Group Theory in Quantum Mechanics
Lecture 3 (12213

Analyzers, operators, and group axioms

(Quantum Theory for Computer Age - Ch. 1-2 of Unit 1 )
(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-3 of Ch. 1)
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. . Feynman-Dirac
Feynman amplitude axioms 1-4 Interpretation of

JIK’)

(1) The probability axiom

. . : . - - | =Amplitude of state-j after

The first axiom deals with physical 1n§erpretat1:)n of amplitudes < ]‘ > state-k’ is forced o hoose

Axiom 1: The absolute square ‘< j k'>‘ _ < j‘ kv> < j‘ kv> gives probability for | fiom available m-type states
N Y,

occurrence in state-j of a system that started in state-k'=1",2",..,or n' from one sorter

and then was forced to choose between states j=1,2,...,n by another sorter.

(2) The conjugation or inversion axiom (time reversal symmetry)
The second axiom concerns going backwards through a sorter or the reversal of amplitudes.

k'>*0f an amplitude< j‘ k'> equals its reverse: < j‘ k'>* = <k" j>

Axiom 2: The complex conjugate < Jj

(3) The orthonormality or identity axiom
The third axiom concerns the amplitude for "re measurement" by the same analyzer.
Axiom 3: If identical analyzers are used twice or more the amplitude for a passed state-k is one,

and for all others it is zero: L
(HR)=8,=1 (70 h=(f) S
O1if:j#k o T T

(4) The completeness or closure axiom

The fourth axiom concerns the "Do-nothing" property of an ideal analyzer, that is,
a sorter followed by an "unsorter" or "put-back-togetherer" as sketched above.
Axiom 4. Ideal sorting followed by ideal recombination of amplitudes has no effect:

(7m)= 2 (5715 )k
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(a) “Do-Nothing "Analyzer Y1 O unatyzer=-30°

| input

O -polarized light | : larizati
ot potarized lig 1o /a’”lZea’ll'gh;: ¥ polarization O
“"“""“-‘-ht.q_ | O. . /2=100

~
~
~

~

out R | N
No change if analyzer | ‘\‘1'1‘-‘,“ R

el A
does nothing "1‘5'1‘-‘;"-‘,‘,‘,’

tilt of analyzer setting of
=0 [ ||B=f60°=30 input
o T B gnglyler] Ll Ll I p

—|.30° polarization

analyzqr
®in :BinZZOOO
analyzer activity angle £ Q- 0°

(b)Simulation

2
A

f=200°

—1 I

(Q2=0 means do-nothing)
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Imagine final xy-sorter analyzes output beam into x and y-components.

(a) “Do-Nothing " Analyzer Yt Ounatyzer=-30°

| input
o . , I , . .
i : - © ot -polarized light X" pol arl'Zedlz’gh;i y : polarization
™ ] k | X 10, >G,,/2=100°
v I} \«\A‘\\ ~° | n
\\\V\"’ "‘ //// :
:@ | ' Au ) : ////
No change if ;Zalyzer ¥ ”,”‘é ‘v “i;‘:\:‘:\:‘:, 41-.:_‘_
- a . Pty

does nothing Y Polari- ed /lgh 5! ST
Amplitude in x or y-channel 1s (b)Simulation = fl'/_f of al/:}a_lyZér setling of
sum over x' and y-amplitudes il | ol Eq_fyfr_yk;g] 219 lml_j “tt

—|_20n° polarization
(x1Oin)=cos(Oin—0) QnalyZﬁOZ(f)? =[;,=200°
(5 1Oiny=sin(n-0) = Vg
with relative angle ©;;—0 ; Nﬂ%%
of Ojn to O-analyzer axes-(x',)") | jZZI/Z{
in products with final xy-sorter: f : ﬁ: EDDi
lab x-axis: {(x]xy=cos© = {y|p) analyzer activity angle €2 >0 00 i F
y-axis: (ylx)=sin®© = -(x]y). (Q2=0 means do-nothing) o

x-Output is: {x|Oout)= {x|x XxOin)+{x|y Y} |Oin)y=cosOcos(Oin-0) - sinOsin(Ojn-0)=cos Oin
y-Output is: (y|Oout)= YxYx10im)+y W Oin)=sin®Ocos(@in-0) - cosOsin(O;n-0)=sin Oin.
(Recall  cos(a+b)=cosa cosb-sina sinb  and sin(a+b)=sina cosb+cosa sinb )

Conclusion:
(X|®out)= cos Oout = cos Ojn or: Oout=in so “Do-Nothing” Analyzer in fact does nothing.
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j"|m"y=>_(j"|k) (k|m’) may be “abstracted"” three different ways
k=1
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Abstraction of Axiom 4 to define projection and unitary operators
Axiom 4:  (j"|m"y=>_(j"|k) (k|m’) may be “abstracted"” three different ways
k=1

Left abstraction gives bra-transform:

o-"\izy% (K
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  {j'"\m"y=>_(j""|k) (k|m") may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  {j'"\m"y=>_(j""|k) (k|m") may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:

1=3|) (k| = |k) (K| =S &) (K =...
k=1 k=1 k=1
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  {j'"\m"y=>_(j""|k) (k|m") may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
1=)_|k) (k|=2_|K) (K |=>_|K7) (K |=...
k=1 k=1 k=1
Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1)(1"], | 2")(2'|..} or {|17) (17,127 (2""]..}

