Hexagonal $D_6 \subset D_{6h}$ and octahedral-tetrahedral $O\sim T_d$ symmetry

(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 5 Ch. 15)
(PSDS - Ch. 4)

Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3)\downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^a(C_2)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3)\downarrow C_3 = d^{03} \oplus d^{13} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^c(C_3)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

D_3-C_2 Coset structure of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis
D_3-Projection of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis
Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_6 characters:
...and $C_2(i_3)$ characters......and $C_6(1,h^1,h^2,...)$ characters
D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supset O\sim T_d \supset T$
Review: Symmetry reduction and splitting: Subduced irep $\alpha(D_3) \downarrow C_2 = d_{02} \oplus d_{12} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^a(C_2) \uparrow D_3 = D_3^\alpha \oplus D_3^\beta \oplus \ldots$ correlation

Symmetry reduction and splitting: Subduced irep $\alpha(D_3) \downarrow C_3 = d_{03} \oplus d_{13} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^c(C_3) \uparrow D_3 = D_3^\alpha \oplus D_3^\beta \oplus \ldots$ correlation

D_3-C_2 Coset structure of $d^{m_2}(C_2) \uparrow D_3$ induced representation basis
D_3-Projection of $d^{m_2}(C_2) \uparrow D_3$ induced representation basis
Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_6 characters:
...and $C_2(i_3)$ characters......and $C_6(1, h^1, h^2, \ldots)$ characters
D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$
B-Type Symmetry Breaking

Bilateral subgroup
Chain $D_3 \supset C_2$

Subduced irep $D_\alpha(D_3) \downarrow C_2$
B-Type Symmetry Breaking

Bilateral subgroup
Chain $D_3 \supset C_2$
(or $C_{3v} \supset C_v$)

Subduced irep $D^\alpha(D_3) \downarrow C_2$
Applied symmetry reduction and splitting: Subduced irep $D^\alpha(D_3) \downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation

<table>
<thead>
<tr>
<th>$D_3 \supseteq C_2$</th>
<th>0_2</th>
<th>1_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>E_1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$D^{A_1}(D_3) \downarrow C_2 \sim d^{02}$
$D^{A_2}(D_3) \downarrow C_2 \sim d^{12}$
$D^{E_1}(D_3) \downarrow C_2 \sim d^{02} \oplus d^{12}$

Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g|I\rangle$ of position ket $|g\rangle$
Applied symmetry reduction and splitting: Subduced irrep \(D^\alpha(D_3) \downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots \) correlation

<table>
<thead>
<tr>
<th>(D_3 \supset C_2)</th>
<th>(\omega^\alpha) relabel/split</th>
<th>(\omega^\alpha) relabel/reduce</th>
<th>(\omega^\alpha) relabel/split</th>
<th>(D_3 \supset C_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(P^A = P^A P^{02} = P^{A}_{0,02})</td>
<td>(D^A \downarrow C_2 \sim d^{02})</td>
<td>(\Rightarrow \omega^A \rightarrow \omega^{02})</td>
<td>(A_1)</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(P^A = P^A P^{12} = P^{A}_{1,12})</td>
<td>(D^A \downarrow C_2 \sim d^{12})</td>
<td>(\Rightarrow \omega^A \rightarrow \omega^{12})</td>
<td>(A_2)</td>
</tr>
<tr>
<td>(E_1)</td>
<td>(P^E = P^E P^{02} + P^E P^{12} = P^E_{0,02} + P^E_{1,12})</td>
<td>(D^E \downarrow C_2 \sim d^{02} \oplus d^{12})</td>
<td>(\Rightarrow \omega^E \rightarrow \omega^{02})</td>
<td>(E_1)</td>
</tr>
</tbody>
</table>

\(\Rightarrow C_2 \)

<table>
<thead>
<tr>
<th>(D_3)</th>
<th>(1) { (r^1, r^2) } { i_1, i_3 }</th>
<th>(0) { (r^1, r^2) } { i_1, i_3 }</th>
<th>(1) { (r^1, r^2) } { i_1, i_3 }</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td></td>
</tr>
<tr>
<td>(A_2)</td>
<td>1 1 -1</td>
<td>1 1 -1</td>
<td></td>
</tr>
<tr>
<td>(E_1)</td>
<td>2 -1 0</td>
<td>1 -1 0</td>
<td></td>
</tr>
</tbody>
</table>

\(D^A(D_3) \downarrow C_2 \sim d^{02} \)
\(D^A(D_3) \downarrow C_2 \sim d^{12} \)
\(D^E(D_3) \downarrow C_2 \sim d^{02} \oplus d^{12} \)

Deriving \(D_3 \sim C_{3v} \) products - By group definition \(|g\rangle = g|1\rangle \) of position ket \(|g\rangle \)
Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3)\downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^a(C_2)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3)\downarrow C_3 = d^{03} \oplus d^{13} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^c(C_3)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

D_3-C_2 Coset structure of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis
D_3-Projection of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis
Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_6 characters:
...and $C_2(i_3)$ characters......and $C_6(1,h^1,h^2,\ldots)$ characters
D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supset O\sim T_d \supset T$
Applied symmetry reduction and splitting: Subduced irrep $D^\alpha(D_3) \downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation

<table>
<thead>
<tr>
<th>$D_3 \supset C_2$</th>
<th>\mathbf{P}^α relabel/split</th>
<th>D^α relabel/reduce</th>
<th>ω^α relabel/split</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$\mathbf{P}^A_1 = \mathbf{P}^A \mathbf{P}^{02} = \mathbf{P}^A_{0,02}$</td>
<td>$\Rightarrow D^A \downarrow C_2 \sim d^{02}$</td>
<td>$\Rightarrow \omega^A_1 \rightarrow \omega^{02}$</td>
</tr>
<tr>
<td>A_2</td>
<td>$\mathbf{P}^A_2 = \mathbf{P}^A \mathbf{P}^{l_2} = \mathbf{P}^A_{l_2}$</td>
<td>$\Rightarrow D^A \downarrow C_2 \sim d^{12}$</td>
<td>$\Rightarrow \omega^A_2 \rightarrow \omega^{12}$</td>
</tr>
<tr>
<td>E_1</td>
<td>$\mathbf{P}^{E_1} = \mathbf{P}^{E_1} \mathbf{P}^{02} + \mathbf{P}^{E_1} \mathbf{P}^{l_2}$</td>
<td>$\Rightarrow D^E_1 \downarrow C_2 \sim d^{02} \oplus d^{12}$</td>
<td>$\Rightarrow \omega^{E_1} \rightarrow \omega^{02}$</td>
</tr>
</tbody>
</table>

Spontaneous symmetry breaking and clustering:
Induced rep $d^a(C_2)^\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

<table>
<thead>
<tr>
<th>$D_3 \supset C_2$</th>
<th>0 2 1 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>1 1</td>
</tr>
<tr>
<td>E_1</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g|1\rangle$ of position ket $|g\rangle$

Tuesday, March 31, 2015
Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3) \downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^a(C_2) \uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3) \downarrow C_3 = d^{03} \oplus d^{13} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^c(C_3) \uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

D_3-C_2 Coset structure of $d^{m_2}(C_2) \uparrow D_3$ induced representation basis
D_3-Projection of $d^{m_2}(C_2) \uparrow D_3$ induced representation basis
Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_6 characters:
...and $C_2(i_3)$ characters......and $C_6(1,h^1,h^2,...)$ characters
D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$
C-Type Symmetry Breaking

Trigonal subgroup
Chain $D_3 \supset C_3$
(or $C_{3v} \supset C_3$)

Subduced irrep $D^a(D_3) \downarrow C_3$
Applied symmetry reduction and splitting: Subduced rep $D^\alpha(D_3)\downarrow C_2 = d_{02} \oplus d_{12} \oplus \ldots$ correlation

<table>
<thead>
<tr>
<th>$D_3 \supset C_2$</th>
<th>\mathbf{P}^α relabel/split</th>
<th>D^α relabel/reduce</th>
<th>ω^α relabel/split</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$\mathbf{P}A = \mathbf{P} \cdot \mathbf{P}{02}$</td>
<td>$\Rightarrow D_A \downarrow C_2 \sim d_{02}$</td>
<td>$\Rightarrow \omega_A \rightarrow \omega_{02}$</td>
</tr>
<tr>
<td>A_2</td>
<td>$\mathbf{P}A = \mathbf{P} \cdot \mathbf{P}{12}$</td>
<td>$\Rightarrow D_A \downarrow C_2 \sim d_{12}$</td>
<td>$\Rightarrow \omega_A \rightarrow \omega_{12}$</td>
</tr>
<tr>
<td>E_1</td>
<td>$\mathbf{P}E = \mathbf{P} \cdot \mathbf{P}{02} + \mathbf{P} \cdot \mathbf{P}_{12}$</td>
<td>$\Rightarrow D_E \downarrow C_2 \sim \omega$</td>
<td>$\Rightarrow \omega_E \rightarrow \omega_{02}$</td>
</tr>
</tbody>
</table>

$\Rightarrow C_2$ relabel/split

<table>
<thead>
<tr>
<th>$D_3 \supset C_2$</th>
<th>0_2</th>
<th>1_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>A_2</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>E_1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Spontaneous symmetry breaking and clustering: Induced rep $d^a(C_2)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

<table>
<thead>
<tr>
<th>$D_3 \supset C_3$</th>
<th>$1 = r^0$</th>
<th>r^1</th>
<th>$r^2 = r^j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0)_2$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$(1)_2$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>$(+1)_3$</td>
<td>1</td>
<td>ε</td>
<td>ε^*</td>
</tr>
<tr>
<td>$(0)_3$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$(2)_3 = (-1)_3$</td>
<td>1</td>
<td>ε^*</td>
<td>ε</td>
</tr>
</tbody>
</table>
Spontaneous symmetry breaking and clustering:
Induced rep $\alpha(C_2) \uparrow D_3 = \alpha \oplus \beta \oplus \ldots$ correlation

$D_3 \supseteq C_2$

<table>
<thead>
<tr>
<th>D^e relabel/reduce</th>
<th>ω^e relabel/split</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^e \downarrow C_2 \sim d_{02}$</td>
<td>$\omega^e \rightarrow \omega^0$</td>
</tr>
</tbody>
</table>

A_1

$P_A^e = P_A^* P_0^{02} = P_{A_1}^{02}$

$\Rightarrow D^A \downarrow C_2 \sim d_{02}$

$\Rightarrow \omega^A \rightarrow \omega_{02}$

A_2

$P_A^e = P_A^* P_1^{12} = P_{A_1}^{12}$

$\Rightarrow D^A \downarrow C_2 \sim d_{12}$

$\Rightarrow \omega^A \rightarrow \omega_{12}$

E_1

$P_E^e = P_E^* P_0^{02} + P_E^* P_1^{12}$

$\Rightarrow D^E \downarrow C_2 \sim d_{02} \oplus d_{12}$

$\Rightarrow \omega^E \rightarrow \omega^0 \oplus \omega^1$

Applied symmetry reduction and splitting: Subduced rep $D^\alpha(D_3) \downarrow C_2 = d_{02} \oplus d_{12} \oplus \ldots$ correlation

$\Rightarrow C_2$

<table>
<thead>
<tr>
<th>$\Rightarrow C_3$</th>
<th>1</th>
<th>r'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>E_1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

