
Group Theory in Quantum Mechanics
Lecture 4 (1.24.13) 

Matrix Eigensolutions and Spectral Decompositions 
(Quantum Theory for Computer Age - Ch. 3 of Unit 1 )

(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1 )

Unitary operators and matrices that change state vectors 
      ...and eigenstates (“ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors      
      Circle-to-ellipse mapping (and I’m Ba-aaack!)
      Ellipse-to-ellipse mapping (Normal space vs. tangent space)
      Eigensolutions as stationary extreme-values (Lagrange λ-multipliers)
 
Matrix-algebraic eigensolutions with example M=      
      Secular equation 
      Hamilton-Cayley equation and projectors 
      Idempotent projectors (how eigenvalues⇒eigenvectors)
      Operator orthonormality and completeness
Spectral Decompositions 
      Functional spectral decomposition
      Orthonormality vs. Completeness vis-a`-vis Operator vs. State
      Lagrange functional interpolation formula 
              Proof that completeness relation is “Truer-than-true”
Diagonalizing Transformations (D-Ttran) from projectors 
      Eigensolutions for active analyzers
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Fig. 3.1.1 Effect of 
analyzer 

represented by ket vector 
transformation of ⏐Ψ〉 

to new ket vector T⏐Ψ〉 .

...and eigenstates (“ownstates) that are mostly immune to T...
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on eigenket | εj 〉
 is only to multiply by 

eigenvalue εj 
( T| εj 〉  = εj | εj 〉 ).

For Unitary operators T=U, the eigenvalues must be phase factors εk=eiαk
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Study a real symmetric matrix T by applying it to a circular array of unit vectors c. 

A matrix T=                        maps the circular array into an elliptical one.
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Study a real symmetric matrix T by applying it to a circular array of unit vectors c. 

A matrix T=                        maps the circular array into an elliptical one.
	


Two vectors in the upper half plane survive T without changing direction. 
These lucky vectors are the eigenvectors of matrix T.
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They transform as follows:
to only suffer length change given by eigenvalues ε1 = 1.5 and ε2 = 0.5

Study a real symmetric matrix T by applying it to a circular array of unit vectors c. 

A matrix T=                        maps the circular array into an elliptical one.
	


Two vectors in the upper half plane survive T without changing direction. 
These lucky vectors are the eigenvectors of matrix T.
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T-1T-1

Each vector |r〉 on left ellipse maps back to vector |c〉=T-1 |r〉 on right unit circle. 
Each |c〉 has unit length: 〈c|c〉 = 1 = 〈r|T-1 T-1 |r〉 = 〈r|T-2|r〉. (T is real-symmetric: T†=T=TT.)
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where T-2|ε1〉 = ε1-2|ε1〉 and T-2|ε2〉 = ε2-2|ε2〉, that is, T, T-1, and T-2 are each diagonal.
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(Previous pages) Matrix T maps vector |c〉 from a unit circle 〈c|c〉=1 to T|c〉=|r〉 on an ellipse 1=〈r|T-2|r〉 

Now M maps vector |q〉 from a quadratic form 1=〈q|M|q〉 to vector |p〉=M|q〉 on surface 1=〈p|M-1|p〉. 
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Constraint curve
〈r|r〉=C=1

Eigenvector
|r〉=|ε2〉

where
∇∇QL=λ∇∇C
with
λ=ε2

Quadratic curves
〈r|L|r〉=QL=const.

.

QL=ε2

QL=ε1
Eigenvector
|r〉=|ε1〉

where
∇∇QL=λ∇∇C
with
λ=ε1

Eigensolutions as stationary extreme-values (Lagrange λ-multipliers) 
Geometric visualization of real symmetric matrices and eigenvectors

Eigenvalues λ of a matrix L can be viewed as stationary-values of its quadratic form QL=L(r)=〈r|L|r〉
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Q: What are min-max values of the function Q(r) subject to the constraint of unit norm: C(r)=〈r|r〉=1.
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Q: What are min-max values of the function Q(r) subject to the constraint of unit norm: C(r)=〈r|r〉=1.

A: At those values of QL and vector r for which the QL(r) curve just touches the constraint curve C(r).
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Q: What are min-max values of the function Q(r) subject to the constraint of unit norm: C(r)=〈r|r〉=1.

A: At those values of QL and vector r for which the QL(r) curve just touches the constraint curve C(r).

Lagrange says such points have 
gradient vectors ∇QL and ∇C  
proportional to each other.

                 ∇QL = λ ∇C, 
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proportional to each other.

                 ∇QL = λ ∇C, 
Proportionality constant λ is
called a Lagrange Multiplier.
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Q: What are min-max values of the function Q(r) subject to the constraint of unit norm: C(r)=〈r|r〉=1.

A: At those values of QL and vector r for which the QL(r) curve just touches the constraint curve C(r).

Lagrange says such points have 
gradient vectors ∇QL and ∇C  
proportional to each other.

                 ∇QL = λ ∇C, 
Proportionality constant λ is
called a Lagrange Multiplier.

At eigen-directions the Lagrange multiplier 
equals quadratic form: λ=QL(r)=〈r|L|r〉  

  QL(r)=〈εk|L|εk〉= εk  at  |r〉=|εk〉
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Q: What are min-max values of the function Q(r) subject to the constraint of unit norm: C(r)=〈r|r〉=1.

A: At those values of QL and vector r for which the QL(r) curve just touches the constraint curve C(r).

Lagrange says such points have 
gradient vectors ∇QL and ∇C  
proportional to each other.

                 ∇QL = λ ∇C, 
Proportionality constant λ is
called a Lagrange Multiplier.

At eigen-directions the Lagrange multiplier 
equals quadratic form: λ=QL(r)=〈r|L|r〉  

  QL(r)=〈εk|L|εk〉= εk  at  |r〉=|εk〉

〈r|L|r〉 is called a quantum expectation value of operator L at r. 
Eigenvalues are extreme expectation values.
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

M ε = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ = ε x

y
⎛

⎝
⎜

⎞

⎠
⎟    or:   4 − ε 1

3 2 − ε
⎛

⎝⎜
⎞

⎠⎟
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

0
0

⎛
⎝⎜

⎞
⎠⎟

An eigenvector             of M is in a direction that is left unchanged by M.

 
  εk is eigenvalue associated with each eigenvector        direction. 

M ε k = ε k ε k ,   or:  M − ε k1( ) ε k = 0

ε k

ε k
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An eigenvector             of M is in a direction that is left unchanged by M.

 
  εk is eigenvalue associated with each eigenvector        direction. 
A change of basis to                                 called diagonalization gives 

M ε k = ε k ε k ,   or:  M − ε k1( ) ε k = 0

ε k

 
ε1 , ε2 , εn{ }
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   

εn M ε1 εn M ε2  εn M εn
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⎠

⎟
⎟
⎟
⎟
⎟

=

ε1 0  0
0 ε2  0
   
0 0  εn

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

ε k

Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2
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M ε = 4 1
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Trying to solve by Kramer's inversion:

x =
det 0 1

0 2 − ε
⎛
⎝⎜

⎞
⎠⎟

det 4 − ε 1
3 2 − ε

⎛

⎝⎜
⎞

⎠⎟

      and     y =
det 4 − ε 0

3 0
⎛
⎝⎜

⎞
⎠⎟

det 4 − ε 1
3 2 − ε

⎛

⎝⎜
⎞

⎠⎟

An eigenvector             of M is in a direction that is left unchanged by M.

 
  εk is eigenvalue associated with each eigenvector        direction. 
A change of basis to                                 called diagonalization gives 

M ε k = ε k ε k ,   or:  M − ε k1( ) ε k = 0

ε k

 
ε1 , ε2 , εn{ }

ε k
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An eigenvector             of M is in a direction that is left unchanged by M.