Pi= [1)(1], Po= [2)(2|,.. or Pu=|I)(I'], P2=|2'}(2'| ete.
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  {j'"\m"y=>_(j""|k) (k|m") may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.
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Abstraction of Axiom 4 to define projection and unitary operators

n

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways

k=1
Left abstraction gives bra-transform: Right abstraction gives ket-transform.:
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
1=)_|k) (k|=2_|K) (K |=>_|K7) (K |=...
k=1 k=1 k=1

Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1") (1], |2/)(2"|..} or {| 1) (1"], |2"7)(2"]..}

---------------------------------------------------------------------------------------------

)

1
OPfx) (P y) 0

(dPx) (dP]y) ](
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:

n

k=1
Left abstraction gives bra-transform:

v"\=év"1k> (k

(" \m")=>_(j"" k) (k|m") may be “abstracted" three different ways

Right abstraction gives ket-transform.

"””:é ) (k|

Center abstraction gives ket-bra identity operator:
1=)_|k) (k|=2_|K) (K |=>_|K7) (K |=...
k=1 k=1 k=1

Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1") (1], |2/)(2"|..} or {| 1) (1"], |2"7)(2"]..}

=
-
-
-~
-~
-

"""" =|y)si
(Rl (IPy) ( 0 oj
QIR [x) ([P, [y) 0 1
Projections of general state |\V) ...

PLIT)=]) )W)

)

(dP|x) (xPy) ]( I
0

OPfx) (P y)

)
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Abstraction of Axiom 4 to define projection and unitary operators

n

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways

k=1
Left abstraction gives bra-transform: Right abstraction gives ket-transform.:
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
1=)_|k) (k|=2_|K) (K |=>_|K7) (K |=...
k=1 k=1 k=1

Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1") (1], |2/)(2"|..} or {| 1) (1"], |2"7)(2"]..}

---------------------------------------------------------------------------------------------

| 0]
1P |x) ¢ 0 0

OPfx) (P y)

[ (x[R)2) | (BLx) () ](

Projections of general state |\V) ...

..must add up to|\V) o U)=|y) (y|¥
P.|T) + P,|V) =)
(Px + P)’)‘\Ij> :‘\Ij>

Tuesday, January 22, 2013 16



Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.:
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
1=)_|k) (k|=2_|K) (K |=>_|K7) (K |=...
k=1 k=1 k=1

Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1") (1], |2/)(2"|..} or {| 1) (1"], |2"7)(2"]..}

---------------------------------------------------------------------------------------------

unit kets |x) and |y) x) <x|x,>,¢
: cosf
(x| P,[x) (P fx) (+P]y) :(1 0]
OIR | OIR]x) - IR L) 0 0

...and so P projectors

must add up to identity operator...
1 =P + P

Projections of general state |\V) ...

..must add up to|\V) o U)=|y) (y|¥
P.|T) + P,|V) =)
(Px + P)’)‘\Ij> :‘\Ij>

Tuesday, January 22, 2013 17



Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.:
=220 k) (k] m')=>_ |k) (k|m’)
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Center abstraction gives ket-bra identity operator:
1=)_|k) (k|=2_|K) (K |=>_|K7) (K |=...
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Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1") (1], |2/)(2"|..} or {| 1) (1"], |2"7)(2"]..}

---------------------------------------------------------------------------------------------

unit kets |x) and |y) x) <x|x,>,¢
: cosf
(x| P,[x) (P fx) (+P]y) :(1 0]
OIR | OIR]x) - IR L) 0 0

...and so P projectors
must add up to identity operator...

)=be) (1) T P
and identity matrix...( (1) (1) jz( (1) 8 }r[ 8 ? )

Projections of general state |\V) ...

..must add up to|\V) o U)=|y) (y|¥
P.|T) + P,|V) =)
(Px + P)’)‘\Ij> :‘\Ij>
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Abstraction of Axiom 4 to define projection and unitary operators

Axiom 4:  (j''\m")=>_(j"|k) (k|lm’) may be “abstracted" three different ways
k=1

Left abstraction gives bra-transform: Right abstraction gives ket-transform.:
=220 k) (k] m')=>_ |k) (k|m’)
k=1 k=1

Center abstraction gives ket-bra identity operator:
1=)_|k) (k|=2_|K) (K |=>_|K7) (K |=...
k=1 k=1 k=1

Resolution of Identity into Projectors {|1)(1|,|2)(2|..} or {|1") (1], |2/)(2"|..} or {| 1) (1"], |2"7)(2"]..}

---------------------------------------------------------------------------------------------

unit kets |x) and |y) x) <x|x,>,¢
: cosf
(x| P,[x) (P fx) (+P]y) :(1 0]
OIR | OIR]x) - IR L) 0 0

...and so P projectors
must add up to identity operator...

Pl ¥) + P T) =) >a1|f1);>’<i);|’ezztily matrix ( - j{ - }*[ 0 0 )
B 01 0 0 0 1
(Px + P)) W) =) ..as required by Axiom 4.

Projections of general state |\V) ...

