
Group Theory in Quantum Mechanics
Lecture 13 (3.05.15) 

CN symmetry systems coupled, uncoupled, and re-coupled
(Geometry of U(2) characters - Ch. 6-12 of Unit 3 )

(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-12 of Ch. 2 )

Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
                ∞-Square well paths analyzed using Bohr rotor paths
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Type-AB avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Crystal-Point Group Zoo
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Fig. 12.2.6 Comparison of eigensolutions for 

(a) Infinite square well, and (b) Bohr rotor.

m = ±3

m = ±2

m = ±1

m = 0

n = 3

n = 2

n = 1

φ=0 φ=πφ=-π

W W W

(a) Infinite Square Well (b) Bohr Rotor

φ=0 φ=πφ=-π

L =2W

∞-well zero-point
energy

sin1·φ

cos1·φ

cos0·φ

sin1·φ

sin2φ

cos2φ

sin2φ

sin3φ

cos3φ

sin3φ

m=0, ±1, ±2, ±3,...are momentum quanta 
in wavevector formula: km=2πm/L    
(km=m   if: L=2π)

Review: ∞-Square well PE & Bohr rotor
From QTCA Unit 5 Ch. 12

forbids 
m=0

forbids 
m=0

only allows
standing 

sine waves
sin(nφ)

forbids 
m=0

forbids 
m=0

m = ±3

m = ±2

m = ±1

m = 0

n = 3

n = 2

n = 1

φ=0 φ=πφ=-π

W W W

(a) Infinite Square Well (b) Bohr Rotor

φ=0 φ=πφ=-π

L =2W

∞-well zero-point
energy

sin1·φ

cos1·φ

cos0·φ

sin1·φ

sin2φ

cos2φ

sin2φ

sin3φ

cos3φ

sin3φ

allows moving waves
e±iφ=cos(nφ)±i sin(nφ)

allows 
m=0 singlet

do
ub

le
t-d

eg
en

er
ac

y
si

ng
le

t (
no

n-
de

ge
ne

ra
te

)
do

ub
le

t
si

ng
le

t 
do

ub
le

t
si

ng
le

t 

  Imagining 
"wrap-around" 
φ-coordinate  

1/2

1/40

-1/4
-1/2

+π /2
−π /2

+π−π

3Thursday, March 5, 2015



Fig. 12.2.6 Comparison of eigensolutions for 

(a) Infinite square well, and (b) Bohr rotor.

m = ±3

m = ±2

m = ±1

m = 0

n = 3

n = 2

n = 1

φ=0 φ=πφ=-π

W W W

(a) Infinite Square Well (b) Bohr Rotor

φ=0 φ=πφ=-π

L =2W

∞-well zero-point
energy

sin1·φ

cos1·φ

cos0·φ

sin1·φ

sin2φ

cos2φ

sin2φ

sin3φ

cos3φ

sin3φ

Em= (km)2/2M = m2[h2/2ML2]
= m2 hυ1 = m2 ω1 

m=0, ±1, ±2, ±3,...are momentum quanta 
in wavevector formula: km=2πm/L    
(km=m   if: L=2π)

fundamental Bohr ∠-frequency 
ω1=2πυ1 
lowest transition (beat) frequency 
υ1 =(E1-E0)/h  (E0 is defined as zero)

From QTCA Unit 5 Ch. 12

only allows
standing 

sine waves
sin(nφ)

allows moving waves
e±iφ=cos(nφ)±i sin(nφ)

allows 
m=0

forbids 
m=0

forbids 
m=0

do
ub

le
t-d

eg
en

er
ac

y
si

ng
le

t (
no

n-
de

ge
ne

ra
te

)
do

ub
le

t
si

ng
le

t 
do

ub
le

t
si

ng
le

t 

singlet

Review: ∞-Square well PE & Bohr rotor

4Thursday, March 5, 2015



Δm = 9

2Δx = 4 %
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Review: ∞-Square well PE  paths analyzed using Bohr rotor paths
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sine wave components.

   So how is the ∞-well “flipped
revival explained?

Review: ∞-Square well PE  paths analyzed using Bohr rotor paths
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= 1.5τbeat

t = 1.0000τ1
= 3.0τbeat

After only 50 round-trips  
M's wave does a partial revival 
as it makes an upside down-delta 
function around x=0.8W.

4. Bohr rotor half-time revival
is same-side-up copy of initial 
peak on opposite side of ring.
So that upside-down Bohr-image 
will appear upside-down on the 
other side at half-time revival. 

1.
All ∞-well peak must be made of
sine wave components.

2. Bohr rotor peak made of sine wave 
components is anti-symmetric, so an 
upside-down mirror image peak must 
accompany any peak.