 
  εk is eigenvalue associated with eigenvector        direction. 
A change of basis to                                 called diagonalization gives 

M ε k = ε k ε k ,   or:  M − ε k1( ) ε k = 0
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2
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Only possible non-zero {x,y} if denominator is zero, too!
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detM − ε1 = 0 = −1( )n ε n + a1ε
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n−2 +…+ an−1ε + an( )

0 = (4 − ε )(2 − ε )−1·3 = 8 − 6ε + ε 2 −1·3 = ε 2 − 6ε + 5

First step in finding eigenvalues: Solve secular equation 
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An eigenvector             of M is in a direction that is left unchanged by M.

 
  εk is eigenvalue associated with eigenvector        direction. 
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
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Trying to solve by Kramer's inversion:

x =
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detM − ε1 = 0 = −1( )n ε n + a1ε

n−1 + a2ε
n−2 +…+ an−1ε + an( )

 a1 = −TraceM,,  ak = −1( )k diagonal k-by-k minors of ∑ M,,   an = −1( )n det M
0 = (4 − ε )(2 − ε )−1·3 = 8 − 6ε + ε 2 −1·3 = ε 2 − 6ε + 5
0 = ε 2 −Trace(M)ε + det(M)

First step in finding eigenvalues: Solve secular equation 
	

 	

 	

 	

 	

 	



where: 
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First step in finding eigenvalues: Solve secular equation 
	

 	

 	

 	

 	

 	



where: 

Secular equation has n-factors, one for each eigenvalue.
	

 	

 	

 	

 	

 	

 	



An eigenvector             of M is in a direction that is left unchanged by M.

 
  εk is eigenvalue associated with eigenvector        direction. 
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2
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Trying to solve by Kramer's inversion:

x =
det 0 1
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⎛
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detM − ε1 = 0 = −1( )n ε n + a1ε

n−1 + a2ε
n−2 +…+ an−1ε + an( )

 a1 = −TraceM,,  ak = −1( )k diagonal k-by-k minors of ∑ M,,   an = −1( )n det M

 detM − ε1 = 0 = −1( )n ε − ε1( ) ε − ε2( ) ε − εn( )

0 = (4 − ε )(2 − ε )−1·3 = 8 − 6ε + ε 2 −1·3 = ε 2 − 6ε + 5
0 = ε 2 −Trace(M)ε + det(M) = ε 2 − 6ε + 5

0 = (ε −1)(ε − 5)  so let:   ε1 = 1   and:  ε2 = 5 
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      Hamilton-Cayley equation and projectors 
      Idempotent projectors (how eigenvalues⇒eigenvectors)
      Operator orthonormality and Completeness
Spectral Decompositions 
      Functional spectral decomposition
      Orthonormality vs. Completeness vis-a`-vis Operator vs. State
      Lagrange functional interpolation formula 
              Proof that completeness relation is “Truer-than-true”
Spectral Decompositions with degeneracy 
      Functional spectral decomposition

4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
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First step in finding eigenvalues: Solve secular equation 
	

 	

 	

 	

 	

 	



where: 

Secular equation has n-factors, one for each eigenvalue.
	

 	

 	

 	

 	

 	

 	



Each ε replaced by M and each εk by εk 1 gives Hamilton-Cayley matrix equation.
	

 	

 	

 	

 	

 	

 	

 	



Obviously true if M has diagonal form. (But, that’s circular logic. Faith needed!) 

An eigenvector             of M is in a direction that is left unchanged by M.

 
  εk is eigenvalue associated with eigenvector        direction. 
A change of basis to                                 called diagonalization gives 

M ε k = ε k ε k ,   or:  M − ε k1( ) ε k = 0

ε k

 
ε1 , ε2 , εn{ }

 

ε1 M ε1 ε1 M ε2  ε1 M εn
ε2 M ε1 ε2 M ε2  ε2 M εn
   

εn M ε1 εn M ε2  εn M εn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

ε1 0  0
0 ε2  0
   
0 0  εn

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

ε k

Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Only possible non-zero {x,y} if denominator is zero, too!

0=det M − ε ⋅1=det 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
−ε 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
=det 4 − ε 1

3 2 − ε
⎛

⎝⎜
⎞

⎠⎟

M ε = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ = ε x

y
⎛

⎝
⎜

⎞

⎠
⎟    or:   4 − ε 1

3 2 − ε
⎛

⎝⎜
⎞

⎠⎟
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

0
0

⎛
⎝⎜

⎞
⎠⎟

Trying to solve by Kramer's inversion:

x =
det 0 1

0 2 − ε
⎛
⎝⎜

⎞
⎠⎟

det 4 − ε 1
3 2 − ε

⎛

⎝⎜
⎞

⎠⎟

      and     y =
det 4 − ε 0

3 0
⎛
⎝⎜

⎞
⎠⎟

det 4 − ε 1
3 2 − ε

⎛

⎝⎜
⎞

⎠⎟

 
detM − ε1 = 0 = −1( )n ε n + a1ε

n−1 + a2ε
n−2 +…+ an−1ε + an( )

 a1 = −TraceM,,  ak = −1( )k diagonal k-by-k minors of ∑ M,,   an = −1( )n det M

 detM − ε1 = 0 = −1( )n ε − ε1( ) ε − ε2( ) ε − εn( )

 0 = M − ε11( ) M − ε21( ) M − εn1( )

0 = (4 − ε )(2 − ε )−1·3 = 8 − 6ε + ε 2 −1·3 = ε 2 − 6ε + 5
0 = ε 2 −Trace(M)ε + det(M) = ε 2 − 6ε + 5

0 =M2 − 6M + 51 = (M −1⋅1)(M − 5⋅1)

0 0
0 0

⎛
⎝⎜

⎞
⎠⎟
= 4 1

3 2
⎛
⎝⎜

⎞
⎠⎟

2

− 6 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
+ 5 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

0 = (ε −1)(ε − 5)  so let:   ε1 = 1   and:  ε2 = 5 
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1st step in finding eigenvalues: Solve secular equation 
	

 	

 	

 	

 	

 	



where: 

Secular equation has n-factors, one for each eigenvalue.
	

 	

 	

 	

 	

 	

 	



Each ε replaced by M and each εk by εk 1 gives Hamilton-Cayley matrix equation.
	

 	

 	

 	

 	

 	

 	

 	



Obviously true if M has diagonal form. (But, that’s circular logic. Faith needed!) 

An eigenvector             of M is in a direction that is left unchanged by M.

 
  εk is eigenvalue associated with eigenvector        direction. 
A change of basis to                                 called diagonalization gives 

M ε k = ε k ε k ,   or:  M − ε k1( ) ε k = 0

ε k

 
ε1 , ε2 , εn{ }

 

ε1 M ε1 ε1 M ε2  ε1 M εn
ε2 M ε1 ε2 M ε2  ε2 M εn
   

εn M ε1 εn M ε2  εn M εn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

ε1 0  0
0 ε2  0
   
0 0  εn

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

ε k

Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Only possible non-zero {x,y} if denominator is zero, too!