..must add up to|\V) o U)=|y) (y|¥
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Unitary operators and matrices that do something (or “nothing”)

TIVP)
V4 T V) Fig. 3.1.1 Effect of
analyzer
\ represented by ket vector
> > transformation of |V)

to new ket vector T|V) .

input state V)

output state T|V')| analyzer
-

T
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Unitary operators and matrices that do something (or “nothing”)

TIVP)
V4 T V) Fig. 3.1.1 Effect of
analyzer
\ represented by ket vector
> > transformation of |V)

to new ket vector T|V) .

input state V)

output state T|V')| analyzer
-

T

First is the “do-nothing” identity ogemtor 1.
1=k {kl= ) x| + Dol = P+ Py
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Unitary operators and matrices that do something (or “nothing”)

TIVP)
V4 T V) Fig. 3.1.1 Effect of
analyzer
\ represented by ket vector
> > transformation of |V)

to new ket vector T|V) .

input state V)

output state T|V')| analyzer
-

T

First is the “do-nothing” identity ogemtor 1.
1=2 k) (k=) {xl + Doy

and matrix representation. 1 0 1 0 0
o1 ) oo " lo

P, +P,

=)

|
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Unitary operators and matrices that do something (or “nothing”)

TIVP)
V4 T V) Fig. 3.1.1 Effect of
analyzer
\ represented by ket vector
> > transformation of |V)

to new ket vector T|V) .

input state V)

output state T|V')| analyzer
-

T

First is the “do-nothing” identity ogemtor 1.
1=k {kl= ) x| + Dol = P+ Py

and matrix representation. 10 10 0 0
o1 ) loo) " o1

Next is the diagonal “do-something” unitary™* operator T...

T=X|k)e % (k|= |x)e (x| + [1)eiD(y]| = et P, + i1 P,

and its matrix representation: 0 [ e 0 L0 o
0 ™ 0 0 0 ™
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Unitary operators and matrices that do something (or “nothing”)

TIVP)
V4 T V) Fig. 3.1.1 Effect of
analyzer
\ represented by ket vector
> > transformation of |V)

to new ket vector T|V) .

input state V)

*Unitary here means

output state T|V')| analyzer
-

T

inverse-T-/= TT= TT =transpose-conjugate-T
(Time-Reversal-Symmetry)

First is the “do-nothing” identity ogemtor 1.
1=k {kl= ) x| + Dol = P+ Py

and matrix representation. 10 10 0 0
o1 ) loo) " o1

Next is the diagonal “do-something” unitary™* operator T...

T=X|k)e % (k|= |x)e (x| + [1)eiD(y]| = et P, + i1 P,

and its matrix representation: 0 [ e 0 L0 o
0 ™ 0 0 0 ™
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Unitary operators and matrices that do something (or “nothing”)

TIV)
V4 T V) Fig. 3.1.1 Effect of
analyzer

represented by ket vector
transformation of |¥)

A

to new ket vector T|V) .

input state V)

*Unitary here means

output state T|V')| analyzer
-

T

inverse-T-/= TT= TT =transpose-conjugate-T
(Time-Reversal-Symmetry)

First is the “do-nothing” identity ogemtor 1.
1=k {kl= ) x| + Dol = P+ Py

and matrix representation. 10 10 0 0
o1 ) loo) " o1

Next is the diagonal “do-something” unitary™* operator T...
T:Z| k> e‘iﬁkf(k|: ‘ x> e-ifzxt<x‘ + ’y> e-iQyt<y‘ — oSt P, + e it Py
and its matrix representation. A [ e o N 0 0
0 e—ith 0 0 0 —iQ 1

Most “do-something” operators T' are not diagonal, that is, not just |x){x| and |y){y| combinations.

T =3[k )e Wil |= [x/) et (x| + |\ ey | = et Py + i/ P,
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Unitary operators and matrices that do something (or “nothing”)

TP

IV )4 V) Fig. 3.1.1 Effect of
I \ analyzer
A

represented by ket vector
transformation of |¥)

to new ket vector T|V) .

input state V)

*Unitary here means

output state T|V')| analyzer
-

T

inverse-T-/= TT= TT =transpose-conjugate-T
(Time-Reversal-Symmetry)

First is the “do-nothing” identity ogemtor 1.
1=k {kl= ) x| + Dol = P+ Py

and matrix representation. 10 10 0 0
o1 ) loo) " o1

Next is the diagonal “do-something” unitary™* operator T...
T:Z| k> e"'ﬁkf(k|: ‘ x> e_irzxt<x‘ + ’y> e-ifzyt<y‘ — oSt P, + e it Py
and its matrix representation. A [ e o N 0 0
0 e—ith 0 0 0 —iQ 1

Most “do-something” operators T' are not diagonal, that is, not just |x){x| and |y){y| combinations.

