
Group Theory in Quantum Mechanics
Lecture 15 (3.26.13) 

Projector algebra and Hamiltonian local-symmetry eigensolution
(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , QTCA Unit 5 Ch. 15 )

(PSDS - Ch. 4 )
Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
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Review:Spectral resolution of D3 Center (Class algebra) 

1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r
i3 i2 i1 r r2 1

→

κ 1 = 1 κ r = r + r
2 κ i = i1 + i2 + i3

κ 1 κ 1 κ r κ i

κ r κ r 2κ 1 +κ r 2κ i

κ i κ i 2κ i 3κ 1 + 3κ r

Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)
°κ k = order of classκ k :       (°κ1 = 1,  °κ r = 2,   °κ i = 3)

Class-sum κk commutes with all gt

See Lect.14 p. 2-23 
3Tuesday, March 26, 2013



D3 Algebra

i
1

i
2 i

3

κκ
1
=1κκ
1
=1

κκ
i
= i
1
+ i
2
+i
3

κκ
i
= i
1
+ i
2
+i
3 κκ

r
= r2 + rκκ
r
= r2 + r

D3 Center
(All-commuting

operators)

r2

r

A Maximal Set of Commuting

Operators

PA1
PA2
PE1

PE
xx yy
PE

PE
11

22
PE

PE
xy yx
PE

PE
12

21
PE

Another

Maximal Set

of Commuting

Operators(All-commuting
operators)

PA1
PA2
PE1
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Class-sum κ k  invariance:               gtκ k = κ kgt  
°G = order of group:          (°D3 = 6)
°κ k = order of classκ k :       (°κ1 = 1,  °κ r = 2,   °κ i = 3)

Class-sum κk commutes with all gt

   κ1 = 1·P A1 + 1·P A2 +  1·PE=1    (Class completeness)

See Lect.14 p. 2-23 
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See Lect.14 p. 2-23 
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Subgroup C2={1,i3} relabels 
irreducible class projectors: 
PA1=PA1
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See Lect.14 p. 36-54 

Class projectors:

Class characters:

and its subgroup splitting 
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
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g = 1⋅g⋅1=
µ
∑

m
∑ Dmn

µ g( )
n
∑ Pmn

µ = Dxx
A1 g( )P A1 + Dyy

A2 g( )P A2 + Dxx
E1 g( )Pxx

E1 + Dxy
E1 g( )Pxy

E1  

                                                                                               + Dyx
E1 g( )Pyx

E1 + Dyy
E1 g( )Pyy

E1

Irreducible idempotent completeness                                         completely expands group by g=1·g·1
   
1= P A1 + P A2 + Pxx

E1 + Pyy
E1

For irreducible class idempotents
sub-indices xx or yy are optional

“g-equals-1·g·1-trick”Weyl expansion of g in irep Dµjk(g)Pµjk

Previous notation:
PA1=PA1

PA2=PA21212       yy

0202       xx

0202       xxPE1=PE1 PE1=PE1 0212         xy
PE1=PE1 1202         yx PE1=PE1 1212         yy
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 where:  
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A2 ,     Pxx
E1⋅g⋅Pxx

E1=Dxx
E1 g( )Pxx

E1,     Pxx
E1⋅g⋅Pyy

E1=Dxy
E1 g( )Pxy

E1

                                                                                      ,     Pyy
E1⋅g⋅Pxx

E1=Dyx
E1 g( )Pyx

E1,     Pyy
E1⋅g⋅Pyy

E1=Dyy
E1 g( )Pyy

E1

   
1= P A1 + P A2 + Pxx

E1 + Pyy
E1

For irreducible class idempotents
sub-indices xx or yy are optional

“g-equals-1·g·1-trick”Weyl expansion of g in irep Dµjk(g)Pµjk

Previous notation:
PA1=PA1

PA2=PA21212       yy

0202       xx

0202       xxPE1=PE1 PE1=PE1 0212         xy
PE1=PE1 1202         yx PE1=PE1 1212         yy

