Group Theory in Quantum Mechanics
Lecture 5 .27.15)

Spectral Decomposition with Repeated Eigenvalues

(Quantum Theory for Computer Age - Ch. 3 of Unit 1 )
(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1)

Review: matrix eigenstates (“ownstates) and Idempotent projectors (. in-deyencracy case)

Operator orthonormality, completeness, and spectral decomposition(Non-degenerate e-values )
(Preparing for:Degenerate eigenvalues )

Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular— Hamilton-Cayley— Minimal equations
Diagonalizability criterion

Nilpotents and “Bad degeneracy” examples: B=[3 ) ) and. N=(3 0 J
Applications of Nilpotent operators later on

o
Ildempotents and “Good degeneracy” example: GZ{ L }
Secular equation by minor expansion S
Example of minimal equation projection
Orthonormalization of degenerate eigensolutions
Projection Pi-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure { o
o
1

Orthonormalization of commuting eigensolutions. Examples: G | and: H:{2 2 QJ
The old "1=1-1 trick"-Spectral decomposition by projector Spllttmg
Irreducible projectors and representations (Irace checks)

Minimal equation for projector P=P?

How symmetry groups become eigen-solvers
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»Review: matrix eigenstates (“ownstates) and Idempotent projectors (i, -deyencracy case )
Operator orthonormality, completeness, and spectral decomposition(Non-degenerate e-values )
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Unitary operators and matrices that change state vectors...

TIV)
V4 T V) Fig. 3.1.1 Effect of
analyzer
> \

output state T|V)| analyzer
-

T

...and eigenstates ( “‘ownstates) that are mostly immune to T...

represented by ket vector
> transformation of |V)
to new ket vector T|V) .

input state V)

2‘ lej>:8j|ej> — A Fig. 3.1.2 Effect of analyzer

on eigenket |€j)

I |e> is only to multiply by
/ > \ ] eigenvalue €;

> (Tlgj) =gjlej))

eigenstate le;) our| analyzer W cigenstate le,) in
(multiplied by &; ) T

For Unitary operators T=U, the eigenvalues must be phase factors cr=e*“
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Operator ortho-completeness, and spectral decomposition

(F Or. Non-Degenerate eigenvalues ) H(M —€ 1)

— m#k

Eigen-Operator-Projectors P, : P = H( e _¢ )
k m
MP =¢, P, =PM mzk
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Operator ortho-completeness, and spectral decomposition

(F Or. Non-Degenerate eigenvalues ) H(M —€ 1)

— m#zk

Eigen-Operator-Projectors P, : P = H( e _¢ )
k m
MP =¢, P, =PM mzk

Dirac notation form:
Mlg)) (gj|=ex |ex) (x| = [ex) (4 M
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Operator ortho-completeness, and spectral decomposition

(F Or. Non-Degenerate eigenvalues ) H(M e 1)

Eigen-Operator-Projectors P, : P = mﬁk (e,-¢,)
k m
MP =¢, P, =PM ek

Dirac notation form:
Mlg)) (gj|=ex |ex) (x| = [ex) (4 M

Eigen-Operator-P, -Orthonormality Relations

0 if . j#k
P if:j=k
Dirac notation form:

€7} (&5 |&x) (Ex| =0ji |€x) (4

PP =5,P =
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Operator ortho-completeness, and spectral decomposition

(F Or. Non-Degenerate eigenvalues ) H(M e 1)

— m#k

Eigen-Operator-Projectors P, : P = H( £ —¢,)
k m
MP =¢, P, =PM ek

Dirac notation form:
Mlg)) (gj|=ex |ex) (x| = [ex) (4 M

Eigen-Operator-P, -Orthonormality Relations

0 if . j#k
P if:j=k
Dirac notation form:

€7} (&5 |&x) (Ex| =0ji |€x) (4

PP =5,P =

Eigen-Operator-P; -Completeness Relations
1= P, + P> +.+ P,

Dirac notation form:
1= |e1) (e1]+ |e2) (€2] +.+ |en) (€n]
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Operator ortho-completeness, and spectral decomposition

(F Or. Non-Degenerate eigenvalues ) H(M e 1)

Eigen-Operator-Projectors P, : P = mﬁk (e,-¢,)
k m
MP =¢, P, =PM ek

Dirac notation form:
Mlg)) (gj|=ex |ex) (x| = [ex) (4 M

Eigen-Operator-P, -Orthonormality Relations

0 if . j#k
P if:j=k
Dirac notation form:

€7} (&5 |ex) (Ex| =0ji [€x) (4

PP =5,P =

Eigen-Operator-P; -Completeness Relations
1= P, + P> +.+ P,

Dirac notation form:
1= |er) (e1]+ [e2) (2| +.+ |en) (4]

Eigen-operators have Spectral Decomposition
of operator M= ¢,/P; + P> +..+ eaPwn

Dirac notation form:
=ej|er) (e1]+e2]e2) (€2|+..4€n|en) (€4]

...and operator Functional Spectral Decomposition
of a function M)=f(c)P; +flex) P> +..+ flen)Pn
Dirac notation form:

fIM) = fler)|er) (e1|+f(e2)|e2) (e2]+..+ flen) |en) (En]
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(Preparing fOV.’Degenerate eigenvalues )

»Review: matrix eigenstates (“ownstates) and Idempotent projectors ( egencracy caie )
Operator orthonormality, completeness, and spectral decomposition(Degenerate e-values
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Operator ortho-completeness, and spectral decomposition

( For: Non-Degenerate eigenvalues ) H(M e 1)

(For:Degenerate eigenvalues )

Eigen-Operator-Projectors P, : P = mﬁk (e,-¢,)
k m
MP =¢, P, =PM ek

Dirac notation form:
Mlg)) (gj|=ex |ex) (x| = [ex) (4 M

Eigen-Operator-P, -Orthonormality Relations

0 if . j#k
P if:j=k
Dirac notation form:

€7} (&5 |ex) (Ex| =0ji [€x) (4

PP =5,P =

Eigen-Operator-P; -Completeness Relations
1= P, + P> +.+ P,

Dirac notation form:
1= |er) (e1]+ [e2) (2| +.+ |en) (4]

Eigen-operators have Spectral Decomposition
of operator M= ¢,/P; + P> +..+ eaPwn

Dirac notation form:
=eler) (e1]+e2|€2) (E2|+..4€n]En) (E1]

...and operator Functional Spectral Decomposition
of a function M)=f(c)P; +flex) P> +..+ flen)Pn
Dirac notation form:

fIM) = fler)|er) (e1|+f(e2)|e2) (e2]+..+ flen) |en) (En]

)I%::

I](M-¢,1)
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Operator ortho-completeness, and spectral decomposition

( For: Non-Degenerate eigenvalues ) H(M _e 1) ( For:Degenerate eigenvalues ) I l (M o 8m 1)
# " m;‘_-
Eigen-Operator-Projectors P, : P == _ > P — EmTEx
¢ H (gk gm ) Sk
MP =¢, P, =PM mk gk — gm

> MP, =¢ P.=P.M
. . ) k k k
Dirac notation form:

M|g)) (gj|=¢ex |ex) (ek|= |ek) (ex|M

Eigen-Operator-P, -Orthonormality Relations

0 if . j#k
P if:j=k
Dirac notation form:

€7} (&5 |ex) (Ex| =0ji [€x) (4

PP =5,P =

Eigen-Operator-P; -Completeness Relations
1= P, + P> +.+ P,

Dirac notation form:
1= |er) (e1]+ [e2) (2| +.+ |en) (4]

Eigen-operators have Spectral Decomposition
of operator M= ¢,/P; + P> +..+ eaPwn

Dirac notation form:
=e1|er) (e1|+€2|€2) (E2|+..4€n|En) (€|

...and operator Functional Spectral Decomposition
of a function M)=f(c)P; +flex) P> +..+ flen)Pn
Dirac notation form:

fIM) = fler)|er) (e1|+f(e2)|e2) (e2]+..+ flen) |en) (En]
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Operator ortho-completeness, and spectral decomposition

( For: Non-Degenerate eigenvalues ) H(M _e 1) ( For:Degenerate eigenvalues ) I l (M o 8m 1)
m# " m;‘_-
Eigen-Operator-Projectors P, : P, == _ > P — EmTEx
¢ H (Sk € ) Sk

> MPE =8kPg =Pg M
Dirac notation form: k k k EnFEy

Mle)) (/| =€k |ex) (24| = |ex) (s M > (Dirac notation form is more complicated.)
To be discussed in this lecture.

Eigen-Operator-P, -Orthonormality Relations

0 if . j#k
P if:j=k
Dirac notation form:

€7} (&5 |ex) (Ex| =0ji [€x) (4

PP =5,P =

Eigen-Operator-P; -Completeness Relations
1= P, + P> +.+ P,

Dirac notation form:
1= |er) (e1]+ [e2) (2| +.+ |en) (4]

Eigen-operators have Spectral Decomposition
of operator M= ¢,/P; + P> +..+ eaPwn

Dirac notation form:
=ej|er) (e1]+e2]e2) (€2|+..4€n|en) (€4]

...and operator Functional Spectral Decomposition
of a function M)=f(c)P; +flex) P> +..+ flen)Pn
Dirac notation form:

fIM) = fler)|er) (e1|+f(e2)|e2) (e2]+..+ flen) |en) (En]
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Operator ortho-completeness, and spectral decomposition

( For: Non-Degenerate eigenvalues )

[I(M-¢,1)

Eigen-Operator-Projectors P, : P = mﬁk (e,-¢,)
k m
MP =¢, P, =PM ek

(For:Degenerate eigenvalues )

I](M-¢,1)

Dirac notation form:
Mlg)) (gj|=ex |ex) (x| = [ex) (4 M

> MP, =¢,P. =P

A -

Eigen-Operator-P, -Orthonormality Relations
0 if . j#k

»

PP =6,P =
PR R dfij=k

Dirac notation form:

> P,

&) (&7]-len) (x| =0 |ex) (el

Eigen-Operator-P; -Completeness Relations
1= P, + P> +.+ P,

Dirac notation form:
1= |e1) (e1]+ |e2) (€2] +.+ |en) (€n]

Eigen-operators have Spectral Decomposition

of operator M= ¢,/P; + P> +..+ eaPwn

Dirac notation form:
=ej|er) (e1]+e2]e2) (€2|+..4€nlen) (€4]

...and operator Functional Spectral Decomposition
of a function fiM)=f(c)P; + f(e2) P>

Dirac notation form:

+..+ flen)Py

fIM) = fler)|er) (e1|+f(e2)|e2) (e2]+..+ flen) |en) (En]

g ng _ En?&
E —€&
M Sgk( k m)

(Dirac notation form is more complicated.)
1o be discussed in this lecture.