T=SR)eiWi(K|= [x)e it (| + )i iy/| = el P + i P
(Matrix representation of T is a little more complicated. See following pages.)
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"
They are “designed” to conserve probability and overlap
so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/'|=(¥|UT or (¢/|=(®|U" implying 1=UTU=UUT
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"

They are “designed” to conserve probability and overlap

so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(P|UT implying 1=UTU=UUT

Example U transfomation:
Ix’)zUIx)z cos() |x> + sin() |y>

Iy’_zqu* [y )=Uly)=-sin® Ix) + cos ly) U4 "
\ s | \ X
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"
They are “designed” to conserve probability and overlap
so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(P|UT implying 1=UTU=UUT

Example U transfomation:
Ix’)zUIx)z cos() |x> + sin() |y>

'y’.Zm@_ [y )=Uly)=-sin® Ix) + cos ly) U4 "
\ s 1 \ X

Ket definition: |[x")=Ulx) implies: UT|x")=|x) implies: (x|={('|U implies: (x|U"=(x'|
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"
They are “designed” to conserve probability and overlap
so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)

and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(P|UT implying 1=UTU=UUT

Example U transfomation:
Ix’)zUIx)z cos() |x> + sin() |y>

|y’_2in I |y’>=U|y>=—sin(I) Ix) + cos() |y>
9 X7 V4 U
"\ \

Ket definition: [x")=Ulx) implies: UT|x")=|x) 1mphes (x|=('|U implies: (x|UT=(x|
Ket definition: |y/)=Uly) implies: U'|)/)=|y) implies: (y|=(/|U implies: (y|U"=(|

lx
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"
They are “designed” to conserve probability and overlap
so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(P|UT implying 1=UTU=UUT

Example U transfomation:
Ix’)zUIx)z cos() |x> + sin() |y>

| />. | />=U| >=—sin(I) Ix) cos( | >
W ylx’) )’ ) y/I‘J_Iw
O\

sin
cosh | ¢

lx

Ket definition: |[x")=Ulx) implies: UT|x")=|x) implies: (x|={('|U implies: (x|U"=(x'|
Ket definition: [//)=Ul|y) implies: UT|))=|y) implies: (y|={(/|U implies: (y|UT={|

...iImplies matrix representation of operator U

[ <x;_vJef_>____<_ec__9_y__>___]_:[___<_ec_fac}f>: (o)) N cosp —sing
Olulx) Ofuly) || Ofx) () ) | sing coso
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"
They are “designed” to conserve probability and overlap
so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)

and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/'|=(¥|UT or (¢/|=(®|U" implying 1=UTU=UUT

Example U transfomation: (Rotation by 6=30°)
Ix’)zUIx)z cos() |x> + sin() |y>

|y’_2in |y’>=U|y>=—sin(]) Ix) + cos() |y>
9 X7 V4 U
"\~ \

Ket definition: [x")=Ulx) implies: UT|x")=|x) 1mphes (x|=('|U implies: (x|UT=(x|
Ket definition: [//)=Ul|y) implies: UT|))=|y) implies: (y|={(/|U implies: (y|UT={|

...i1mplies matrix representation of operator U in either of the bases 1t connects 1s exactly the same.

[<x;y_es>____<_ac_|_91fv__>___]_;_[ (i} () ][ cosg_—sing [<x'w> (¥]u y'>}

lx

ol G} (O Gy T e e T ol ol
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"

They are “designed” to conserve probability and overlap

so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(®|UT implying 1=UTU=UU"

Example U transfomation: (Rotation by 6=30°)
Ix’)zUIx)z cos() |x> + sin() |y>

|y’_2in |y’>=U|y>=—sin(1) |x> + cos() |y>
@ X7 V4 U
W \

Ket definition: [x")=Ulx) implies: UT|x")=|x) 1mphes (x|=('|U implies: (x|UT=(x|
Ket definition: [//)=Ul|y) implies: UT|))=|y) implies: (y|={(/|U implies: (y|UT={|

...i1mplies matrix representation of operator U in either of the bases 1t connects 1s exactly the same.

lx

(hfe) ) ) Gbd ) ) [.--99?.(?---.—..8.1.1_1_? _______ (]ulx) (149
| (V|Ulx) (U] ») () ) sing~ cosg Qo) (|u)y) )
qoelsols [ vl Gl H (1) (o) H cost sing ” (Ue) (o))
Ut OlUtls) Oty | L 0T O) msing cosp )| (y|UT|x) (v]UT]y)
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"

They are “designed” to conserve probability and overlap

so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(®|UT implying 1=UTU=UU"

Example U transfomation: (Rotation by 6=30°)
Ix’)zUIx)z cos() |x> + sin() |y>

|y’_2in |y’>=U|y>=—sin(]) Ix) + cos() |y>
9 X7 V4 U
"\~ \

Ket definition: [x")=Ulx) implies: UT|x")=|x) 1mphes (x|=('|U implies: (x|UT=(x|
Ket definition: [//)=Ul|y) implies: UT|))=|y) implies: (y|={(/|U implies: (y|UT={|

...i1mplies matrix representation of operator U in either of the bases 1t connects 1s exactly the same.

lx

(shulx)ul) ) [ Gk o) ) [ coso —sing ) [ {<]Ul) (]4v)
Oul) Uy>] [M&’l (v y’>] [ sing~ cos¢ [<y’UX’> ity )
poRsols [ vl (u'h) N () "<3é'w>'§]=[ cost sing ]( (Ul ()
Ut OUTl) (U™} ) L) o)) L singcoso ) (Ut (] 0T])
(Y {y|x) | Axiom-3 consistent with
[ Y OyY | inverse U =tranpose-conjugate UT = UT*
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Unitary operators U satisfy “easy inversion” relations: U= UT=UT"