3. So how is the ∞-well “flipped
revival explained?

Review: ∞-Square well PE  paths analyzed using Bohr rotor paths
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⎞
⎠⎟ = −s− p

m

cp
m = cos m ⋅ pπ

7
⎛
⎝⎜

⎞
⎠⎟
= c− p

m

where :

ω m(14) = 2r(1− cos 2πm
14

)

 HEB(14) gives eigensolution of a 6-by-6 constrained Bloch matrix HCM(6)

0

0
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n=14

 HEB(14) gives eigensolution of a 6-by-6 constrained Bloch matrix HCM(6) using its sine-waves only
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 HEB(14) gives eigensolution of a 6-by-6 constrained Bloch matrix HCM(6) using its sine-waves only
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Comparing eigenvalues of HEB(6) and HCM(6)using sine-waves of HEB(14)

-16

-26

p=1
p=0

p=2

p=3

p=4

p=5

p=6
p=7

p=-6

p=-5

p=-4

p=-3

p=-2

p=-1

N =14

p=1
p=0

p=2

p=3

p=4

p=5

p=6
p=7

N=6
r

rr

r

r

r
p=0

p=1

p=2 p=3

p=4

p=5

2r -r · · · -r
-r 2r -r · · ·
· -r 2r -r · ·
· · -r 2r -r ·
· · · -r 2r -r
-r · · · -r 2r

r

rr

r

r
rp=0

p=1

p=2 p=3

p=4

p=5r

N =6

2r -r · · · 0
-r 2r -r · · ·
· -r 2r -r · ·
· · -r 2r -r ·
· · · -r 2r -r
0 · · · -r 2r

(blocked)

 HEB(14) gives eigensolution of a 6-by-6 constrained Bloch matrix HCM(6) using its sine-waves only
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 HEB(14) gives eigensolution of a 6-by-6 constrained Bloch matrix HCM(6) using its sine-waves only
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Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
                 ∞-Square well paths analyzed using Bohr rotor paths
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Group Zoo
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p=2
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p=4
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p=6
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m=2

m=3

m=4

m=5

m=6

p= 1 2 3 4 5 6p= 1 2 3 4 5 6

sp
(m)=sin(mpπ/7)

 HEB(14) gives eigensolution of a 6-by-6 constrained Bloch matrix HCM(6) using its sine-waves only

Band-It simulation is
Mac OS 9 application
not yet converted to web
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V(x)

x x=b x=a

k'' k' k
E

Classical
Region (E > V) Non-Classical

Region (E < V)
Non-Classical
Region (E < V)

Band-It simulation is
Mac OS 9 application
not yet converted to web

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

Fig. 13.1.1 Non-constant potential V(x) approximated by a series of small constant-V steps. 

Between each step potential, kinetic energy, and k are assumed constant.

  
ΨE x,0( ) = Reikx + Le−i kx
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k'' k' k
E
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Region (E > V) Non-Classical
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Non-Classical
Region (E < V)

Band-It simulation is
Mac OS 9 application
not yet converted to web

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

Fig. 13.1.1 Non-constant potential V(x) approximated by a series of small constant-V steps. 

Between each step potential, kinetic energy, and k are assumed constant.

  
ΨE x,0( ) = Reikx + Le−i kx

x-derivative is denoted by DΨ

 
∂
∂ x  
ΨE x,0( )=ik Reikx−ikLe−ikx≡DΨE x,0( )
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k'' k' k
E
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Region (E > V) Non-Classical

Region (E < V)
Non-Classical
Region (E < V)

Band-It simulation is
Mac OS 9 application
not yet converted to web

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

Fig. 13.1.1 Non-constant potential V(x) approximated by a series of small constant-V steps. 

Between each step potential, kinetic energy, and k are assumed constant.

  
ΨE x,0( ) = Reikx + Le−i kx

x-derivative is denoted by DΨ

 
∂
∂ x  
ΨE x,0( )=ik Reikx−ikLe−ikx≡DΨE x,0( )

Relations between the pair  (Ψ, DΨ) and amplitudes (R, L) just above x=a.

 

Ψ
DΨ

⎛

⎝⎜
⎞

⎠⎟
= eikx e−ikx

ikeikx −ike−ikx

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R
L

⎛

⎝⎜
⎞

⎠⎟
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V(x)

x x=b x=a

k'' k' k
E

Classical
Region (E > V) Non-Classical

Region (E < V)
Non-Classical
Region (E < V)

Band-It simulation is
Mac OS 9 application
not yet converted to web

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

Fig. 13.1.1 Non-constant potential V(x) approximated by a series of small constant-V steps. 

Between each step potential, kinetic energy, and k are assumed constant.

  
ΨE x,0( ) = Reikx + Le−i kx

x-derivative is denoted by DΨ

 
∂
∂ x  
ΨE x,0( )=ik Reikx−ikLe−ikx≡DΨE x,0( )

Relations between the pair  (Ψ, DΨ) and amplitudes (R, L) just above x=a.

  

Ψ
DΨ

⎛

⎝⎜
⎞

⎠⎟
= eikx e−ikx

ikeikx −ike−ikx

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R
L

⎛

⎝⎜
⎞

⎠⎟
, R

L
⎛

⎝⎜
⎞

⎠⎟
= i

2k
−ike−ikx −e−ikx

−ikeikx eikx

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ψ
DΨ

⎛

⎝⎜
⎞

⎠⎟

(Inverted)
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Region (E > V) Non-Classical
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Non-Classical
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Band-It simulation is
Mac OS 9 application
not yet converted to web

How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

Fig. 13.1.1 Non-constant potential V(x) approximated by a series of small constant-V steps. 

Between each step potential, kinetic energy, and k are assumed constant.

  
ΨE x,0( ) = Reikx + Le−i kx

x-derivative is denoted by DΨ

 
∂
∂ x  
ΨE x,0( )=ik Reikx−ikLe−ikx≡DΨE x,0( )

Relations between the pair  (Ψ, DΨ) and amplitudes (R, L) just above x=a.