$D_3 \supseteq C_3$

<table>
<thead>
<tr>
<th>$D_3 \supseteq C_3$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>\cdot</td>
</tr>
<tr>
<td>A_2</td>
<td>\cdot</td>
<td>1</td>
</tr>
<tr>
<td>E_1</td>
<td>\cdot</td>
<td>1</td>
</tr>
</tbody>
</table>

$D^A_1(D_3) \downarrow C_3 \sim d_{02}$

$D^A_2(D_3) \downarrow C_3 \sim d_{12}$

$D^E_1(D_3) \downarrow C_3 \sim d_{02} \oplus d_{12}$

$\Rightarrow C_3$

<table>
<thead>
<tr>
<th>$\Rightarrow C_3$</th>
<th>1=r^0</th>
<th>r'</th>
<th>$r^2=r^1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

$D^A_1(D_3) \downarrow C_3 \sim d_{02}$

$D^A_2(D_3) \downarrow C_3 \sim d_{12}$

$D^E_1(D_3) \downarrow C_3 \sim d_{02} \oplus d_{12}$

$\Rightarrow C_3$

<table>
<thead>
<tr>
<th>$\Rightarrow C_3$</th>
<th>1=r^0</th>
<th>r'</th>
<th>$r^2=r^1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(1)</td>
<td>1</td>
<td>ε</td>
<td>ε^*</td>
</tr>
<tr>
<td>(2)</td>
<td>1</td>
<td>ε^*</td>
<td>ε</td>
</tr>
</tbody>
</table>

$D^A_1(D_3) \downarrow C_3 \sim d_{02}$

$D^A_2(D_3) \downarrow C_3 \sim d_{12}$

$D^E_1(D_3) \downarrow C_3 \sim d_{02} \oplus d_{12}$

$\Rightarrow C_3$

<table>
<thead>
<tr>
<th>$\Rightarrow C_3$</th>
<th>1=r^0</th>
<th>r'</th>
<th>$r^2=r^1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(1)</td>
<td>1</td>
<td>ε</td>
<td>ε^*</td>
</tr>
<tr>
<td>(2)</td>
<td>1</td>
<td>ε^*</td>
<td>ε</td>
</tr>
</tbody>
</table>
Applied symmetry reduction and splitting: Subduced irep $D^\alpha(D_3) \downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation

<table>
<thead>
<tr>
<th>$D_3 \supset C_2$</th>
<th>\mathbf{P}^α relabel/split</th>
<th>D^α relabel/reduce</th>
<th>ω^α relabel/split</th>
<th>$D_3 \supset C_2$</th>
<th>0 _2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$\mathbf{P}^A = \mathbf{P}^A \mathbf{P}^{02} = \mathbf{P}^{A_{02}}$</td>
<td>$\Rightarrow D^A \downarrow C_2 \sim d^{02}$</td>
<td>$\Rightarrow \omega^A \rightarrow \omega^{02}$</td>
<td>A_1</td>
<td>1 _1</td>
</tr>
<tr>
<td>A_2</td>
<td>$\mathbf{P}^A = \mathbf{P}^A \mathbf{P}^{03} = \mathbf{P}^{A_{03}}$</td>
<td>$\Rightarrow D^A \downarrow C_2 \sim d^{03}$</td>
<td>$\Rightarrow \omega^A \rightarrow \omega^{03}$</td>
<td>A_2</td>
<td>_1 _1</td>
</tr>
<tr>
<td>E_1</td>
<td>$\mathbf{P}^E = \mathbf{P}^E \mathbf{P}^{02} + \mathbf{P}^E \mathbf{P}^{03}$</td>
<td>$\Rightarrow D^E \downarrow C_2 \sim$</td>
<td>$\Rightarrow \omega^E \rightarrow \omega^{02}$</td>
<td>E_1</td>
<td>1 _1</td>
</tr>
</tbody>
</table>

Spontaneous symmetry breaking and clustering:
Induced rep $d^\alpha(C_2) \uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

\[
\begin{array}{ccc}
\alpha & \beta & \gamma \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

Applied symmetry reduction and splitting: Subduced irep $D^\alpha(D_3) \downarrow C_3 = d^{03} \oplus d^{13} \oplus \ldots$ correlation

<table>
<thead>
<tr>
<th>$D_3 \supset C_3$</th>
<th>\mathbf{P}^α relabel/split</th>
<th>D^α relabel/reduce</th>
<th>ω^α relabel/split</th>
<th>$D_3 \supset C_3$</th>
<th>0 _1 _2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$\mathbf{P}^A = \mathbf{P}^A \mathbf{P}^{03} = \mathbf{P}^{A_{03}}$</td>
<td>$\Rightarrow D^A \downarrow C_3 \sim d^{03}$</td>
<td>$\Rightarrow \omega^A \rightarrow \omega^{03}$</td>
<td>A_1</td>
<td>1 _1 _1</td>
</tr>
<tr>
<td>A_2</td>
<td>$\mathbf{P}^A = \mathbf{P}^A \mathbf{P}^{03} = \mathbf{P}^{A_{03}}$</td>
<td>$\Rightarrow D^A \downarrow C_3 \sim d^{03}$</td>
<td>$\Rightarrow \omega^A \rightarrow \omega^{03}$</td>
<td>A_2</td>
<td>1 _1 _1</td>
</tr>
<tr>
<td>E_1</td>
<td>$\mathbf{P}^E = \mathbf{P}^E \mathbf{P}^{02} + \mathbf{P}^E \mathbf{P}^{03}$</td>
<td>$\Rightarrow D^E \downarrow C_2 \sim$</td>
<td>$\Rightarrow \omega^E \rightarrow \omega^{13} \oplus \omega^{23}$</td>
<td>E_1</td>
<td>_1 _1 _1</td>
</tr>
</tbody>
</table>

Tuesday, March 31, 2015
Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3) \downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^a(C_2) \uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3) \downarrow C_3 = d^{03} \oplus d^{13} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^{c}(C_3) \uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

D_3-C_2 Coset structure of $d^{m_2}(C_2) \uparrow D_3$ induced representation basis
D_3-Projection of $d^{m_2}(C_2) \uparrow D_3$ induced representation basis
Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_6 characters:
...and $C_2(i_3)$ characters......and $C_6(1, h^1, h^2, \ldots)$ characters
D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supset O \supset T_d \supset T$
Applied symmetry reduction and splitting: Subduced irep \(D^\alpha(D_3)\downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots \) correlation

<table>
<thead>
<tr>
<th>(D_3 \supset C_2)</th>
<th>(\mathbf{P}^\alpha) relabel/split</th>
<th>(D^\alpha) relabel/reduce</th>
<th>(\omega^\alpha) relabel/split</th>
<th>(D_3 \supset C_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(\mathbf{P}^A = \mathbf{P}^0 = \mathbf{P}^0_{02})</td>
<td>(\Rightarrow D^A \downarrow C_2 \sim d^{02})</td>
<td>(\Rightarrow \omega^A \rightarrow \omega^{02})</td>
<td></td>
</tr>
<tr>
<td>(A_2)</td>
<td>(\mathbf{P}^B = \mathbf{P}^1 = \mathbf{P}^0_{12})</td>
<td>(\Rightarrow D^A \downarrow C_2 \sim d^{12})</td>
<td>(\Rightarrow \omega^A \rightarrow \omega^{12})</td>
<td></td>
</tr>
<tr>
<td>(E_1)</td>
<td>(\mathbf{P}^E = \mathbf{P}^E_1 + \mathbf{P}^E_2)</td>
<td>(\Rightarrow D^E_1 \downarrow C_2 \sim \omega^{02})</td>
<td>(\Rightarrow \omega^E \rightarrow \omega^{02})</td>
<td></td>
</tr>
</tbody>
</table>

Spontaneous symmetry breaking and clustering: Induced rep \(d^\alpha(C_2)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots \) correlation

\[
\begin{array}{|c|c|c|c|}
\hline
D_3 & 1 & \{r'^1, r'^2\} & \{i_1, i_2, i_3\} \\
\hline
A_1 & 1 & 1 & 1 \\
A_2 & 1 & 1 & -1 \\
E_1 & 2 & -1 & 0 \\
\hline
\end{array}
\]

Applied symmetry reduction and splitting: Subduced irep \(D^\alpha(D_3)\downarrow C_3 = d^{03} \oplus d^{13} \oplus \ldots \) correlation

<table>
<thead>
<tr>
<th>(D_3 \supset C_3)</th>
<th>(\mathbf{P}^\alpha) relabel/split</th>
<th>(D^\alpha) relabel/reduce</th>
<th>(\omega^\alpha) relabel/split</th>
<th>(D_3 \supset C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(\mathbf{P}^A = \mathbf{P}^0 = \mathbf{P}^0_{03})</td>
<td>(\Rightarrow D^A \downarrow C_3 \sim d^{03})</td>
<td>(\Rightarrow \omega^A \rightarrow \omega^{03})</td>
<td></td>
</tr>
<tr>
<td>(A_2)</td>
<td>(\mathbf{P}^B = \mathbf{P}^1 = \mathbf{P}^0_{13})</td>
<td>(\Rightarrow D^A \downarrow C_3 \sim d^{13})</td>
<td>(\Rightarrow \omega^A \rightarrow \omega^{13})</td>
<td></td>
</tr>
<tr>
<td>(E_1)</td>
<td>(\mathbf{P}^E = \mathbf{P}^E_1 + \mathbf{P}^E_2)</td>
<td>(\Rightarrow D^E_1 \downarrow C_3 \sim \omega^{03})</td>
<td>(\Rightarrow \omega^E \rightarrow \omega^{03})</td>
<td></td>
</tr>
</tbody>
</table>

Spontaneous symmetry breaking and clustering: Induced rep \(d^\alpha(C_3)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots \) correlation

\[
\begin{array}{|c|c|c|}
\hline
\supset C_3 & 1 & r' \quad r' \quad r'^2 = r'^2 \\
\hline
(0)_2 & 1 & 1 & 1 \\
(1)_2 & 1 & \varepsilon & \varepsilon^* \\
(2)_{2} = (-1)_3 & 1 & \varepsilon^* & \varepsilon \\
\hline
\end{array}
\]
Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3) \downarrow C_2 = d_0^2 \oplus d_1^2 \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^\alpha(C_2) \uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

$D_3 - C_2$ Coset structure of $d^m_2(C_2) \uparrow D_3$ induced representation basis
D_3 - Projection of $d^m_2(C_2) \uparrow D_3$ induced representation basis
Derivation of Frobenius reciprocity

$D_6 \supseteq D_2 \supseteq C_2 = D_3 \times C_2$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_6 characters:
...and $C_2(i_3)$ characters......and $C_6(1, h^1, h^2, \ldots)$ characters
D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supseteq O \supseteq T_d \supseteq T$
$D_3 - C_2$ Coset structure of $d_{m2}(C_2)^\uparrow D^3$ induced representation basis

Left cosets $[1C_2 = (1, i_3), \ r^1C_2 = (r^1, i_2), \ r^2C_2 = (r^2, i_1)]$ relate to sets of r^p-transformed kets.
D₃-C₂ Coset structure of d³m₂(C₂)↑D₃ induced representation basis