For split idempotents
sub-indices xx or yy are essential
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g = 1⋅g⋅1=
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∑

m
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µ g( )
n
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E1 + Dyy
E1 g( )Pyy

E1

Besides four idempotent projectors 

    

Irreducible idempotent completeness                                         completely expands group by g=1·g·1

   

 where:  
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A1 g( )Pxx
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E1⋅g⋅Pyy

E1=Dyy
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1= P A1 + P A2 + Pxx

E1 + Pyy
E1

For irreducible class idempotents
sub-indices xx or yy are optional

“g-equals-1·g·1-trick”

   
P A1,P A2,Pxx

E1, and Pyy
E1

Weyl expansion of g in irep Dµjk(g)Pµjk

Previous notation:
PA1=PA1

PA2=PA21212       yy

0202       xx

0202       xxPE1=PE1 PE1=PE1 0212         xy
PE1=PE1 1202         yx PE1=PE1 1212         yy

For split idempotents
sub-indices xx or yy are essential
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Besides four idempotent projectors 

    there arise two nilpotent projectors           

Irreducible idempotent completeness                                         completely expands group by g=1·g·1
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A2⋅g⋅Pyy

A2 =Dyy
A2 g( )Pyy

A2 ,     Pxx
E1⋅g⋅Pxx
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E1 + Pyy
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For irreducible class idempotents
sub-indices xx or yy are optional
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P A1,P A2,Pxx

E1, and Pyy
E1

   
Pyx

E1, and Pxy
E1

Weyl expansion of g in irep Dµjk(g)Pµjk

Previous notation:
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For split idempotents
sub-indices xx or yy are essential

17Tuesday, March 26, 2013



   

g = 1⋅g⋅1=
µ
∑

m
∑ Dmn

µ g( )
n
∑ Pmn

µ = Dxx
A1 g( )P A1 + Dyy

A2 g( )P A2 + Dxx
E1 g( )Pxx

E1 + Dxy
E1 g( )Pxy

E1  

                                                                                               + Dyx
E1 g( )Pyx

E1 + Dyy
E1 g( )Pyy
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    there arise two nilpotent projectors           

Irreducible idempotent completeness                                         completely expands group by g=1·g·1

   

 where:  

      Pxx
A1⋅g⋅Pxx

A1=Dxx
A1 g( )Pxx
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E1

For irreducible class idempotents
sub-indices xx or yy are optional

“g-equals-1·g·1-trick”

Pi Pj = δij Pi = Pj Pi Idempotent projector orthogonality…

Generalizes...

   
P A1,P A2,Pxx

E1, and Pyy
E1

   
Pyx

E1, and Pxy
E1

Weyl expansion of g in irep Dµjk(g)Pµjk

Previous notation:

0202       xxPE1=PE1 PE1=PE1 0212         xy
PE1=PE1 1202         yx PE1=PE1 1212         yy

For split idempotents
sub-indices xx or yy are essential
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E1 + Dxy
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                                                                                               + Dyx
E1 g( )Pyx

E1 + Dyy
E1 g( )Pyy
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Besides four idempotent projectors 

    there arise two nilpotent projectors           

Irreducible idempotent completeness                                         completely expands group by g=1·g·1

   

 where:  
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For irreducible class idempotents
sub-indices xx or yy are optional

“g-equals-1·g·1-trick”

Pi Pj = δij Pi = Pj Pi 

  
Pjk
µ Pmn

ν = δ µνδ kmPjn
µ

Idempotent projector orthogonality…

Generalizes to idempotent/nilpotent orthogonality
known as Simple Matrix Algebra:

   
P A1,P A2,Pxx

E1, and Pyy
E1

   
Pyx

E1, and Pxy
E1

Weyl expansion of g in irep Dµjk(g)Pµjk

Previous notation:

0202       xxPE1=PE1 PE1=PE1 0212         xy
PE1=PE1 1202         yx PE1=PE1 1212         yy

For split idempotents
sub-indices xx or yy are essential
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E1 + Dxy
E1 g( )Pxy

E1  

                                                                                               + Dyx
E1 g( )Pyx

E1 + Dyy
E1 g( )Pyy

E1

Besides four idempotent projectors 

    there arise two nilpotent projectors           

   

Pxx
A1 Pyy

A2 Pxx
E1 Pxy

E1 Pyx
E1 Pyy

E1

Pxx
A1 Pxx

A1 ⋅ ⋅ ⋅ ⋅ ⋅

Pyy
A2 ⋅ Pyy

A2 ⋅ ⋅ ⋅ ⋅

Pxx
E1 ⋅ ⋅ Pxx

E1 Pxy
E1 ⋅ ⋅

Pyx
E1 ⋅ ⋅ Pyx

E1 Pyy
E1 ⋅ ⋅

Pxy
E1 ⋅ ⋅ ⋅ ⋅ Pxx

E1 Pxy
E1

Pyy
E1 ⋅ ⋅ ⋅ ⋅ Pyx

E1 Pyy
E1

Irreducible idempotent completeness                                         completely expands group by g=1·g·1

   

 where:  

      Pxx
A1⋅g⋅Pxx

A1=Dxx
A1 g( )Pxx

A1,     Pyy
A2⋅g⋅Pyy

A2 =Dyy
A2 g( )Pyy

A2 ,     Pxx
E1⋅g⋅Pxx

E1=Dxx
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E1

   
1= P A1 + P A2 + Pxx

E1 + Pyy
E1

For irreducible class idempotents
sub-indices xx or yy are optional

“g-equals-1·g·1-trick”

Pi Pj = δij Pi = Pj Pi 

  
Pjk
µ Pmn

ν = δ µνδ kmPjn
µ

Idempotent projector orthogonality…

Generalizes to idempotent/nilpotent orthogonality
known as Simple Matrix Algebra:

   
P A1,P A2,Pxx

E1, and Pyy
E1 Group product table boils down

to simple projector matrix algebra
   
Pyx

E1, and Pxy
E1

Weyl expansion of g in irep Dµjk(g)Pµjk

Previous notation:

0202       xxPE1=PE1 PE1=PE1 0212         xy
PE1=PE1 1202         yx PE1=PE1 1212         yy

For split idempotents
sub-indices xx or yy are essential
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∑ Dmn
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n
∑ Pmn

µ = Dxx
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E1 g( )Pxx

E1 + Dxy
E1 g( )Pxy

E1  

                                                                                               + Dyx
E1 g( )Pyx

E1 + Dyy
E1 g( )Pyy

E1

Besides four idempotent projectors 

    there arise two nilpotent projectors           

   

Pxx
A1 Pyy

A2 Pxx
E1 Pxy

E1 Pyx
E1 Pyy

E1

Pxx
A1 Pxx

A1 ⋅ ⋅ ⋅ ⋅ ⋅

Pyy
A2 ⋅ Pyy

A2 ⋅ ⋅ ⋅ ⋅

Pxx
E1 ⋅ ⋅ Pxx

E1 Pxy
E1 ⋅ ⋅

Pyx
E1 ⋅ ⋅ Pyx

E1 Pyy
E1 ⋅ ⋅

Pxy
E1 ⋅ ⋅ ⋅ ⋅ Pxx

E1 Pxy
E1

Pyy
E1 ⋅ ⋅ ⋅ ⋅ Pyx

E1 Pyy
E1

Weyl expansion of g in irep Dµjk(g)Pµjk
Irreducible idempotent completeness                                         completely expands group by g=1·g·1

   

 where:  

