi + \left(\frac{\Delta_{p}}{2}\phi\right)^{2} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} \\ &= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}-i\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} \\ &= \frac{A(\Delta_{p},\phi)}{2\pi} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} \\ &= \frac{A(\Delta_{p},\phi)}{2\pi} e^{-\left(\frac{\Delta_{p$$

et constant Δ_p be momentum-m "spread" or uncertainty entum-m plane waves:

Suppose we excite a Gaussian combination of Bohr momentum-*m* plane waves:

$$\Psi(\phi,t=0) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2}} e^{im\phi}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}\right)^{2} + im\phi + \left(\frac{\Delta_{p}}{2}\phi\right)^{2}} - \left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}, \frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$= \frac{A(\Delta_{p},\phi)}{2\pi} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$\Psi(\phi,t=0) \equiv \frac{\Delta_{p}}{2\sqrt{\pi}} e^{-\left(\frac{\phi}{\Delta_{p}}\right)^{2}}$$

$$Where: A(\Delta_{p},\phi) = \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{p}}, \frac{\Delta_{p}}{2}\phi\right)^{2}} e^{-\left(\frac{\Delta_{p}}{2}\phi\right)^{2}}$$

$$\left[\text{let: } K = \frac{k}{\Delta_{p}} - i\frac{\Delta_{p}}{2}\phi \text{ so: } dk = \Delta_{p}dK \right] \text{ then: } A(\Delta_{p},\phi) = \Delta_{p}\int_{-\infty}^{\infty} dK e^{-(K)^{2}} = \Delta_{p}\sqrt{\pi}$$

$$m=0, \pm 1, \pm 2, \pm 3, \dots \text{ are momentum quanta in wavevector formula: } k_{m} = 2\pi m/L \quad (k_{m} = m \quad if: L = 2\pi)$$

$$E_{m} = (\hbar k_{m})^{2}/2M = m^{2}[\hbar^{2}/2ML^{2}] = m^{2}\hbar\omega_{1} = m^{2}\hbar\omega_{1}$$

fundamental Bohr \angle *-frequency* $\omega_1 = 2\pi \upsilon_1$ and lowest *transition (beat) frequency* $\upsilon_1 = (E_1 - E_0)/h$

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty* ∞ -Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

[[]Harter, J. Mol. Spec. 210, 166-182 (2001)]

Tuesday, February 28, 2017

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty* ∞ -Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics (Characters gone wild!)* The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

[[]Harter, J. Mol. Spec. 210, 166-182 (2001)]

[[]Harter, J. Mol. Spec. 210, 166-182 (2001)]

[[]Harter, J. Mol. Spec. 210, 166-182 (2001)]

[[]Lester. R. Ford, Am. Math. Monthly 45,586(1938)]

[John Farey, Phil. Mag.(1816)]

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty* ∞ -Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics (Characters gone wild!)* The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

vector sum and Ford Circles 1/2-circle has

diameter $1/2^2 = 1/4$

1/3-circles have diameter $1/3^2 = 1/9$

n/d-circles have diameter $1/d^2$

[Li, Harter, Chem.Phys.Letters (2015)] [Li, Harter, Chem.Phys.Letters **633**, 208-213(2015)]

[Li, Harter, Chem.Phys.Letters (2015)] [Li, Harter, Chem.Phys.Letters 633, 208-213(2015)]

$D \leq 8$	$\frac{0}{1}$	$\frac{1}{8}$	$\frac{1}{7}$	$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{2}{7}$	$\frac{1}{3}$	$\frac{3}{8}$	$\frac{2}{5}$	$\frac{3}{7}$	$\frac{1}{2}$	$\frac{4}{7}$	$\frac{3}{5}$	$\frac{5}{8}$	$\frac{2}{3}$	$\frac{5}{7}$	$\frac{3}{4}$	$\frac{4}{5}$	$\frac{5}{6}$	$\frac{6}{7}$	$\frac{7}{8}$	$\frac{1}{1}$
$D \leq 7$	$\frac{0}{1}$		$\frac{1}{7}$	$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{2}{7}$	$\frac{1}{3}$		$\frac{2}{5}$	$\frac{3}{7}$	$\frac{1}{2}$	$\frac{4}{7}$	$\frac{3}{5}$		$\frac{2}{3}$	$\frac{5}{7}$	$\frac{3}{4}$	$\frac{4}{5}$	$\frac{5}{6}$	$\frac{6}{7}$		$\frac{1}{1}$
$D \le 6$	$\frac{0}{1}$			$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{4}$		$\frac{1}{3}$		$\frac{2}{5}$		$\frac{1}{2}$		$\frac{3}{5}$		$\frac{2}{3}$		$\frac{3}{4}$	$\frac{4}{5}$	$\frac{5}{6}$			$\frac{1}{1}$
$D \leq 5$	$\frac{0}{1}$				$\frac{1}{5}$	$\frac{1}{4}$		$\frac{1}{3}$		$\frac{2}{5}$		$\frac{1}{2}$		$\frac{3}{5}$		$\frac{2}{3}$		$\frac{3}{4}$	4 5				$\frac{1}{1}$
$D \leq 4$	$\frac{0}{1}$					$\frac{1}{4}$		$\frac{1}{3}$				$\frac{1}{2}$				$\frac{2}{3}$		$\frac{3}{4}$					$\frac{1}{1}$
$D \leq 3$	$\frac{0}{1}$							$\frac{1}{3}$				$\frac{1}{2}$				$\frac{2}{3}$							$\frac{1}{1}$
$D \leq 2$	$\frac{0}{1}$											$\frac{1}{2}$											$\frac{1}{1}$
$D \leq 1$	$\frac{0}{1}$																						$\frac{1}{1}$

