Assignment 5 - Group Theory and Quantum Physics 5093 Due Fri. 3/17/17

Main Reading: In text QTCA Unit 3-5 and U(2) Character Geometry p.5-18. Lectures 9-12.

Galloping Gertie

1. Galloping phase velocity of general 2-frequency plane $A_1e^{i(kx-\omega t)} + A_2e^{i(kx-\omega t)}$ helps us understand relativistic QM. Derive this velocity $V_{gallop}(t)$ as a function of *Standing Wave Ratio* $SWR=(A_1-A_2)/(A_1+A_2)$, time *t*, and $V_{phase}=c=\omega/k$. Then give a formula for maximum $V_{gallop-max}$ and minimum $V_{gallop-min}$ phase velocities achieved in terms of *SWR*.

 $H_{2x2} = \begin{pmatrix} A B \\ B A \end{pmatrix}$ and high school algebra revisited

2. Being able to solve eigenvalue problems using symmetry projection implies that such projection can also solve certain types of algebraic polynomial equations, that is, secular equations. Indeed, the $C_2(B)$ solution amounts to derivation of the quadratic formula for solutions to $ax^2+bx^2+c=0$. Show eigenvalues of $H_{2x2}(above)$ given by $C_2(B)$ algebra also re-derive quadratic equation. (Relate A and B to b/a and c/a. Next we begin to generalize these results.)

 $H_{3x3} = \begin{pmatrix} 0 & A & B \\ B & 0 & A \\ A & B & 0 \end{pmatrix} and college algebra revisited$

3. A C_3 -symmetric 3x3 Hamiltonian matrix $H_{3x3}(above)$ has a cubic secular equation. Use C_3 -solutions to derive a cubic formula for roots of $ax^3+bx^2+cx+d=0$. Hint: Simplify by dealing with secular equation $x^3+0+cx+d=0$ of traceless H_{3x3} . Show that missing a and b parts are easy to tack on afterwards.

$H_{4x4}=(?)$ and beyond (This is an extra credit problem)

4. A C_4 -symmetric 4x4 Hamiltonian matrix $H_{4x4}(derive this)$ has a quartic secular equation. Use C_4 -solutions to derive its eigensolutions. Discuss whether this give roots for a *general* quartic $ax^4+bx^3+cx^2+dx+e=0$ or just for a special case.

Holey Pentagram Batman!

5. Five identical quantum dots are originally connected by five identical evanescent tunneling "weak-links" as shown in Figure (a) above. Let a quantum dot pair linked by a *single* path of tunneling amplitude *S* (1st sketch) have a *1.0 GHz* resonance as its lowest frequency and a *2.0 GHz* resonance if linked by a *two* S-paths.) A link may have slightly weaker tunneling amplitude s < S, as in Figure (b) or be removed entirely, as sketched in Figure (c).

(a) Derive and solve a model Hamiltonian matrix for the Figure (a) device. This should include a matrix representation and its eigenvectors and eigenvalues. These may be given in terms of the tunneling amplitude *S*, but a numerical value of *S* in Hz should be used, too. Sketch ω_m levels and ω_m -projecting polygon. Discuss its beats. Can it do perfect revivals?

(b) Approximate the Hamiltonian and energy levels perturbed by reducing lower link to s=0.9S in Figure (b). (Perturbation theory in Sec. 3.2(b) of *QTforCA* may be helpful.)

(c) Find Hamiltonian and its eigensolutions missing a link as in Figure (c). Give eigenvectors and values in *n*-dot linear chain models given in class. (See also p. 13-16 of *U*(2) *Character Geometry or* Sec. 14.1 of *QTforCA* Unit 5.)

6. List all *distinct* commutative (Abelian) groups in terms of *distinct* C_p×C_q×... cross products.
(a) for order N=8. (b) N=9. (c) N=10. (d) N=11. (e) N=12. (f) N=16.

7. Consider character tables for Abelian groups using $(m)_n \times (p)_q \times \dots$ notation where $(m)_n$ means *m*-waves-modulo-*n*.

- (a) List character tables of all *distinct* Abelian groups of order 8.
- (b) List character tables of $C_3 \times C_2$ using $(m)_3 \times (p)_2$ notation and C_6 using $(m)_6$ notation.
- (c) Show these two "six-groups" are not *distinct* Abelian groups, and relate $(m)_3 \times (p)_2$ notation to $(m)_6$ notation.
- (d) Using notation $(p)_2 \times (m)_3$ for $C_2 \times C_3$, show how that alters character table ordering.