-

0 if 1€, #€,
j Ex — 68j8kP8k =9 P o .
. zf.ej—ek

.

(Dirac notation form is more complicated.)
To be discussed in this lecture.
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Operator ortho-completeness, and spectral decomposition

( For: Non-Degenerate eigenvalues ) H(M _e 1) ( For:Degenerate eigenvalues ) I I (M o 8m 1)
m# " m;‘_-
Eigen-Operator-Projectors P, : P, == _ > P — EmTEx
¢ H (Sk Em ) Sk

> MPE =8kPg =P€ M
Dirac notation form: k k k EnFEy

Me)) (gj|=¢x [ex) (ex|= |ex) (4 M > (Dirac notation form is more complicated.)
To be discussed in this lecture.

Eigen-Operator-P, -Orthonormality Relations

-

0 if:jk 0 if:g;#¢g
PP, =5,P, = f J > PP =0, P = .

P if:j=k ;o e ng leSjZEk
Dirac notation form: S
€/} (g5]|ex) (x| =6k |ek) (k] > (Dirac notation form is more complicated.)

1o be discussed in this lecture.

Eigen-Operator-P; -Completeness Relations

1= P; + P +.+ Py > 1:P + P + ...+ P

Dirac notation form:
1= |e1) (e1]+ |e2) (€2] +.+ |en) (€n]

(Dirac notation form is more complicated.)
To be discussed in this lecture.

\ 4

Eigen-operators have Spectral Decomposition
of operator M= ¢,/P; + P> +..+ eaPwn

Dirac notation form:
=ej|er) (e1]+e2]e2) (€2|+..4€nlen) (€4]

...and operator Functional Spectral Decomposition
of a function M)=f(c)P; +flex) P> +..+ flen)Pn
Dirac notation form:

fIM) = fler)|er) (e1|+f(e2)|e2) (e2]+..+ flen) |en) (En]
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Operator ortho-completeness, and spectral decomposition

( For: Non-Degenerate eigenvalues ) H(M _e 1) ( For:Degenerate eigenvalues ) I I (M o 8m 1)
m# " m;‘_-
Eigen-Operator-Projectors P, : P == _ > P — EmTEx
¢ H (Sk Em ) Sk

> MPE =8kPg =P€ M
Dirac notation form: k k k EnFEy

Mle)) (/| =€k |ex) (24| = |ex) (s M > (Dirac notation form is more complicated.)
To be discussed in this lecture.

Eigen-Operator-P, -Orthonormality Relations

-

0 if:jk 0 if:g;#¢g
PP, =5,P, = f J > PP =0, P = .

P if:j=k ;o e ng lf:&‘j:Ek
Dirac notation form: S
€/} (g)]|ex) (x| =6k |ek) (k] > (Dirac notation form is more complicated.)

1o be discussed in this lecture.

Eigen-Operator-P; -Completeness Relations

1= P; + P +.+ Py > 1:P + P + ...+ P

Dirac notation form:
1= |e1) (e1]+ |e2) (€2] +.+ |en) (€n]

(Dirac notation form is more complicated.)
To be discussed in this lecture.

\ 4

Eigen-operators have Spectral Decomposition

of operator M= ¢,P; + P2 +..+ enPy > M= 81P81 + 82P82 + ...+ EnPg
n
Dirac notation form:
=¢eiler) (e1|+€2]€2) (€2|+..4EnEn) (€4 > (Dirac notation form is more complicated.)

...and operator Functional Spectral Decomposition

of a function fiM)= fle)P; +fle)) P2 +..+ flen)Py > f(M) = f(g )P81 +f (&, )P82+ .. tf(g, )Pgn
Dirac notation form:
fIM) = fler)|er) (e1|+f(e2)|e2) (e2]+..+ flen) |en) (E1] >  (Dirac notation form is more complicated.)

Thursday, January 22, 2015
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular— Hamilton-Cayley— Minimal equations
Diagonalizability criterion

Thursday, January 22, 2015
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det|M-¢;1|-0) of N-Hy-N matrix H has (-repeated ;-roots {€;,, €1,... €1,} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case.

Thursday, January 22, 2015
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det|M-¢;1|-0) of N-Hy-N matrix H has (-repeated ;-roots {€;,, €1,... €1,} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case.
It all depends upon whether or not the HC equation really needs its repeated factors.

Thursday, January 22, 2015
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det|M-¢;1|-0) of N-Hy-N matrix H has (-repeated ;-roots {€;,, €1,... €1,} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case.
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ¢; is (;-fold degenerate so secular equation (SEq) factors as follows:
N 14 / /
S(e)=0=(-1)" (e-¢)" (e-&,) 2 ..(e=¢,) " where: (10, .40, =N

Thursday, January 22, 2015



Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det|M-¢;1|-0) of N-Hy-N matrix H has (-repeated ;-roots {€;,, €1,... €1,} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case.
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ¢; is (;-fold degenerate so secular equation (SEq) factors as follows:
N 0 0 ¢
S(e) =0= (—1) (8—81) : (8—82) 2 ...(e—ep) P where: €1+€2+...+€p:N

Then the HC equation (HCeq) 1s a matrix equation of degree /V with H replacing € in SEq: S(¢) — S(H)

S(H)=0=(-1)"(H-g1) (H-g 1) 2 (Hog 1) " where: (40,440 =N
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det|M-¢;1|-0) of N-Hy-N matrix H has (-repeated ;-roots {€;,, €1,... €1,} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case.
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ¢; is (;-fold degenerate so secular equation (SEq) factors as follows:
N 0 0 ¢
S(e) =0= (—1) (8—81) : (8—82) 2 ...(e—ep) P where: €1+€2+...+€p:N

Then the HC equation (HCeq) 1s a matrix equation of degree /V with H replacing € in SEq: S(¢) — S(H)

S(H)=0=(-1)"(H-g1) (H-g,1) 2 (Hog 1) " where: (40,440 =N

The number 7 is called the degree of degeneracy of eigenvalue &.
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det|M-¢;1|-0) of N-Hy-N matrix H has (-repeated ;-roots {€;,, €1,... €1,} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case.
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ¢; is (;-fold degenerate so secular equation (SEq) factors as follows:
N 0 0 ¢
S(e) =0= (—1) (8—81) : (8—82) 2 ...(e—ep) P where: €1+€2+...+€p:N

Then the HC equation (HCeq) 1s a matrix equation of degree /V with H replacing € in SEq: S(¢) — S(H)

S(H)=0=(-1)"(H-g1) (H-g,1) 2 (Hog 1) " where: (40,440 =N

The number 7 is called the degree of degeneracy of eigenvalue &.

The minimum power integers /i <(k, that still make S(H)= 0, form the minimal equation (MEq) of H.

0:(—1)N(H—811)ul(H—ezl)uz...(H—epl)up where: ul+,u2+...+,up:NMlNSN
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det|M-¢;1|-0) of N-Hy-N matrix H has (-repeated ;-roots {€;,, €1,... €1,} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case.
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ¢; is (;-fold degenerate so secular equation (SEq) factors as follows:
N 0 0 ¢
S(e) =0= (—1) (8—81) : (8—82) 2 ...(e—ep) P where: €1+€2+...+€p:N

Then the HC equation (HCeq) 1s a matrix equation of degree /V with H replacing € in SEq: S(¢) — S(H)

S(H)=0=(-1)"(H-g1) (H-g,1) 2 (Hog 1) " where: (40,440 =N

The number 7 is called the degree of degeneracy of eigenvalue &.

The minimum power integers /i <(k, that still make S(H)= 0, form the minimal equation (MEq) of H.

O:(—I)N(H—ell)ul(H—ezl)“z...(H—epl)up where: ul+,u2+...+,up:NMlN£N

C1f (and only if) just one (111 =1) of each distinct factor is needed, then H is diagonalizable.\

0=(—1)N(H—811)1(H—821)1...(H—Spl)l where: p=N, . <N
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det|M-¢;1|-0) of N-Hy-N matrix H has (-repeated ;-roots {€;,, €1,... €1,} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case.
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ¢; is (;-fold degenerate so secular equation (SEq) factors as follows:
N 0 0 ¢
S(e) =0= (—1) (8—81) : (8—82) 2 ...(e—ep) P where: €1+€2+...+€p:N

Then the HC equation (HCeq) 1s a matrix equation of degree /V with H replacing € in SEq: S(¢) — S(H)

S(H)=0=(-1)"(H-g1) (H-g,1) 2 (Hog 1) " where: (40,440 =N

The number 7 is called the degree of degeneracy of eigenvalue &.

The minimum power integers /i <(k, that still make S(H)= 0, form the minimal equation (MEq) of H.

O:(—I)N(H—ell)ul(H—ezl)“z...(H—epl)up where: ul+,u2+...+,up:NMlN£N

C1f (and only if) just one (111 =1) of each distinct factor is needed, then H is diagonalizable.\

0=(—1)N(H—811)1(H—821)1...(H—Spl)l where: p=N, ., <N

ZT] (M-¢,1)

ELFE;

This 1s true since this p-th degree equation spectrally decomposes H into p operators: P, = (=)
kK~ ©m

€ FE;

Thursday, January 22, 2015 24



Eigensolutions with degenerate eigenvalues (Possible?... or not?)
What if secular equation (det|M-¢;1|-0) of N-Hy-N matrix H has (-repeated ;-roots {€;,, €1,... €1,} ?

If so, it’s possible H can’t be completely diagonalized, though this is rarely the case.
It all depends upon whether or not the HC equation really needs its repeated factors.

Suppose each eigenvalue ¢; is (;-fold degenerate so secular equation (SEq) factors as follows:
N 0 0 ¢
S(e) =0= (—1) (8—81) : (8—82) 2 ...(e—ep) P where: €1+€2+...+€p:N

Then the HC equation (HCeq) 1s a matrix equation of degree /V with H replacing € in SEq: S(¢) — S(H)

S(H)=0=(-1)"(H-g1) (H-g,1) 2 (Hog 1) " where: (40,440 =N

The number 7 is called the degree of degeneracy of eigenvalue &.

The minimum power integers /i <(k, that still make S(H)= 0, form the minimal equation (MEq) of H.