  

Ψ
DΨ

⎛

⎝⎜
⎞

⎠⎟
= eikx e−ikx

ikeikx −ike−ikx

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R
L

⎛

⎝⎜
⎞

⎠⎟
, R

L
⎛

⎝⎜
⎞

⎠⎟
= i

2k
−ike−ikx −e−ikx

−ikeikx eikx

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ψ
DΨ

⎛

⎝⎜
⎞

⎠⎟

Relations on the other side of the step boundary just below x=a. 

  

Ψ '
DΨ '

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= eik 'x e−ik 'x

ik 'eik 'x −ik 'e−ik 'x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R '
L '

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,
R '
L '

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= i

2k '
−ik 'e−ik 'x −e−ik 'x

−ik 'eik 'x eik 'x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Ψ '
DΨ '

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(Inverted)

(Inverted)
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k'' k' k
E
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Region (E > V) Non-Classical

Region (E < V)
Non-Classical
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How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

Between each step potential, kinetic energy, and k are assumed constant.

  
ΨE x,0( ) = Reikx + Le−i kx

x-derivative is denoted by DΨ

 
∂
∂ x  
ΨE x,0( )=ik Reikx−ikLe−ikx≡DΨE x,0( )

Relations between the pair  (Ψ, DΨ) and amplitudes (R, L) just above x=a.

  

Ψ
DΨ

⎛

⎝⎜
⎞

⎠⎟
= eikx e−ikx

ikeikx −ike−ikx

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R
L

⎛

⎝⎜
⎞

⎠⎟
, R

L
⎛

⎝⎜
⎞

⎠⎟
= i

2k
−ike−ikx −e−ikx

−ikeikx eikx

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ψ
DΨ

⎛

⎝⎜
⎞

⎠⎟

  

Ψ '
DΨ '

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= eik 'x e−ik 'x

ik 'eik 'x −ik 'e−ik 'x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

R '
L '

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,
R '
L '

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= i

2k '
−ik 'e−ik 'x −e−ik 'x

−ik 'eik 'x eik 'x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Ψ '
DΨ '

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Wave function and derivative 
at x=a-ε equals that at x=a+ε.

  

Ψ '
DΨ '

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x=a−ε

= Ψ
DΨ

⎛

⎝⎜
⎞

⎠⎟ x=a+ε

  

R '
L '

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= i

2k '
−ik 'e−ik 'a −e−ik 'a

−ik 'eik 'a eik 'a

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Ψ
DΨ

⎛

⎝⎜
⎞

⎠⎟ x=a

Relations on the other side of the step boundary just below x=a. 

(Inverted)

(Inverted)
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Region (E > V) Non-Classical
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Non-Classical
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How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

Between each step potential, kinetic energy, and k are assumed constant.

  
ΨE x,0( ) = Reikx + Le−i kx

x-derivative is denoted by DΨ

 
∂
∂ x  
ΨE x,0( )=ik Reikx−ikLe−ikx≡DΨE x,0( )

Relations between the pair  (Ψ, DΨ) and amplitudes (R, L) just above x=a.
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⎛
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⎞

⎠⎟
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⎛
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⎛
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⎞

⎠⎟
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⎛

⎝⎜
⎞

⎠⎟
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⎜⎜

⎞

⎠
⎟⎟
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Wave function and derivative 
at x=a-ε equals that at x=a+ε.
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⎜
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⎟
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⎜⎜

⎞

⎠
⎟⎟
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⎜
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⎟
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Relations on the other side of the step boundary just below x=a. 

(Inverted)

(Inverted)
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How Band-It simulation works (from QTfCA Unit 4 Chapter 13) Wave function and derivative 
at x=a-ε equals that at x=a+ε.
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How Band-It simulation works (from QTfCA Unit 4 Chapter 13) Wave function and derivative 
at x=a-ε equals that at x=a+ε.
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A special case: single input conditions with no sources or reflectors on one side (say, right hand side)
 so no incoming waves exist there (say, L=0 but R=Outgoing≠ 0.)
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How Band-It simulation works (from QTfCA Unit 4 Chapter 13) Wave function and derivative 
at x=a-ε equals that at x=a+ε.
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A special case: single input conditions with no sources or reflectors on one side (say, right hand side)
 so no incoming waves exist there (say, L=0 but R=Outgoing≠ 0.)
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A special case: single input conditions with no sources or reflectors on one side (say, right hand side)
 so no incoming waves exist there (say, L=0 but R=Outgoing≠ 0.)
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How Band-It simulation works (from QTfCA Unit 4 Chapter 13)

This gives transmitted or output amplitude R and reflected amplitude L' given an input amplitude R'.

  
R = 2k '

k + k '( ) R 'ei k '−k( )a  ,           L ' =
k '− k( )
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The transmission coefficient Ttransmit and reflection coefficient Treflect (for a=0)
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Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Group Zoo
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C24 lattice reduced to C12 symmetry
Fig. 2.7.6 PSDS

Fig. 2.7.6 PrinciplesSymmetryDynamics&Spectroscopy
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C24 lattice reduced to C12 symmetry
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Fig. 2.7.6 PrinciplesSymmetryDynamics&Spectroscopy

Fig. 2.7.6 PSDS
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C24 lattice reduced to C12 symmetry
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Only C12 symmetry projectors commute with K-matrix if           . a ≠ a

Fig. 2.7.6 PSDS

Then C24-symmetry is b             !ro ke n
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C24 lattice reduced to C12 symmetry
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Fig. 2.7.6 PSDS

Only C12 symmetry projectors commute with K-matrix if           . a ≠ a Then C24-symmetry is b             !ro ke n

P(m ) = 1
12
1+ e− ikmr2 + e−2ikmr4 + e−3ikmr6 + ...+ e+2ikmr−4 + e+ ikmr−2( )   where:     km = 2πm

12

C24 lattice reduced to C12 symmetry
Fig. 2.7.6 PSDS
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C24 lattice reduced to C12 symmetry
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Two kinds of C12 symmetry m-states are coupled by K-matrix. 