They are “designed” to conserve probability and overlap

so each transformed ket |V/)=U|W) has the same probability (V|V)=(V'|V")=(¥|UTU|¥)
and all transformed kets |®')=U|®) have the same overlap (V|®)=(1V'|D")=(P|UTU|D)
where transformed bras are defined by (V/|=(¥|UT or (®'|=(®|UT implying 1=UTU=UU"

Example U transfomation: (Rotation by 6=30°)
Ix’)zUIx)z cos() |x> + sin() |y>

|y’_2in |y’>=U|y>=—sin(]) Ix) + cos() |y>
9 X7 V4 U
"\~ \

Ket definition: [x")=Ulx) implies: UT|x")=|x) 1mphes (x|=('|U implies: (x|UT=(x|
Ket definition: [//)=Ul|y) implies: UT|))=|y) implies: (y|={(/|U implies: (y|UT={|
...iImplies matrix representation of operator U in either of the bases 1t connects is exactly the same.

(0 ) <x;P.ff)-.-ﬂ.%ﬁ!l%?--.]_:[._I_{fc_f%_"}i () ][ cosg_—sing

lx

sing  cos¢@

) )
Soalsois [ {ulls) (xu']y) H (v]x) [ cosp  sing ]( U (T
Ut OIUtl) oty )L )i ) L singeos 0]y (] u']y)

Axiom-3 consistent with

_ ( Cos¢  sing J: <x‘x> <ny>
~sing  cos¢ (Y () | inverse U =tranpose-conjugate Ut = UT*
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
»Non—diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes

Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability
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" )=Ulx)= cos® Ix) + sin® ly) (x| U] ) (x]U] ) J_[ (o) (a7} ]

PR — Mw Club )L ) O
cosw§n¢ U\ | [ cos —sing ( cos¢ —sing ]
| Zoct | X =

' singg  cos@ singg  cos@

[ (¥IPl¥) (P ]) ][ (W) () ) ] )

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. { (|ulxy (U] ]

o) o))

IR L) R ) | ) O )
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X )=Ulx)= cos® |x) + sindy ly) { (x[Ulx) (x]U]y) J_[ () (o)) ]

|yf_2in9+ |y’|>TU|y>=—sin(I) |x> + cos() Iy>/|_|y> <y|U‘x> <y\U|y> B <y|x'> <y‘y’>
coswx ) U
Coso |

1 | sino \ Ix [cosd) —sing :( Cos¢ —sin¢J

singg  cos@ singg  cos@

CR) (R || ) ) (el ) _
IR L) R ) | ) O )

Projector Px=|x) (x| is what is called an outer or Kronecker tensor (®) product of ket |x) and bra (x|.

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. [ (|ulxy (U] ]

o) o))

N
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" )=Ulx)= cos® Ix) + sin® ly) (x| U] ) (x]U] ) J_[ (o) (a7} ]

PR — {<y|vx> Club )L ) O
cosw§n¢ U\ | [ cos¢p —sin@ ( cos¢p —sing J
| Zoct | X =

' singg  cos@ singg  cos@

[ (¥IPl¥) (P ]) ][ (W) () ) ] )

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. [ (|ulxy (U] ]

o) o))

IR L) R ) | ) O )

Projector Px=|x) (x| is what is called an outer or Kronecker tensor (®) product of ket |x) and bra (x|.

___________________________________________________________

___________________________________________________

..................................................
.............................

...........................................................
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X )=Ulx)= cos® |x) + sindy ly) { (x[Ulx) (x]U]y) J:[ () (o)) ]

Y e 'y,:Uly =g b +eod ) =, Olulx) Ol | O D)
| x
COSMQH(D U\ lx [ COSd) —sind) :( COS¢ —Sin¢ ]

singg  cos@ singg  cos@

CR) (R || ) ) (el ) _
IR L) R ) | ) O )

Projector Px=|x) (x| is what is called an outer or Kronecker tensor (®) product of ket |x) and bra (x|.

) e y) ]
SULAEORNC A

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. { (|ulxy (U] ]

o) o))

___________________________________________________________

___________________________________________________

..................................................
.............................

...........................................................

B cosqu —sin@cos¢ _( 1 O}
—singcos¢ sin2¢> 0 0 (for ¢=0)
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X )=Ulx)= cos® |x) + sindy ly) { (x[Ulx) (x]U]y) J:[ () (o)) ]

Y e 'y,:Uly =g b +eod ) =, Olulx) Ol | O D)
| x
COSMQH(D U\ lx [ COSd) —sind) :( COS¢ —Sin¢ ]

singg  cos@ singg  cos@

CR) (R || ) ) (el ) _
IR L) R ) | ) O )

Projector Px=|x) (x| is what is called an outer or Kronecker tensor (®) product of ket |x) and bra (x|.

) e y) ]
SULAEORNC A

Projector Py=|x) (x| in ¢-tilted polarization bases {|x"}, |//)} is not diagonal. { (|ulxy (U] ]

o) o))

___________________________________________________________

___________________________________________________

..................................................
.............................

...........................................................

B cosz¢ —sin@cos¢ __( 1 0 }
—singcos¢ sﬁf¢ 0 0 (for ¢=0)

The x'y'-representation of Py: P =|3)()] %[ sing ]@)( sing  coso )

4 cos®

_ sﬁf¢ sIn@cos :( 0 0 }
sinpcosg  cos> ¢ 0 1 (for ¢=0)
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
Non-diagonal projection operators and Kronecker Q—products

»Axiom# similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes

Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability
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Axiom-4 similarity transformations (Using: 1=X|k){k| )

Axiom-4 1s basically a matrix product as seen by comparing the following.