O:(—I)N(H—ell)ul(H—ezl)“z...(H—epl)up where: ul+,u2+...+,up:NMlN£N

C1f (and only if) just one (111 =1) of each distinct factor is needed, then H is diagonalizable.\

0=(—1)N(H—811)1(H—821)1...(H—Spl)l where: p=N, ., <N

ZT] (M-¢,1)

ELFE;

This 1s true since this p-th degree equation spectrally decomposes H into p operators: P, = (=)
kK~ ©m

€ FE;

H= /P, + 2P, +..4 5pP5p that are ortho-complete: ng Pe, = 0i Pge,
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Eigensolutions with degenerate eigenvalues (Possible?... or not?)
Secular— Hamilton-Cayley— Minimal equations

» Diagonalizability criterion

Thursday, January 22, 2015
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A diagonalizability criterion has just been proved:

.

" In general, matrix H can make an ortho-complete set of Pe if A

and only if, the H minimal equation has no repeated factors.

Then and only then is matrix H fully diagonalizable.

Thursday, January 22, 2015
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A diagonalizability criterion has just been proved:

" In general, matrix H can make an ortho-complete set of ng if
and only if, the H minimal equation has no repeated factors.

Then and only then is matrix H fully diagonalizable.
\ J

(1t (and only if) just one (111 =1) of each distinct factor is needed, then H is diagonalizable.\

<N

O:(—I)N(H—gll)l(H—ezl)l...(H—gpl)1 where: p=N, <

Il (M-¢,1)

EFE,

since this p-th degree equation spectrally decomposes H into p operators: P. = T[(c-c.)
kK~ ©m

E,FE;,

H= e/Pg, + e2Pg, +..+ e:png that are orthonormal: ng Pe, = 0k Pg,

and COmplete: 1= PE] + P€2 +...+ ng

Thursday, January 22, 2015
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Nilpotents and “Bad degeneracy” examples: BZ( - ]
Applications of Nilpotent operators later on

Thursday, January 22, 2015
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Nilpotents and “Bad degeneracy’ examples: B:( 3 11) j , and. NZ(

Repeated minimal equation factors means you will not get an ortho-complete set of P;j.

0
0

1
0

|

Thursday, January 22, 2015
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Nilpotents and “Bad degeneracy” examples: B:( g 119 j , and: NZ( - j

Repeated minimal equation factors means you will not get an ortho-complete set of P;j.

---------------

Thursday, January 22, 2015



Nilpotents and “Bad degeneracy” examples: B:( g ; ) , and: NZ( - j

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

4= m e m o EEmEm ==

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.

N2=(H—£11)2(H—321)2 ...... =0

Thursday, January 22, 2015 32



Nilpotents and “Bad degeneracy” examples: B:( g ; j , and: NZ( - j

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.
Evenione repeat 18 fatal... when removal of repeated (H-¢,1) gives a non-zero operator N. ———

---------------

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.

) (The other extra (H-<21)... factors
2_ _ _ 2 _ cannot keep N* from being zero.)
N°=(H-¢g1) (H-g,1)*......=0
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Nilpotents and “Bad degeneracy” examples: B:( g 11) ) , and: NZ( - )

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

- mm mmEEmomommomom

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H e 1)2 -0 cannot keep N? from being zero.)
1 2 ...... -

Such an operator is called a nilpotent operator or, simply a nilpotent.
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Nilpotents and “Bad degeneracy” examples: B:( g 11) ) , and: NZ( - )

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

Even.one repeat(li:i fzttall.).. when removal of repeated (H-¢/1) gives a non-zero operator N. ———
"""""" .*"(like this T

- mm mmEEmomommomom

0= (H— 811).2.5(H—821)1 ..., but: iNz(H— 811)1 (H— gzl)1 ,,,,,, + 0<—

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H e 1)2 -0 cannot keep N? from being zero.)
1 2 ...... -

Order-2 Nilpotent: Non-zero N whose square N2 is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent.
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Nilpotents and “Bad degeneracy” examples: B:( g 11) ) , and: NZ( - )

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

Even.one repeat(li:i fzttall.).. when removal of repeated (H-¢/1) gives a non-zero operator N. ———
"""""" .*"(like this T

- mm mmEEmomommomom

0= (H— 811).2.5(H—821)1 ..., but: iNz(H— 811)1 (H— gzl)1 ,,,,,, + 0<—

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H e 1)2 -0 cannot keep N? from being zero.)
1 2 ...... -

Order-2 Nilpotent: Non-zero N whose square N2 is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.
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Nilpotents and “Bad degeneracy” examples: B:( g 11) ) , and: NZ( - )

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

Even.one repeat(li:i fzttall.).. when removal of repeated (H-¢/1) gives a non-zero operator N. ———
"""""" .*(like this L o

- mm mmEEmomommomom

0=(H-g1)2{(H-g,1) ., but: N=(H-g;1) (H-g,1)' ... O

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H e 1)2 -0 cannot keep N? from being zero.)
1 2 ...... -

Order-2 Nilpotent: Non-zero N whose square N2 is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

(5,
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Nilpotents and “Bad degeneracy” examples: B:( g 11) ) , and: NZ( - j

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

- mm mmEEmomommomom

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H _c 1)2 =y | cannot keep N? from being zero.)
1 2 ...... -

Order-2 Nilpotent: Non-zero N whose square N2 is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

b 1
B= T B +Det|B|
( 0 b ) rac%)

Secular equation has two equal roots (e=b twice): S(e) =g pe+b* = (8 — b)2 =0
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Nilpotents and “Bad degeneracy” examples: B:( g 11) ) , and: NZ( - j

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

- mm mmEEmomommomom

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H _c 1)2 =y | cannot keep N? from being zero.)
1 2 ...... -

Order-2 Nilpotent: Non-zero N whose square N2 is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

b 1
B= T B +DG’[|B|
( 0 b ) ra&)
2
0 1
( 0 O ]

Secular equation has two equal roots (¢=b twice): § (8) =g pe+b* = (8 — b)2

0
This gives HC equation: ~ S(B)=B*-2bB+b°1=(B- bl)2 0
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Nilpotents and “Bad degeneracy” examples: B:( g 11) ) , and: NZ( - j

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

Even.one repeat(li:i fzttall.).. when removal of repeated (H-¢/1) gives a non-zero operator N. ———
"""""" .*(like this L o

- mm mmEEmomommomom

0=(H-g1)2{(H-g,1) ., but: N=(H-g;1) (H-g,1)' ... O

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H _c 1)2 =y | cannot keep N? from being zero.)
1 2 ...... -

Order-2 Nilpotent: Non-zero N whose square N2 is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

b 1
B= T B +DG’[|B|
( 0 b ) ra&)
2
0 1
( 0 O ]

Secular equation has two equal roots (¢=b twice): § (8) =g pe+b* = (8 — b)2

This gives HC equation: ~ S(B)=B*-2bB+b°1=(B- bl)2
This 1n turn gives a [
0 1 ]

0
0

nilpotent eigen-projector: N=B -5l = -
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Nilpotents and “Bad degeneracy” examples: B:( z 11) ) , and: NZ( - j

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

Even.one repeat(li:i fzttall.).. when removal of repeated (H-¢/1) gives a non-zero operator N. ———
"""""" .*(like this L o

- mm mmEEmomommomom

0=(H-g1)2{(H-g,1) ., but: N=(H-g;1) (H-g,1)' ... O

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H _c 1)2 =y | cannot keep N? from being zero.)
1 2 ...... -

Order-2 Nilpotent: Non-zero N whose square N2 is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

b 1
B= Trace(B)  +Det/B]
(0 b] ra&) v
2
0 1
(0 0]

Secular equation has two equal roots (¢=b twice): § (8) =g pe+b* = (8 — b)2

This gives HC equation: ~ S(B)=B*-2bB+b°1=(B- bl)2
This 1n turn gives a [
0 1 ]

0
0

nilpotent eigen-projector: N=B -5l = 0 o

...which satisfies: N*=0 (but N # 0) and: BN = hN = NB
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Nilpotents and “Bad degeneracy” examples: B:( g 11) ) , and: NZE - ]

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

Even.one repeat(li:i fzttall.).. when removal of repeated (H-¢,1) gives a non-zero operator N. ———
"""""" .*(like this L o

el e e el R i |

0=(H-g1)2{(H-g,1) .., but: N=(H-g;1) (H-g,1)'......% O

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H _c 1)2 =y | cannot keep N? from being zero.)
1 2 ...... -

Order-2 Nilpotent: Non-zero N whose square N2 is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

b 1
B= Trace(B)  +Det/B]
(0 b] ra&) v
2
0 1
(0 0]

Secular equation has two equal roots (¢=b twice): § (8) =g pe+b* = (8 — b)2

This gives HC equation: ~ S(B)=B*-2bB+b°1=(B- bl)2
This 1n turn gives a [
0 1 ]

0
0

nilpotent eigen-projector: N=B -5l = 0 o

...which satisfies: N*=0 (but N # 0) and: BN = hN = NB

This nilpotent N contains only one non-zero eigenket and one eigenbra. |b)= [ I j (b) :( 0 1 )
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Nilpotents and “Bad degeneracy” examples: B:( g 11) ) , and: NZE - ]

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

el e e el R i |

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H _c 1)2 =y | cannot keep N? from being zero.)
1 2 ...... -

Order-2 Nilpotent: Non-zero N whose square N2 is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

b 1
( 0 b } ra&)
2
0 1
( 0 0 ]

Secular equation has two equal roots (¢=b twice): § (8) =g pe+b* = (8 — b)2

This gives HC equation: ~ S(B)=B*-2bB+b°1=(B- bl)2
This 1n turn gives a [
0 1 ]

0
0

nilpotent eigen-projector: N=B -5l = 0 o
...which satisfies: N*=0 (but N 0) and: BN=5N=NB

This nilpotent N contains only one non-zero eigenket and one eigenbra. |b)= [ I j (b) :( 0 1 )

These two have zero-norm! (<b‘ b> =0)
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Nilpotents and “Bad degeneracy” examples: B:( g 11) ) , and: NZE - ]

Repeated minimal equation factors means you will not get an ortho-complete set of Pj.

Even.one repeat(li:i fzttall.).. when removal of repeated (H-¢,1) gives a non-zero operator N. ———
"""""" .*(like this L o

el e e el R i |

0=(H-g1)2{(H-g,1) .., but: N=(H-g;1) (H-g,1)'......% O

Then squaring N puts back the missing (H-¢,1)-factor that completes the zero minimal equation.
(The other extra (H-<21)... factors

N2:(H _e 1)2 (H _c 1)2 =y | cannot keep N? from being zero.)
1 2 ...... -

Order-2 Nilpotent: Non-zero N whose square N2 is zero.