      Pxx
A1⋅g⋅Pxx

A1=Dxx
A1 g( )Pxx

A1,     Pyy
A2⋅g⋅Pyy

A2 =Dyy
A2 g( )Pyy

A2 ,     Pxx
E1⋅g⋅Pxx

E1=Dxx
E1 g( )Pxx

E1,     Pxx
E1⋅g⋅Pyy

E1=Dxy
E1 g( )Pxy

E1

                                                                                      ,     Pyy
E1⋅g⋅Pxx

E1=Dyx
E1 g( )Pyx

E1,     Pyy
E1⋅g⋅Pyy

E1=Dyy
E1 g( )Pyy

E1

   
1= P A1 + P A2 + Pxx

E1 + Pyy
E1

For irreducible class idempotents
sub-indices xx or yy are optional

“g-equals-1·g·1-trick”

Pi Pj = δij Pi = Pj Pi 

  
Pjk
µ Pmn

ν = δ µνδ kmPjn
µ

Idempotent projector orthogonality…

Generalizes to idempotent/nilpotent orthogonality
known as Simple Matrix Algebra:

   
P A1,P A2,Pxx

E1, and Pyy
E1 Group product table boils down

to simple projector matrix algebra

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( ) irreducible representations (ireps)

   
Pyx

E1, and Pxy
E1

Previous notation:

0202       xxPE1=PE1 PE1=PE1 0212         xy
PE1=PE1 1202         yx PE1=PE1 1212         yy

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

For split idempotents
sub-indices xx or yy are essential
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
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Pµjk transforms right-and-left
Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

        
          

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ
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Pµjk transforms right-and-left
Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

24Tuesday, March 26, 2013
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Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

   
g mn

µ =
norm.
gPmn

µ 1

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

   
g mn

µ =
norm.
gPmn

µ 1

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

A simple irep expression...

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
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          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
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∑ D ′m m
µ g( ) P ′m n

µ

   
g mn

µ =
norm.
gPmn

µ 1

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

A simple irep expression...

   

′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ

norm.
Pmn
µ 1

norm*.

               = δ ′µ µδ ′m m
1 P ′n n

′µ 1

| norm. |2

               = δ ′µ µδ ′m mδ ′n n

 ...requires proper normalization:

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ
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mn.

    

gPmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Pmn
µ

          =
′µ

∑
′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ δ ′µ µδ ′n mP ′m n
µ

          =
′m

µ

∑ D ′m m
µ g( ) P ′m n

µ

   
g mn

µ =
norm.
gPmn

µ 1

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

A simple irep expression...

   

′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ

norm.
Pmn
µ 1

norm*.

               = δ ′µ µδ ′m m
1 P ′n n

′µ 1

| norm. |2

               = δ ′µ µδ ′m mδ ′n n

 ...requires proper normalization:

   
| norm. |2= 1 Pnn

µ 1

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
spectrally decomposed g acting on left and right side of projector Pµ

mn.
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norm.
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Right-action transforms irep-bra 

   
mn
µ g† =

norm*
1 Pnm

µ g†

   
g mn

µ = D ′m m
µ g( )

′m

µ
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µ
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⎟⎟
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P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

Projector conjugation

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ
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Pµjk transforms right-and-left

Left-action transforms irep-ket 
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µ D ′m m
µ g†( )

′m

µ

∑

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
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Pµjk transforms right-and-left

Left-action transforms irep-ket 

Spectral decomposition defines left and right irep transformation due to 
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µ 1
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= Dm ′m
µ* g( )

if D is unitary

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )
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µ

Projector conjugation

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ

34Tuesday, March 26, 2013



Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
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Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

  
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Pµjk -expansion in g-operators
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∑ P ′m ′n
′µ

⎛

⎝
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⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

38Tuesday, March 26, 2013



Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
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µ g( )
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g

°G
∑ f ⋅g = pmn
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∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( )

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( )

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =
Regular representation of D3~C3v