0=det M − ε ⋅1=det 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
−ε 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
=det 4 − ε 1

3 2 − ε
⎛

⎝⎜
⎞

⎠⎟

M ε = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ = ε x

y
⎛

⎝
⎜

⎞

⎠
⎟    or:   4 − ε 1

3 2 − ε
⎛

⎝⎜
⎞

⎠⎟
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

0
0

⎛
⎝⎜

⎞
⎠⎟

Trying to solve by Kramer's inversion:

x =
det 0 1

0 2 − ε
⎛
⎝⎜

⎞
⎠⎟

det 4 − ε 1
3 2 − ε

⎛

⎝⎜
⎞

⎠⎟

      and     y =
det 4 − ε 0

3 0
⎛
⎝⎜

⎞
⎠⎟

det 4 − ε 1
3 2 − ε

⎛

⎝⎜
⎞

⎠⎟

 
detM − ε1 = 0 = −1( )n ε n + a1ε

n−1 + a2ε
n−2 +…+ an−1ε + an( )

 a1 = −TraceM,,  ak = −1( )k diagonal k-by-k minors of ∑ M,,   an = −1( )n det M

 detM − ε1 = 0 = −1( )n ε − ε1( ) ε − ε2( ) ε − εn( )

 0 = M − ε11( ) M − ε21( ) M − εn1( )

0 = (4 − ε )(2 − ε )−1·3 = 8 − 6ε + ε 2 −1·3 = ε 2 − 6ε + 5
0 = ε 2 −Trace(M)ε + det(M) = ε 2 − 6ε + 5

0 =M2 − 6M + 51 = (M −1⋅1)(M − 5⋅1)

0 0
0 0

⎛
⎝⎜

⎞
⎠⎟
= 4 1

3 2
⎛
⎝⎜

⎞
⎠⎟

2

− 6 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
+ 5 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

0 = (ε −1)(ε − 5)  so let:   ε1 = 1   and:  ε2 = 5 

Replace jth HC-factor by (1) to make projection operators                          . pk =
j≠k
∏ M − ε j1( ) p1 = (1)(M − 5⋅1) = 4 − 5 1

3 2 − 5
⎛
⎝⎜

⎞
⎠⎟
= −1 1

3 −3
⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1)(1) = 4 −1 1
3 2 −1

⎛
⎝⎜

⎞
⎠⎟
= 3 1

3 1
⎛
⎝⎜

⎞
⎠⎟ 

ε j ≠ εk ≠ ...

 

p1 =      1     ( ) M − ε21( ) M − εn1( )
p2 = M − ε11( )      1     ( ) M − εn1( )
      
pn = M − ε11( ) M − ε21( )      1     ( )  

(Assume distinct e-values here: Non-degeneracy clause)
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1st step in finding eigenvalues: Solve secular equation 
	

 	

 	

 	

 	

 	



where: 

Secular equation has n-factors, one for each eigenvalue.
	

 	

 	

 	

 	

 	

 	



Each ε replaced by M and each εk by εk 1 gives Hamilton-Cayley matrix equation.
	

 	

 	

 	

 	

 	

 	

 	



Obviously true if M has diagonal form. (But, that’s circular logic. Faith needed!) 

An eigenvector             of M is in a direction that is left unchanged by M.

 
  εk is eigenvalue associated with eigenvector        direction. 
A change of basis to                                 called diagonalization gives 

M ε k = ε k ε k ,   or:  M − ε k1( ) ε k = 0

ε k

 
ε1 , ε2 , εn{ }

 

ε1 M ε1 ε1 M ε2  ε1 M εn
ε2 M ε1 ε2 M ε2  ε2 M εn
   

εn M ε1 εn M ε2  εn M εn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

ε1 0  0
0 ε2  0
   
0 0  εn

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

ε k

Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Only possible non-zero {x,y} if denominator is zero, too!

0=det M − ε ⋅1=det 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
−ε 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟
=det 4 − ε 1

3 2 − ε
⎛

⎝⎜
⎞

⎠⎟

M ε = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ = ε x

y
⎛

⎝
⎜

⎞

⎠
⎟    or:   4 − ε 1

3 2 − ε
⎛

⎝⎜
⎞

⎠⎟
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

0
0

⎛
⎝⎜

⎞
⎠⎟

Trying to solve by Kramer's inversion:

x =
det 0 1

0 2 − ε
⎛
⎝⎜

⎞
⎠⎟

det 4 − ε 1
3 2 − ε

⎛

⎝⎜
⎞

⎠⎟

      and     y =
det 4 − ε 0

3 0
⎛
⎝⎜

⎞
⎠⎟

det 4 − ε 1
3 2 − ε

⎛

⎝⎜
⎞

⎠⎟

 
detM − ε1 = 0 = −1( )n ε n + a1ε

n−1 + a2ε
n−2 +…+ an−1ε + an( )

 a1 = −TraceM,,  ak = −1( )k diagonal k-by-k minors of ∑ M,,   an = −1( )n det M

 detM − ε1 = 0 = −1( )n ε − ε1( ) ε − ε2( ) ε − εn( )

 0 = M − ε11( ) M − ε21( ) M − εn1( )

0 = (4 − ε )(2 − ε )−1·3 = 8 − 6ε + ε 2 −1·3 = ε 2 − 6ε + 5
0 = ε 2 −Trace(M)ε + det(M) = ε 2 − 6ε + 5

0 =M2 − 6M + 51 = (M −1⋅1)(M − 5⋅1)

0 0
0 0

⎛
⎝⎜

⎞
⎠⎟
= 4 1

3 2
⎛
⎝⎜

⎞
⎠⎟

2

− 6 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
+ 5 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

0 = (ε −1)(ε − 5)  so let:   ε1 = 1   and:  ε2 = 5 

 
ε j ≠ εk ≠ ...

Replace jth HC-factor by (1) to make projection operators                          . 

 

p1 =      1     ( ) M − ε21( ) M − εn1( )
p2 = M − ε11( )      1     ( ) M − εn1( )
      
pn = M − ε11( ) M − ε21( )      1     ( )  

(Assume distinct e-values here: Non-degeneracy clause)

pk =
j≠k
∏ M − ε j1( ) p1 = (1)(M − 5⋅1) = 4 − 5 1

3 2 − 5
⎛
⎝⎜

⎞
⎠⎟
= −1 1

3 −3
⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1)(1) = 4 −1 1
3 2 −1

⎛
⎝⎜

⎞
⎠⎟
= 3 1

3 1
⎛
⎝⎜

⎞
⎠⎟

Each pk  contains eigen-bra-kets since: (M-εk1)pk=0 or: Mpk=εkpk=pkM . 
Mp1 =

4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
⋅ −1 1

3 −3
⎛
⎝⎜

⎞
⎠⎟
= 1· −1 1

3 −3
⎛
⎝⎜

⎞
⎠⎟
= 1·p1

Mp2 =
4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
⋅ 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟
= 5· 3 1

3 1
⎛
⎝⎜

⎞
⎠⎟
= 5·p2
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Unitary operators and matrices that change state vectors 
      ...and eigenstates (“ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors      
      Circle-to-ellipse mapping
      Ellipse-to-ellipse mapping (Normal space vs. tangent space)
      Eigensolutions as stationary extreme-values (Lagrange λ-multipliers)
 
Matrix-algebraic eigensolutions with example M=      
      Secular equation 
      Hamilton-Cayley equation and projectors 
      Idempotent projectors (how eigenvalues⇒eigenvectors)
      Operator orthonormality and Completeness
Spectral Decompositions 
      Functional spectral decomposition
      Orthonormality vs. Completeness vis-a`-vis Operator vs. State
      Lagrange functional interpolation formula 
              Proof that completeness relation is “Truer-than-true”
Spectral Decompositions with degeneracy 
      Functional spectral decomposition

4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Idempotent means: P·P=P
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

Multiplication properties of pj :

Mpk =ε kpk = pkM
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

P1 =
(M − 5⋅1)
(1− 5)

= 1
4

1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟

P2 =
(M −1⋅1)
(5 −1)