Left cosets \[[1C₂ = (1, i_3), \quad r¹C₂ = (r¹, i_2), \quad r²C₂ = (r², i_1)] \]

\[[1(|1\rangle, |i_3\rangle) = (|1\rangle, |i_3\rangle), \quad r¹(|1\rangle, |i_3\rangle) = (|r¹\rangle, |i_2\rangle), \quad r²(|1\rangle, |i_3\rangle) = (|r²\rangle, |i_1\rangle)] \]
Left cosets \([1C_2 = (1, i_3), \quad \textbf{r}^1C_2 = (\textbf{r}^1, i_2), \quad \textbf{r}^2C_2 = (\textbf{r}^2, i_1)]\) relate to sets of \(\textbf{r}^p\)-transformed kets

\[
[1(\textbf{1}, i_i)] = (\textbf{1}, i_i), \quad \textbf{r}^1(1, i_i)] = (\textbf{r}^1, i_2), \quad \textbf{r}^2(1, i_i)] = (\textbf{r}^2, i_1)]
\]

Right cosets \([C_2 = (1, i_3), \quad \textbf{C}_2 \textbf{r}^2 = (\textbf{r}^2, i_2), \quad \textbf{C}_2 \textbf{r} = (\textbf{r}, i_1)]\) relate to sets of bras

\[
[A(\textbf{1}, i_i)] = (A, i_i), \quad \textbf{A}^1(1, i_i)] = (\textbf{A}^1, i_2), \quad \textbf{A}^2(1, i_i)] = (\textbf{A}^2, i_1)]
\]
D₃-C₂ Coset structure of \(d^{m_2}(C_2) \uparrow D^3 \)

Left cosets \([1C_2 = (1, i_3), \ r^1C_2 = (r^1, i_2), \ r^2C_2 = (r^2, i_1)]\) relate to sets of \(r^p \)-transformed kets

\[([1(|1\rangle, |i_3\rangle) = (|1\rangle, |i_3\rangle), \ r^1(|1\rangle, |i_3\rangle) = (|r^1\rangle, |i_2\rangle), \ r^2(|1\rangle, |i_3\rangle) = (|r^2\rangle, |i_1\rangle)] \]

Right cosets \([C_2=(1, i_3), \ C_2r^2=(r^2, i_2), \ C_2r=(r, i_1)]\) relate to sets of bras

\[([\langle 1 |, \langle i_3 |) 1 = (\langle 1 |, \langle i_3 |), \ \langle 1 |, \langle i_3 |) r^2 = (\langle r^1 |, \langle i_2 |), \ \langle 1 |, \langle i_3 |) r^1 = (\langle r^2 |, \langle i_1 |)] \]
D₃-C₂ Coset structure of dₘ²(C₂)↑D³ induced representation basis

Left cosets $[1C₂ = (1, i₃), \quad r¹C₂ = (r¹, i₂), \quad r²C₂ = (r², i₁)]$ relate to sets of r^p-transformed kets

$$[1(|1⟩, |i₃⟩) = (|1⟩, |i₃⟩), \quad r¹(|1⟩, |i₃⟩) = (|r¹⟩, |i₂⟩), \quad r²(|1⟩, |i₃⟩) = (|r²⟩, |i₁⟩)]$$

Right cosets $[C₂ = (1, i₃), \quad C₂r² = (r², i₂), \quad C₂r = (r, i₁)]$ relate to sets of bras

$$[(⟨1|, ⟨i₃|)1 = (⟨1|, ⟨i₃|), \quad (⟨1|, ⟨i₃|)r² = (⟨r¹|, ⟨i₂|), \quad (⟨1|, ⟨i₃|)r† = (⟨r²|, ⟨i₁|)]$$

C₂ projectors $P^{0₂} = \frac{1}{2}(1 + i₃) = P^x$ and $P^{1₂} = \frac{1}{2}(1 - i₃) = P^y$ split ket $|r⟩ = r|1⟩$ or bra $⟨r| = ⟨1|r^†$ into ± coset sums
Left cosets \[[1 C_2 = (1, i_3), \quad r^1 C_2 = (r^1, i_2), \quad r^2 C_2 = (r^2, i_1)] \] relate to sets of \(r^p \)-transformed kets

\[[1(\langle 1 | l i_3 \rangle) = (\langle 1 | l i_3 \rangle), \quad r^1(\langle 1 | l i_3 \rangle) = (\langle r^1 | l i_2 \rangle), \quad r^2(\langle 1 | l i_3 \rangle) = (\langle r^2 | l i_1 \rangle)] \]

Right cosets \[[C_2 = (1, i_3), \quad C_2 r^2 = (r^2, i_2), \quad C_2 r = (r, i_1)] \] relate to sets of bras

\[[(\langle 1 | l i_3 \rangle) 1 = (\langle 1 | l i_3 \rangle), \quad (\langle 1 | l i_3 \rangle) r^2 = (\langle r^1 | l i_2 \rangle), \quad (\langle 1 | l i_3 \rangle) r^1 = (\langle r^2 | l i_1 \rangle)] \]

\(C_2 \) projectors \(P^{02} = \frac{1}{2} (1 + i_3) = P^x \) and \(P^{12} = \frac{1}{2} (1 - i_3) = P^y \) split ket \(|r\rangle = |1\rangle \) or bra \(\langle r| = \langle 1| \) into \(\pm \) coset sums

\[
\begin{bmatrix}
P^{n_2}|1\rangle = \frac{1}{2}(|1\rangle \pm |i_3\rangle), \\
|n\rangle = |r^{0}\rangle, \\
|n\rangle = |r^{1}\rangle,
\end{bmatrix}
\text{basis of } d^{n_2} \uparrow D_3
D₃-C₂ Coset structure of D⁻¹(C₂) \uparrow D³ induced representation basis

Left cosets \([1C₂ = (1, i₃), \quad r¹C₂ = (r¹, i₂), \quad r²C₂ = (r², i₁)]\) relate to sets of \(r^p\)-transformed kets

\[[1(1, i₃)] = (1, i₃), \quad r¹(1, i₃)] = (r¹, i₂), \quad r²(1, i₃)] = (r², i₁)\]

Right cosets \([C₂ = (1, i₃), \quad C₂r² = (r², i₂), \quad C₂r = (r, i₁)]\) relate to sets of bras

\[[(1, i₃)₁ = (1, i₃)₁, \quad (1, i₃)₁r² = (r¹, i₂)₁, \quad (1, i₃)₁r¹ = (r², i₁)₁]\]

\(\mathbb{C}_2\) projectors \(\mathbb{P}^0₂ = \frac{1}{2}(1 + i₃) = P^x\) and \(\mathbb{P}^1₂ = \frac{1}{2}(1 - i₃) = P^y\) split ket \(\mid r\rangle = \mid r\rangle \mid 1\rangle\) or bra \(\langle r\mid = \langle r\mid 1\rangle^\dagger\) into ± coset sums

\[
\begin{align*}
\mathbb{P}^n₂\mid 1\rangle &= \frac{1}{2}(\mid 1\rangle ± \mid i₃\rangle), \\
\langle 1\mid \mathbb{P}^n₂ &= \frac{1}{2}(\langle 1\rangle ± \langle i₃\rangle),
\end{align*}
\]

\[
\begin{bmatrix}
\mathbb{P}^n₂\mid 1\rangle \\
\langle 1\mid \mathbb{P}^n₂
\end{bmatrix} =
\begin{bmatrix}
\mid rₙ\rangle \\
\langle rₙ\rangle
\end{bmatrix}, \quad \text{basis of } D⁻¹₂ \uparrow D₃
\]

\[
\begin{bmatrix}
\mathbb{P}^n₂\mid 1\rangle \\
\langle 1\mid \mathbb{P}^n₂
\end{bmatrix} =
\begin{bmatrix}
\mid rₙ\rangle \\
\langle rₙ\rangle
\end{bmatrix}, \quad \text{basis of } D⁻¹₂ \uparrow D₃
\]

Tuesday, March 31, 2015
Review: Symmetry reduction and splitting: Subduced irep $D^α(D_3)\downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^a(C_2)\uparrow D_3 = D^α \oplus D^β \oplus \ldots$ correlation

D_3-C_2 Coset structure of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis

D_3-Projection of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis

Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry

Irreducible characters

Irreducible representations

Correlations with D_6 characters:

...and $C_2(i_3)$ characters......and $C_6(1, h^1, h^2, \ldots)$ characters

D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supset O \cong T_d \supset T$
D₃-C₂ Coset structure of d^{m_2}(C₂)↑D³ induced representation basis

Left cosets \([1C₂ = (1, i₃), \quad r^1C₂ = (r^1, i₂), \quad r^2C₂ = (r^2, i₁)]\) relate to sets of \(r^p\)-transformed kets

\[\begin{align*}
[1(1), i₃)) &= (1, i₃)), & r^1(1), i₃)) &= (r^1, i₂)), & r^2(1), i₃)) &= (r^2, i₁))
\end{align*}\]

Right cosets \([C₂=(1, i₃), C₂r^2=(r^2, i₂), C₂r=(r, i₁)]\) relate to sets of bras

\[\begin{align*}
[(1, i₃)|1 &= ([1, i₃)), & (1, i₃)|r^2 &= ([r^1, i₂)), & (1, i₃)|r^1 &= ([r^2, i₁])
\end{align*}\]

\(C₂\) projectors \(P^{02} = \frac{1}{2}(1+i₃) = P^x\) and \(P^{12} = \frac{1}{2}(1-i₃) = P^y\) split ket \(|r⟩= r|1⟩\) or bra \(⟨r| = ⟨1|r^†⟩\) into ± coset sums

\[
\begin{bmatrix}
P^{n2}|1⟩ = \frac{1}{2}(|1⟩ ± |i₃⟩), \\
⟨1|P^{n2} = \frac{1}{2}(⟨1⟩ ± ⟨i₃⟩),
\end{bmatrix}
\]

\(\sigma\)-bond" ket

\[
\begin{bmatrix}
|r^0⟩, |r^1⟩, |r^2⟩
\end{bmatrix}
\]

of induced rep. \(d^{n_2}↑D₃\)

\(|r^0⟩ = |0^\dot{0}_2x⟩\)

\(|r^0⟩ + |i₃⟩)/\sqrt{2}\)

\(r^0\) basis of \(d^{n_2}↑D₃\)

\(r^0\) basis of \(d^{n_2}↑D₃\)
D₃-C₂ Coset structure of dₘ₂(C₂)↑D₃ induced representation basis

Left cosets \([1C₂ = (1, i₃), \quad r^1C₂ = (r^1, i₂), \quad r^2C₂ = (r^2, i₁)]\) relate to sets of \(r^p\)-transformed kets

\[
[1(l₁, l₃)] = (l₁, l₃), \quad r^1(l₁, l₃) = (l₁, r₁l₂), \quad r^2(l₁, l₃) = (l₂, r₂l₁)
\]

Right cosets \([C₂ = (1, i₃), \quad C₂r^2 = (r², i₂), \quad C₂r = (r, i₁)]\) relate to sets of bras

\[
[(l₁, l₃)] = (l₁, l₃), \quad (l₁, l₃)r² = (l₁, r₂l₁), \quad (l₁, l₃)r^1 = (l₂, r₁l₂)
\]

\(C₂\) projectors \(P_{0²}^{0} = \frac{1}{2}(1 + i₃) = P^x\) and \(P_{1²}^{1} = \frac{1}{2}(1 - i₃) = P^y\) split ket \((r) = r|1\rangle\) or bra \(|r\rangle = |1\rangle r^\dagger\) into ± coset sums

\[
\begin{align*}
P_{0²}^{0} |1\rangle &= \frac{1}{2} (|1\rangle \pm |i₃\rangle), \\
\langle 1|P_{0²}^{0} &= \frac{1}{2} (\langle 1| \pm \langle i₃|),
\end{align*}
\]