Fig. 2.7.6 PSDS

Only C12 symmetry projectors commute with K-matrix if           . a ≠ a Then C24-symmetry is b             !ro ke n

P(m ) = 1
12
1+ e− ikmr2 + e−2ikmr4 + e−3ikmr6 + ...+ e+2ikmr−4 + e+ ikmr−2( )   where:     km = 2πm

12

C24 lattice reduced to C12 symmetry
Fig. 2.7.6 PSDS
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C24 lattice reduced to C12 symmetry
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Two kinds of C12 symmetry m-states are coupled by K-matrix: Even |reven〉 and odd |rodd〉 p-points. 

Fig. 2.7.6 PSDS

Only C12 symmetry projectors commute with K-matrix if           . a ≠ a Then C24-symmetry is b             !ro ke n

P(m ) = 1
12
1+ e− ikmr2 + e−2ikmr4 + e−3ikmr6 + ...+ e+2ikmr−4 + e+ ikmr−2( )   where:     km = 2πm

12
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C24 lattice reduced to C12 symmetry
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Two kinds of C12 symmetry m-states are coupled by K-matrix: Even |reven〉 and odd |rodd〉 p-points. 

Only C12 symmetry projectors commute with K-matrix if           . a ≠ a Then C24-symmetry is b             !ro ke n

P(m ) = 1
12
1+ e− ikmr2 + e−2ikmr4 + e−3ikmr6 + ...+ e+2ikmr−4 + e+ ikmr−2( )   where:     km = 2πm

12

C24 lattice reduced to C12 symmetry
Fig. 2.7.6 PSDS
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C24 lattice reduced to C12 symmetry
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Fig. 2.7.6 PSDS

Two kinds of C12 symmetry m-states are coupled by K-matrix: Even |reven〉 and odd |rodd〉 p-points. 

Only C12 symmetry projectors commute with K-matrix if           . a ≠ a Then C24-symmetry is b             !ro ke n

P(m ) = 1
12
1+ e− ikmr2 + e−2ikmr4 + e−3ikmr6 + ...+ e+2ikmr−4 + e+ ikmr−2( )   where:     km = 2πm

12

C24 lattice reduced to C12 symmetry
Fig. 2.7.6 PSDS
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C24 lattice reduced to C12 symmetry
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Fig. 2.7.6 PSDS

Two kinds of C12 symmetry m-states are coupled by K-matrix: Even |reven〉 and odd |rodd〉 p-points. 

Only C12 symmetry projectors commute with K-matrix if           . a ≠ a Then C24-symmetry is b             !ro ke n

P(m ) = 1
12
1+ e− ikmr2 + e−2ikmr4 + e−3ikmr6 + ...+ e+2ikmr−4 + e+ ikmr−2( )   where:     km = 2πm

12

C24 lattice reduced to C12 symmetry
Fig. 2.7.6 PSDS
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Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Type-AB avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Group Zoo
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Fig. 2.7.6 PSDS

Only C12 symmetry projectors commute with K-matrix if           . a ≠ a Then C24-symmetry is b             !ro ke n

P(m ) = 1
12
1+ e− ikmr2 + e−2ikmr4 + e−3ikmr6 + ...+ e+2ikmr−4 + e+ ikmr−2( )   where:     km = 2πm

12
Two kinds of C12 symmetry m-states are coupled by K-matrix: Even |reven〉 and odd |rodd〉 p-points. 

C24 lattice reduced to C12 symmetry
Fig. 2.7.6 PSDS

43Thursday, March 5, 2015



C24 lattice reduced to C12 symmetry
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Secular Eq.: 

0=κ 2 −   Tr K km+        Det K km

0=κ 2 − 2(a + a )κ + (a + a )2 − (a + e+ ikma )(a + e− ikma )
0=κ 2 − 2(a + a )κ + (a + a )2 − a2−a 2−2aa coskm
0=κ 2 − 2(a + a )κ + 2aa(1− coskm )

Fig. 2.7.6 PSDS

Only C12 symmetry projectors commute with K-matrix if           . a ≠ a Then C24-symmetry is b             !ro ke n

P(m ) = 1
12
1+ e− ikmr2 + e−2ikmr4 + e−3ikmr6 + ...+ e+2ikmr−4 + e+ ikmr−2( )   where:     km = 2πm

12
Two kinds of C12 symmetry m-states are coupled by K-matrix: Even |reven〉 and odd |rodd〉 p-points. 

C24 lattice reduced to C12 symmetry
Fig. 2.7.6 PSDS
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C24 lattice reduced to C12 symmetry
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⎜
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⎠
⎟
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⎜
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⎠
⎟
⎟

Secular Eq.: 

0=κ 2 −   Tr K km+        Det K km

0=κ 2 − 2(a + a )κ + (a + a )2 − (a + e+ ikma )(a + e− ikma )
0=κ 2 − 2(a + a )κ + (a + a )2 − a2−a 2−2aa coskm
0=κ 2 − 2(a + a )κ + 2aa(1− coskm )