= 1
4

3 1
3 1

⎛
⎝⎜

⎞
⎠⎟
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)
(1− 5)

= 1
4

1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟

P2 =
(M −1⋅1)
(5 −1)

= 1
4

3 1
3 1

⎛
⎝⎜

⎞
⎠⎟
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Unitary operators and matrices that change state vectors 
      ...and eigenstates (“ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors      
      Circle-to-ellipse mapping
      Ellipse-to-ellipse mapping (Normal space vs. tangent space)
      Eigensolutions as stationary extreme-values (Lagrange λ-multipliers)
 
Matrix-algebraic eigensolutions with example M=      
      Secular equation 
      Hamilton-Cayley equation and projectors 
      Idempotent projectors (how eigenvalues⇒eigenvectors)
      Operator orthonormality and Completeness

Spectral Decompositions 
      Functional spectral decomposition
      Orthonormality vs. Completeness vis-a`-vis Operator vs. State
      Lagrange functional interpolation formula 
              Proof that completeness relation is “Truer-than-true”
Spectral Decompositions with degeneracy 
      Functional spectral decomposition

4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Factoring bra-kets 
into “Ket-Bras:
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)

(1− 5)
= 1

4
1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Factoring bra-kets into “Ket-Bras:
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)

(1− 5)
= 1

4
1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Factoring bra-kets into “Ket-Bras:

〈 ε2 |= (3/2 1/2)/k2
1/2
1/2

|ε2 〉=k2

1/2
-3/2

|ε1 〉=k1

〈 ε1 |= (1/2 -1/2)/k1

| 1 〉 or 〈1 |

| 2 〉
or
〈2 |

1/4 1/2 3/4 5/41 3/2

-1/2

-1

-3/2

1/4

1/2

3/4Eigen-bra-ket
projectors
of matrix:

M= 4 1
3 2

⏐y〉
or
〈y⏐

⏐x〉 or 〈x⏐
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Unitary operators and matrices that change state vectors 
      ...and eigenstates (“ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors      
      Circle-to-ellipse mapping
      Ellipse-to-ellipse mapping (Normal space vs. tangent space)
      Eigensolutions as stationary extreme-values (Lagrange λ-multipliers)
 
Matrix-algebraic eigensolutions with example M=      
      Secular equation 
      Hamilton-Cayley equation and projectors 
      Idempotent projectors (how eigenvalues⇒eigenvectors)
      Operator orthonormality and Completeness

Spectral Decompositions 
      Functional spectral decomposition
      Orthonormality vs. Completeness vis-a`-vis Operator vs. State
      Lagrange functional interpolation formula 
              Proof that completeness relation is “Truer-than-true”
Spectral Decompositions with degeneracy 
      Functional spectral decomposition

4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Factoring bra-kets 
into “Ket-Bras:
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)

(1− 5)
= 1

4
1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Factoring bra-kets into “Ket-Bras:

〈 ε2 |= (3/2 1/2)/k2
1/2
1/2

|ε2 〉=k2

1/2
-3/2

|ε1 〉=k1

〈 ε1 |= (1/2 -1/2)/k1

| 1 〉 or 〈1 |

| 2 〉
or
〈2 |

1/4 1/2 3/4 5/41 3/2

-1/2

-1

-3/2

1/4

1/2

3/4Eigen-bra-ket
projectors
of matrix:

M= 4 1
3 2

The Pj are Mutually Ortho-Normal
as are bra-ket 〈εj⏐and⏐εj〉 inside Pj’s
 

ε1 ε1 ε1 ε2
ε2 ε1 ε2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

     = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

⏐y〉
or
〈y⏐

⏐x〉 or 〈x⏐
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)

(1− 5)
= 1

4
1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Factoring bra-kets into “Ket-Bras:

〈 ε2 |= (3/2 1/2)/k2
1/2
1/2

|ε2 〉=k2

1/2
-3/2

|ε1 〉=k1

〈 ε1 |= (1/2 -1/2)/k1

| 1 〉 or 〈1 |

| 2 〉
or
〈2 |

1/4 1/2 3/4 5/41 3/2

-1/2

-1

-3/2

1/4

1/2

3/4Eigen-bra-ket
projectors
of matrix:

M= 4 1
3 2

The Pj are Mutually Ortho-Normal
as are bra-ket 〈εj⏐and⏐εj〉 inside Pj’s
 

ε1 ε1 ε1 ε2
ε2 ε1 ε2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...and the Pj satisfy a 
Completeness Relation: 
1=   P1  +   P2   +...+  Pn

=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐

P1 + P2 =
1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

= ε1 ε1 + ε2 ε2

     = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

⏐y〉
or
〈y⏐

⏐x〉 or 〈x⏐
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Unitary operators and matrices that change state vectors 
      ...and eigenstates (“ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors      
      Circle-to-ellipse mapping
      Ellipse-to-ellipse mapping (Normal space vs. tangent space)
      Eigensolutions as stationary extreme-values (Lagrange λ-multipliers)
 
Matrix-algebraic eigensolutions with example M=      
      Secular equation 
      Hamilton-Cayley equation and projectors 
      Idempotent projectors (how eigenvalues⇒eigenvectors)
      Operator orthonormality and Completeness

Spectral Decompositions 
      Functional spectral decomposition
      Orthonormality vs. Completeness vis-a`-vis Operator vs. State
      Lagrange functional interpolation formula 
              Proof that completeness relation is “Truer-than-true”
Spectral Decompositions with degeneracy 
      Functional spectral decomposition

4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Factoring bra-kets 
into “Ket-Bras:
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)

(1− 5)
= 1

4
1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Factoring bra-kets into “Ket-Bras:

The Pj are Mutually Ortho-Normal
as are bra-ket 〈εj⏐and⏐εj〉 inside Pj’s
 

ε1 ε1 ε1 ε2
ε2 ε1 ε2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...and the Pj satisfy a 
Completeness Relation: 
1=   P1  +   P2   +...+  Pn

=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐

P1 + P2 =
1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

= ε1 ε1 + ε2 ε2

     = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

〈 ε2 |= (3/2 1/2)/k2
1/2
1/2

|ε2 〉=k2

1/2
-3/2

|ε1 〉=k1

〈 ε1 |= (1/2 -1/2)/k1

| 1 〉 or 〈1 |

| 2 〉
or
〈2 |

1/4 1/2 3/4 5/41 3/2

-1/2

-1

-3/2

1/4

1/2

3/4Eigen-bra-ket
projectors
of matrix:

M= 4 1
3 2

⏐y
〉

⏐x〉 or 

Eigen-operators                 then give Spectral Decomposition of operator M
 M =MP1 +MP2 + ...+MPn = ε1P1 + ε2P2 + ...+ εnPn

MPk =ε kPk
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Matrix-algebraic method for finding eigenvector and eigenvalues    With example matrix M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)

(1− 5)
= 1

4
1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Factoring bra-kets into “Ket-Bras:

The Pj are Mutually Ortho-Normal
as are bra-ket 〈εj⏐and⏐εj〉 inside Pj’s
 

ε1 ε1 ε1 ε2
ε2 ε1 ε2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...and the Pj satisfy a 
Completeness Relation: 
1=   P1  +   P2   +...+  Pn

=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐

P1 + P2 =
1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

= ε1 ε1 + ε2 ε2

     = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

〈 ε2 |= (3/2 1/2)/k2
1/2
1/2

|ε2 〉=k2

1/2
-3/2

|ε1 〉=k1

〈 ε1 |= (1/2 -1/2)/k1

| 1 〉 or 〈1 |

| 2 〉
or
〈2 |

1/4 1/2 3/4 5/41 3/2

-1/2

-1

-3/2

1/4

1/2

3/4Eigen-bra-ket
projectors
of matrix:

M= 4 1
3 2

Eigen-operators                 then give Spectral Decomposition of operator M
 M =MP1 +MP2 + ...+MPn = ε1P1 + ε2P2 + ...+ εnPn

MPk =ε kPk

M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
= 1P1 + 5P2 = 1 1 1 + 5 2 2 = 1 4

1 −4
1

−4
3

4
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ 5 4

3
4
1

4
3

4
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Matrix and operator Spectral Decompositons    M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)

(1− 5)
= 1

4
1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Factoring bra-kets into “Ket-Bras:

The Pj are Mutually Ortho-Normal
as are bra-ket 〈εj⏐and⏐εj〉 inside Pj’s
 

ε1 ε1 ε1 ε2
ε2 ε1 ε2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...and the Pj satisfy a 
Completeness Relation: 
1=   P1  +   P2   +...+  Pn

=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐

P1 + P2 =
1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

= ε1 ε1 + ε2 ε2

     = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

Eigen-operators                 then give Spectral Decomposition of operator M
 M =MP1 +MP2 + ...+MPn = ε1P1 + ε2P2 + ...+ εnPn

MPk =ε kPk

M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
= 1P1 + 5P2 = 1 1 1 + 5 2 2 = 1 4

1 −4
1

−4
3

4
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ 5 4

3
4
1

4
3

4
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...and Functional Spectral Decomposition of any function f(M) of M
 f (M) == f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn
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Matrix and operator Spectral Decompositons    M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)

(1− 5)
= 1

4
1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Factoring bra-kets into “Ket-Bras:

The Pj are Mutually Ortho-Normal
as are bra-ket 〈εj⏐and⏐εj〉 inside Pj’s
 

ε1 ε1 ε1 ε2
ε2 ε1 ε2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...and the Pj satisfy a 
Completeness Relation: 
1=   P1  +   P2   +...+  Pn

=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐

P1 + P2 =
1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

= ε1 ε1 + ε2 ε2

     = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

Eigen-operators                 then give Spectral Decomposition of operator M
 M =MP1 +MP2 + ...+MPn = ε1P1 + ε2P2 + ...+ εnPn

MPk =ε kPk

M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
= 1P1 + 5P2 = 1 1 1 + 5 2 2 = 1 4

1 −4
1

−4
3

4
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ 5 4

3
4
1

4
3

4
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...and Functional Spectral Decomposition of any function f(M) of M
 f (M) == f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn

Example: 

M50= 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
=150 4

1 −4
1

−4
3

4
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+550 4

3
4
1

4
3

4
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=4
1 1+3·550 550−1

3·550−3 550+3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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M50= 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
=150 4

1 −4
1

−4
3

4
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+550 4

3
4
1

4
3

4
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=4
1 1+3·550 550−1

3·550−3 550+3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Matrix and operator Spectral Decompositons    M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)

(1− 5)
= 1

4
1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Factoring bra-kets into “Ket-Bras:

The Pj are Mutually Ortho-Normal
as are bra-ket 〈εj⏐and⏐εj〉 inside Pj’s
 

ε1 ε1 ε1 ε2
ε2 ε1 ε2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...and the Pj satisfy a 
Completeness Relation: 
1=   P1  +   P2   +...+  Pn

=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐

P1 + P2 =
1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

= ε1 ε1 + ε2 ε2

     = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

Eigen-operators                 then give Spectral Decomposition of operator M
 M =MP1 +MP2 + ...+MPn = ε1P1 + ε2P2 + ...+ εnPn

MPk =ε kPk

M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
= 1P1 + 5P2 = 1 1 1 + 5 2 2 = 1 4

1 −4
1

−4
3

4
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ 5 4

3
4
1

4
3

4
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...and Functional Spectral Decomposition of any function f(M) of M
 f (M) == f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn

Examples: 

M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟
= ± 1 4

1 −4
1

−4
3

4
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
± 5 4

3
4
1

4
3

4
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Unitary operators and matrices that change state vectors 
      ...and eigenstates (“ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors      
      Circle-to-ellipse mapping
      Ellipse-to-ellipse mapping (Normal space vs. tangent space)
      Eigensolutions as stationary extreme-values (Lagrange λ-multipliers)
 
Matrix-algebraic eigensolutions with example M=      
      Secular equation 
      Hamilton-Cayley equation and projectors 
      Idempotent projectors (how eigenvalues⇒eigenvectors)
      Operator orthonormality and Completeness

Spectral Decompositions 
      Functional spectral decomposition
      Orthonormality vs. Completeness vis-a`-vis Operator vs. State
      Lagrange functional interpolation formula 
              Proof that completeness relation is “Truer-than-true”
Spectral Decompositions with degeneracy 
      Functional spectral decomposition

4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Factoring bra-kets 
into “Ket-Bras:
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M = 4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Last step: 
make Idempotent Projectors: Pk =

pk
ε k − εm( )

m≠k
∏ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏

Multiplication properties of pj :

p jpk = p j M − εm1( ) = p jM − εmp j1( )
m≠k
∏

m≠k
∏

 

 p jpk = ε jp j − εmp j( )
m≠k
∏ = p j ε j − εm( )

m≠k
∏ =

0                       if : j ≠ k

pk ε k − εm( )   if : j = k
m≠k
∏

⎧
⎨
⎪

⎩⎪

p1 = (M − 5⋅1) = −1 1
3 −3

⎛
⎝⎜

⎞
⎠⎟

p2 = (M −1⋅1) = 3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

p1p2 =
0 0
0 0

⎛
⎝⎜

⎞
⎠⎟

Mpk =ε kpk = pkM

(Idempotent means: P·P=P)

 PjPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪

Mpk =ε kpk = pkM
implies :
MPk =ε kPk = PkM

P1 =
(M − 5⋅1)

(1− 5)
= 1

4
1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Factoring bra-kets into “Ket-Bras:

〈 ε2 |= (3/2 1/2)/k2
1/2
1/2

|ε2 〉=k2

1/2
-3/2

|ε1 〉=k1

〈 ε1 |= (1/2 -1/2)/k1

| 1 〉 or 〈1 |

| 2 〉
or
〈2 |

1/4 1/2 3/4 5/41 3/2

-1/2

-1

-3/2

1/4

1/2

3/4Eigen-bra-ket
projectors
of matrix:

M= 4 1
3 2

The Pj are Mutually Ortho-Normal
as are bra-ket 〈εj⏐and⏐εj〉 inside Pj’s
 

ε1 ε1 ε1 ε2
ε2 ε1 ε2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

...and the Pj satisfy a 
Completeness Relation: 
1=   P1  +   P2   +...+  Pn

=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐

P1 + P2 =
1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

= ε1 ε1 + ε2 ε2

     = 1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

{⏐x〉,⏐y〉}-orthonormality with {⏐ε1〉,⏐ε2〉}-completeness  

{⏐ε1〉,⏐ε2〉}-orthonormality with {⏐x〉,⏐y〉}-completeness  

x y = δ x,y = x 1 y = x ε1 ε1 y + x ε2 ε2 y .

ε i ε j  = δ i, j = ε i 1 ε j = ε i x x ε j + ε i y y ε j

⏐y〉
or
〈y⏐

⏐x〉 or 〈x⏐

Orthonormality vs. Completeness 
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Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Operator expressions for orthonormality appear quite different from expressions for completeness.
      

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪
1= P1 +P2 +...+Pn
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Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Operator expressions for orthonormality appear quite different from expressions for completeness.
      