Such an operator is called a nilpotent operator or, simply a nilpotent. A nilpotent is a troublesome
bete noir for basic diagonalization, but a key feature of Non-Abelian symmetry analysis.

For example, consider a 'bad' degenerate matrix. (...not just a "bad cop" but a real "crook"!)

b 1
B= Trace(B)  +Det/B]
(0 b] ra&) v
2
0 1
(0 0]

Secular equation has two equal roots (¢=b twice): § (8) =g pe+b* = (8 — b)2

This gives HC equation: ~ S(B)=B*-2bB+b°1=(B- bl)2
This 1n turn gives a [
0 1 ]

0
0

nilpotent eigen-projector: N=B -5l = 0 o
...which satisfies: N*=0 (but N 0) and: BN=5N=NB

This nilpotent N contains only one non-zero eigenket and one eigenbra. |b)= [ I j (b) :( 0 1 )

These two have zero-norm! (<b‘ b> =(0) The usual idempotent spectral resolution is no-go.
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Nilpotents and “Bad degeneracy” examples: BZ( - ]
Applications of Nilpotent operators later on
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As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

N =|7)(2] is an example of an elementary operator ew, = |a){b|
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As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

N =|7)(2] is an example of an elementary operator ew, = |a){b|

N and its partners comprise a 4-dimensional U(2) unit tensor operator space

U(Z)0p—SpdC€={e]]=’1><1’, e12:]]><2\, 621:’2><1‘, 622=‘2><2’}

= 5 5 ) ted=[ 0 8 ]t 90 ) e 3.

They form an elementary matrix algebra e;j exn = Ojk €in of unit tensor operators.

The non-diagonal ones are non-diagonalizable nilpotent operators
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As shown later, nilpotents or other "bad" matrices are valuable for quantum theory.

N = |7)(2] is an example of an elementary operator eu, = |a)(b|

N and its partners comprise a 4-dimensional U(2) unit tensor operator space

U(Z) op-Space= {e]1=’1><1, 612:’]><2, 621:’2><1, 622=‘2><2’}

= 5 5 ) ted=[ 0 8 ]t 90 ) e 3.

They form an elementary matrix algebra e;j exn = Ojk €in of unit tensor operators.

The non-diagonal ones are non-diagonalizable nilpotent operators

Their co-Dimensional cousins are the creation-destruction a;'a; operators.
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Idempotents and “Good degeneracy” example: G=
Secular equation by minor expansion
Example of minimal equation projection

P;

The old "1=1-1 trick"-

P=P>

1
b

|

1 -

|

-1
1

8

-
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Idempotents and “Good degeneracy” example: G=

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(0

G =

0
0
1

0

0
1
0

0

1
0
0

1

0
0
0

\

SEq:

S(e) = det‘G— 81| =det

—€
0
0
1

0
—€
1
0

-1
1

0
1
—€
0

-

1

0

0
—E€
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Idempotents and “Good degeneracy” example: G=

o }
N
A
1 - ..
An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(00 0 1 £ 0 0 1
g=| V0 IO SEq:  S(¢)=det|G—gl|=det| © & 1 0
01 0 0 0 1 - 0
L 100 0 1 0 0 -¢

e has a 4t degree Secular Equation (SEq)
et — (Cixtdiagof &) €3 + (3-2x2 diag minors of G) €2 — (323x3 diag minors of &) €1 + (4x4 determinantof ) £1=0
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Idempotents and “Good degeneracy” example: G=

o }
N
A
1 - ..
An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(00 0 1 £ 0 0 1
g=| V0 IO SEq:  S(¢)=det|G—gl|=det| © & 1 0
01 0 0 0 1 - 0
L 100 0 1 0 0 -¢

e has a 4t degree Secular Equation (SEq)
et — (XCixtdiagof &) €3 + (3-2x2 diag minors of G) €2 — (323x3 diag minors of &) €1 + (4x4 determinantof ) £1=0
VY()\J
Trace of (G=0
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ldempotents and “Good degeneracy” example: G=

o }
A
S T
1 - -
An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) & 0 0 I
g=| V0 1O SEq:  S(¢)=det|G-gt|=det| © & 1 0
0100 0 1 -& 0
.1 0 0 0 ) 1 0 0 -¢

e has a 4t degree Secular Equation (SEq)
et — (Xixtdiagof &) €3 + (3-2x2 diag minors of &) €2 — (323x3 diag minors of &) €1 + (4x4 determinantof &) £1=0
\/V()—\J
Trace of (G=0 MI2=0

0
0
0

M(13) M(23)=-1

0

1

0

0 0] 1
M(14)=-1 M(24)=0 M@34)=0

0 0
0 0

0 0

0

1
I 0

0
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ldempotents and “Good degeneracy” example: G=

o }
A
S T
1 - -
An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) £ 0 0 I
g=| VO 1O SEq:  S(¢)=det|G-gt|=det| © & 1 0
0100 0 1 - 0
.1 0 0 0 ) 1 0 0 -¢

e has a 4t degree Secular Equation (SEq)
et — (Xixtdiagof &) €3 + (3-2x2 diag minors of &) €2 — (323x3 diag minors of &) €1 + (4x4 determinantof &) £1=0
\/Y\J

0 _
Trace of (G=0 MI2)=0 M(123)=0  M(234)=0
000
00 1
! 0 10
0
M@13)=0  M(@23)=-1 M(124)=0

0

1 1

0

0 0

0 0 0

00 0|1 10
M(14)=-1 MQ24)=0  M@G4H=0 M(134)=0

0 0 0 0 1
0 0

0

0 0

0

1
I 0

0
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ldempotents and “Good degeneracy” example: G=

o }
A
S T
1 - -
An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(000 1) £ 0 0 I
g=| V0 IO SEq:  S(¢)=det|G-gt|=det| © & 1 0
010 0 0 1 - 0
.1 0 0 0 ) 1 0 0 -¢

e has a 4t degree Secular Equation (SEq)
et — (Xixtdiagof &) €3 + (3-2x2 diag minors of &) €2 — (323x3 diag minors of &) €1 + (4x4 determinantof &) £1=0

M(12)=0 _ _ detG =
Trace of G20 M(123)=0 M(234)=0
00 0 0O 0 1
0 0 1 ==Dlo 1 0
0 01 0 1 0 0
0
=n) Y !
M(13)=0 M(23)=-1 M(124)=0 1 0
0 1 0 0 1 = (=D(I)(-1)
0 0 0 0 = +1
0 011 1 0 0
M14)=-1 MQ4)=0  M@3B4)=0 M(134)=0 o+ -
0 0 0 0 0 0 1 S
0 1 0 0 B
1 0 0 1. .
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Idempotents and “Good degeneracy” example: G=
Secular equation by minor expansion
Example of minimal equation projection

P;

The old "1=1-1 trick"-

P=P>

1
b

|

1 -

|

-1
1

8

-
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Idempotents and “Good degeneracy” example: G=

o }
N
A
1 - ..
An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(00 0 1 £ 0 0 1
g=| V0 IO SEq:  S(¢)=det|G—gt|=det| © & 1 0
01 0 0 0 1 - 0
L 100 0 1 0 0 -¢

e has a 4t degree Secular Equation ( SEq ) with repeat pairs of degenerate roots (e,=*1)
2
S( ) 0=e*—2e*+1= (8 1) (8+1)
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Idempotents and “Good degeneracy” example: G=

o }
N
A
1 - ..
An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(00 0 1 £ 0 0 1
g=| V0 IO SEq:  S(¢)=det|G—gl|=det| © & 1 0
01 0 0 0 1 - 0
L 100 0 1 0 0 -¢

e has a 4t degree Secular Equation ( SEq ) with repeat pairs of degenerate roots (e,=*1)
2
S(e) 0=e*—2e*+1= (e 1) (£+1)
G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
2 2
S(G)=0=G*-2G*+1=(G-1) (G +1)
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Idempotents and “Good degeneracy’ example: G=

o J
N
A
1 - ..
An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(00 0 1 £ 0 0 1
g=| V0 IO SEq:  S(¢)=det|G—gl|=det| © & 1 0
01 0 0 0 1 - 0
L 100 0 1 0 0 -¢

e has a 4t degree Secular Equation ( SEq ) with repeat pairs of degenerate roots (e,=*1)
2
S(s) 0=e*—2e*+1= (e 1) (£+1)
G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
2 2
S(G)=0=G*-2G*+1=(G-1) (G +1)
Yet G satisfies Minimal Equation (MinEq) of only 2" degree with no repeats.
0=(G-1)(G+1)
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Idempotents and “Good degeneracy’ example: G=

o J
N
A
1 - ..
An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(00 0 1 £ 0 0 1
g=| V0 IO SEq:  S(¢)=det|G—gl|=det| © & 1 0
01 0 0 0 1 - 0
L 100 0 1 0 0 -¢

e has a 4t degree Secular Equation ( SEq ) with repeat pairs of degenerate roots (e,==1)
2

S(s) 0=e*—2e*+1= (e 1) (£+1)

G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
2 2

S(G)=0=G*-2G*+1=(G-1) (G +1)

Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So P, formulae work!
0=(G-1)(G+1) I (M-¢,1)
P — £, FE;

: H(Sk_gm)

ELFE;L
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Idempotents and “Good degeneracy’ example: GZL N ]J

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(00 0 1 £ 0 0 1
g=| V0 IO SEq:  S(¢)=det|G—gl|=det| © & 1 0
01 0 0 0 1 - 0
L 100 0 1 0 0 -¢

e has a 4t degree Secular Equation ( SEq ) with repeat pairs of degenerate roots (e,==1)
2

S( ) 0=e*—2e*+1= (e 1) (e+1)

G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
2 2

S(G)=0=G*-2G*+1=(G-1) (G +1)

Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So P, formulae work!
0=(G-1)(G+1) I (M-¢,1)

£, FE;

Two ortho-complete projection operators are derived by Projection formula: P, = H (c,—%.)