(lmty=(irfalm) = £ (k) k|

) () -
(

(n"|)
prime \

fo

L double — prime )

k=1

- (")
unprimed

fo

L double — prime )

ey Q2 -
ey @2y - @l
(1) (2}
( prime \
Tkm' fo
unprimed)

\

T(b" < b')=T(b" < b)e T(h<b")
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Axiom-4 similarity transformations (Using: 1=X|k){k| )

Axiom-4 1s basically a matrix product as seen by comparing the following.

ERGILY

1"
- (2

(m)y=Cfalm)= £ (i) (k[ m)

(1)) (12) - (17]n) Py (2 -
b ||y @) ) || o) ) -
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Axiom-4 similarity transformations (Using: 1=X|k){k| )

Axiom-4 1s basically a matrix product as seen by comparing the following.

(lmty=(irfalm) = £ (k) k|

) () -
(

prime

fo

L double — prime )

()
\

o) 2 ()
(

k=1

unprimed

fo

L double — prime )

() Q) = Q)
@) (alz) - Gl

Gl (2 ()
A

g

prime

km' lo
\ unprimed )

T(h" b")=T(b" < b)e T(h<b")

(1) The closure axiom

Products ab = c are defined between any two group elements a and b,

and the result c is contained in the group.

(2) The associativity axiom

Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .

(3) The identity axiom

There is a unique element 1 (the identity) such that 1-a = a = a-1
for all elements a in the group ..

4) The inverse axiom

Transformation Group axioms

For all elements a in the group there is an inverse element a-1 such thata-la =1 = a-a-1.
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Axiom-4 1s applied twice to transform operator matrix representation.
Example: Find: Tven: and T-matrix:

(x| P P|)) (xX|P]x) (x[P]y) =[ | oj
OPfx) (Py) 0 0

1) (e
The old “P=1-P-1-trick” where: 1=)_|k){(k|=|x){x| + [»)(y

SUI SESINGU) AF

9

) )
:[ cosp —sing

singg  cos¢

[ (o) ()

|
J
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Axiom-4 1s applied twice to transform operator matrix representation.

Example: Find.: Tven[ and T-matrix:

() (e (xR Jx) (xR ]) {1 oj
(e (e ] IR QIR ]Y) 0 0
The old “P=1-P-1-trick” where: 1=)_|k) (k|=|x){(x| + |[»){}|;
)

(P )= G p ) = () (ol ) O o) ol ) yl)

< <

() )
:[ cos¢p —sing@

singg  cos¢

[ (o) ()

|
J
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Axiom-4 1s applied twice to transform operator matrix representation.
Example: Find: Tven [ and T-matrix:

) ) (dB|x) (xP]y) :[1 oj
<y’|Px‘x’> <y"Px|y'> OPJx) IR |y) 0 0
The old “P=1-P-1-trick” where: 1=)_|k) (k|=|x){(x| + |[»){}|;

(P} = G R o) = (el ) (o] R el y\) = (]l ()

b

1)
cos¢p —sing@
singg  cos¢

)+ )(])

() <x\y> ]
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Axiom-4 is applied twice to transform operator matrix representation. (x| > <x‘ y >
Example: Find: Tven[ and T-matrix: (] ")

IR J) (xR ]y) (dPlx) (PRI ) (1 o
(e ]y (e |)) IR ]x) - (IR ]Y) ]{ 0 0) [COSfP —Slmb]
The old “P=1-P-1-trick” where: 1=X k) (k= [x)(x| + |y ><y\ necoso
(1) = Grfep ]y = G (o) Gol ) oAb el ) o)) = (G e ol (o o) (o PR ALl o)+ ) 1))
= (o )| e}l 37+ () P )] 37 + () o B ) | > e ><y|Px\ >< )
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Axiom-4 is applied twice to transform operator matrix representation. (x| > <x‘ y >
Example: Find: Tven[ and T-matrix: (] ")

(Rl (R ) 9 6l ) (1o
R L) (R 1) <y|Px|y>] (0 0] [2 ;?:f]
The old “P=1-P-1-trick” where: 1=)_|k) (k|=|x){(x| + |[»){}|;
(PP Loy = O] )= G (o G ) o Rl G+ o) o7 = (e el (o o o el o)+ ) o)
= () (el o) G )+ G [ ) O P (o] 07+ (o e ol B [ ) () ><y|Px\ ><y\ )

More elegant matrix product:

Gy ) ][ ) )
ORIy )L ) )
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Axiom-4 is applied twice to transform operator matrix representation. [ (x| x") <x‘ ) ]

Example: Find: iven: and T-matrix: < y‘
(el (el |Gk e (1o
R L) (e ]) OlRls) Glely) Lo o [¢ ¢]
sing  cos¢

The old “P=1-P-1-trick” where: 1=)_|k){k|= |x)(x| + |v) (V|
([P )= (1P| = (|| ) (o] + ) (o) '(\X><X\+\y><y\)\y’>=(<X'\X><X\+<X’| )2 )+H ) ()
= (| ) (x| P ) (x| )+ () (| ) (] o) (o) P ) () (] ) yIP\y><y\y’>