"σ-bond" ket

\[
\left[|r^0_x\rangle, |r^1_x\rangle, |r^2_x\rangle \right]
\]

of induced rep. \(d^{0²}↑D₃\)

"π-bond" ket

\[
\left[|r^0_y\rangle, |r^1_y\rangle, |r^2_y\rangle \right]
\]

of induced rep. \(d^{1²}↑D₃\)
D₃-C₂ Coset structure of \(d_{m_2}(C_2) \uparrow D³\) induced representation basis

Left cosets \([1C₂ = (1, i₃), \quad r^1C₂ = (r^1, i₂), \quad r^2C₂ = (r^2, i₁)]\) relate to sets of \(r^p\)-transformed kets

\[
\begin{align*}
[1(1\mid i₃)] & = (1\mid i₃), \quad r^1(1\mid i₃) = (r^1\mid i₂), \quad r^2(1\mid i₃) = (r^2\mid i₁)
\end{align*}
\]

Right cosets \([C₂ = (1, i₃), \quad C₂r² = (r², i₂), \quad C₂r² = (r, i₁)]\) relate to sets of bras

\[
\begin{align*}
[(\langle 1\mid i₃ \rangle \mid 1) & = (\langle 1\mid i₃ \rangle \mid 1), \quad (\langle 1\mid i₃ \rangle \mid r²) = (\langle r^1\mid i₂ \rangle \mid 1), \quad (\langle 1\mid i₃ \rangle \mid r²) = (\langle r^2\mid i₁ \rangle \mid 1)
\end{align*}
\]

\(C₂\) projectors \(P^{i₃} = \frac{1}{2}(1 + i₃) = P^x\) and \(P^{i₂} = \frac{1}{2}(1 - i₃) = P^y\) split ket \(r = r^1\mid 1\rangle\) or bra \(\langle r = 1\mid r^{\dagger}\rangle\) into ± coset sums

\[
\begin{align*}
\langle r^1\mid P^{i₂} = \frac{1}{2} \langle r^1\mid i₂ \rangle \\
\langle r^1\mid P^{i₃} = \frac{1}{2} \langle r^1\mid i₃ \rangle
\end{align*}
\]

"\(\sigma\)-bond" ket

\[
\begin{align*}
|1_{x}^{\uparrow\downarrow}\rangle = |0_{2_{x}}^{\uparrow\downarrow}\rangle = \sqrt{2}(\mid r^1\rangle + \mid i₂\rangle)
\end{align*}
\]

de of induced rep. \(d_{m_2} \uparrow D₃\)

"\(\pi\)-bond" ket

\[
\begin{align*}
|1_{y}^{\uparrow\downarrow}\rangle = |0_{2_{y}}^{\uparrow\downarrow}\rangle = \sqrt{2}(\mid r^1\rangle - \mid i₂\rangle)
\end{align*}
\]

de of induced rep. \(d_{m_2} \uparrow D₃\)

Tuesday, March 31, 2015
D_3-C_2 Coset structure of $d^{m_2}(C_2)^\uparrow D^3$ induced representation basis

Left cosets $[1C_2 = (1, i_3), \quad r^1 C_2 = (r^1, i_2), \quad r^2 C_2 = (r^2, i_1)]$ relate to sets of r^p-transformed kets

$$[1(1, i_3)) = (11, i_3)), \quad r^1(1, i_3)) = (r^1, i_2)), \quad r^2(1, i_3)) = (r^2, i_1))]$$

Right cosets $[C_2=(1, i_3), \quad C_2 r^2=(r^2, i_2), \quad C_2 r=(r, i_1)]$ relate to sets of bras

$$[(1, i_3) 1 = (1, i_3), \quad (1, i_3) r^2 = (r^1, i_2), \quad (1, i_3) r^t = (r^2, i_1)]$$

C_2 projectors $P^{02}=\frac{1}{2}(1+i_3)=P^x$ and $P^{12}=\frac{1}{2}(1-i_3)=P^y$ split ket $\langle r|r 1 \rangle$ or bra $\langle r|=\langle 1| r^t$ into \pm coset sums

$$[\begin{array}{c}
\langle r^2 |P^{n2} = \frac{1}{2}(r^2 \pm i_1) \\
\langle r^2 |P^{n2} = \frac{1}{2}(r^2 \pm i_1)
\end{array}$$

basis of $d^{n_2} \uparrow D_3$

"σ-bond" ket

$$[|r^0_x\rangle, |r^1_x\rangle, |r^2_x\rangle]$$

of induced rep. $d^{0_2} \uparrow D_3$

"π-bond" ket

$$[|r^0_y\rangle, |r^1_y\rangle, |r^2_y\rangle]$$

of induced rep. $d^{1_2} \uparrow D_3$
D₃-C₂ Coset structure of \(d_{m2}(C₂)^{\uparrow D^3}\) induced representation basis

Left cosets \([1C₂ = (1, i₂), \quad r^1C₂ = (r^1, i₂), \quad r^2C₂ = (r^2, i₂)]\) relate to sets of \(r^p\)-transformed kets

\[
[1(1)|i₃\rangle) = (1)|i₃\rangle, \quad r^1(1)|i₃\rangle) = (r^1)|i₂\rangle, \quad r^2(1)|i₃\rangle) = (r^2)|i₁\rangle)
\]

Right cosets \([C₂ = (1, i₃), \quad C₂r² = (r², i₂), \quad C₂r = (r, i₁)]\) relate to sets of bras

\[
[(<1, i₃>)|1) = (<1, i₃>)|1), \quad (<1, i₃>)|r²) = (<r^1, i₂>)|1), \quad (<1, i₃>)|r) = (<r², i₁>)|1)]
\]

\(C₂\) projectors \(P^{02} = \frac{1}{2}(1 + i₃) = P^x\) and \(P^{12} = \frac{1}{2}(1 - i₃) = P^y\) split ket \(|r⟩ = |1⟩\) or bra \(⟨r| = ⟨1|r^†\) into ± coset sums

\[
\Big[P^{n2}_{n2} |1⟩ = \frac{1}{2}(|1⟩ ± |i₃⟩), \quad P^{n2}_{n2} |r^1⟩ = \frac{1}{2}(|r^1⟩ ± |i₂⟩), \quad P^{n2}_{n2} |r²⟩ = \frac{1}{2}(|r²⟩ ± |i₁⟩) \Big] = \Big[|r^0⟩, |r^1⟩, |r²⟩ \Big] \] basis of \(d^{n2} \uparrow D_3\)

\[
\Big[⟨1|P^{n2}_{n2} = \frac{1}{2}(⟨1| ± ⟨i₃|), \quad ⟨r^1|P^{n2}_{n2} = \frac{1}{2}(⟨r^1| ± ⟨i₂|), \quad ⟨r²|P^{n2}_{n2} = \frac{1}{2}(⟨r²| ± ⟨i₁|) \Big] = \Big[⟨r^0|, ⟨r^1|, ⟨r²| \Big] \] basis of \(d^{n2} \uparrow D_3\)

3 "σ-bond" kets

\[
|r^1_x⟩ = |0^1_{2x}⟩
= (|r^1⟩ + |i₂⟩)/\sqrt{2}
\]

\(d^0_{x} \uparrow D_3\)

3 "π-bond" kets

\[
|r^0_y⟩ = |1^0_{2y}⟩
= (|r^0⟩ - |i₃⟩)/\sqrt{2}
\]

\(d^1_{z} \uparrow D_3\)
Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3) \downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^a(C_2) \uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

$D_3\times C_2$ Coset structure of $d^{m_2}(C_2) \uparrow D_3$ induced representation basis
D_3-Projection of $d^{m_2}(C_2) \uparrow D_3$ induced representation basis
Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_6 characters:
...and $C_2(i_3)$ characters......and $C_6(1, h^1, h^2, \ldots)$ characters
D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$
D3-Projection of \(d^{m_2}(C_2)^\uparrow D_3\) induced representation basis

\(D_3 \supseteq C_2\) projectors \(P_{A_1}^{0_20_2}, P_{A_2}^{0_20_2}, P_{E_1}^{0_20_2}, P_{E_1}^{0_21_2}, P_{E_1}^{1_20_2}, P_{E_1}^{1_21_2}\) must reduce induced representation \(d^{m_2}(C_2)^\uparrow D_3\)

\(\sigma\)-bond ket

\[
\begin{bmatrix}
|r_x^0\rangle, |r_x^1\rangle, |r_x^2\rangle
\end{bmatrix}
\]

of induced rep. \(d^{0_2}_x \uparrow D_3\)

\[|r_x^0\rangle = |0_{2_1}^{A_0} x\rangle\]

\[= (|r_x^0\rangle + |i_3\rangle)/\sqrt{2}\]
"σ-bond" ket
\[
\begin{bmatrix}
| r_x^0 \rangle \\
| r_x^1 \rangle \\
| r_x^2 \rangle
\end{bmatrix}
\]
of induced rep.
\[d_{0z}^0 \Uparrow D_3\]

But, which \(D_3\) projector \(P_{j_2k_2}^\mu\) will work on base \(| r_{m_2}^0 \rangle = p_{m_2}^\mu | 1 \rangle\) of induced representation \(d_{m_2}^m (C_2) \Uparrow D_3\)
D_3-C_2 Coset structure of $d^{m_2}(C_2) \uparrow D^3$ induced representation basis

$D_3 \supseteq C_2$ projectors $\mathbf{P}^{A_1}_{0202}, \mathbf{P}^{A_2}_{1212}, \mathbf{P}^{E_1}_{0202}, \mathbf{P}^{E_1}_{0212}, \mathbf{P}^{E_1}_{1202}, \mathbf{P}^{E_1}_{1212}$ must reduce induced representation $d^{m_2}(C_2) \uparrow D_3$

But, which D_3 projector $\mathbf{P}^\mu_{j_2k_2}$ will work on base $|r^0_{m_2}\rangle = \mathbf{p}^{m_2} |1\rangle$ of induced representation $d^{m_2}(C_2) \uparrow D_3$

$$\mathbf{P}^\mu_{j_2k_2} |r^0_{m_2}\rangle = \mathbf{P}^\mu_{j_2k_2} \mathbf{p}^{m_2} |1\rangle = ?$$
D\textsubscript{3}-C\textsubscript{2} Coset structure of \(d\textsuperscript{m\textsubscript{2}}(C\textsubscript{2}) \uparrow D3\) induced representation basis

\(D\textsubscript{3}\supset C\textsubscript{2}\) projectors \(P_{0202}^{A_1}, P_{1212}^{A_2}, P_{0202}^{E_1}, P_{0212}^{E_1}, P_{1202}^{E_1}, P_{1212}^{E_1}\) must reduce induced representation \(d\textsuperscript{m\textsubscript{2}}(C\textsubscript{2}) \uparrow D\textsubscript{3}\).