Eigenvalues:

κ =ω km
2 = a + a ± a2+ 2aa coskm +a

2

Fig. 2.7.6 PSDS

Only C12 symmetry projectors commute with K-matrix if           . a ≠ a Then C24-symmetry is b             !ro ke n

P(m ) = 1
12
1+ e− ikmr2 + e−2ikmr4 + e−3ikmr6 + ...+ e+2ikmr−4 + e+ ikmr−2( )   where:     km = 2πm

12
Two kinds of C12 symmetry m-states are coupled by K-matrix: Even |reven〉 and odd |rodd〉 p-points. 

C24 lattice reduced to C12 symmetry
Fig. 2.7.6 PSDS
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⎜
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2 = a + a ± a2+ 2aa coskm +a

2

Fig. 2.7.7 PSDS

C24 lattice reduced to C12 symmetry
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Fig. 2.7.7 PSDS

C24 lattice reduced to C12 symmetry
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Fig. 2.7.7 PSDS

C24 lattice reduced to C12 symmetry
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Fig. 2.12.1 PSDS

Intro to other examples of band theory
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Crossing equations for a pair of humps
R"eikx+L"e-ikx Reikx+Le-ikxR2'eix+L2'e-ix

x = b' x = a'

R1'eix+L1'e-ix

x = b x = a
L L

A

 Fig. 14.1.5 C2-symmetric double barrier .

  

′′R
′′L

⎛

⎝⎜
⎞

⎠⎟
=

ei2kLχ*2 + e−i2kAξ2 −iξ e−i2kbχ* + e−i2k ′a χ( )
iξ ei2kbχ + ei2k ′a χ*( ) e−i2kLχ2 + ei2kAξ2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

R
L

⎛

⎝⎜
⎞

⎠⎟

 χ = cosh κL - i sinh 2β  sinh κL,  and:  ξ = cosh 2β  sinh κL

  
cosh 2β = 1

2
κ
k
+ k
κ

⎛
⎝⎜

⎞
⎠⎟
= κ 2 + k2

2kκ
,      sinh 2β = 1

2
κ
k
− k
κ

⎛
⎝⎜

⎞
⎠⎟
= κ 2 − k2

2kκ

Intro to other examples of band theory

Fig. 14.1.7 Second (E= 6.117) resonance in L=0.5 well 
between two width=0.5 barriers(V=25) .
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L
A

W

b' a' b ax = b" a"

E
V

  

C3−barrier = ′′C ⋅ ′C ⋅C

=
eikLχ* −ie−ik( ′′a + ′′b )ξ

ieik( ′′a + ′′b )ξ e−ikLχ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

eikLχ* −ie−ik( ′a + ′b )ξ

ieik( ′a + ′b )ξ e−ikLχ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

eikLχ* −ie−ik(a+b)ξ

ieik(a+b)ξ e−ikLχ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                         

Fig. 14.1.10 Triple-barrier double-well potential

Intro to other examples of band theory

Crossing equations for three humps

(0)
Resonance
Doublet

(0)-

(0)+

(1)
Resonance
Doublet

(1)-

(1)+

(2)
Resonance
Doublet

(2)-

(2)+

52Thursday, March 5, 2015



    

Bohr-It simulations assume ring-periodic-boundary conditions

Intro to other examples of band theory

Fig. 14.2.8 Multiplets for V=5.
(W=15nm well ,L=5nm barrier)  for (N=3)-ring and  (N=6)-ring.
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Band-It simulations line-non-periodic scattering conditions

    

Bohr-It simulations assume ring-periodic-boundary conditions

Intro to other examples of band theory

Fig. 14.2.9 (N=6)-ring and (N=2)-line potential.  
(V=5, W=15nm well ,L=5nm barrier)

Fig. 14.2.8 Multiplets for V=5.
(W=15nm well ,L=5nm barrier)  for (N=3)-ring and  (N=6)-ring.
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Fig. 2.12.7 PSDS Pure Type-B 
Hamiltonian
NH3 (Ammonia)
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Fig. 2.12.7 PSDS

Fig. 2.12.8 PSDS

Pure Type-B 
Hamiltonian
NH3 (Ammonia)

Type-AB  Hamiltonian 
NH3 (with applied E-field)

Resulting hyperbolic
avoided-crossing
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Fig. 2.12.7 PSDS

Fig. 2.12.8 PSDS

   

 Transform  H( A− basis) into H(B − basis)        

     

1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟

2
+A B
B −A

⎛

⎝⎜
⎞

⎠⎟

1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟

2

= 1
2

1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟
+A B
B −A

⎛

⎝⎜
⎞

⎠⎟
1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟

=    1
2

+A+ B B − A
+A− B B + A

⎛

⎝⎜
⎞

⎠⎟
  1 1

1 −1
⎛

⎝⎜
⎞

⎠⎟

=                       1
2

2B 2A
2A −2B

⎛

⎝⎜
⎞

⎠⎟
 

=                           +B A
A −B

⎛

⎝⎜
⎞

⎠⎟
 

Pure Type-B 
Hamiltonian
NH3 (Ammonia)

Type-AB  Hamiltonian 
NH3 (with applied E-field)