More elegant matrix product:

<x"Px‘x'> <x"Px|y'> _ x x x y x|P‘ x
VR (R =) () y\P\ ¥¥)

B ( Cos¢  sing < X|P ‘ cosq) —smq)
- L —sing cos¢ ) < . x y‘P ‘ sm(b cos¢
_( cos¢  sing ) cos¢p —sing@
_\ —sing cos@ ) O O sing)  cos¢
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Axiom-4 is applied twice to transform operator matrix representation. [ (x| x") <x‘ ) ]

Example: Find: iven: and T-matrix: < y‘
(el (el |Gk e (1o
R L) (e ]) OlRls) Glely) Lo o [¢ ¢}
sing  cos¢

The old “P=1-P-1-trick” where: 1=)_|k){k|= |x)(x| + |v) (V|
(o) = Gty = (e (o) Gl (o) ol + ) O)l) = (G el G D) (ot )+ ) 17)
= (PP () () (o P (] )+ (e o ) (o] + ><y|Px\ ><\ )

More elegant matrix product:

[<x'rxx'> (v ]} N o) (] ][ (P f2) (P]) ][ () <xy'>]
) (e} )0 () L IR OlRd) ) D) )
_( Cos®  sing \[ <x|Px|x> <X‘Px J/> ][ Cos¢ —sing )

L —sing cos¢ ) <Y‘Px x> <y‘Px y> sing  cos¢

_( Cos®  sing ) 1 0 COs¢® —sing
_K —sing cos@ ) singg  cos¢

cos¢p 0 cos¢ —sing | coszq) —Ccos¢sing
—sing 0 sing  cos¢ —singcosy sin2¢
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Axiom-4 1s applied twice to transform operator matrix representation.

Example: Find:
IR ) (]

QR ]r) (0

The old “P=1-P-1-trick” where: 1=)_lk){(k|= |x

(o) = G ep ]y = (e (o) ol ) (o]
Gl B )+ (o P

X
More elegant matrix product:

ven: <y‘
(IPJx) (aIP]y) {1 0]
OIPfx) ([P ]y) 0 0O [COS(]) —sm(p]
sing  cos¢
Yl + )0

(x| <x\y>

4 0,

and T-matrix:

) O)7) = (G el ) O e ) )] o)
)[R )]y ] ><y|Px\ >< )

Al

|
X))

Ry (R | f ) () | Rl L) || ) o)
) Gy | O ) L OIRdx) Gy L O O)
cosp sing || (d[PJx) (xP|y) | cosp —sing

1

This checks with the P =|%){]
previous result 4-pages back:

L —sing cos¢ )

COS(

DR} (R )
s ¢ 1 0 cos¢p —sing@
L —sing coso ) 0 O sing  cos¢

feped

sing  cos¢

cos¢p 0 cos¢ —sing | cos’ 1) —Ccos¢sing
—sing 0 sing  cosg —sin@gcoso sin” 1)
co.sq) ®( cos¢ —sing ): o5’ —singooss :( - ]
—sing —sin@cos @ Sinz(P 00 (for ¢=0)
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers
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Projection operators and resolution of identity
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Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
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(1) Optical analyzer in sorter-counter configuration

Analyzer reduced to a simple sorter-counter by blocking

output of x-high-road and y-low-road with counters

x-counts~‘ (x |x '>‘2

= cos? 0 =0} 75

y-counts~| (ylx '>‘2

=sin? =025

Analyzer matrix.:
Initial polarization angle (x[Tlx) (x| T]y)
1Tl (1T

1t

Fig. 1.3.3 Simulated polarization
— analyzer set up as a sorter-counter
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(1) Optical analyzer in sorter-counter configuration

Analyzer reduced to a simple sorter-counter by blocking
output of x-high-road and y-low-road with counters

x-counts~‘ (x Ix '>‘2 _ _ Analyzer matrix.:

Initial polarization angle (x[Tlx) (x| T]y)
1Tl (1T

= cos? 0 =0} 75

B S (o0 o0
o] QRO L Y (o8,
= Sinz e :r:_,li-"rj BEEEAAA r Fig. 1.3.3 Simulated polarization
— analyzer set up as a sorter-counter

Analyzer matrix.:

(2) Optical analyzer in a filter configuration (Polaroid© sunglasses) (P |x) ([P |y)

. . . L OIR LX) OIR]y)
Analyzer blocks one path which may have photon counter without affecting function.

(o0 o0
Initial polarization angle _[ 0 1 )
0=p/2 = 30°

x—countsfv‘ (ylx'}‘2= 075
(Blocked and filtered out) s - Ivrei
_« Xy-analyze

¢¢¢¢¢$¢ ( Banayzer
y-outputfv‘ (ylx')‘ 2 ﬁiii |

=sin2 0= 0,25 oy

Fig. 1.3.4 Simulated polarization
analyzer set up to filter out the

x-polarized photons
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;' ;\
\1 ;i

Initial polarization angle

(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates
(a)

Half-wave plate

(2=m)

Final polarization angle

0=[/2 = 150°(or -30°)

. N
vV
// L2

B Analvzer matrix.