ELFE;L

Lo 01 1 0 0 -l

PG:G—(—I)lzl 01 1 0 b6 G—(1)1_1 0 1 -1 o0
+#1-(-1) 2l 0 1 10 T2 0 -1 10
1001 -1 0 0 1
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Idempotents and “Good degeneracy’ example: GZL N ]J

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(00 0 1 £ 0 0 1
g=| V0 IO SEq:  S(¢)=det|G—gl|=det| © & 1 0
01 0 0 0 1 - 0
L 100 0 1 0 0 -¢

e has a 4t degree Secular Equation ( SEq ) with repeat pairs of degenerate roots (ex==x1)
2

S() 0=e*—2e"+1= (8 1)(e+1)

G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
2 2

S(G)=0=G*-2G*+1=(G-1) (G +1)

Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So P, formulae work!
0=(G-1)(G+1) I (M-¢,1)

EnPEL

Two ortho-complete projection operators are derived by Projection formula: P, = ’"l—[ (c,—%.)

ELFE;L

Lo 01 1 0 0 -l

pG G—(—l)lzl 01 1 0 b6 G—(1)1_1 0 1 -1 o0
+#1-(-1) 2l 0 1 10 T (1) 20 0 -1 1 0
Py o T 0 0

1 0 1 0
‘1> M i 0 ‘1>:M:L 1 ‘_1>:‘_11):1 0 ‘_1>:‘_12):1 1
1 0 1 0
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Idempotents and “Good degeneracy’ example: GZL N ]J

An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(00 0 1 £ 0 0 1
g=| V0 IO SEq:  S(¢)=det|G—gl|=det| © & 1 0
01 0 0 0 1 - 0
L 100 0 1 0 0 -¢

e has a 4t degree Secular Equation ( SEq ) with repeat pairs of degenerate roots (ex==x1)
2

S() 0=e*—2e"+1= (8 1)(e+1)

G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
2 2

S(G)=0=G*-2G*+1=(G-1) (G +1)

Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So P, formulae work!
0=(G-1)(G+1) I (M-¢,1)

EnPEL

Two ortho-complete projection operators are derived by Projection formula: P, = ’"l—[ (c,—%.)

ELFE;L

Lo 01 1 0 0 -l

pG G—(—l)lzl 01 1 0 b6 G—(1)1_1 0 1 -1 o0
+#1-(-1) 2l 0 1 10 T (1) 20 0 -1 1 0
PO 0 -1 0 0 1

Each of: these prOJectors ‘contains two hnearly mdependent ket or' bra vectors:

i ) ) i ) 0 . ) 1 . ) 0 These 4 are more than
Lo 2)_ 1|1 L) 1] o L) 1] | | .

=r=7 L)="F=— -1,)= = -1,)= = linearly independent...
oo (1) 2o (1) T _01 2o _01 ...they are orthogonal.
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An example of a 'good' degenerate (but still diagonalizable) matrix
is the anti-diagonal "gamma" matrix G (a Dirac-Lorentz transform generator)

(00 0 1 £ 0 0 1
g=| V0 IO SEq:  S(¢)=det|G—gl|=det| © & 1 0
01 0 0 0 1 - 0
L 100 0 1 0 0 -¢

e has a 4t degree Secular Equation ( SEq ) with repeat pairs of degenerate roots (e,==1)
2

S( ) 0=e*—2e*+1= (e 1) (£+1)

G has a 4t degree HC equation (HCeq) with G replacing € in SEq: S(e) — S(G)
2 2

S(G)=0=G*-2G*+1=(G-1) (G +1)

Yet G satisfies Minimal Equation (MinEq) of only 2nd degree with no repeats. So P, formulae work!
0=(G-1)(G+1) I (M-¢,1)

£, FE;

Two ortho-complete projection operators are derived by Projection formula: P, = H (c,—%.)

ELFE;L

Lo 01 1 0 0 -l

pG G—(—l)lzl 01 1 0 b6 G—(1)1_1 0 1 -1 o0
+#1-(-1) 2l 0 1 10 T2 0 -1 10

,1 0 01 L0 0

hasa-d are more than
Bra-Ket repeats may need to be made orthogonal. Two methods shown next. independent...

1: Gram-Schmidt orthogonalization (harder)  2: Commuting projectors (easier) Lo .1y gonal
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Orthonormalization of degenerate eigensolutions
Projection Pi-matrix anatomy (Gramian matrices)
Gram-Schmidt procedure

o O

O =
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Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components (P;);2 of projectors P; happen to

be zero, and this means row-1 vector (j;| is already orthogonal to row-2 vector |j2):

(ilj2) = 0
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Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-1 vector (j 1| is already orthogonal to row-2 vector j2): (ilj2) =

Projection Pj-matrix anatomy- ( Gramian MALVICES) ------=====rrrrrrmmmm e .

If projector P; 1s idempotent (P; P;= P;), all matrix elements (P;),x are row,-columny-e-products (j L]k)
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Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-/ vector (1| is already orthogonal to row-2 vector j2): (ilj2) =

Projection P-matrix anatomy* ( GFAMIAN MAITICES) '------======== e .
If projector P; 1s idempotent (P; P;= P)), all matrix elements (P;),« are row,-columng-e-products (j, L]k)

(Pj) (Pf) - (Pf)
k,
Ce e e k,
b, b, b, b, b, b, ks ~ | k) .
k4
kS
k6
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Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-/ vector (1| is already orthogonal to row-2 vector j2): (ilj2) =

Projection Pj-matrix anatomy- ( Gramian matrices)'
If projector P; 1s idempotent (P; P;= P)), all matrix elements (P;),« are row,-columng-e-products (/bL]k)

(Pf) - (Pf)

.| Ok) |.
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Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-/ vector (1| is already orthogonal to row-2 vector j2): (ilj2) =

Projection Pj-matrix anatomy- ( Gramian matrices)'
If projector P; 1s idempotent (P; P;= P)), all matrix elements (P;),« are row,-columng-e-products (/bL]k)

(Pf) - (Pf)

.| Ok) |.

/

j)34 =by=k3= (ij’ ‘ ]4) = (b‘k) =bek = biki+brkr+b3k3+biks+bsks+bsks

70
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Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-/ vector (1| is already orthogonal to row-2 vector j2): (ilj2) =

Projection Pj-matrix anatomy- ( Gramian matrices)'

If projector P; 1s idempotent (P; P;= P;), all matrix elements (P;),« are row,-columng-e-products (j» L/k)

G GR2) OB G4 @5 66 |

bra row p=3r4

11k)
2lk)

\(3Ik)

@)
(5lk)
©6lk)

V34=ba=k3= (J3|js) =

=4th

ket column

- (Pf)

.| Ok) |.

/

(blk)’=bek =

b ]k )i +b 2k2+b 3k 3+b4k4+b 5k 5+b5k6

(blk)

Quasi-Dirac notation

shows vector relations
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Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-/ vector (1| is already orthogonal to row-2 vector j2): (ilj2) =

Projection Pi-matrix anatomy’(Gramian Matrices) - - -----wwwwwwreureuremreusereiseeseiseeseiseissesesesea. -
If projector P; 1s idempotent (P; P;= P;), all matrix elements (P;),« are row,-columng-e-products (j» L/k)

®) - eyl

ok ].

( j)34= bs= k3= (]3‘]4) = (b|k)=b°k = biki+boko+b3k3+b kst bsks+beks
Qlk) | L
Gy GR) G3) @4 G5 66 | \(3Ik) § ~ (blk) Quasi-Dirac notation
bra row p=3rd CIORRS shows vector relations
Gl [ 3
GISARSS
-~
Diagonal matrix elements (P)w = rowk-columnk-o-product (rljr)= (k|k) is km-norm value (usually real)
an | i SRR
Qi) | @ik
Gl G2y G13) G4 G5 ©l6) Glb) | Glk) : ’°‘~~(I~;~l75)'~\(~l9ll<)
() (k12) (kI3) (k4) (KIS) (kl6) | @lb) | @lk) B YR
1) | (1) col e
©6lb) | ©6lk)
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Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-/ vector (1| is already orthogonal to row-2 vector j2): (ilj2) =

Projection Pi-matrix anatomy’(Gramian Matrices) - - -----wwwwwwreureuremreusereiseeseiseeseiseissesesesea. -
If projector P; 1s idempotent (P; P;= P;), all matrix elements (P;),« are row,-columng-e-products (j» L/k)

®) - eyl

ok ].

/

( j)34= bs= k3= (]3‘]4) = (b|k) =bek = biki+boko+bs3ks+baks+bsks+besks
\ (k) | S
@ik | L
Gy GR) G3) @4 G5 66 | i § _ (blk) Quasi-Dirac notation
bra row p=3m (4lk) | S shows vector relations
Gl [ 3
©lk) | '
2

Diagonal matrix elements (P)w = rowk-columnk-o-product (rljr)= (k|k) is km-norm value (usually real)

(i) | (k) .

@) | (2lk) N I k' normalized vectors
Gl (GR) ¢13) (H) 015 ¢l | @3ib) | Gk | ehew] ket= |ji)=j)V(k|k)
k) (k) *k13) (k14) (*I5) (KI6) @lb) | (@lk) N A o

s | 61 A R bra= (ji|=(j|V(k|k)

©lb) | (6lk) N T SO: (jk|ji) =
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Orthonormalization of degenerate eigensolutions
Projection Pi-matrix anatomy (Gramian matrices)

» Gram-Schmidt procedure

o O

O =
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Orthonormalization of degenerate eigensolutions

The G example is unusually convenient since components (P;);2 of projectors P; happen to

be zero, and this means row-1 vector (j;| is already orthogonal to row-2 vector [j2):  (ji]j2) = 0
Gram-Schmidt procedure

Suppose a non-zero scalar product (j;|j2)#0. Replace vector |j2) with a vector |j2)=|j4;) normal to (j;| ?
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Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to

be zero, and this means row-/ vector (j;| is already orthogonal to row-2 vector |j2):  (ji|j2) = 0
Gram-Schmidt procedure

Suppose a non-zero scalar product (j;|j2)#0. Replace vector |j2) with a vector |j2)=|j4/) normal to (j;| ?

Define: |j2)= Ni|ji) + N2|j2) such that: (j;|j2)=0= N; (j:|j1) + N2 (j1|j2)
...and normalized so that: (jz|j2)=1= N2(j:|j;)*+ N1 N2[(1|j2)+ G2lji) ]+ N22(j2|j2)

Thursday, January 22, 2015

76



Orthonormalization of degenerate eigensolutions
The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-/ vector (j;| is already orthogonal to row-2 vector |j2):  (ji|j2) = 0

Gram-Schmidt procedure
Suppose a non-zero scalar product (j;|j2)#0. Replace vector |j2) with a vector |j2)=|j4/) normal to (j;| ?