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

gg = PP PP PP
A1 A2 E

xx+ + + + +

D
D
D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A1
A2

E
xy

Dyx
D

D
xx

yy

DE
xy

Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)
Dxx
A1(g) Dyy

A2(g) Dxx
E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

Dxx
A1 Dyy

A2 Dxx
E

Dxy
E Dyx

E Dyy
E
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

gg = PP PP PP
A1 A2 E

xx+ + + + +

D
D
D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A1
A2

E
xy

Dyx
D

D
xx

yy

DE
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

   

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            
                   

gg = PP PP PP
A1 A2 E

xx+ + + + +
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⎜
⎜
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

   

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            
                   

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m

(µ )

∑ P ′m n
µ
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

    

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            = 1

°G
D ′m m

µ f −1( )
′m

(µ )

∑ Trace R P ′m n
µ( )

                   

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m

(µ )

∑ P ′m n
µ

gg = PP PP PP
A1 A2 E

xx+ + + + +
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⋅ ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ ⋅
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⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

    

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            = 1

°G
D ′m m

µ f −1( )
′m

(µ )

∑ Trace R P ′m n
µ( )

                   

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m

(µ )

∑ P ′m n
µ

    Use:  Trace R(Pmn
µ )=δmn

(µ)
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⋅ ⋅ ⋅ ⋅ ⋅
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Left action by operator f in group G ={1,…, f, g, h,…}: 

Regular representation TraceR(h) is zero except for TraceR(1)= °G

Pµjk -expansion in g-operators
   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Need inverse of Weyl form:

  
Pmn
µ = pmn

µ g( )
g

°G
∑ gDerive coefficients             of inverse Weyl expansion:

 
pmn
µ g( )

   
f ⋅Pmn

µ = pmn
µ g( )

g

°G
∑ f ⋅g = pmn

µ f −1h( )
h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

Regular representation TraceR(       ) is irep dimension (µ) for diagonal       or zero otherwise:  Pmn
µ

  Pmm
µ

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

    

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            = 1

°G
D ′m m

µ f −1( )
′m

(µ )

∑ Trace R P ′m n
µ( )

             = 
(µ )

°G
Dnm

µ f −1( )        

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m

(µ )

∑ P ′m n
µ

    Use:  Trace R(Pmn
µ )=δmn

(µ)
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Pmn
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µ = pmn
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h

°G
∑ h  , where: h = f ⋅g,  or: g = f −1h,

   
Trace R f ⋅Pmn

µ( ) = pmn
µ f −1h( )

h

°G
∑ TraceR h( ) = pmn

µ f −11( )TraceR 1( ) = pmn
µ f −1( )°G

    Trace R(Pmn
µ )=δmn

(µ)

Solving for             :
 
pmn
µ g( )

    

pmn
µ f( ) = 1

°G
Trace R f −1 ⋅Pmn

µ( )
            = 1

°G
D ′m m

µ f −1( )
′m

(µ )

∑ Trace R P ′m n
µ( )

             = 
(µ )

°G
Dnm

µ f −1( )         = 
(µ )

°G
Dmn

µ* f( )    for unitary Dnm
µ  

⎛

⎝
⎜

⎞

⎠
⎟

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g    Pmn

µ = 
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g   for unitary Dnm

µ  
⎛

⎝
⎜

⎞

⎠
⎟

    
Use left-action: f −1⋅Pmn

µ = D ′m m
µ f −1( )

′m

(µ )

∑ P ′m n
µ

    Use:  Trace R(Pmn
µ )=δmn

(µ)

Regular representation TraceR(       ) is irep dimension (µ) for diagonal        or 0 for off-diagonal   Pmn
µ

  Pmm
µ

  Pmn
µ
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

Dµjk-orthogonality relations

is a valid expansion of any combination of g including P.
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ  

Dµjk-orthogonality relations

Simply substitute P for g:

is a valid expansion of any combination of g including P.
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

is a valid expansion of any combination of g including P.

Useful identity for later
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

is a valid expansion of any combination of g including P.