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪
1= P1 +P2 +...+Pn

1=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐|εj〉〈εj⏐εk〉〈εk⏐=δjk⏐εk〉〈εk⏐  or:   〈εj⏐εk〉=δjk
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{⏐x〉,⏐y〉}-orthonormality with {⏐ε1〉,⏐ε2〉}-completeness  

{⏐ε1〉,⏐ε2〉}-orthonormality with {⏐x〉,⏐y〉}-completeness  

x y = δ x,y = x 1 y = x ε1 ε1 y + x ε2 ε2 y .

ε i ε j  = δ i, j = ε i 1 ε j = ε i x x ε j + ε i y y ε j

State vector representations of orthonormality are quite similar to representations of completeness.
     Like 2-sides of the same coin.    

Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Operator expressions for orthonormality appear quite different from expressions for completeness.
      

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪
1= P1 +P2 +...+Pn

1=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐|εj〉〈εj⏐εk〉〈εk⏐=δjk⏐εk〉〈εk⏐  or:   〈εj⏐εk〉=δjk
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{⏐x〉,⏐y〉}-orthonormality with {⏐ε1〉,⏐ε2〉}-completeness  

{⏐ε1〉,⏐ε2〉}-orthonormality with {⏐x〉,⏐y〉}-completeness  

x y = δ x,y = x 1 y = x ε1 ε1 y + x ε2 ε2 y .

ε i ε j  = δ i, j = ε i 1 ε j = ε i x x ε j + ε i y y ε j

State vector representations of orthonormality are quite similar to representations of completeness.
     Like 2-sides of the same coin.    

Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Operator expressions for orthonormality appear quite different from expressions for completeness.
      

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪
1= P1 +P2 +...+Pn

1=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐|εj〉〈εj⏐εk〉〈εk⏐=δjk⏐εk〉〈εk⏐  or:   〈εj⏐εk〉=δjk

x y = δ (x, y) =          ψ 1(x)ψ *
1(y)+ψ 2 (x)ψ *

2 (y)+ ..

However Schrodinger wavefunction notation ψ(x)=〈x⏐ψ〉 shows quite a difference...   

Dirac δ-function 
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{⏐x〉,⏐y〉}-orthonormality with {⏐ε1〉,⏐ε2〉}-completeness  

{⏐ε1〉,⏐ε2〉}-orthonormality with {⏐x〉,⏐y〉}-completeness  

x y = δ x,y = x 1 y = x ε1 ε1 y + x ε2 ε2 y .

ε i ε j  = δ i, j = ε i 1 ε j = ε i x x ε j + ε i y y ε j

State vector representations of orthonormality are quite similar to representations of completeness.
     Like 2-sides of the same coin.    

Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Operator expressions for orthonormality appear quite different from expressions for completeness.
      

 PjPk = δ jkPk =
0        if : j ≠ k
Pk      if : j = k

⎧
⎨
⎪

⎩⎪
1= P1 +P2 +...+Pn

1=⏐ε1〉〈ε1⏐+⏐ε2〉〈ε2⏐+...+⏐εn〉〈εn⏐|εj〉〈εj⏐εk〉〈εk⏐=δjk⏐εk〉〈εk⏐  or:   〈εj⏐εk〉=δjk

x y = δ (x, y) =          ψ 1(x)ψ *
1(y)+ψ 2 (x)ψ *

2 (y)+ ..

ε i ε j = δ i, j =          ...+ψ *
i (x)ψ j (x)+ψ 2 (y)ψ *

2 (y)+ ....→ dx∫ ψ *
i (x)ψ j (x)

However Schrodinger wavefunction notation ψ(x)=〈x⏐ψ〉 shows quite a difference…
                                                                           ...particularly in the orthonormality integral.

Dirac δ-function 
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Unitary operators and matrices that change state vectors 
      ...and eigenstates (“ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors      
      Circle-to-ellipse mapping
      Ellipse-to-ellipse mapping (Normal space vs. tangent space)
      Eigensolutions as stationary extreme-values (Lagrange λ-multipliers)
 
Matrix-algebraic eigensolutions with example M=      
      Secular equation 
      Hamilton-Cayley equation and projectors 
      Idempotent projectors (how eigenvalues⇒eigenvectors)
      Operator orthonormality and Completeness

Spectral Decompositions 
      Functional spectral decomposition
      Orthonormality vs. Completeness vis-a`-vis Operator vs. State
      Lagrange functional interpolation formula 
              Proof that completeness relation is “Truer-than-true”
Spectral Decompositions with degeneracy 
      Functional spectral decomposition

4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Factoring bra-kets 
into “Ket-Bras:
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A Proof of Projector Completeness (Truer-than-true by Lagrange interpolation)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )
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A Proof of Projector Completeness (Truer-than-true)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )

 

Each polynomial term  Pm(x)  has zeros at each point x=xj  except where x=xm.  Then Pm(xm)=1.  
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A Proof of Projector Completeness (Truer-than-true)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )

 

Each polynomial term  Pm(x)  has zeros at each point x=xj  except where x=xm.  Then Pm(xm)=1.  
So at each of these points this L-approximation becomes exact: L(f(xj))= f(xj) .  
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A Proof of Projector Completeness (Truer-than-true)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )

 

Each polynomial term  Pm(x)  has zeros at each point x=xj  except where x=xm.  Then Pm(xm)=1.  
So at each of these points this L-approximation becomes exact: L(f(xj))= f(xj) .  
If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x))= f(x) may be exact everywhere.

  
 1= Pm x( )

m=1

N
∑

  
x= xmPm x( )

m=1

N
∑

  
x2= xm

2Pm x( )
m=1

N
∑
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A Proof of Projector Completeness (Truer-than-true)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )

 

Each polynomial term  Pm(x)  has zeros at each point x=xj  except where x=xm.  Then Pm(xm)=1.  
So at each of these points this L-approximation becomes exact: L(f(xj))= f(xj) .  
If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x))= f(x) may be exact everywhere.

  
 1= Pm x( )

m=1

N
∑

  
x= xmPm x( )

m=1

N
∑

One point determines a constant level line, 
                                                               

  
x2= xm

2Pm x( )
m=1

N
∑

x1
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A Proof of Projector Completeness (Truer-than-true)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )

 

Each polynomial term  Pm(x)  has zeros at each point x=xj  except where x=xm.  Then Pm(xm)=1.  
So at each of these points this L-approximation becomes exact: L(f(xj))= f(xj) .  
If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x))= f(x) may be exact everywhere.

  
 1= Pm x( )

m=1

N
∑

  
x= xmPm x( )

m=1

N
∑

One point determines a constant level line, two separate points uniquely determine a sloping line, 
                                                               

  
x2= xm

2Pm x( )
m=1

N
∑

x1 x1 x2
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A Proof of Projector Completeness (Truer-than-true)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )

 

Each polynomial term  Pm(x)  has zeros at each point x=xj  except where x=xm.  Then Pm(xm)=1.  
So at each of these points this L-approximation becomes exact: L(f(xj))= f(xj) .  
If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x))= f(x) may be exact everywhere.

  
 1= Pm x( )

m=1

N
∑

  
x= xmPm x( )

m=1

N
∑

One point determines a constant level line, two separate points uniquely determine a sloping line, 
                                                               three separate points uniquely determine a parabola, etc. 

  
x2= xm

2Pm x( )
m=1

N
∑

x1 x1 x2 x1 x2 x2
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A Proof of Projector Completeness (Truer-than-true)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )

 

Each polynomial term  Pm(x)  has zeros at each point x=xj  except where x=xm.  Then Pm(xm)=1.  
So at each of these points this L-approximation becomes exact: L(f(xj))= f(xj) .  
If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x))= f(x) may be exact everywhere.