Define: |j2)= Ni|ji) + N2|j2) such that: (j;|j2)=0= N; (j:|j1) + N2 (j1|j2)
...and normalized so that: (jz|j2)=1= N2(j:|j;)*+ N1 N2[(1|j2)+ G2lji) ]+ N22(j2|j2)

Solve these by substituting: =- N2 (j1|j2)/(1|j1)
to give: 1 N2 (jilj2)?Giiljr) - N2[Gili2)+ Glin1Giliz)/Gilin) + N2(2ljz)
1/N2? = (j2|j2) + Gy G+A- - GG - G2linGiliz)/ Gl
1/N22= (j2|j2) - GalinGili2)/Girljn)
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Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-/ vector (j;| is already orthogonal to row-2 vector |j2):  (ji|j2) = 0

Gram-Schmidt procedure
Suppose a non-zero scalar product (j;|j2)#0. Replace vector |j2) with a vector |j2)=|j4/) normal to (j;| ?

Define: |j2)= Ni|ji) + N2|j2) such that: (j;|j2)=0= N; (j:|j1) + N2 (j1|j2)
...and normalized so that: (jz|j2)=1= N2(j:|j;)*+ N1 N2[(1|j2)+ G2lji) ]+ N22(j2|j2)

Solve these by substituting: =- N2 (j1|j2)/(1|j1)
to give: 1 N2 (jilj2)?/Giiljr) - N22[Gialjz)+ G2linN1Ginli2)/Ginlin) + N22(jz|j2)
/N2 = (j2|j2) + G G+A- - GG - G2linGiliz)/Giljn)
1/N22= (j2|j2) - Golj)Gilj2)/Gialjin)

So the new orthonormal pair is: )= j)
1

JGiD

| | | N,Gil i), . .
2 :Nl 1 +N2 )= 1. i +N2 2
) =N|j)+N,|j) Glio i)+ N, 7))
B (]1|]2 1 : (]1‘]2
[' ) ul\m' 1)) Gl _<jzljl><jl|jz>(|]2) (j |1>| ‘)]
| /) —
V (]1|]1)
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Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-/ vector (j;| is already orthogonal to row-2 vector |j2):  (ji|j2) = 0

Gram-Schmidt procedure
Suppose a non-zero scalar product (j;|j2)#0. Replace vector |j2) with a vector |j2)=|j4/) normal to (j;| ?

Define: |j2)= Ni|ji) + N2|j2) such that: (j;|j2)=0= N; (j:|j1) + N2 (j1|j2)
...and normalized so that: (jz|j2)=1= N2(j:|j;)*+ N1 N2[(1|j2)+ G2lji) ]+ N22(j2|j2)

Solve these by substituting: =- N2 (j1|j2)/(1|j1)
to give: 1 N2 (jilj2)?/Giiljr) - N22[Gialjz)+ G2linN1Ginli2)/Ginlin) + N22(jz|j2)
/N2 = (j2|j2) + G G+A- - GG - G2linGiliz)/Giljn)
1/N22= (j2|j2) - Golj)Gilj2)/Gialjin)

So the new orthonormal pair is: )= j)
1

JGiD

| | | N,Gil i), . .
2 :Nl 1 +N2 )= 1. i +N2 2
) =N|j)+N,|j) Glio i)+ N, 7))
B (]1|]2 1 : (]1‘]2
[' ) ul\m' 1)) Gl _<jzljl><jl|jz>(|]2) (j |1>| ‘)]
| /) —
V (]1|]1)

OK. That’s for 2 vectors. Like to try for 37
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Orthonormalization of degenerate eigensolutions

The G example 1s unusually convenient since components (P;);2 of projectors P; happen to
be zero, and this means row-/ vector (j;| is already orthogonal to row-2 vector |j2):  (ji|j2) = 0

Gram-Schmidt procedure
Suppose a non-zero scalar product (j;|j2)#0. Replace vector |j2) with a vector |j2)=|j4/) normal to (j;| ?

Define: |j2)= Ni|ji) + N2|j2) such that: (j;|j2)=0= N; (j:|j1) + N2 (j1|j2)
...and normalized so that: (jz|j2)=1= Ni2(j;|ji))*+ N1 N2[(:[j2)+ (211 ]+ N22(j2|)2)

Solve these by substituting: =- N2 (j1|j2)/(1|j1)
to give: 1 N2 (jilj2)?/Giiljr) - N22[Giliz)+ Glin]Giliz)/Gialjn) + N22Gjzlj2)
/N2 = (j2|j2) + G G+A- - GG - G2linGiliz)/Giljn)
VN2 = (jo|j2) - (G2ljnGilj2)/Giljr)

So the new orthonormal pair is: )= j)
1

JGiD

Nl
)= N+ Ny =G
(]1|]1
B (]1|]2 1 . (]1‘]2
[| J2) (;1@' 1)) n _<jzljl><j1|jz>(|’2) Glj >| 1)]
Jo|Jn) —
V GiliD)

OK. That’s for 2 vectors. Like to try for 37
Instead, let’ try another way to “orthogonalize” that might be more elegante.
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» Orthonormalization of commuting eigensolutions. Examples: G

The old "1=1-1 trick"-Spectral decomposition by projector sp

Irreducible projectors and representations (Trace checks)
Minimal equation for projector P=P?
How symmetry groups become eigen-solvers

R

-1

1 - -

|
itting

and. Hz{i . %J
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Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)

I 0 0 1 0 0 -1
o-SCL 1ot 1o G-t _1f o 1 -1 o
(1) 2 0 11 0 P’ = =
-1-(1) "2 0 -1 1 0
\reoty. L =1 0 0 1
1 0 1 O
‘1>:MZL 0 ‘1 >:M:L 1 ‘_1>:‘_11):1 0 ‘_1>:‘—12):1 |
SRYP IS B VPN Y Vo 2| o NI
1 0 1 0
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Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)

o 01 1 0 0 -l

¢ _G=(=1 1101 1 0 G-(01 1| o 1 -1 o
TTS-(=1) 2 001 1 0 Pl = )

-1-(1) 2 0 -1 1 0

Yy L7l 0.0 1

1 IO 1 O

TSV RTINS T O 0 TR W R

Vol 2o | T2 2] Vo2 2o o 2] -

1 0

Dirac notation for G-splitéwmpleteness reldation using eigenvectors is the following:

=P +P = ‘11><11‘ + ‘12><12‘ + ‘_11><_11‘ + ‘_12><_12‘
= P ¥ P ¥ P ¥ P
1 2 I 2
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Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)

o 01 1 0 0 -l

¢ _G=(=1 1101 1 0 G-(01 1| o 1 -1 o
(1) 2 0 1 1 0 Pl = )

-1-(1) 2 0 -1 1 0

______ Poo . B U2 B A U

1 IO 1 O

TSV RTINS T O 0 TR W R

Vol 2o | T2 2] Vo2 2o o 2] -

1 0

Dirac notation for G-Splitécompleteness reldation using eigenvectors is the following:

=P +P = ‘11><11‘ + ‘12><12‘ + ‘_11><_11‘ + ‘_12><_12‘
- :Pll i .'Plz * P*Tll i P

Each of the original G projectors are splitin two parts with one keflbrg in each.

1 0 0 1 0 0°0 0 1 0 0 —I 0 0" 0 0
G _ oo o0o0 | 1l o110 G _ 1l ooo0o o0 |, 1o 1 -10
P, _P11+P12_5 00 0 0 +E 011 0 P P1+P_12 3l 0 0 0 o +2 0 -1 1 0
1 0 0 1 00 0 0 10 0 1 0 0 0 0

= |11><11| T |12><12| = ’_11><_11‘ t ‘_12><_12’
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Orthonormalization by commuting projector splitting

The G projectors and eigenvectors were derived several pages back: (And, we got a lucky orthogonality)

o 01 1 0 0 -l

¢ _G=(=1_1/ 0 11 0 G-(01 1| o 1 -1 o
(1) 2 0 1 1 0 Pl = )

-1-(1) 2 0 -1 1 0

______ PO o B U2 B A U

1 IO 1 O

TSV RTINS T O 0 TR W R

Vol 2o | T2 2] Vo2 2o o 2] -

1 0

Dirac notation for G-splitécompleteness reldation using eigenvectors is the following:

=P +P = ‘11><11‘ + ‘12><12‘ + ‘_11><_11‘ + ‘_12><_12‘
- :P11 * :Plz N P*Th i P

-1
: ~ TR
Each of the original G projectors are splitin two parts with one ket-bra in each. ‘

~

1 0 0 1 0 00 0 1 00 -l 0 0
G _ oo o0o0 | 1l o110 G _ o o0 0 [L1J 01 -10
P, _P11+P12_5 00 0 0 +E 011 0 P =P, +P_12 3l 0 0 0 o +2 0 -1 1 0o
1 0 0 1 0O 0 0 0 -1 0 0 1 O 0 0 O

= |11><11| * |12><12| = ’_11><_11‘ + ‘_12><_12’

There are co-[y many ways to split G projectors. Now we let another operator H do the final splitting.
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Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG
] s I

the G=| - 1 I | from before, and new operator H= o 2

1 - .. 2.
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Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG
I
.2

the G=

(First, it 1s important to verify that they do, in fact, commute.)

GH =

1

-1
o1 .
A
1 -

-1

A
|

from before, and new operator H=

-2

-2

S O N O

S O O N

b OO O

S NN OO

2 .
-2

2 ..
2.

-1

1 -

= HG
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Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG
] s I

the G=| - 1 I | from before, and new operator H= S 2

Problem: \ 1 - -~ B
Find an ortho-complete projector set that spectrally resolves both G and H.
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Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG
] ..

the G=| - 1 I | from before, and new operator H= o 2

Problem: L 1 - - - B
Find an ortho-complete projector set that spectrally resolves both G and H.