But, which \(D\textsubscript{3}\) projector \(P^\mu_{j_2k_2}\) will work on base \(|r\textsubscript{m\textsubscript{2}}^0\rangle = p\textsuperscript{m\textsubscript{2}}|1\rangle\) of induced representation \(d\textsuperscript{m\textsubscript{2}}(C\textsubscript{2}) \uparrow D\textsubscript{3}\)?

\[
P^\mu_{j_2k_2}|r\textsubscript{m\textsubscript{2}}^0\rangle = P^\mu_{j_2k_2}p\textsuperscript{m\textsubscript{2}}|1\rangle = \delta\textsuperscript{m\textsubscript{2}}_{k_2}P^\mu_{j_2m\textsubscript{2}}|1\rangle
\]

Local symmetry \(k_2\) of \(P^\mu_{j_2k_2}\) must match that of \(|r\textsubscript{m\textsubscript{2}}^0\rangle\).

"\(\sigma\)-bond" ket
\[
\begin{bmatrix}
| r\textsubscript{x}^0\rangle, | r\textsubscript{x}^1\rangle, | r\textsubscript{x}^2\rangle
\end{bmatrix}
\]
of induced rep.
\(d\textsuperscript{0\textsubscript{2}x} \uparrow D\textsubscript{3}\)

\[| r\textsubscript{x}^0\rangle = |0\textsubscript{2x}^A0\rangle \]
\[=(| r\textsubscript{0}\rangle + | i\textsubscript{3}\rangle)/\sqrt{2} \]
\[\text{D}_3-\text{C}_2 \text{ Coset structure of } d^{m_2}(\text{C}_2) \uparrow \text{D}_3 \text{ induced representation basis} \]

\[\text{D}_3 \supseteq \text{C}_2 \text{ projectors } P_{0_2 0_2}^{A_1}, P_{1_2 1_2}^{A_2}, P_{0_2 0_2}^{E_1}, P_{0_2 1_2}^{E_1}, P_{1_2 0_2}^{E_1} \text{ must reduce induced representation } d^{m_2}(\text{C}_2) \uparrow \text{D}_3 \]

But, which \(D_3 \) projector \(P_{j_2 k_2}^{\mu} \) will work on base \(\left| r_{m_2}^0 \right\rangle = p_{m_2}^{0^2} \left| 1 \right\rangle \) of induced representation \(d^{m_2}(\text{C}_2) \uparrow \text{D}_3 \)

\[P_{j_2 k_2}^{\mu} \left| r_{m_2}^0 \right\rangle = P_{j_2 k_2}^{\mu} p_{m_2}^{0^2} \left| 1 \right\rangle = \delta_{m_2}^0 P_{j_2 m_2}^{\mu} \left| 1 \right\rangle \]

Local symmetry \(k_2 \) of \(P_{j_2 k_2}^{\mu} \) must match that \(m_2 \) of \(\left| r_{m_2}^0 \right\rangle \)

For example, base \(\left| r_{x}^0 \right\rangle = \left| r_{0_2}^0 \right\rangle = p_{0_2}^{0^2} \left| 1 \right\rangle \) of \(d^{0^2}(\text{C}_2) \uparrow \text{D}_3 \) gives zero for all \(P_{j_2 k_2}^{\mu} \) except \(P_{0_2 0_2}^{A_1}, P_{0_2 0_2}^{E_1}, \) and \(P_{1_2 0_2}^{E_1} \),

\(D_3 \) projectors: \(P_{0_2 0_2}^{A_1}, P_{1_2 1_2}^{A_2}, P_{0_2 0_2}^{E_1}, P_{0_2 1_2}^{E_1}, P_{1_2 0_2}^{E_1} \).

\(C_2 \{0_2, 1_2\} \) Notation

"\(\sigma \)-bond" ket
\[\left[\left| r_{x}^0 \right\rangle, \left| r_{y}^1 \right\rangle, \left| r_{z}^2 \right\rangle \right] \]
of induced rep.
\(d^{0^2} \uparrow \text{D}_3 \)

\[\left| r_{x}^0 \right\rangle = \left| 0_2^A 0 \right\rangle \]
\[\left| r_{x} \right\rangle = (\left| r_{y}^0 \right\rangle + \left| i_{3} \right\rangle)/\sqrt{2} \]

\(Tuesday, March 31, 2015 \)
D_3-C_2 Coset structure of $d^{m_2}(C_2) \uparrow D^3$ induced representation basis

$D_3 \supseteq C_2$ projectors $P_{0_20_2}^{A_1}, P_{1_21_2}^{A_1}, P_{0_20_2}^{E_1}, P_{0_21_2}^{E_1}, P_{1_20_2}^{E_1}, P_{1_21_2}^{E_1}$ must reduce induced representation $d^{m_2}(C_2) \uparrow D_3$

But, which D_3 projector $P_{j_2 k_2}^{\mu}$ will work on base $| r_{m_2}^0 \rangle = P_{m_2}^{0} | 1 \rangle$ of induced representation $d^{m_2}(C_2) \uparrow D_3$

$$P_{j_2 k_2}^{\mu} | r_{m_2}^0 \rangle = P_{j_2 k_2}^{\mu} P_{m_2}^{0} | 1 \rangle = \delta_{k_2}^{m_2} P_{j_2 m_2}^{\mu} | 1 \rangle$$

Local symmetry k_2 of $P_{j_2 k_2}^{\mu}$ must match that m_2 of $| r_{m_2}^0 \rangle$

For example, base $| r_x^0 \rangle = | r_{0_2}^0 \rangle = P_{0_2}^0 | 1 \rangle$ of $d^{0_2}(C_2) \uparrow D_3$ gives zero for all $P_{j_2 k_2}^{\mu}$ except $P_{0_20_2}^{A_1}, P_{0_20_2}^{E_1}, P_{1_20_2}^{E_1}$.

D_3 projectors: $P_{0_21_2}^{A_1}, P_{1_21_2}^{A_1}, P_{0_20_2}^{E_1}, P_{0_21_2}^{E_1}, P_{1_20_2}^{E_1}$

C_2 projectors: $P_{x}^{A_1}, P_{y}^{A_1}, P_{x}^{E_1}, P_{y}^{E_1}, P_{xy}^{E_1}, P_{x}^{E_1}, P_{y}^{E_1}, P_{xy}^{E_1}$

"σ-bond" ket

$$\left[| r_x^0 \rangle, | r_y^0 \rangle, | r_{x+y}^0 \rangle \right]$$

of induced rep. $d^{0_2} \uparrow D_3$

These give the “x-band”
D3-C2 Coset structure of $d^{m_2}(C_2) \uparrow D^3$ induced representation basis

$D_3 \supseteq C_2$ projectors $P_{0202}^{A_1}, P_{1212}^{A_2}, P_{0202}^{E_1}, P_{0212}^{E_1}, P_{1202}^{E_1}, P_{1212}^{E_1}$ must reduce induced representation $d^{m_2}(C_2) \uparrow D_3$

But, which D_3 projector $P_{j_2 k_2}^{\mu}$ will work on base $r_{m_2}^0 = p^m_2 |1\rangle$ of induced representation $d^{m_2}(C_2) \uparrow D_3$

$P_{j_2 k_2}^{\mu} |r_{m_2}^0\rangle = P_{j_2 k_2}^{\mu} p^m_2 |1\rangle = \delta_{k_2}^{m_2} P_{j_2 m_2}^{\mu} |1\rangle$

Local symmetry k_2 of $P_{j_2 k_2}^{\mu}$ must match that m_2 of $r_{m_2}^0$

For example, base $|r_{x}^0\rangle = |r_{02}^0\rangle = p^0_2 |1\rangle$ of $d^0_2(C_2) \uparrow D_3$ gives zero for all $P_{j_2 k_2}^{\mu}$ except $P_{0202}^{A_1}, P_{0202}^{E_1},$ and $P_{1202}^{E_1}$,

D_3 projectors: $P_{0202}^{A_1}, P_{1212}^{A_2}, P_{0202}^{E_1}, P_{0212}^{E_1}, P_{1202}^{E_1}, P_{1212}^{E_1}$

$C_2 \{0, 1\}$ Notation $\{x, y\}$ Notation $P_{xx}^{A_1}, P_{xy}^{A_2}, P_{xy}^{E_1}, P_{xx}^{E_1}, P_{xy}^{E_1}, P_{yy}^{E_1}$

"π-bond" ket $[|r_{y}^0\rangle, |r_{y}^1\rangle, |r_{y}^2\rangle]$ of induced rep. $d^1_2 \uparrow D_3$

These give the "y-band"
Frobenius Reciprocity Theorem for $G \supset K$

Number of D^α in $d^k(K) \uparrow G = \text{Number of } d^k \text{ in } D^\alpha(G) \downarrow K$
Frobenius Reciprocity Theorem for \(G \supset K \)

Number of \(D^\alpha \) in \(d^k(K) \uparrow G \) = Number of \(d^k \) in \(D^\alpha(G) \downarrow K \)

.. applies to regular representation

\[
\begin{array}{c|c}
D_3 \supset C_1 & 0_1 = 1_1 \\
\hline
A_1 & 1 \\
A_2 & 1 \\
E_1 & 2 \\
\end{array}
\]
Frobenius Reciprocity Theorem for \(G \supset K \)

Number of \(D^\alpha \) in \(d^K (K) \uparrow G \) = Number of \(d^K \) in \(D^\alpha (G) \downarrow K \)

..applies to regular representation

<table>
<thead>
<tr>
<th>(D_3 \supset C_1)</th>
<th>0(_1 = 1) (_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1</td>
</tr>
<tr>
<td>(A_2)</td>
<td>1</td>
</tr>
<tr>
<td>(E_1)</td>
<td>2</td>
</tr>
</tbody>
</table>

..and other induced representations

<table>
<thead>
<tr>
<th>(D_3 \supset C_2)</th>
<th>0(_2 = 1) (_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(\cdot)</td>
</tr>
<tr>
<td>(E_1)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(D_3 \supset C_3)</th>
<th>0(_3 = 1) (_3) (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(\cdot)</td>
</tr>
<tr>
<td>(E_1)</td>
<td>(\cdot)</td>
</tr>
</tbody>
</table>
Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3)\downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^a(C_2)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

D_3-C_2 Coset structure of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis
D_3-Projection of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis
Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_6 characters:
...and $C_2(i_3)$ characters......and $C_6(1,h^1,h^2,...)$ characters
D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$
Bilateral subgroup

Chain \(D_6 \supset D_3 \supset C_2\)
Bilateral subgroup

Chain $D_{6h} \supset D_6 \supset D_3 \supset C_2$

(To be studied later)
$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry

D_6 is the outer product (\times) product $D_3 \times C_2$ of D_3 and C_2. (Requires C_2 to commute with all of D_3.)

$D_6 = D_3 \times C_2 = \{1, r, r^2, i_1, i_2, i_3\} \times \{1, R_z\}$
$D_6 \supseteq D_2 \supseteq C_2 = D_3 \times C_2$ symmetry and outer product geometry

D_6 is the outer product (\times) product $D_3 \times C_2$ of D_3 and C_2. (Requires C_2 to commute with all of D_3.)

$D_6 = D_3 \times C_2 = \{1, r, r^2, i_1, i_2, i_3\} \times \{1, R_z\}$

× product and D_6 operators. Define hexagonal generator $h(60^\circ)$ of subgroup $C_6 = \{1, h, h^2, h^3, h^4, h^5\}$

$D_6 = D_3 \times C_2 = \{1, r, r^2, i_1, i_2, i_3, 1 \cdot R_z, r \cdot R_z, r^2 \cdot R_z, i_1 \cdot R_z, i_2 \cdot R_z, i_3 \cdot R_z\}$
$D_6 \supseteq D_2 \supseteq C_2 = D_3 \times C_2$ symmetry and outer product geometry

D_6 is the outer product (\times) product $D_3 \times C_2$ of D_3 and C_2. (Requires C_2 to commute with all of D_3.)