Resulting hyperbolic
avoided-crossing

Review of 
Lecture 10
p. 65 to 73

58Thursday, March 5, 2015



|x'〉
|y'〉

|(+
)〉

|(-)
〉

|x'〉
|y'〉

H+pE

H-pE

-S

-S

A(<<B)

D(>>B)

B

B

=

A

A

B

B

=

B

=

D(<<B)

A(>>B) B

pE = 0

0.1 -0.995 = 〈y'| 0.995 -0.1 = 〈x'|

1/√ 2 -1/√2 = 〈(-)|

0.1 0.995 = 〈y'|0.995 0.1 = 〈x'|

1/√2 1/√2 = 〈(+)|

Energy

or

Frequency

Eigenvalues

pE

Positive E
Negative E

Zero E

y

or

“up”

|x〉

|y〉

x

or

“dn”

|x〉

|y〉

|x〉

|y〉

|x〉

|y〉

y

or

“up”

x

or

“dn”

yx

yx

A to B to A Symmetry breaking described by hyperbolic eigenvalues of AσA+BσB=
  
H = +A B

B −A
⎛

⎝⎜
⎞

⎠⎟

   
H = +A B

B −A
⎛

⎝⎜
⎞

⎠⎟
   Secular equation: ε2 − 0 ⋅ε − ( A2 + B2)   gives hyperbolic energy levels:  ε = ± A2 + B2

(A=pE)-Axis
(Applied field)

+B

-B

Fig. 10.3.1 (b) Wigner avoided level crossing. (Fixed tunneling B=-S and variable A-D=pE field.)

H

N
|1〉=|N-up〉

H

N

|2〉=|N-dn〉
H

H

H
H

(a)

H
H

H
H

|+〉=|1〉+|2〉
√2 1/√2

1/√2 -1/√2

1/√2
|−〉=|1〉−|2〉

√2
(b)

Fig. 10.3.2 Ammonia (NH3) inversion states  
(a) Base states (b) C2-Eigenstates

   

 H(B − basis)                H( A− basis)

? ?
? ?

⎛

⎝⎜
⎞

⎠⎟
=

1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟

2
+A B
B −A

⎛

⎝⎜
⎞

⎠⎟

1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟

2

              = 1
2

1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟
+A B
B −A

⎛

⎝⎜
⎞

⎠⎟
1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟

              =    1
2

+A+ B B − A
+A− B B + A

⎛

⎝⎜
⎞

⎠⎟
  1 1

1 −1
⎛

⎝⎜
⎞

⎠⎟

              =                       1
2

2B 2A
2A −2B

⎛

⎝⎜
⎞

⎠⎟
 

              =                      +B A
A −B

⎛

⎝⎜
⎞

⎠⎟
 

Here we display 
eigenvalues and 
eigenvectors while 
holding B constant
and varying A.
Obviously it can be
done vice-versa and
with varying C, too.

Review of 
Lecture 10
p. 73
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Finally! Symmetry groups that are not just CN 
(And some that are)

Fig. 2.11.1 PSDS
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Finally! Symmetry groups that are not just CN 
(And some that are)
Starting with D2

Fig. 2.11.1 PSDS

62Thursday, March 5, 2015



Finally! Symmetry groups that are not just CN 
(And some that are)
Starting with D2 and C2h and C2v 

Fig. 2.11.1 PSDS
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D2 Symmetry (The 4-Group)

Fig. 2.1.2 PSDS

Fig. 2.1.1 PSDS
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1 Rx Ry Rz

Rx 1 Rz Ry

Ry Rz 1 Rx

Rz Ry Rx 1

D2 Symmetry (The 4-Group)

D2 Product table

RZ

Rz

Ry

Rx

Ry

Rx

1

1

Rx

Ry

RZ

Ry

Rx

1

Rx

=Rz⏐1〉

=Ry⏐1〉

=Rx⏐1〉

Fig. 2.1.2 PSDS

Fig. 2.1.1 PSDS
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1 Rx Ry Rz

Rx 1 Rz Ry

Ry Rz 1 Rx

Rz Ry Rx 1

D2 Symmetry (The 4-Group)

D2 Product table

RZ

Rz

Ry

Rx

Ry

Rx

1

1

Rx

Ry

RZ

Ry

Rx

1

Rx

=Rz⏐1〉

=Ry⏐1〉

=Rx⏐1〉

Fig. 2.1.2 PSDS

Fig. 2.1.1 PSDS

  

1 C P T
C 1 T P
P T 1 C
T P C 1

Most important:
The CPT subgroup 
of Lorentz Group

66Thursday, March 5, 2015



Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Crystal-Point Group Zoo

67Thursday, March 5, 2015



D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2    

Py
+ =

1+ R y

2

Py
− =

1− R y

2

reducible
projectors
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

reducible
projectors

Completness

70Thursday, March 5, 2015



D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
− gives irrep projectors

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
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− ⋅Py
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P+− ≡ Px
+ ⋅Py

− =
1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1+ Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )

gives irrep projectors

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
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− ⋅Py
−

   

P++ ≡ Px
+ ⋅Py
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1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
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P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )

  

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−
     (completeness is first)

gives irrep projectors

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  
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 1  = Px
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Rx = Px
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−
   

Py
+ =
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2
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2
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−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px
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     (then Rx eigenvalues)

gives irrep projectors

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  
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+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−

   

P++ ≡ Px
+ ⋅Py

+ =
1+ Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1+ Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1− Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1− Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1+ Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )    