Previous completeness for G:

1= PG + PY
1 0 0 1 1 0 0 -I
ot to 1o 1 -1 o0
20 1 1 0 20 -1 1 0
L1001 10 0 1
G-|-1)1 G-I
R
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Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

-1 -2
the G=| - 1 I | from before, and new operator H= S 2
Problem: \ 1 - - - | .
Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G: Current completeness for H:
1= Pé + P¢ 1= P + P
1 0 0 1 I 0 0 -1 1 0 1 O I 0 -1 0
_o 1o, 1o 1 -0 _otrtoon b0 1 0
200 1 10 20 -1 1 0 201 010 2 -1 0 1 0
I 0 0 1 -1 0 0 1 0O I 0 1 0O -1 0 1
G-(-1)1 G-|I)1
=P+G1 = +1_((_2) -i—P_G1 = _1_((3) (Left as an exercise)

Thursday, January 22, 2015 90



P;

Orthonormalization of commuting eigensolutions. Examples: G

The old "1=1-1 trick"-Spectral decomposition by projector sp

Irreducible projectors and representations (Trace checks)
Minimal equation for projector P=P?
How symmetry groups become eigen-solvers

-1

o1
A

|
itting

and. Hz{i . %J
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Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

] ..
the G=| 1 I~ | from before, and new operator H= S 2
Problem: \ 1 - - - | .
Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G: Current completeness for H:
1= Pfl + P_Ci 1= Pg + P_H2 (Left as an exercise)
1 0 0 1 1 0 0 -1 1 0 1 O 1 0 -1 O
o1t o o1 -0 _otrtoon b0 1 0
2 01 1 0 2 0 -1 1 0 21 01 0 2 -1 0 1 0
. I 0 0 1 -1 0 0 1 0O I 0 1 o -1 0 1
Solution®

The old "1=1-1 trick"-Spectral decomposition by projector splitting
Multiplying G and H completeness relations

_ _[pG G H H\_4_ GpH GpH GpH GpH
1=1-1=(PS + P (P + P )= 1= (PGPS + PGPY + PGPY + PGP
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Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

the G=

Problem:

1

1

1

1

from before, and new operator H=

2

2

2

2

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:

1=

1
2

Solution:

—_—0 O

G
P+1

S = = O

S == O

—_— O O

+

1
1l 0
210
—1

G

P—l

0

1
-1

0

0
-1
1
0

—1
0
0
1

Current completeness for H:
PH

1=

N | —

1
0
1
0

_— O = O

+2

S = O =

0
1
0
1

_|_

The old "1=1-1 trick"-Spectral decomposition by projector splitting
Multiplying G and H completeness relations gives a set of projectors

— _[pG G H H)\_4_ GpH GpH GpH GpH
1=1-1=(P§ + PG )( P + P | =1=(PSPLL + PGPY + PGP + PP /

GH
P+1,+2

1
4

e
S R = G —y

ke

e

_pGpH _
=P+1P+2_

H
P,

0

(Left as an exercise)
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Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

the G=

Problem:

1

1

1

1

from before, and new operator H=

2

2

2

2

Find an ortho-complete projector set that spectrally resolves both G and H.

Previous completeness for G:
G
P+1

1=

1
2

Solution:

e OO

Or—*r—ﬂo-.

S == O

—_— O O

+ P_G1 1=
1 0 0 -1 1
LS I B =10 0
2000 -1 1 0 |.- 2| 1
-1 0 0 T 0

.
.
s
_— O = O

+2

S = O =

0
1
0
1

_|_

The old "1=1.1 trick"- Spea&ra[ decomposztzan by projector splitting
Multlplymg G and Hcompleteness relations gives a set of projectors

1=11= (PG+PG)(PIf+P J=1=(PSPLL+PGPY + PGP + PSPY /

GH
l)+1 A2

1
4

e
S R = G —y

ke

'y
GpH _
P+1P+2 -

e

Current completeness for H:
PH

H
P,

0

(Left as an exercise)
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Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

the G=

Problem:

1

1

1

from before, and new operator H=

2

2

2

Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G:

Current completeness for H:

1=

-®
‘—
-

172

H
P+2

—"
-

_|_

) “Z

1= PG + PY
1:0 0 1 1 0 0 -1
_boit o [ 101 10
20001 101 2 0 -1 1 0
. o0 0 1 -1 0 0 1 ) .-
Solution> ; © 7 ° /A T T 0 /L
The old "1=1-1 trick"-Speciral decormposition by projector splitting
Multiplying G and H compl
;
1=1-1=(P5 + PG ) P1 + P}f): 1=(PSPL +PSPY + PGP + PP
GH _pG P TS
P+1EL2 = P+1sz = P+1Ez = P+1P—Hz =
I 1T 11 1 -1 -1 1
1111 1 =11 1 -
41111 4 -1 1 1 -1
I 1T 11 1 -1 -1 1

H

_lf_z
10
0 1
1 0
0 -1

(Left as an exercise)
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Orthonormalization of commuting eigensolutions.

Suppose we have two mutually commuting matrix operators: GH=HG

|
theG='i1

Problem:; \ !

from before, and new operator H=

2

2

2

2

Find an ortho-complete projector set that spectrally resolves both G and H.
Current completeness for H:

1=

Previous completeness for G:

1= PG + PY
1 0 0 1 1 9 0 -1
oo 10 1h-1 0
200 1101 20 0 =1 0
. 1 0 1 1 0 0. 1
Solution> '

1
2

H
P+2

4
'

1.0
0 1

400

y’l 0 1

1
0
1
0

0
1
0
1

_|_

The old "1=1-1 trick"-Spectral decé‘n?positian by p"rojectar splitting
Multiplying G and H completeness telations gives a set of projectors

— _[pG G H H)_41_[pGpH GpH
1=1-1=(P§ + PG (P + P | =1=(PSPLL + PSP

ARES)
GH GpH GH GpH GH ‘*G ‘fl
Pl =P P,= P ,=P P,= P L,=P P, =
I 1T 1 1 I -1 -1 1 I -1 1
101111 I =11 1 =11 -1 1 -1
41 1 1 1 1 4 -1 1 1 -1 41 1 -1 1
I 1T 1 1 I -1 -1 1 -1 1 -1

+ PSP+ pCPY

)~

H
P,

I 0 -1

O 1 O

-1 0 1

0O -1 0

(Left as an exercise)
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Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

the G=

Problem:

1

1

1

from before, and new operator H=

2

2

2

Find an ortho-complete projector set that spectrally resolves both G and H.

Previous completeness for G:

G
P+1

1=

1
2

Solution:

The old "1=1.1 trick"-Spectral decompositio;i ‘by projector splitting
Multiplying G and H completeness relations gives.a set of projectors

—_—0 O

0
1
1

e )

0

—_—0 O =

+ P_G1 1=
1 0.0 -—I 1
Lo -0 _11 0
2l 0 -1 1 0 2| 1
10 0 1 |- 0

~
~

H
P+2
0 1
1 0
0 1
10

0
1
0
1

_|_

4
q

1.1—[pG L pG\(pH L pH)|_1_[pGpH , pGpH . pGpH | pGpH /
1=1-1=(P§ + PG )( P + P | =1=(PSPLL + PGPY + PGP + PP / .

§~*
GpH _
PCP! =

GH
P+1,+2

1
4

et
S T o Gy —y

O T T G

e ke

_pGpH _
=P+1P+2_

B —

GH _ pGpH _
P+1,—2 =P P, =

GH _ pGpH _
P—1,+2 = P—1P+2 -

I -1 -1 1 1
-1 1 1 -1
-1 1 1 -1
I -1 -1 1

A=
[
|-

pa!

-1
-1

9_2 =

1
1

-1
-1

-1
-1
1 1
1 1

|

-1
-1

’

Current completeness for H:

H
Fo
10
0. 1
—,'1 O
00 -

.

'

(Left as an exercise)
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Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

1 .2
the G=| - 1 I | from before, and new operator H= S 2
Problem: \ 1 - - - | .
Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G: Current completeness for H:
1= Pfl + P_Ci 1= Pg + P_H2 (Left as an exercise)
1 0 0 1 I 0 0 -1 1 0 1 O I 0 -1 0
o1t o o1 -0 _otrtoon b0 1 0
200 1 10 20 -1 1 0 201 010 2 -1 0 1 0
: 1 0 1 -1 0 0 1 0O I 0 1 0O -1 0 1
Solution

The old "1=1-1 trick"-Spectral decomposition by projector splitting

Multiplying G and H completeness relations gives a set of projectors and ei%\in—relations for both:

_ _ G G H H)_ 4 _ GpH GpH GpH GpH
1=1-1= (P+1 T P—l)(P+2 T P—z)— 1= (P+1P+2 +P P +PIP, + P—1P—2) r GH _ ~pGpH _ .GpGH )
GPgh —GPg Ph —engh
PGH — PGPH _ PGH — PGPH _ PGH = PGPH — PGH — PGPH _
+1,+2 +17+2 +1,-2 +17 -2 —1,4+2 -17+2 -1,-2 172 GH _ GpH G H _ _.HpGH
HPg,h = HPg Ph = Pg HPh =€, Pg,h
1 111 1 -1 -1 1 1 -1 1 -1 1 1 -1 =1 )
l 1 1 11 l -1 1 1 -1 l -1 1 -1 1 l 1 1 -1 -1
41 1 1 1 1 4 1 -1 1 1 -1 41 1 -1 1 =1 4 -1 -1 1 1
1 111 1 -1 -1 1 -1 1 -1 1 -1 -1 1 1
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Orthonormalization of commuting eigensolutions.
Suppose we have two mutually commuting matrix operators: GH=HG

1 .2
the G=| - 1 I | from before, and new operator H= S 2
Problem: \ 1 - - - | .
Find an ortho-complete projector set that spectrally resolves both G and H.
Previous completeness for G: Current completeness for H:
1= Pfl + P_Ci 1= Pg + Pg (Left as an exercise)
1 0 0 1 I 0 0 -1 1 0 1 O I 0 -1 0
oo o1 100 _otrtoon b0 1 0
200 1 10 20 -1 1 0 201 010 2 -1 0 1 0
: 1 0 1 -1 0 0 1 0O I 0 1 0O -1 0 1
Solution

The old "1=1-1 trick"-Spectral decomposition by projector splitting
Multiplying G and H completeness relations gives a set of projectors and ei%in—relations for both:

_ G, pG\(pH , pH GpH | pGpH | pGpH | pGpH
1_1'1:(P+1+P—1)(P+2+P—2):1:(P+1P+2+P+1P—2+P—1P+2+P—1P—2) (. GH _ ~pGpH _ .GpGH )
GPC! = GPCP)! = £Cp

g gh

GH _ pGpH _ GH _ pGpH _ GH _ pGpH _ GH _ pGpH _

P+1,+2 = P+1P+2 - P+1,—2 = P+1P—2 - P—1,+2 = P—1P+2 - P—1,—2 = P—1P—2 - HPGH . HPGPH . PGHPH _ SHPGH

gh =~ g h g h = %h~gh

1 1 1 1 I -1 -1 1 1 -1 1 -1 ll—l—lk )
111111—111—11—11—11 111—1—1
41111/ 4 -1 1 1 -1} 4, 1 -11 -1 4 -1 -1 1 1
1 1 1 1 I -1 -1 1 -1 1 -1 1 -1 -1 1 1

...and a the same P;’}' projectors spectrally resolve both G and H.
(G =(+1)P5, + (+1)P+GIE2 + (—I)P_GIEL2 +(—1)P_GIE ) CH =(+2)P51, +(=2) P, +(+2) PG +(—2)P_GIE2

+1,+2 +1,+2 +1,-2 —1,+2
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Orthonormalization of commuting eigensolutions. Examples: G=

The old "1=1-1 trick"-Spectral decomposition by projector sp
[rreducible projectors and representations (Trace checks)
Minimal equation for projector P=P?