  
 1= Pm x( )

m=1

N
∑

  
x= xmPm x( )

m=1

N
∑

One point determines a constant level line, two separate points uniquely determine a sloping line, 
three separate points uniquely determine a parabola, etc. 

  
x2= xm

2Pm x( )
m=1

N
∑

Lagrange interpolation formula→Completeness formula as x→M and as xk →εk and as Pk(xk) →Ρk
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A Proof of Projector Completeness (Truer-than-true)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )

 

Each polynomial term  Pm(x)  has zeros at each point x=xj  except where x=xm.  Then Pm(xm)=1.  
So at each of these points this L-approximation becomes exact: L(f(xj))= f(xj) .  
If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x))= f(x) may be exact everywhere.

  
 1= Pm x( )

m=1

N
∑

  
x= xmPm x( )

m=1

N
∑

One point determines a constant level line, two separate points uniquely determine a sloping line, 
three separate points uniquely determine a parabola, etc. 

All distinct values ε1≠ε2≠...≠εN satisfy ΣΡk=1. 

  
x2= xm

2Pm x( )
m=1

N
∑

Lagrange interpolation formula→Completeness formula as x→M and as xk →εk and as Pk(xk) →Ρk
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A Proof of Projector Completeness (Truer-than-true)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )

 

Each polynomial term  Pm(x)  has zeros at each point x=xj  except where x=xm.  Then Pm(xm)=1.  
So at each of these points this L-approximation becomes exact: L(f(xj))= f(xj) .  
If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x))= f(x) may be exact everywhere.

  
 1= Pm x( )

m=1

N
∑

  
x= xmPm x( )

m=1

N
∑

One point determines a constant level line, two separate points uniquely determine a sloping line, 
three separate points uniquely determine a parabola, etc. 

   

P1 + P2 = j≠1
∏ M − ε j1( )
j≠1
∏ ε1 − ε j( ) + j≠1

∏ M − ε j1( )
j≠1
∏ ε2 − ε j( ) =

M − ε21( )
ε1 − ε2( ) +

M − ε11( )
ε2 − ε1( ) =

M − ε21( )− M − ε11( )
ε1 − ε2( ) =

−ε21+ ε11
ε1 − ε2( ) = 1 (for all  ε j ) 

All distinct values ε1≠ε2≠...≠εN satisfy ΣΡk=1. Completeness is truer than true as is seen for N=2.

  
x2= xm

2Pm x( )
m=1

N
∑

Lagrange interpolation formula→Completeness formula as x→M and as xk →εk and as Pk(xk) →Ρk
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A Proof of Projector Completeness (Truer-than-true)
Compare matrix completeness relation and functional spectral decompositions

with Lagrange interpolation formula of function f(x) approximated by its value at N points x1, x2,… xN.

1=P1+P2 +...+Pn = Pk
εk
∑ =

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑  f (M) = f (ε1)P1 + f (ε2 )P2 + ...+ f (εn )Pn = f (ε k )Pk
εk
∑ = f (ε k )

M − εm1( )
m≠k
∏

ε k − εm( )
m≠k
∏εk

∑

  

L f (x)( ) = f (xk )·
k=1

N
∑ Pk (x)     where:  Pk (x) =

Π
j≠k

N
x − x j( )

Π
j≠k

N
xk − x j( )

 

Each polynomial term  Pm(x)  has zeros at each point x=xj  except where x=xm.  Then Pm(xm)=1.  
So at each of these points this L-approximation becomes exact: L(f(xj))= f(xj) .  
If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x))= f(x) may be exact everywhere.

  
 1= Pm x( )

m=1

N
∑

  
x= xmPm x( )

m=1

N
∑

One point determines a constant level line, two separate points uniquely determine a sloping line, 
three separate points uniquely determine a parabola, etc. 

   

P1 + P2 = j≠1
∏ M − ε j1( )
j≠1
∏ ε1 − ε j( ) + j≠1

∏ M − ε j1( )
j≠1
∏ ε2 − ε j( ) =

M − ε21( )
ε1 − ε2( ) +

M − ε11( )
ε2 − ε1( ) =

M − ε21( )− M − ε11( )
ε1 − ε2( ) =

−ε21+ ε11
ε1 − ε2( ) = 1 (for all  ε j ) 

All distinct values ε1≠ε2≠...≠εN satisfy ΣΡk=1. Completeness is truer than true as is seen for N=2.

However, only select values εk work for eigen-forms MΡk= εkΡk  or orthonormality ΡjΡk=δjkΡk.

  
x2= xm

2Pm x( )
m=1

N
∑

Lagrange interpolation formula→Completeness formula as x→M and as xk →εk and as Pk(xk) →Ρk
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Unitary operators and matrices that change state vectors 
      ...and eigenstates (“ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors      
      Circle-to-ellipse mapping
      Ellipse-to-ellipse mapping (Normal space vs. tangent space)
      Eigensolutions as stationary extreme-values (Lagrange λ-multipliers)
 
Matrix-algebraic eigensolutions with example M=      
      Secular equation 
      Hamilton-Cayley equation and projectors 
      Idempotent projectors (how eigenvalues⇒eigenvectors)
      Operator orthonormality and Completeness

Spectral Decompositions 
      Functional spectral decomposition
      Orthonormality vs. Completeness vis-a`-vis Operator vs. State
      Lagrange functional interpolation formula 
              Proof that completeness relation is “Truer-than-true”
Diagonalizing Transformations (D-Ttran) from projectors 
      Eigensolutions for active analyzers
Spectral Decompositions with degeneracy 
      Functional spectral decomposition

4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Factoring bra-kets 
into “Ket-Bras:
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Given our eigenvectors and their Projectors. 
	



Diagonalizing Transformations (D-Ttran) from projectors 
P1 =

(M − 5⋅1)
(1− 5)

= 1
4

1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2
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Given our eigenvectors and their Projectors. 
	



Diagonalizing Transformations (D-Ttran) from projectors 
P1 =

(M − 5⋅1)
(1− 5)

= 1
4

1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Load distinct bras 〈ε1| and 〈ε2| into d-tran rows, kets |ε1〉 and |ε2〉 into inverse d-tran columns.
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 ε1 = 2
1 −2

1( ), ε2 = 2
3

2
1( ){ }   ,    ε1 = 2

1

−2
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, ε2 = 2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    (ε1,ε2 )← (1,2) d−Tran matrix               (1,2)← (ε1,ε2 ) INVERSE d−Tran matrix

   
ε1 x ε1 y

ε2 x ε2 y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1 −2
1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      ,   
x ε1 x ε2

y ε1 y ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

Given our eigenvectors and their Projectors. 
	



Diagonalizing Transformations (D-Ttran) from projectors 
P1 =

(M − 5⋅1)
(1− 5)

= 1
4

1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Load distinct bras 〈ε1| and 〈ε2| into d-tran rows, kets |ε1〉 and |ε2〉 into inverse d-tran columns.
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 ε1 = 2
1 −2

1( ), ε2 = 2
3

2
1( ){ }   ,    ε1 = 2

1

−2
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, ε2 = 2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    (ε1,ε2 )← (1,2) d−Tran matrix               (1,2)← (ε1,ε2 ) INVERSE d−Tran matrix

   
ε1 x ε1 y

ε2 x ε2 y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1 −2
1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      ,   
x ε1 x ε2

y ε1 y ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

Given our eigenvectors and their Projectors. 
	



Diagonalizing Transformations (D-Ttran) from projectors 
P1 =

(M − 5⋅1)
(1− 5)

= 1
4

1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Load distinct bras 〈ε1| and 〈ε2| into d-tran rows, kets |ε1〉 and |ε2〉 into inverse d-tran columns.