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−

Rx = (+1)P++ + (−1)P−+ + (+1)P+− + (−1)P−−

R y = (+1)P++ + (+1)P−+ + (−1)P+− + (−1)P−−

R z = (+1)P++ + (−1)P−+ + (−1)P+− + (+1)P−−

     (...and so forth)

gives irrep projectors

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−

   

P++ ≡ Px
+ ⋅Py

+ =
1+ Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1+ Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1− Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1− Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1+ Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )    

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−

Rx = (+1)P++ + (−1)P−+ + (+1)P+− + (−1)P−−

R y = (+1)P++ + (+1)P−+ + (−1)P+− + (−1)P−−

R z = (+1)P++ + (−1)P−+ + (−1)P+− + (+1)P−−

     (completeness is first)

   

C2
x 1 Rx

+ 1 1
− 1 −1

×
C2

y 1 R y

+ 1 1
− 1 −1

=  

C2
x ×C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 −1⋅1 1⋅1 −1⋅1
+ ⋅− 1⋅1 1⋅1 1⋅(−1) 1⋅(−1)
− ⋅− 1⋅1 −1⋅1 1⋅(−1) −1⋅(−1)

gives irrep projectors

Shortcut notation for getting D2 character table

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−

   

P++ ≡ Px
+ ⋅Py

+ =
1+ Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1+ Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1− Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1− Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1+ Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )    

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−

Rx = (+1)P++ + (−1)P−+ + (+1)P+− + (−1)P−−

R y = (+1)P++ + (+1)P−+ + (−1)P+− + (−1)P−−

R z = (+1)P++ + (−1)P−+ + (−1)P+− + (+1)P−−

     (completeness is first)

   

C2
x 1 Rx

+ 1 1
− 1 −1

×
C2

y 1 R y

+ 1 1
− 1 −1

=  

C2
x ×C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 −1⋅1 1⋅1 −1⋅1
+ ⋅− 1⋅1 1⋅1 1⋅(−1) 1⋅(−1)
− ⋅− 1⋅1 −1⋅1 1⋅(−1) −1⋅(−1)

   

C2
x 1 Rx

+ 1 1
− 1 −1

  ×   
C2

y 1 R y

+ 1 1
− 1 −1

  

=  

C2
x ×C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 −1⋅1 1⋅1 −1⋅1
+ ⋅− 1⋅1 1⋅1 1⋅(−1) 1⋅(−1)
− ⋅− 1⋅1 −1⋅1 1⋅(−1) −1⋅(−1)

   =   

D2 1 Rx R y R z

+ ⋅+ 1 1 1 1
− ⋅+ 1 -1 1 -1
+ ⋅− 1 1 −1 −1
− ⋅− 1 -1 −1 1

gives irrep projectors

Shortcut notation for getting D2 character table

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−

   

P++ ≡ Px
+ ⋅Py

+ =
1+ Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1+ Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1− Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1− Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1+ Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )    

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−

Rx = (+1)P++ + (−1)P−+ + (+1)P+− + (−1)P−−

R y = (+1)P++ + (+1)P−+ + (−1)P+− + (−1)P−−

R z = (+1)P++ + (−1)P−+ + (−1)P+− + (+1)P−−

     (completeness is first)

   

C2
x 1 Rx

+ 1 1
− 1 −1

×
C2

y 1 R y

+ 1 1
− 1 −1

=  

C2
x ×C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 −1⋅1 1⋅1 −1⋅1
+ ⋅− 1⋅1 1⋅1 1⋅(−1) 1⋅(−1)
− ⋅− 1⋅1 −1⋅1 1⋅(−1) −1⋅(−1)

   

C2
x 1 Rx

+ 1 1
− 1 −1

  ×   
C2

y 1 R y

+ 1 1
− 1 −1

  

=  

C2
x ×C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 −1⋅1 1⋅1 −1⋅1
+ ⋅− 1⋅1 1⋅1 1⋅(−1) 1⋅(−1)
− ⋅− 1⋅1 −1⋅1 1⋅(−1) −1⋅(−1)

   =   

D2 1 Rx R y R z

++ = A1 1 1 1 1

−+ = A2 1 -1 1 -1

+− = B1 1 1 −1 −1

−− = B2 1 -1 −1 1

gives irrep projectors

Shortcut notation for getting D2 character table

reducible
projectors

Completness
Spec.decomps

Note
common
notation
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Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Crystal-Point Group Zoo
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Fig. 2.8.1 PSDS
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Fig. 2.8.2 PSDS
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Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Crystal-Point Group Zoo
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Fig. 2.11.1 PSDS

Crystal-Point Group Zoo
having 32 groups

(Showing
 16 Abelian

Crystal Groups)

Abelian
means

all its elements
commute

The other 16
crystal-point groups

are 
Non-Abelian

Non-Abelian
means

some elements
do not commute
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Fig. 2.11.1 PSDS

Crystal-Point Group Zoo
having 32 groups

(Showing
 16 Abelian

Crystal Groups)

Abelian
means

all its elements
commute

The other 16
crystal-point groups

are 
Non-Abelian

Non-Abelian
means

some elements
do not commute

From Lecture 12.6 p. 134
Character Trace of

n-fold rotation
where: j=2j+1

is U(2) irrep dimension

 

χ j (2π
n

) =
sinπ

n
(2 j +1)

sinπ
n

=
sinπ

j

n
sinπ

n
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Fig. 2.11.1 PSDS

Crystal-Point Group Zoo
having 32 groups

(Showing
 16 Abelian

Crystal Groups)