How symmetry groups become eigen-solvers
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[rreducible projectors and representations (Trace checks)

Another Problem: How do you tell when a Projector P’ or P} is “splittable’ (Correct term is reducible.)

...and a the same P;}' projectors spectrally resolve both G and H.
(G = (+1) P, + (1) PR + (1) PET, + (1) PEE ) (H (+2) P+ (-2) P, + (+2) PE L, +(=2) PO,

+1,42 +1,+2
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[rreducible projectors and representations (Trace checks)

Another Problem: How do you tell when a Projector P’ or P} is “splittable’ (Correct term is reducible.)

Solution: It’s all in the matrix Trace = sum of its diagonal elements.

...and a the same P, projectors spectrally resolve both G and H.
) T ) o o G e W G e e e e

+1,42 +1,+2
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[rreducible projectors and representations (Trace checks)
Another Problem: How do you tell when a Projector P’ or P} is “splittable’ (Correct term is reducible.)
Solution: It’s all in the matrix Trace = sum of its diagonal elements.
Trace ( P{} )=2 so that projector is reducible to 2 irreducible projectors. (In this case: PC = P, + P
1= Pé + P¢ 1= P + P
v :
GH _ pGpH GH _ pGpH
P+1,+2 =P P, = P+1,—2 =P P, =
1 T 1 1 I -1 -1 1
1111111 1 -
41111 4 -1 1 1 -1
1 T 1 1 I -1 -1 1
(G =(+1)POL, +(+1)P5S, +

Pﬁﬁz + (—I)PGH

- ) CH = (+2)

Pﬁﬂz + (_2)1)51,}12 + (+2)P_G1E2 + (—2)P_G1}£2

Thursday, January 22, 2015

...and a the same P;}' projectors spectrally resolve both G and H.
+1,-2 (_1)
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[rreducible projectors and representations (Trace checks)

Another Problem: How do you tell when a Projector P’ or P} is “splittable’ (Correct term is reducible.)

Solution: It’s all in the matrix Trace = sum of its diagonal elements.

Trace ( P{} )=2 so that projector is reducible to 2 irreducible projectors. (In this case: PC = Pﬁiz + PEIE

- Trace (P}}"},)=1 so that projector is irreducible.

.....................

1= Pé + P¢ 1= P + P
" LGH _ pGpH _ GH _ pGpH _ .
P+1,+2 =P P, = P+1,—2 =P P, =
I 1 11 I -1 -1 1
l I 1 11 l -1 1 1 -1
411 1 1 1 49 -1 1 1 -1
I 1 11 I -1 -1 1

...and a the same P;}' projectors spectrally resolve both G and H.
(G =(+1)Pi0 + (1P + (C)POL + (F)PST, ) (1= (+2) P, +(2) P, +(+2) P, +(=2) P,

+1,+2 +1,-2 —1,+2 —1,— +1,+2
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[rreducible projectors and representations (Trace checks)

Another Problem: How do you tell when a Projector P’ or P} is “splittable’ (Correct term is reducible.)

Solution: It’s all in the matrix Trace = sum of its diagonal elements.

Trace ( P{} )=2 so that projector is reducible to 2 irreducible projectors. (In this case: PC = Pﬁiz + PEIE

- Trace (P}}"},)=1 so that projector is irreducible.

.....................

1= PG + PY 1= P + P
" LGH _ pGpH _ GH _ pGpH _ o
P+1,+2 =P P, = P+1,—2 =P P, =
I 1 11 I -1 -1 1
l I 1 11 l -1 1 1 -1
411 1 1 1 49 -1 1 1 -1
I 1 11 I -1 -1 1

...and a the same P;}' projectors spectrally resolve both G and H.
(G =(+1) PO, +(+1)P, +(-1)PG] +(—1)P_GIED (H =(+2)PL, +(—2) P, +(+2) PG, +(—2) P,

+1,+2 +1,-2 —1,+2 +1,+2
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Orthonormalization of commuting eigensolutions. Examples: G=

The old "1=1-1 trick"-Spectral decomposition by projector sp
[rreducible projectors and representations (Trace checks)

» Minimal equation for projector P=P?
How symmetry groups become eigen-solvers
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Irreducible projectors and representations (Irace checks)

Another Problem: How do you tell when a Projector P’ or P} is “splittable’ (Correct term is reducible.)

Solution: It’s all in the matrix Trace:
Trace ( P}} )=2 so that projector is reducible to 2 irreducible projectors. (In this case: p¢ =pC 4 pCH
Trace ( Pﬁﬂz):l so that projector 1s irreducible. | |
Trace (1)=4 so that is reducible to 4 irreducible projectors.

r p

Minimal equation for an idempotent projector is: P?=P or: P2-P = (P-0-1)(P-1-1) =0
So projector eigenvalues are limited to repeated 0’s and /’s. Trace counts the latter.

. J

Thursday, January 22, 2015 107



P;

-1
1

1 :J and.'Hz[i o %J
itting

Orthonormalization of commuting eigensolutions. Examples: G=

The old "1=1-1 trick"-Spectral decomposition by projector sp
[rreducible projectors and representations (Trace checks)
Minimal equation for projector P=P?

How symmetry groups become eigen-solvers
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How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator K and knew that K commutes
with some other operators G and H for which irreducible projectors are more easily found.

KG=GKor G'/KG=K or GKG'=K (Here assuming unitary
KH=HK or H' KH=K or HKH=K G=G-' and H'=H-)
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How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator K and knew that K commutes
with some other operators G and H for which irreducible projectors are more easily found.

KG=GKor G'/KG=K or GKG'=K (Here assuming unitary
KH=HK or H' KH=K or HKH'=K G=G-' and H'=H-)

This means K is invariant to the transformation by G and H
and all their products GH, GH?2, G2H.,.. etc. and all their inverses GT,HT,.. etc.
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How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator K and knew that K commutes
with some other operators G and H for which irreducible projectors are more easily found.

KG=GKor G'/KG=K or GKG'=K (Here assuming unitary
KH=HK or H' KH=K or HKH'=K G=G-' and H'=H-)

This means K is invariant to the transformation by G and H
and all their products GH, GH?2, G2H.,.. etc. and all their inverses GT,HT,.. etc.

The group gk —{1, G, H,.. }so formed by such operators is called a symmetry group for K.
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How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator K and knew that K commutes
with some other operators G and H for which irreducible projectors are more easily found.

KG=GKor G'/KG=K or GKG'=K (Here assuming unitary
KH=HK or H' KH=K or HKH'=K G=G-' and H'=H-)

This means K is invariant to the transformation by G and H
and all their products GH, GH?2, G2H.,.. etc. and all their inverses GT,HT,.. etc.

The group gk —{1, G, H,.. }so formed by such operators is called a symmetry group for K.

In certain ideal cases a K-matrix (K) is a linear combination of matrices (1),(G),(H),... from k.
Then spectral resolution of {(1),(G),(H),.. } also resolves (K).
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How symmetry groups become eigen-solvers

Suppose you need to diagonalize a complicated operator K and knew that K commutes
with some other operators G and H for which irreducible projectors are more easily found.

KG=GKor G'/KG=K or GKG'=K (Here assuming unitary
KH=HK or H' KH=K or HKH'=K G=G-' and H'=H-)

This means K is invariant to the transformation by G and H
and all their products GH, GH?2, G2H.,.. etc. and all their inverses GT,HT,.. etc.

The group gk —{1, G, H,.. }so formed by such operators is called a symmetry group for K.

In certain ideal cases a K-matrix (K) is a linear combination of matrices (1),(G),(H),... from k.
Then spectral resolution of {(1),(G),(H),.. } also resolves (K).

We will study i1deal cases first. More general cases are built from these.
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Matrix products and eigensolutions for active analyzers

Consider a 45° tilted (0= 1/2=n/4or B1=90°) analyzer followed by a untilted (§2=0) analyzer.
Active analyzers have both paths open and a phase shift e-i£2 between each path.

Here the first analyzer has €27=90°. The second has Q2=180°.

YouT) ko] ol 0, 'PIND
¥ \0=1y)
f%f _ IN
£ < 1t
2 Wk [ B M= 150
RN (0 -
=s0s ] Bﬂ

The transfer matrix for each analyzer is a sum of projection operators for each open path

multiplied by the phase factor that is active at that path. Apply phase factor e-i€21 =e-iT/2 to

top path in the first analyzer and the factor e-i€22 =e-iT to the top path in the second analyzer.

T(2)=e""

b= 0] e

0 1

x’> <x'

The matrix product T(total)=T(2)T(1) relates input states |'YJN) to output states: |YOUT) =T(total)|'YIN)

1-i —1-i —1+i 1+4i
T(total)zT(2)T(1)=[ _01 (1)) —12—1' lii B —12—1' lii
> 2 2 2

-1
— e—in/4 \/5
—i
V2

I N
+ ’ /:e—iﬂ?/z 2 2 + 2 2 _ 2 2
Y R O U T A
2 2 2 2 2 2
* -1 i
e
1 —i 1
FllEw

We drop the overall phase e-iT/4 since it is unobservable. T(total) yields two eigenvalues and projectors.

i
7+1 o
2 2
i -1, +N2 1+v2 i
A —0/1—'1:O,o.r: A=+1, —1 b \/5 5 . i 142 ) ; _1+\/§
, gives projectors 1= 1— _1) = 5 \/5 = 5 \/5
||:.!.1—E |;° fils GIE°| ||\PIN>

|EE§= g@°| E—I—IES" ||\POUT> |-:.-,2—E t”' ||ﬁz—I [°
- =+1)

=l+1)

Elﬁ-iﬁﬁ"'

O FTE

S oo Lo st
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