$D_6 = D_3 \times C_2 = \{1, r, r^2, i_1, i_2, i_3\} \times \{1, R_z\}$

\times product and D_6 operators. Define hexagonal generator $h_{(60^\circ)}$ of subgroup $C_6 = \{1, h, h^2, h^3, h^4, h^5\}$

$D_6 = D_3 \times C_2 = \{1, r, r^2, i_1, i_2, i_3, 1 \cdot R_z, r \cdot R_z, r^2 \cdot R_z, i_1 \cdot R_z, i_2 \cdot R_z, i_3 \cdot R_z\}$

$D_6 = D_3 \times C_2 = \{1, h^2, h^4, i_1, i_2, i_3, h^3, h^5, h, j_1, j_2, j_3\}$
\(D_6 \supset D_2 \supset C_2 = D_3 \times C_2 \) symmetry and outer product geometry

\(D_6 \) is the outer product \((\times)\) product \(D_3 \times C_2 \) of \(D_3 \) and \(C_2 \). (Requires \(C_2 \) to commute with all of \(D_3 \).)

\(D_6 = D_3 \times C_2 = \{1, r, r^2, i_1, i_2, i_3\} \times \{1, R_z\} \)

\(\times \) product and \(D_6 \) operators. Define hexagonal generator \(h_{(60^\circ)} \) of subgroup \(C_6 = \{1, h, h^2, h^3, h^4, h^5\} \)

\[D_6 = D_3 \times C_2 = \{1, r, r^2, i_1, i_2, i_3, 1 \cdot R_z, r \cdot R_z, r^2 \cdot R_z, i_1 \cdot R_z, i_2 \cdot R_z, i_3 \cdot R_z\} \]

\[D_6 = D_3 \times C_2 = \{1, h^2, h^4, i_1, i_2, i_3, h^3, h^5, h, j_1, j_2, j_3\} \]

Note: \(h^2 = r_{(120^\circ)} \) and \(h^3 = R_z(180^\circ) \) and \(h^4 = r^2 \) and \(h^5 = r \cdot R_z \)
$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry

D_6 is the outer product (×) product $D_3 \times C_2$ of D_3 and C_2. (Requires C_2 to commute with all of D_3.)

$D_6 = D_3 \times C_2 = \{1, r, r^2, i_1, i_2, i_3\} \times \{1, R_z\}$

× product and D_6 operators. Define hexagonal generator $h_{(60^\circ)}$ of subgroup $C_6 = \{1, h, h^2, h^3, h^4, h^5\}$

$D_6 = D_3 \times C_2 = \{1, r, r^2, i_1, i_2, i_3, 1 \cdot R_z, r \cdot R_z, r^2 \cdot R_z, i_1 \cdot R_z, i_2 \cdot R_z, i_3 \cdot R_z\}$

$D_6 = D_3 \times C_2 = \{1, h^2, h^4, i_1, i_2, i_3, h^3, h^5, h, j_1, j_2, j_3\}$

Note: $h^2 = r_{(120^\circ)}$ and $h^3 = R_z_{(180^\circ)}$ and $h^4 = r^2$ and $h^5 = r \cdot R_z$

Electrostatic potential $V(\phi)$ doesn't care which way is "up." Wells remain wells, and barriers remain barriers under all D_6 operations.

NOTE:
The i_a and j_b do not flip over the potential plot.
Review: Symmetry reduction and splitting: Subduced rep \(D^\alpha(D_3)\downarrow C_2 = d_0^2 \oplus d_2^{12} \oplus \ldots\) correlation
Symmetry induction and clustering: Induced rep \(d^a(C_2)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots\) correlation

\(D_3\)-\(C_2\) Coset structure of \(d^{m_2}(C_2)\uparrow D_3\) induced representation basis
\(D_3\)-Projection of \(d^{m_2}(C_2)\uparrow D_3\) induced representation basis
Derivation of Frobenius reciprocity

\(D_6 \supset D_2 \supset C_2 = D_3 \times C_2\) symmetry and outer product geometry

Irreducible characters
Irreducible representations
Correlations with \(D_6\) characters:
...and \(C_2(i_3)\) characters......and \(C_6(1, h^1, h^2, \ldots)\) characters
\(D_6\) symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry \(O_h \supset O \sim T_d \supset T\)
$$D_6 \supset D_2 \supseteq C_2 = D_3 \times C_2$$

Irreducible characters

D_3	1 \{r, r^2\} \{i_1, i_2, i_3\}		
$\chi^A_1 (g)$	1	1	1
$\chi^A_2 (g)$	1	1	-1
$\chi^E_1 (g)$	2	-1	0

\[
\begin{array}{c|ccc|ccc|ccc}
 & D_3 \times C_2^Z & 1 \{r, r^2\} & \{i_1, i_2, i_3\} & 1 \cdot R_z & \{r, r^2\} \cdot R_z & \{i_1, i_2, i_3\} \cdot R_z \\
\hline
A_1 \cdot (A) & 1 \cdot 1 \\
A_2 \cdot (A) & 1 \cdot 1 & 1 \cdot 1 & -1 \cdot 1 & 1 \cdot 1 & 1 \cdot 1 & -1 \cdot 1 \\
E_1 \cdot (A) & 2 \cdot 1 & -1 \cdot 1 & 0 \cdot 1 & 2 \cdot 1 & -1 \cdot 1 & 0 \cdot 1 \\
A_1 \cdot (B) & 1 \cdot 1 & 1 \cdot 1 & 1 \cdot 1 & 1 \cdot (-1) & 1 \cdot (-1) & 1 \cdot (-1) \\
A_2 \cdot (B) & 1 \cdot 1 & 1 \cdot 1 & -1 \cdot 1 & 1 \cdot (-1) & 1 \cdot (-1) & -1 \cdot (-1) \\
E_1 \cdot (B) & 2 \cdot 1 & -1 \cdot 1 & 0 \cdot 1 & 2 \cdot (-1) & -1 \cdot (-1) & 0 \cdot (-1) \\
\end{array}
\]
\[D_6 \supset D_2 \supset C_2 = D_3 \times C_2 \] Irreducible characters

<table>
<thead>
<tr>
<th>(D_3)</th>
<th>1 ({ r, r^2 })</th>
<th>(i_1, i_2, i_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi^A(g))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\chi^{A_2}(g))</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\chi^E(g))</td>
<td>2</td>
<td>-1</td>
</tr>
</tbody>
</table>

\[D_3 \times C_2^Z \begin{array}{ccc|ccc|ccc} \chi^A(g) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi^{A_2}(g) & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ \chi^E(g) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 \\ \end{array} \]

\[D_3 \times C_2^Z \begin{array}{ccc|ccc|ccc} \chi^A(g) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi^{A_2}(g) & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ \chi^E(g) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 \\ \end{array} \]

\[D_3 \times C_2^Z \begin{array}{ccc|ccc|ccc} \chi^A(g) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi^{A_2}(g) & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ \chi^E(g) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 \\ \end{array} \]

\[D_3 \times C_2^Z \begin{array}{ccc|ccc|ccc} \chi^A(g) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \chi^{A_2}(g) & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ \chi^E(g) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 \\ \end{array} \]
$D_6 \supseteq D_2 \supseteq C_2 = D_3 \times C_2$ Irreducible characters

Recall $C_2 \times C_2 = D_2 = \{1, R_x, R_z, R_y\}$ characters

$Lect.12$ p.50-60

D_6 has $D_2 = \{1, i_3, h^3, j_3\}$ subgroup
\[D_6 \supset D_2 \supseteq C_2 = D_3 \times C_2 \] Irreducible characters

Recall \(C_2 \times C_2 = D_2 = \{1, R_x, R_y, R_z\} \) characters

(Lect. 12 p. 50-60)

\(D_6 \) has \(D_2 = \{1, i_3, h^3, j_3\} \) subgroup

\[
\begin{array}{c|ccc|c|ccc}
D_3 & 1 \{r, r^2\} & \{i_1, i_2, i_3\} & C_2^Z & 1 \{r\} & \{i_1, i_2, i_3\} & 1 \cdot R_z & \{r, r^2\} \cdot R_z & \{i_1, i_2, i_3\} \cdot R_z \\
\hline
1 & 1 & 1 & (A) & 1 & 1 & 1 & 1 & 1 \\
D & 1 & 1 & (A) & 1 & 1 & -1 & 1 & -1 \\
D & 1 & 1 & (B) & 1 & -1 & 1 & 0 & -1 \\
D & 1 & 1 & (B) & 1 & -1 & -1 & 1 & -1 \\
D & 1 & 1 & (B) & 2 & -1 & 0 & -1 & 0 \\
\hline
D_3 \times C_2^Z & 1 \{h^2, h^4\} & \{i_1, i_2, i_3\} & h^3 & \{h, h^5\} & \{j_1, j_2, j_3\} & 1 & 1 & 1 & 1 \\
\hline
\hline
A_1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
A_2 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\
E_2 & 2 & -1 & 0 & 2 & -1 & 0 & 0 & 0 \\
B_1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 \\
B_2 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & 1 \\
E_1 & 2 & -1 & 0 & -2 & 1 & 0 & 0 & 0 \\
\hline
\end{array}
\]
$D_6 \supseteq D_2 \supseteq C_2 = D_3 \times C_2$ Irreducible characters

<table>
<thead>
<tr>
<th>D_3</th>
<th>1</th>
<th>${r, r^2}$</th>
<th>${i_1, i_2, i_3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^A(g)$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\chi^B(g)$</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>$\chi^C(g)$</td>
<td>2</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

$C_2^\times C_2 = 1 \{r, r^2\} \{i_1, i_2, i_3\}$ characters

$(Lect.12.p.50-60)$

D_6 has $D_2 = \{1, i_3, h^3, j_3\}$ subgroup

$R_z(180^\circ)$

D_2

<table>
<thead>
<tr>
<th>1</th>
<th>R_X</th>
<th>R_Z</th>
<th>R_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_X</td>
<td>1</td>
<td>R_Y</td>
<td>R_Z</td>
</tr>
<tr>
<td>R_Z</td>
<td>R_Y</td>
<td>1</td>
<td>R_X</td>
</tr>
<tr>
<td>R_Y</td>
<td>R_Z</td>
<td>R_X</td>
<td>1</td>
</tr>
</tbody>
</table>

$D_3 \times C_2^Z$

$X\text{-}rotation$ or $180^\circ \text{X\text{-}flip i}_3$

A_1 or B_1 vs A_2 or B_2

$(+1)$ vs (-1)

Let $X\text{-}rotation$ or $60^\circ \text{hex-Z rotation h}$

A_p vs B_p

$(+1)$ vs (-1)

So also does: $180^\circ h^3$
Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3)\downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^a(C_2)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