Abelian
means

all its elements
commute

The other 16
crystal-point groups

are 
Non-Abelian

Non-Abelian
means

some elements
do not commute

From Lecture 12.6 p. 134
Character Trace of

n-fold rotation
where: j=2j+1

is U(2) irrep dimension

 

χ j (2π
n

) =
sinπ

n
(2 j +1)

sinπ
n

=
sinπ

j

n
sinπ

n

 

To be a crystal-point group
the Character Trace of
n-fold vector rotation

for: 1=2+1=3
must be an integer

χ1(2π
n

) =
sinπ

1
(2 j +1)

sinπ
n

=
sin 3π

n
sinπ

n

= integer  

sin 3π
2

sinπ
2

= −1 (n=2 ok)

sin 3π
3

sinπ
3

= +1 (n=3 ok) 

sin 3π
4

sinπ
4

= +1 (n=4 ok)

sin 3π
5

sinπ
5

= G+  (n=5 NO!) 

sin 3π
6

sinπ
6

= +2 (n=6 ok)

86Thursday, March 5, 2015



Fig. 2.2.2 PSDS

Fig. 2.11.1 PSDS

Crystal-Point Group Zoo
having 32 groups

(Showing
 16 Abelian

Crystal Groups)

Abelian
means

all its elements
commute

The other 16
crystal-point groups

are 
Non-Abelian

Non-Abelian
means

some elements
do not commute

Log-histogram of
all groups of order

°G=1 to 64
Abelian shown in Black
Non-Abelian in WhiteWhite

O
rd

er
 °G

Group “census”
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Fig. 2.2.2 PSDS

Fig. 2.11.1 PSDS

Crystal-Point Group Zoo
having 32 groups

(Showing
 16 Non-Abelian
Crystal Groups)

Abelian
means

all its elements
commute

The other 16
crystal-point groups

are 
Abelian

Non-Abelian
means

some elements
do not commute

Log-histogram of
all groups of order

°G=1 to 64
Abelian shown in Black
Non-Abelian in WhiteWhite

Clearly
most groups are

Non-Abelian

O
rd

er
 °G

Group “census”
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C6 is product C3× C2 (but C4 is NOT C2× C2) 

   

C3 1 r r2

0( )3 1 1 1

1( )3 1 e2π i /3 e−2π i /3

2( )3 1 e−2π i /3 e2π i /3

  ×   

C2 1 R

0( )2 1 1

1( )2 1 −1

  =  

C3 × C2 1 r r2 1 ⋅R r ⋅R r2 ⋅R

0( )3 ⋅ 0( )2 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1

1( )3 ⋅ 0( )2 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1

2( )3 ⋅ 0( )2 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1

0( )3 ⋅ 1( )2 1⋅1 1⋅1 1⋅1 1⋅ (−1) 1⋅ (−1) 1⋅ (−1)

1( )3 ⋅ 1( )2 1⋅1 1⋅1 e−2π i /3 ⋅1 1⋅ (−1) e2π i /3 ⋅ (−1) e−2π i /3 ⋅ (−1)

2( )3 ⋅ 1( )2 1⋅1 e−2π i /3 ⋅1 1⋅1 1⋅ (−1) e−2π i /3 ⋅ (−1) e2π i /3 ⋅ (−1)
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C6 is product C3× C2 (but C4 is NOT C2× C2) 

   

C3 1 r r2

0( )3 1 1 1

1( )3 1 e2π i /3 e−2π i /3

2( )3 1 e−2π i /3 e2π i /3

  ×   

C2 1 R

0( )2 1 1

1( )2 1 −1

  =  

C3 × C2 1 r r2 1 ⋅R r ⋅R r2 ⋅R

0( )3 ⋅ 0( )2 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1

1( )3 ⋅ 0( )2 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1

2( )3 ⋅ 0( )2 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1

0( )3 ⋅ 1( )2 1⋅1 1⋅1 1⋅1 1⋅ (−1) 1⋅ (−1) 1⋅ (−1)

1( )3 ⋅ 1( )2 1⋅1 1⋅1 e−2π i /3 ⋅1 1⋅ (−1) e2π i /3 ⋅ (−1) e−2π i /3 ⋅ (−1)

2( )3 ⋅ 1( )2 1⋅1 e−2π i /3 ⋅1 1⋅1 1⋅ (−1) e−2π i /3 ⋅ (−1) e2π i /3 ⋅ (−1)

   

                                                      =   

C3 × C2 = C6 1 r = h2 r2 = h4 R = h3 r ⋅R = h r2 ⋅R = h5

0( )3 ⋅ 0( )2 = 0( )6 1 1 1 1 1 1

1( )3 ⋅ 0( )2 = 2( )6 1 e2π i /3 e−2π i /3 1 e2π i /3 e−2π i /3

2( )3 ⋅ 0( )2 = 4( )6 1 e−2π i /3 e2π i /3 1 e−2π i /3 e2π i /3

0( )3 ⋅ 1( )2 = 3( )6 1 1 1 -1 -1 -1

1( )3 ⋅ 1( )2 = 5( )6 1 e2π i /3 e−2π i /3 -1 -e2π i /3 −e−2π i /3

2( )3 ⋅ 1( )2 = 1( )6 1 e−2π i /3 e2π i /3 −1 −e−2π i /3 −e2π i /3
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