(Quantum computer simulation) That makes an *x-ly deep "3D-Magic-Eye" picture*

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty* ∞ -Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products Discrete C_N beat phase dynamics (Characters gone wild!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

Fundamental Beats and 2-Level Transitions: The "Mother of all symmetry" is C2

Revivals: All excited transitions take turns in a quantum rotor

http://www.uark.edu/ua/modphys/markup/WaveltWeb.html?scenario=Quantum%20Carpet

Fig. 9.4.4 *Bohr space-time revival pattern for* C_{15} *Bohr system.*

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty* ∞ -Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics (Characters gone wild!)* • The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

The Classical "Monster Mash"

Classical introduction to

Heisenberg "Uncertainty" Relations

$$v_2 = \frac{const.}{Y}$$
 or: $Y \cdot v_2 = const.$
is analogous to: $\Delta x \cdot \Delta p = N \cdot \hbar$

From CMwBang! Unit 1 Fig. 6.4

http://www.uark.edu/ua/modphys/markup/BounceltWeb.html?scenario=3000

Double "Monster Mash"

From CMwBang! Unit 1 Fig. 6.5

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞*-Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty ∞-Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!)* Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

 $\begin{array}{l} Polygonal \ geometry \ of \ U(2) \supset C_N \ character \ spectral \ function \\ Trace-character \ \chi^j(\Theta) \ of \ U(2) \ rotation \ by \ C_n \ angle \ \Theta = 2\pi/n \\ is \ an \ (\ell^j = 2j+1) \ term \ sum \ of \ e^{-im\Theta} \ over \ allowed \ m-quanta \ m = \{-j, \ -j+1, \dots, \ j-1, \ j\}. \\ \chi^{1/2}(\Theta) = trace D^{1/2}(\Theta) = trace \left(\begin{array}{c} e^{-i\theta/2} & \cdot \\ \cdot & e^{+i\theta/2} \end{array}\right) \qquad \chi^1(\Theta) = trace D^1(\Theta) = trace \left(\begin{array}{c} e^{-i\theta} & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & e^{-i\theta} \end{array}\right) \\ (vector-j=1) \qquad \qquad \end{array}$

Polygonal geometry of $U(2) \supset C_N$ character spectral function Trace-character $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^{j} = 2j+1)$ -term sum of $e^{-im\Theta}$ over allowed *m*-quanta $m = \{-j, -j+1, ..., j-1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & & \\ & e^{+i\theta/2} \end{pmatrix}$ $\chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & & & \\ & & 1 & & \\ & & e^{-i\theta} \end{pmatrix}$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m=j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2}$ (spinor-j=1/2) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + ... + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$ $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + ... + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$

Polygonal geometry of $U(2) \supset C_N$ character spectral function *Trace-character* $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^{j}=2j+1)$ -term sum of $e^{-in\Theta}$ over allowed *m*-quanta $m=\{-j, -j+1, ..., j-1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ \cdot & e^{+i\theta/2} \end{pmatrix}$ $\chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & e^{-i\theta} \end{pmatrix}$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m=j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$ $\chi^0(\Theta) = e^{-i\Theta \cdot 0} \qquad = 1$ (scalar-j=0) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$ $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1) $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$ $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2)

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty ∞-Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!)* Bohr-rotor wave dynamics Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

Polygonal geometry of $U(2) \supset C_N$ character spectral function *Trace-character* $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^{j}=2j+1)$ -term sum of $e^{-im\Theta}$ over allowed *m*-quanta $m=\{-j, -j+1, ..., j-1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ & \cdot & e^{+i\theta/2} \end{pmatrix}$ $\chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & & \cdot & e^{-i\theta} \end{pmatrix}$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m=j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$ $\chi^0(\Theta) = e^{-i\Theta \cdot 0} = 1$ (scalar-j=0) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$ $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1) $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$ $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i\Theta}$ between each successive term.