$D_3\!-\!C_2$ Coset structure of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis
D_3-Projection of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis
Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_6 characters:
...and $C_2(i_3)$ characters......and $C_6(1,h^1,h^2,\ldots)$ characters
D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$
$D_6 \cong D_2 \cong C_2 = D_3 \times C_2$ Irreducible representations

| g = | 1 , | r = h^2 , | r^2 = h^4 , | i_1 | i_2 | i_3 | h^3 | h^3 r = h^5 | h^3 r^2 = h^1 | h^3 i_1 = j_1 | h^3 i_2 = j_2 | h^3 i_3 = j_3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $D_{A_1}^I (g)$ | 1 , | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $D_{A_2}^I (g)$ | 1 , | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 |
| $D_{E_2}^I (g)$ | (1 0) | (1 0) | (1 0) | (1 0) | (1 0) | (1 0) | (1 0) | (1 0) | (1 0) | (1 0) | (1 0) |
| $D_{E_1}^I (g)$ | (0 1) | (0 1) | (0 1) | (0 1) | (0 1) | (0 1) | (0 1) | (0 1) | (0 1) | (0 1) | (0 1) |

Diagrams showing the rotations and symmetries of D_6.
\[D_6 \triangleright D_2 \triangleright C_2 = D_3 \times C_2 \]

Irreducible representations

<table>
<thead>
<tr>
<th>(g)</th>
<th>(1)</th>
<th>(r = h^2)</th>
<th>(r^2 = h^4)</th>
<th>(i_1)</th>
<th>(i_2)</th>
<th>(i_3)</th>
<th>(h^3)</th>
<th>(h^3 \mathbf{r} = h^5)</th>
<th>(h^3 \mathbf{r}^2 = h^1)</th>
<th>(h^3 i_1 = j_1)</th>
<th>(h^3 i_2 = j_2)</th>
<th>(h^3 i_3 = j_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D^A_1(g))</td>
<td>(\begin{pmatrix} 1 & 1 \end{pmatrix})</td>
<td></td>
</tr>
<tr>
<td>(D^A_2(g))</td>
<td>(\begin{pmatrix} 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 \end{pmatrix})</td>
<td></td>
</tr>
<tr>
<td>(D^E_2(g))</td>
<td>(\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix})</td>
<td></td>
</tr>
<tr>
<td>(D^B_1(g))</td>
<td>(\begin{pmatrix} 1 & 1 \end{pmatrix})</td>
<td></td>
</tr>
<tr>
<td>(D^B_2(g))</td>
<td>(\begin{pmatrix} 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 \end{pmatrix})</td>
<td></td>
</tr>
<tr>
<td>(D^E_1(g))</td>
<td>(\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix})</td>
<td></td>
</tr>
</tbody>
</table>

Let \(X \)-rotation or \(180^\circ \) \textbf{X-flip} \(i_3 \)
determines

\[A_1 \text{ or } B_1 \text{ vs } A_2 \text{ or } B_2 \]

\((+1) \text{ vs } (-1) \)
Irreducible representations

\[D_6 \cong D_2 \cong C_2 = D_3 \times C_2 \]

Let \(\mathbf{X} \)-rotation or \(\mathbf{Z} \)-rotation determine:

- \(A_1 \) or \(B_1 \) vs \(A_2 \) or \(B_2 \)
- \(+1 \) vs \(-1\)

Let unit translation or 60° hex-\(\mathbf{Z} \) rotation determine:

- \(A_p \) vs \(B_p \)
- \(+1 \) vs \(-1\)

So also does: 180° \(\mathbf{h}^3 \)
$D_6 \triangleleft D_2 \triangleleft C_2 = D_3 \times C_2$ Irreducible representations

Let X-rotation or 180° X-flip i_3 determine A_1 or B_1 vs A_2 or B_2 (+1) vs (-1)

Let unit translation or 60° hex-Z rotation h determine A_p vs B_p (+1) vs (-1)

So also does: $180^\circ h^3$

Y-rotation or 180° flip j_3 is product $i_3 h^3 = h^3 i_3$
Review: Symmetry reduction and splitting: Subduced irep $D^\alpha(D_3) \downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots$ correlation
Symmetry induction and clustering: Induced rep $d^a(C_2) \uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

D_3-C_2 Coset structure of $d^{m_2}(C_2) \uparrow D_3$ induced representation basis
D_3-Projection of $d^{m_2}(C_2) \uparrow D_3$ induced representation basis
Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry
Irreducible characters
Irreducible representations
Correlations with D_6 characters:
...and $C_2(i_3)$ characters......and $C_6(1, h^1, h^2, \ldots)$ characters
D_6 symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$
Correlations by D_6 characters: $\chi^\mu_g(D_6) =$

\[
\begin{array}{c|cccc|ccc}
D_3 \times C^\infty_2 & 1 & \{h^2, h^4\} & \{i_1, i_2, i_3\} & h^3 & \{h, h^5\} & \{j_1, j_2, j_3\} \\
\hline
A_1 & 1 & 1 & 1 & 1 & 1 & 1 \\
A_2 & 1 & 1 & -1 & 1 & 1 & -1 \\
E_2 & 2 & -1 & 0 & 2 & -1 & 0 \\
B_1 & 1 & 1 & 1 & -1 & -1 & -1 \\
B_2 & 1 & 1 & -1 & -1 & -1 & 1 \\
E_1 & 2 & -1 & 0 & -2 & 1 & 0 \\
\end{array}
\]

...and $C_2(i_3)$ characters:

\[
\begin{array}{c|cc|c}
C^X_2 & 1 & i_3 & \\
\hline
0_2 & 1 & 1 & \\
l_2 & 1 & -1 & \\
\end{array}
\]

Let X-rotation or $180^\circ X$-flip i_3 determine A_1 or B_1 vs A_2 or B_2 (+1) vs (-1)

\[
\begin{array}{c|cc|c}
D_6 \supseteq C^X_2(i_3) & 0_2 & l_2 \\
\hline
A_1 & 1 & . \\
A_2 & . & 1 \\
E_2 & 1 & 1 \\
B_1 & 1 & . \\
B_2 & . & 1 \\
E_1 & 1 & 1 \\
\end{array}
\]
Correlations by D_6 characters: $\chi^\mu_g(D_6) =$

...and $C_2(i_3)$ characters:

\[
\begin{array}{c|cc}
C_2^X & 1 & i_3 \\
\hline
0_2 & 1 & 1 \\
1_2 & 1 & -1 \\
\end{array}
\]

...and $C_6(1,h^1,h^2,...)$ characters:

Let X-rotation or 180° X-flip i_3 determine A_1 or B_1 vs A_2 or B_2 (+1) vs (-1)

Let unit translation or 60° hex-Z rotation h determine A_p vs B_p (+1) vs (-1)

So also does: $180^\circ h^3$

\[
\begin{array}{c|c|c|c|c|c|c}
D_3 \times C_2^z & 1 & \{h^2,h^4\} & \{i_1,i_2,i_3\} & h^3 & \{h,h^5\} & \{j_1,j_2,j_3\} \\
\hline
A_1 & 1 & 1 & 1 & 1 & 1 & 1 \\
A_2 & 1 & 1 & -1 & 1 & 1 & -1 \\
E_2 & 2 & -1 & 0 & 2 & -1 & 0 \\
\hline
B_1 & 1 & 1 & 1 & -1 & -1 & -1 \\
B_2 & 1 & 1 & -1 & -1 & -1 & 1 \\
E_1 & 2 & -1 & 0 & -2 & 1 & 0 \\
\end{array}
\]

$(\varepsilon = e^{\pi i/3})$

\[\varepsilon=\frac{e^{\pi i/3}}{3}\]
Correlations by D_6 characters: $\chi^\mu(D_6) =$

<table>
<thead>
<tr>
<th>$D_3 \times C_2^Z$</th>
<th>$1 {h^2,h^4}$</th>
<th>${i_1,i_2,i_3}$</th>
<th>h^3</th>
<th>${h,h^5}$</th>
<th>${j_1,j_2,j_3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>1 1</td>
<td>-1</td>
<td>1</td>
<td>1 -1</td>
<td>0</td>
</tr>
<tr>
<td>E_2</td>
<td>2 -1</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>B_1</td>
<td>1 1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B_2</td>
<td>1 1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E_1</td>
<td>2 -1</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

...and $C_2(i_3)$ characters:

<table>
<thead>
<tr>
<th>C_2^X</th>
<th>i_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

...and $C_6(1,h^1,h^2,...)$ characters:

Let X-rotation or

180° X-flip i_3

determine A_1 or B_1 vs A_2 or B_2

(1) vs (-1)

So also does: 180° h^3

Let unit translation or

60° hex-Z rotation h

determine A_p vs B_p

(+1) vs (-1)

180° flip j_3

is product $i_3h^3 = h^3i_3$

$D_6 \supset C_2^X(i_3)$

<table>
<thead>
<tr>
<th>$D_6 \supset C_6(h)$</th>
<th>0_6</th>
<th>1_6</th>
<th>2_6</th>
<th>3_6</th>
<th>4_6</th>
<th>5_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>A_2</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>E_2</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>B_2</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>E_1</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

$\varepsilon = e^{2\pi/3}$
Review: Symmetry reduction and splitting: Subduced irep \(D^\alpha(D_3) \downarrow C_2 = d^{02} \oplus d^{12} \oplus \ldots \) correlation
Symmetry induction and clustering: Induced rep \(d^a(C_2) \uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots \) correlation

\(D_3 \rhd C_2 \) Coset structure of \(d^{m_2}(C_2) \uparrow D_3 \) induced representation basis
\(D_3 \rhd \) Projection of \(d^{m_2}(C_2) \uparrow D_3 \) induced representation basis
Derivation of Frobenius reciprocity

\(D_6 \rhd D_2 \rhd C_2 = D_3 \times C_2 \) symmetry and outer product geometry
- Irreducible characters
- Irreducible representations
- Correlations with \(D_6 \) characters:
 ...and \(C_2(i_3) \) characters......and \(C_6(1,h^1,h^2,...) \) characters
- \(D_6 \) symmetry and induced representation band structure

Introduction to octahedral tetrahedral symmetry\(O_h \supset O \sim T_d \supset T \)
For low energy deep in potential local C_2 symmetry dominates and the bands $A_1E_1E_2B_1$ and $B_2E_2E_1A_2$ that become tight clusters

<table>
<thead>
<tr>
<th>$D_3 \supset C_2(j_3)$</th>
<th>0_2</th>
<th>1_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>A_2</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>E_2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B_2</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>E_1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

For high energy above potential barriers local C_2 symmetry is replaced by global C_6 angular momentum doublets such as $E_{\pm m}, A_1A_2,$ and B_1B_2
For low energy deep in potential local C_2 symmetry dominates and the bands $A_1E_1E_2B_1$ and $B_2E_2E_1A_2$ then become tight clusters.