   

 
ε1 x ε1 y

ε2 x ε2 y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅  

x K x x K y

y K x y K y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

x ε1 x ε2

y ε1 y ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 K ε1 ε1 K ε2

ε2 K ε1 ε2 K ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

       2
1 −2

1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

       ⋅        4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
              ⋅     2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

        =             1 0
0 5

⎛

⎝⎜
⎞

⎠⎟

Use Dirac labeling for all components so transformation is OK
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 ε1 = 2
1 −2

1( ), ε2 = 2
3

2
1( ){ }   ,    ε1 = 2

1

−2
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, ε2 = 2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    (ε1,ε2 )← (1,2) d−Tran matrix               (1,2)← (ε1,ε2 ) INVERSE d−Tran matrix

   
ε1 x ε1 y

ε2 x ε2 y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1 −2
1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      ,   
x ε1 x ε2

y ε1 y ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

Given our eigenvectors and their Projectors. 
	



Diagonalizing Transformations (D-Ttran) from projectors 
P1 =

(M − 5⋅1)
(1− 5)

= 1
4

1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Load distinct bras 〈ε1| and 〈ε2| into d-tran rows, kets |ε1〉 and |ε2〉 into inverse d-tran columns.

   

 
ε1 x ε1 y

ε2 x ε2 y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅  

x K x x K y

y K x y K y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

x ε1 x ε2

y ε1 y ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 K ε1 ε1 K ε2

ε2 K ε1 ε2 K ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

       2
1 −2

1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

       ⋅        4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
              ⋅     2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

        =             1 0
0 5

⎛

⎝⎜
⎞

⎠⎟

Use Dirac labeling for all components so transformation is OK

  

 
ε1 1 ε1 2

ε2 1 ε2 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

1 ε1 1 ε2

2 ε1 2 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 1 ε1 ε1 1 ε2

ε2 1 ε1 ε2 1 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

      2
1 −2

1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

        ⋅   2
1

2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

         =             1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

Check inverse-d-tran is really inverse of your d-tran.  
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 ε1 = 2
1 −2

1( ), ε2 = 2
3

2
1( ){ }   ,    ε1 = 2

1

−2
3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, ε2 = 2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    (ε1,ε2 )← (1,2) d−Tran matrix               (1,2)← (ε1,ε2 ) INVERSE d−Tran matrix

   
ε1 x ε1 y

ε2 x ε2 y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1 −2
1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      ,   
x ε1 x ε2

y ε1 y ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

Given our eigenvectors and their Projectors. 
	



Diagonalizing Transformations (D-Ttran) from projectors 
P1 =

(M − 5⋅1)
(1− 5)

= 1
4

1 −1
−3 3

⎛
⎝⎜

⎞
⎠⎟
= k1

2
1

−2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

2
1 −2

1( )
k1

= ε1 ε1

P2 =
(M −1⋅1)

(5 −1)
= 1

4
3 1
3 1

⎛
⎝⎜

⎞
⎠⎟

    = k2
2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 ⊗  
2
3

2
1( )

k2

= ε2 ε2

Load distinct bras 〈ε1| and 〈ε2| into d-tran rows, kets |ε1〉 and |ε2〉 into inverse d-tran columns.

   

 
ε1 x ε1 y

ε2 x ε2 y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅  

x K x x K y

y K x y K y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

x ε1 x ε2

y ε1 y ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 K ε1 ε1 K ε2

ε2 K ε1 ε2 K ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

       2
1 −2

1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

       ⋅        4 1
3 2

⎛

⎝⎜
⎞

⎠⎟
              ⋅     2

1
2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

        =             1 0
0 5

⎛

⎝⎜
⎞

⎠⎟

Use Dirac labeling for all components so transformation is OK

   

 
ε1 x ε1 y

ε2 x ε2 y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅

x ε1 x ε2

y ε1 y ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ε1 1 ε1 ε1 1 ε2

ε2 1 ε1 ε2 1 ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

      2
1 −2

1

2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

        ⋅   2
1

2
1

−2
3

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

         =             1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

Check inverse-d-tran is really inverse of your d-tran.  In standard quantum matrices inverses are “easy”

  

ε1 x ε1 y

ε2 x ε2 y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

x ε1 x ε2

y ε1 y ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

†

=
x ε1

* y ε1
*

x ε2
* y ε2

*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

x ε1 x ε2

y ε1 y ε2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1
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Unitary operators and matrices that change state vectors 
      ...and eigenstates (“ownstates) that are mostly immune
Geometric visualization of real symmetric matrices and eigenvectors      
      Circle-to-ellipse mapping
      Ellipse-to-ellipse mapping (Normal space vs. tangent space)
      Eigensolutions as stationary extreme-values (Lagrange λ-multipliers)
 
Matrix-algebraic eigensolutions with example M=      
      Secular equation 
      Hamilton-Cayley equation and projectors 
      Idempotent projectors (how eigenvalues⇒eigenvectors)
      Operator orthonormality and Completeness

Spectral Decompositions 
      Functional spectral decomposition
      Orthonormality vs. Completeness vis-a`-vis Operator vs. State
      Lagrange functional interpolation formula 
              Proof that completeness relation is “Truer-than-true”
Diagonalizing Transformations (D-Ttran) from projectors 
      Eigensolutions for active analyzers
Spectral Decompositions with degeneracy 
      Functional spectral decomposition

4 1
3 2

⎛
⎝⎜

⎞
⎠⎟

Factoring bra-kets 
into “Ket-Bras:
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Matrix products and eigensolutions for active analyzers
Consider a 45° tilted (θ1=β1/2=π/4 or β1=90°) analyzer followed by a untilted (β2=0) analyzer. 
Active analyzers have both paths open and a phase shift e-iΩ between each path. 
Here the first analyzer has Ω1=90°. The second has Ω2=180°. 
	



The transfer matrix for each analyzer is a sum of projection operators for each open path 
multiplied by the phase factor that is active at that path. Apply phase factor e-iΩ1 =e-iπ/2 to 
top path in the first analyzer and the factor e-iΩ2 =e-iπ to the top path in the second analyzer.

      

The matrix product T(total)=T(2)T(1) relates input states |ΨIN〉 to output states: |ΨOUT〉 =T(total)|ΨIN〉
 

	



We drop the overall phase e-iπ/4  since it is unobservable. T(total) yields two eigenvalues and projectors.
	



|ΨΙΝ〉|ΨOUT〉
|ΨΙΝ〉=|y〉

2Θin =

β
in
=180°

  
T 2( ) = e−iπ x x + y y = e−iπ 0

0 1

⎛

⎝
⎜

⎞

⎠
⎟

  

T 1( ) = e−iπ / 2 ′x ′x + ′y ′y = e−iπ / 2

1
2

1
2

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+

1
2

−1
2

−1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1− i
2

−1− i
2

−1− i
2

1− i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

T total( ) = T 2( )T 1( ) = −1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

1− i
2

−1− i
2

−1− i
2

1− i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

−1+ i
2

1+ i
2

−1− i
2

1− i
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= e−iπ / 4

−1
2

i
2

−i
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

~

−1
2

i
2

−i
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

  

λ2 − 0λ −1= 0, or: λ=+1, −1
,  gives projectors    P+1 =

−1
2
+1 i

2
−i
2

1
2
+1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

1− −1( ) =

−1+ 2 i
−i 1+ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 2
,   P−1 =

1+ 2 −i
i −1+ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2 2

|ΨΙΝ〉

=|+1〉
|ΨOUT〉
=|+1〉

2Θin =

β
in
=-135°
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