 $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta j}$

Polygonal geometry of $U(2) \supset C_N$ character spectral function *Trace-character* $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^{j}=2j+1)$ -term sum of $e^{-im\Theta}$ over allowed *m*-quanta $m=\{-j, -j+1, ..., j-1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ & \cdot & e^{+i\theta/2} \end{pmatrix}$ $\chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & & \cdot & e^{-i\theta} \end{pmatrix}$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m=j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$ $\chi^0(\Theta) = e^{-i\Theta \cdot 0} = 1$ (scalar-j=0) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$ $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1) $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$ $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i\Theta}$ between each successive term. $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta j}$ $\chi^{j}(\Theta)e^{-i\Theta} = e^{-i\Theta(j+1)} + e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)}$

Polygonal geometry of $U(2) \supset C_N$ character spectral function *Trace-character* $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^{j}=2j+1)$ -term sum of $e^{-im\Theta}$ over allowed *m*-quanta $m=\{-j, -j+1, ..., j-1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ & \cdot & e^{+i\theta/2} \end{pmatrix}$ $\chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & & \cdot & e^{-i\theta} \end{pmatrix}$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m=j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$ $\chi^0(\Theta) = e^{-i\Theta \cdot 0}$ =1 (scalar-j=0) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$ $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1) $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$ $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i\Theta}$ between each successive term. $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta j}$ $\chi^{j}(\Theta)e^{-i\Theta} = e^{-i\Theta(j+1)} + e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} +$ Subtracting gives: $\chi^{j}(\Theta)(1-e^{-i\Theta}) = -e^{-i\Theta(j+1)}$ $e^{+i\Theta j}$ +

Polygonal geometry of $U(2) \supset C_N$ character spectral function *Trace-character* $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^{j}=2j+1)$ -term sum of $e^{-im\Theta}$ over allowed *m*-quanta $m=\{-j, -j+1, ..., j-1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \cdot \\ & \cdot & e^{+i\theta/2} \end{pmatrix}$ $\chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & & \cdot & e^{-i\theta} \end{pmatrix}$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m=j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$ $\chi^0(\Theta) = e^{-i\Theta \cdot 0} = 1$ (scalar-j=0) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$ $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1) $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$ $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i\Theta}$ between each successive term. $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta(j-1)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} + e^{ \chi^{j}(\Theta)e^{-i\Theta} = e^{-i\Theta(j+1)} + e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} +$ Subtracting/dividing gives $\chi^{j}(\Theta)$ formula. $\chi^{j}(\Theta) = \frac{e^{+i\Theta j} - e^{-i\Theta(j+1)}}{1 - e^{-i\Theta}} = \frac{e^{+i\Theta(j+\frac{1}{2})} - e^{-i\Theta(j+\frac{1}{2})}}{e^{+i\frac{\Theta}{2}} - e^{-i\frac{\Theta}{2}}} = \frac{\sin\Theta(j+\frac{1}{2})}{\sin\frac{\Theta}{2}}$