For high energy above potential barriers local C_2 symmetry is replaced by global C_6 angular momentum doublets such as $E_\pm m$, A_1A_2, and B_1B_2.

$$D_6 \supset C_3(h)$$

<table>
<thead>
<tr>
<th></th>
<th>0_6</th>
<th>1_6</th>
<th>2_6</th>
<th>3_6</th>
<th>4_6</th>
<th>5_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>E_2</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>B_2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>B_1</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>E_1</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1</td>
</tr>
</tbody>
</table>

$$D_6 \supset C_2(j_3)$$

<table>
<thead>
<tr>
<th></th>
<th>0_2</th>
<th>l_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>A_2</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>E_2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B_2</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>E_1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Symmetry reduction and splitting: Subduced rep $D^\alpha(D_3)\downarrow C_2 = d_0^2 \oplus d_1^2 \oplus \ldots$ correlation

Symmetry induction and clustering: Induced rep $d^a(C_2)\uparrow D_3 = D^\alpha \oplus D^\beta \oplus \ldots$ correlation

D_3-C_2 Coset structure of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis

D_3-Projection of $d^{m_2}(C_2)\uparrow D_3$ induced representation basis

Derivation of Frobenius reciprocity

$D_6 \supset D_2 \supset C_2 = D_3 \times C_2$ symmetry and outer product geometry

Irreducible characters

Irreducible representations

Correlations with D_6 characters:

...and $C_2(i_3)$ characters......and $C_6(1,h^1,h^2,...)$ characters

D_6 symmetry and induced representation band structure

Introduction to octahedral/tetrahedral symmetry $O_h \supset O \sim T_d \supset T$
$O_h \supset O \supset D_4 \supset C_{4v} \supset C_{2v}$ subgroup chain

...(one of very many)
$O_h \supset O \supset D_4 \supset C_4$ subgroup chain

...(one of my favorites)
Three groups: O, D_4, and D_3 let you “do” all the other 32 crystal point groups.
Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$

Octahedral-cubic O symmetry

Order $^pO = 6$ hexahedron squares · 4 pts $= 24$
$= 8$ octahedron triangles · 3 pts $= 24$
$= 12$ lines · 2 pts $= 24$ positions
Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$

Octahedral-cubic O symmetry

Order $^O = 6$ hexahedron squares $\cdot 4$ pts $= 24$
$= 8$ octahedron triangles $\cdot 3$ pts $= 24$
$= 12$ lines $\cdot 2$ pts $= 24$ positions

Octahedral group O operations

Class of 1: 1

Class of 6: $\pm 90^\circ$ rotations on $[100]$ axes

Class of 3: 180° rotations on $[100]$ axes

Class of 8: 120° rotations on $[111]$ axes

Tuesday, March 31, 2015
Introduction to octahedral/tetrahedral symmetry $O_h \supseteq O \sim T_d \supseteq T$

Octahedral-cubic O symmetry

Order $\circ O = 6$ hexahedron squares \cdot 4 pts $= 24$
$= 8$ octahedron triangles \cdot 3 pts $= 24$
$= 12$ lines \cdot 2 pts $= 24$ positions

Eight classes of symmetry:

1. Class of 1: 1
 - $r_k = r_k$

2. Class of 8: 120° rotations on [111] axes

3. Class of 6 $\pm 90^\circ$ rotations on [100] axes

4. Class of 3 180° rotations on [100] axes
Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$

Octahedral-cubic O symmetry

Order $\circ O = 6$ hexahedron squares \cdot 4 pts $= 24$

$= 8$ octahedron triangles \cdot 3 pts $= 24$

$= 12$ lines \cdot 2 pts $= 24$ positions

Octahedral group O operations

Class of 1: $\mathbf{1}$

$r_k = r_k$

Class of 8: 120° rotations on $[111]$ axes

$\rho_{x,y,z} = R_{1,2,3}^2$

Class of 3 180° rotations on $[100]$ axes

Class of 2: $r_k^2 = r_k^{-1}$
Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$

Octahedral-cubic O symmetry

Order $^\circ O = 6$ hexahedron squares \cdot 4 pts $= 24$
$= 8$ octahedron triangles \cdot 3 pts $= 24$
$= 12$ lines \cdot 2 pts $= 24$ positions

Octahedral group O operations

Class of 1: 1
$r_k = r_k$

Class of 8: 120° rotations on [111] axes
$R_{x,y,z} = R_{1,2,3}$

Class of 3 180° rotations on [100] axes
$\rho_{x,y,z} = R_{1,2,3}^2$

Class of 6 $\pm 90°$ rotations on [100] axes
$R_{x,y,z} = R_{1,2,3} = R_{1,2,3}^{-1}$
Introduction to octahedral/tetrahedral symmetry $O_h \supset O \sim T_d \supset T$

Octahedral-cubic O symmetry

Order $O = 6$ hexahedron squares · 4 pts = 24
$= 8$ octahedron triangles · 3 pts = 24
$= 12$ lines · 2 pts = 24 positions

Octahedral group O operations

Class of 1: 1
$r_k = r_k$

Class of 8: 120° rotations on [111] axes

Class of 6: ±90° rotations on [100] axes

Class of 3: 180° rotations on [100] axes

Class of 8: 120° rotations on [111] axes

Class of 1: 1

$\rho_{x,y,z} = R_{1,2,3}$
$\tilde{R}_{x,y,z} = R_{1,2,3}$

$R_{x,y,z} = R_{1,2,3}$

$\tilde{R}_{x,y,z} = R_{1,2,3}^{-1}$

$\tilde{R}_{x,y,z} = R_{1,2,3}$
Introduction to octahedral/ tetrahedral symmetry \(O_h \supset O \sim T_d \supset T\)

Octahedral-cubic O symmetry

Octahedral group O operations

Class of 1: \(1\)
\[r_k = r_k \]

Class of 8:
\(\pm 120^\circ\) rotations on [111] axes
\[r_k^2 = r_k^{-1} \]
\[\rho_{x,y,z} = R_{1,2,3} \]

Class of 6:
\(\pm 90^\circ\) rotations on [100] axes
\[R_{x,y,z} = R_{1,2,3} \]

Class of 3:
180\(^\circ\) rotations on [100] axes
\[\rho_{x,y,z} = R_{1,2,3} \]

Class of 8:
\(\pm 120^\circ\) rotations on [111] axes
\[\rho_{x,y,z} = R_{1,2,3} \]

Class of 6:
180\(^\circ\) rotations on [110] diagonals
\[\rho_i = i_k \]

Order \(\circ O = 6\) hexahedron squares \(\cdot 4\) pts = 24
= 8 octahedron triangles \(\cdot 3\) pts = 24
= 12 lines \(\cdot 2\) pts = 24 positions
Introduction to octahedral/ tetrahedral symmetry $O_h \supset O \sim T_d \supset T$

Octahedral-cubic O symmetry

Octahedral group O operations

- **Class of 1:** 1
 - $r_k = r_k$

- **Class of 8:** $\pm 120^\circ$ rotations on [111] axes
 - $R_{x,y,z} = R_{1,2,3}$

- **Class of 6:** $\pm 90^\circ$ rotations on [100] axes
 - $\rho_{x,y,z} = R_{1,2,3}^2$

- **Class of 6:** 180° rotations on [100] axes

- **Class of 3:** 180° rotations on [110] diagonals
 - $i_k = i_k$

- **Class of 8:** $\pm 120^\circ$ rotations on [111] axes

Tetrahedral symmetry becomes Icosahedral

Order $\circ O = 6$ hexahedron squares $\cdot 4$ pts $= 24$

$= 8$ octahedron triangles $\cdot 3$ pts $= 24$

$= 12$ lines $\cdot 2$ pts $= 24$ positions

(If rectangles have Golden Ratio $1 + \sqrt{5}/2$)

Tuesday, March 31, 2015
Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$

Octahedral groups $O_h \supset O \sim T_d \supset T$

Figure 4.1.5 The full octahedral group (O_h) and four non-Abelian subgroups T, T_h, T_d, and O. The Abelian D_2 subgroup of T is indicated also.
Introduction to octahedral tetrahedral symmetry $O_h \supset O \sim T_d \supset T$

Octahedral groups $O_h \supset O \sim T_d \supset T$

Figure 4.1.5 The full octahedral group (O_h) and four non-Abelian subgroups T, T_h, T_d, and O. The Abelian D_2 subgroup of T is indicated also.
Introduction to octahedral tetrahedral symmetry \(O_h \supset O \sim T_d \supset T \)

Octahedral groups \(O_h \supset O \sim T_d \) and \(O_h \supset T_h \supset T \)

Figure 4.1.5 The full octahedral group \((O_h) \) and four non-Abelian subgroups \(T, T_h, T_d, \) and \(O \). The Abelian \(D_2 \) subgroup of \(T \) is indicated also.

Fig. 4.1.5 from Principles of Symmetry, Dynamics and Spectroscopy
Octahedral rotation product Table F.2.1 from Principles of Symmetry, Dynamics and Spectroscopy

<table>
<thead>
<tr>
<th>1</th>
<th>r_i</th>
<th>r_2</th>
<th>r_3</th>
<th>r_4</th>
<th>r_5</th>
<th>r_6</th>
<th>r_7</th>
<th>r_8</th>
<th>r_9</th>
<th>r_{10}</th>
<th>r_{11}</th>
<th>r_{12}</th>
<th>r_{13}</th>
<th>r_{14}</th>
<th>r_{15}</th>
<th>r_{16}</th>
<th>r_{17}</th>
<th>r_{18}</th>
<th>r_{19}</th>
<th>r_{20}</th>
<th>r_{21}</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_2</td>
<td>-r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_3</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>-r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_4</td>
<td>-r_{21}</td>
<td>-r_{22}</td>
<td>r_{23}</td>
<td>-r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_5</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>-r_{24}</td>
<td>-r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_6</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>-r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_7</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>-r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_8</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_9</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_{10}</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_{11}</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_{12}</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_{13}</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_{14}</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_{15}</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
<tr>
<td>r_{16}</td>
<td>r_{21}</td>
<td>r_{22}</td>
<td>r_{23}</td>
<td>r_{24}</td>
<td>r_{25}</td>
<td>r_{26}</td>
<td>r_{27}</td>
<td>r_{28}</td>
<td>r_{29}</td>
<td>r_{30}</td>
<td>r_{31}</td>
<td>r_{32}</td>
<td>r_{33}</td>
<td>r_{34}</td>
<td>r_{35}</td>
<td>r_{36}</td>
<td>r_{37}</td>
<td>r_{38}</td>
<td>r_{39}</td>
<td>r_{40}</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table represents the octahedral rotation product and is derived from the principles of symmetry, dynamics, and spectroscopy.
Example: $G=O$ Centrum: $\kappa(O) = \sum_{\alpha} (\ell^\alpha)^0 = 1^0 + 1^0 + 2^0 + 3^0 + 3^0 = 5$

Cubic-Octahedral Group O

Rank: $\rho(O) = \sum_{\alpha} (\ell^\alpha)^l = 1^1 + 1^1 + 2^1 + 3^1 + 3^1 = 10$

Order: $^0(O) = \sum_{\alpha} (\ell^\alpha)^0 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 = 24$

<table>
<thead>
<tr>
<th>O group</th>
<th>$g = 1$</th>
<th>r_{1-4}</th>
<th>ρ_{xyz}</th>
<th>R_{xyz}</th>
<th>i_{1-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{\kappa g}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\alpha = A_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\alpha = A_2$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>$\alpha = E$</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\alpha = T_1$</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>$\alpha = T_2$</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

$O \supset C_4$

$O \supset C_3$

$\mathcal{O} \supset C_4$

$\mathcal{O} \supset C_3$

$\rho = (0)_4 (1)_4 (2)_4 (3)_4 = (-1)_4$

$\rho = (0)_3 (1)_3 (2)_3 = (-1)_3$
Primary AET species mixing increases with distance from "separatrix".

Observed repeating sequence(s)...

Local correlations explain clustering...
... but what about spacing and ordering?...
...and physical consequences?
Deriving $D_3 \sim C_{3v}$ products - By group definition $|g\rangle = g |I\rangle$ of position ket $|g\rangle$