Analyzer phase lag

(xulx) () ][1 0 )

(UL} O1UL) 0 -I

(activity angle)
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(3) Optical analyzers in the "control" configuration: Half or Quarter wave plates
P y 2 Y

(a)
Half-wave plate
Q . .§
Final polarization angle

0=[/2 = 150°(or -30°)

\I
\

.\‘

$i¢1¢

Analyzer phase lag [~ _ E[:]':'.
(activity angle) ._.}. NN .|
(b) Quarter-wave Ty
—_—

plate

A WV
N

. @2 @ 6“'#*5&"““ F |
L AR A AL nbt (Banalyzer

xy-analy3

Final polarization is
untilted elliptical \ |(B .
Analyzer phase lag |
(activity angle) |Q . P Ll ‘ l
Analyzer matrix: UL (UL :( ent 0 ]
= ' OlUlx) Oluly) 0 e

Initial polarization angle

_ _ o
0=B/2 = 302
#
- l N
vy
// e

- 2
B_ EID Analyzer matrix:
(U] <x|U|y>]:[1 0

(UL} O1UL) 0 -I

Initial polarization angle

|

0=P/2 = 305
#
/ .
pr /L‘,‘}?}?’

B= 60°
Analyzer matrix:
(x| Ul <x|U|y>H1 0

00l (U] 0 —i

| |

Fig. 1.3.5 Polarization control set to shift phase by (a) Half~wave (Q=mn) , (b) Quarter wave (QQ=1/2)
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(a)Analyzer Experiment
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
Non-diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

»How analyzers “peek” and how that changes outcomes

Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability
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How analyzers may “peek’ and how that changes outcomes
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Fig. 1.3.7 Simulated polarization analyzer set up to "

'peek’” if the photon is x-or y-polarized
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How analyzers “peek™ and how that changes outcomes

Simulations
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Fig. 1.3.8 Output with (3/2=30° input to: (a) Coherent xy-"Do nothing" or

(b) Incoherent xy-"Peeking" devices
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How analyzers “peek” and how that changes outcomes
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Amplitude A(n') and Probability P(n’) at counter n’ WITHOUT “peeking”
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Amplitude A(n’) and Probability P(n') at counter ' WITHOUT “peeking”
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Amplitude A(n’) and Probability P(n') at counter ' WITHOUT “peeking”
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Amplitude A(n’) and Probability P(n') at counter ' WITHOUT “peeking” I l
o-iNolning-anatiyzer
x>(1)<xx'>+<x’y><yx'> I::'!'=|I“P'T:l|| |3=F'OFI||| Without I:'!'=|':]':'I| |3=::FI|I

“Peeking Eye’
)+ derew
=609

B analyzer
X ’> ?analyzer:SO

A(x") = <x’

Reconstructs

I
|
-N&I
_|_
-N&I
I
-}
||
iy
‘\<\
=
=

Amplitude A(n') and Probability P(n') at counter n’ WITH “peeking”
Suppose "x-eye' puts phase e/ on each x-photon with random ¢ distributed over unit circle (-< ¢ <m).

- So € averages to zero!
A =) o) + (e ) o) .
B 3( io 1
- Z(e ) T3 With
- * - = [F = “Peeking Eye’|m= cr
o) EELOEELI g
! 7y (.73

= —4+ —

_60°f | IRESI . | (W
g8 16 8 B analyzer ] 5 . . - f %1.]{
®analyzer:30 ‘:ﬂ ‘T

5 3 (e_i¢+ei¢): 5+3cos¢ |

{w () ]_[m 12 Hm /]
(V) (]y) 1/2 372 1/2 372

Tuesday, January 22, 2013 71
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Review: Axioms 1-4 and “Do-Nothing’’vs *“ Do-Something” analyzers

Abstraction of Axiom-4 to define projection and unitary operators
Projection operators and resolution of identity

Unitary operators and matrices that do something (or “nothing”)
Diagonal unitary operators
Non-diagonal unitary operators and 1-conjugation relations
Non-diagonal projection operators and Kronecker Q—products
Axiom-4 similarity transformation

Matrix representation of beam analyzers
Non-unitary “killer” devices.: Sorter-counter, filter
Unitary “non-killer” devices: 1/2-wave plate, 1/4-wave plate

How analyzers “peek” and how that changes outcomes

» Peeking polarizers and coherence loss
Classical Bayesian probability vs. Quantum probability
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Classical Bayesian probability vs. Quantum probability
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Classical Bayesian probability vs. Quantum probability
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Classical Bayesian probability vs. Quantum probability
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Classical Bayesian probability vs. Quantum probability
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Classical Bayesian probability vs. Quantum probability
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Classical Bayesian probability vs. Quantum probability
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Group axioms

(1) The closure axiom

Products ab = c are defined between any two group elements a and b,
and the result c is contained in the group.

(2) The associativity axiom
Products (ab)c and a(bc) are equal for all elements a, b, and c in the group .
(3) The identity axiom

There is a unique element 1 (the identity) such that I-a =a = a-1
for all elements a in the group ..

4) The inverse axiom

For all elements a in the group there is an inverse element a1 such that a-la =1 = a-a-1.

(5) The commutative axiom (Abelian groups only)

All elements a in an Abelian group are mutually commuting: a-b = b-a.
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