Polygonal geometry of $U(2) \supset C_N$ character spectral function *Trace-character* $\chi^{j}(\Theta)$ of U(2) rotation by C_n angle $\Theta = 2\pi/n$ is an $(\ell^j = 2j+1)$ -term sum of $e^{-im\Theta}$ over allowed *m*-quanta $m = \{-j, -j+1, ..., j-1, j\}$. $\chi^{1/2}(\Theta) = traceD^{1/2}(\Theta) = trace \begin{pmatrix} e^{-i\theta/2} & \ddots \\ & e^{+i\theta/2} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \ddots & \ddots \\ & \ddots & e^{-i\theta} \end{pmatrix} \qquad \chi^{1}(\Theta) = traceD^{1}(\Theta) = trace \begin{pmatrix} e^{-i\theta} & \ddots & \ddots \\ & \ddots & e^{-i\theta} \end{pmatrix}$ $\chi^{j}(\Theta)$ involves a sum of $2\cos(m \Theta/2)$ for $m \ge 0$ up to m=j. $\chi^{1/2}(\Theta) = e^{-i\frac{\Theta}{2}} + e^{i\frac{\Theta}{2}} = 2\cos\frac{\Theta}{2} \qquad (spinor-j=1/2)$ $\chi^0(\Theta) = e^{-i\Theta \cdot 0}$ =1 (scalar-j=0) $\chi^{3/2}(\Theta) = e^{-i\frac{3\Theta}{2}} + \dots + e^{i\frac{3\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2}$ $\chi^{1}(\Theta) = e^{-i\Theta} + 1 + e^{i\Theta} = 1 + 2\cos\Theta$ (vector-j=1) $\chi^{5/2}(\Theta) = e^{-i\frac{5\Theta}{2}} + \dots + e^{i\frac{5\Theta}{2}} = 2\cos\frac{\Theta}{2} + 2\cos\frac{3\Theta}{2} + 2\cos\frac{5\Theta}{2}$ $\chi^{2}(\Theta) = e^{-i2\Theta} + \dots e^{i2\Theta} = 1 + 2\cos\Theta + 2\cos2\Theta$ (tensor-j=2) $\chi^{j}(\Theta)$ is a geometric series with ratio $e^{i\Theta}$ between each successive term. $\chi^{j}(\Theta) = TraceD^{(j)}(\Theta) = e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{+i\Theta(j-1)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} + e^{ \chi^{j}(\Theta)e^{-i\Theta} = e^{-i\Theta(j+1)} + e^{-i\Theta j} + e^{-i\Theta(j-1)} + e^{-i\Theta(j-2)} + \dots + e^{+i\Theta(j-2)} + e^{+i\Theta(j-1)} + e^{-i\Theta(j-1)} +$ Subtracting/dividing gives $\chi^{j}(\Theta)$ formula. $\chi^{j}(\Theta) = \frac{e^{+i\Theta j} - e^{-i\Theta(j+1)}}{1 - e^{-i\Theta}} = \frac{e^{+i\Theta(j+\frac{1}{2})} - e^{-i\Theta(j+\frac{1}{2})}}{e^{+i\frac{\Theta}{2}} - e^{-i\frac{\Theta}{2}}} = \frac{\sin\Theta(j+\frac{1}{2})}{\sin\frac{\Theta}{2}}$ $\chi^{j}(\frac{2\pi}{n}) = \frac{\sin\frac{\pi}{n}(2j+1)}{\sin\frac{\pi}{n}} = \frac{\sin\frac{\pi\ell^{j}}{n}}{\sin\frac{\pi}{n}} \qquad \begin{array}{l} Character Spectral Function \\ where: \ \ell^{j} = 2j+1 \\ is \ U(2) \ irrep \ dimension \end{array}$ Character Spectral Function For C_n angle $\Theta = 2\pi/n$ this χ^j has a lot of geometric significance.

Two wave archetypes: Pulse-Wave (PW) versus Continuous-Wave (CW) *Comparing spacetime uncertainty (* Δx *or* Δt *) with per-spacetime bandwidth (* $\Delta \kappa$ *or* Δv *)* Introduction to beat dynamics and "Revivals" due to Bohr-dispersion *Relating* ∞-*Square-well waves to Bohr rotor waves* ∞-*Square-well wave dynamics SinNx/x wavepacket bandwidth and uncertainty ∞-Square-well revivals: SinNx/x packet explodes! (and then UNexplodes!) Bohr-rotor wave dynamics* Gaussian wave-packet bandwidth and uncertainty Gaussian Bohr-rotor revivals and quantum fractals Understanding fractals using geometry of fractions (Rationalizing rationals) Farey-Sums and Ford-products *Discrete C_N beat phase dynamics* (*Characters gone wild*!) The classical bouncing-ball Monster-Mash Polygonal geometry of $U(2) \supset C_N$ character spectral function Algebra Geometry

Polygonal geometry of $U(2) \supset C_N$ character spectral function

Polygonal geometry of $U(2) \supset C_N$ character spectral function

Polygonal geometry of $U(2) \supset C_N$ character spectral function

Integer j for n=12 $\chi^4(2\pi/12)=2.732..$. $\ell = 7$ $\chi^3(2\pi/12) = 3.732..$ *j*=3 $\ell = 5$ $\chi^2 (2\pi/12) = 3.732..$ j=2 $\ell = 3 \qquad \chi^{1}(2\pi/12) = 2.732.. \qquad j=1$ $j = 0 \qquad j = 0$

Polygonal geometry of $U(2) \supset C_N$ character spectral function

Character Spectral Function $\chi^{j}(\frac{2\pi}{n}) = \frac{\sin\frac{\pi}{n}(2j+1)}{\sin\pi} = \frac{\sin\frac{\pi}{n}}{\sin\pi}$ where: $\ell^{j}=2j+1$ is U(2) irrep dimension 1/2-Integer j for n=12Integer j for n=12 $\chi^{9/2}(2\pi/12)=1.932...$ $\chi^4(2\pi/12)=2.732..$ =7/2 $\chi^{7/2}(2\pi/12)=3.346...$ $\ell=8$ $\ell = 7$ $\chi^3(2\pi/12)=3.732..$ *j=3* j=5/2 $\chi^{5/2}(2\pi/12)=3.864...$ $\ell=6$ $\chi^2(2\pi/12)=3.732..$ *j*=2 j=3/2 $\chi^{3/2}(2\pi/12)=3.346...$ $\ell=4$ $\chi^{1}(2\pi/12)=2.732..$ j=1j=1/2 $\chi^{1/2}(2\pi/12)=1.932...$ $\ell \neq 2$ $\chi^0(2\pi/12)=1$ j=0