Useful identity for later

56Tuesday, March 26, 2013



   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

is a valid expansion of any combination of g including P.

  
for unitary Dnm

µ  ( )

Useful identity for later
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D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                         

   
g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

is a valid expansion of any combination of g including P.

  
for unitary Dnm

µ  ( )

Useful identity for later
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

    

D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                    δ ′µ µδ ′m mδ ′n n = 
(µ )

°G
Dnm

µ g−1( )
g

°G
∑ D ′m ′n

′µ g( )        

is a valid expansion of any combination of g including P.

  
for unitary Dnm

µ  ( )

Useful identity for later
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

    

D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                    δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dnm

µ g−1( )
g

°G
∑ D ′m ′n

′µ g( )        or:          δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ D ′m ′n

′µ g( )

is a valid expansion of any combination of g including P.

  
for unitary Dnm

µ  ( )

Useful identity for later

Famous Dµ orthogonality relation
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑ ′g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

    

D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                    δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dnm

µ g−1( )
g

°G
∑ D ′m ′n

′µ g( )        or:          δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ D ′m ′n

′µ g( )

is a valid expansion of any combination of g including P.

Put g′-expansion of P into P-expansion of
   
g = Dmn

µ g( )
n

µ

∑
m

µ

∑
µ
∑ Pmn

µ

  
for unitary Dnm

µ  ( )

Useful identity for later

Famous Dµ orthogonality relation
(Begin search for 
much less famous 
Dµ completeness 

relation)
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑ ′g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

    

D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                    δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dnm

µ g−1( )
g

°G
∑ D ′m ′n

′µ g( )        or:          δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ D ′m ′n

′µ g( )

is a valid expansion of any combination of g including P.

Put g′-expansion of P into P-expansion of
   
g = Dmn

µ g( )
n

µ

∑
m

µ

∑
µ
∑ Pmn

µ

    
g = Dmn

µ g( )
n

µ

∑
(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑

m

µ

∑
µ
∑ ′g

  
for unitary Dnm

µ  ( )

Useful identity for later

Famous Dµ orthogonality relation
(Begin search for 
much less famous 
Dµ completeness 

relation)
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑ ′g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

    

D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                    δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dnm

µ g−1( )
g

°G
∑ D ′m ′n

′µ g( )        or:          δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ D ′m ′n

′µ g( )

is a valid expansion of any combination of g including P.

Put g′-expansion of P into P-expansion of
   
g = Dmn

µ g( )
n

µ

∑
m

µ

∑
µ
∑ Pmn

µ

    
g = Dmn

µ g( )
n

µ

∑
(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑

m

µ

∑
µ
∑ ′g

    
g = (µ )

°Gµ
∑ Dmn

µ g( )
n

µ

∑ Dnm
µ ′g −1( )

m

µ

∑
′g

°G
∑ ′g

  
for unitary Dnm

µ  ( )

Useful identity for later

Famous Dµ orthogonality relation
(Begin search for 
much less famous 
Dµ completeness 

relation)

63Tuesday, March 26, 2013
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′m
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∑ D ′m ′n
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′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑ ′g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

    

D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                    δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dnm

µ g−1( )
g

°G
∑ D ′m ′n

′µ g( )        or:          δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ D ′m ′n

′µ g( )

is a valid expansion of any combination of g including P.

Put g′-expansion of P into P-expansion of
   
g = Dmn

µ g( )
n

µ

∑
m

µ

∑
µ
∑ Pmn

µ

    
g = Dmn

µ g( )
n

µ

∑
(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑

m

µ

∑
µ
∑ ′g

    
g = (µ )

°Gµ
∑ Dmn

µ g( )
n

µ

∑ Dnm
µ ′g −1( )

m

µ

∑
′g

°G
∑ ′g

    
g = (µ )

°G
     Dmm

µ g ′g −1( )
m

µ

∑
µ
∑

′g

°G
∑ ′g

  
for unitary Dnm

µ  ( )

Useful identity for later

Famous Dµ orthogonality relation
(Begin search for 
much less famous 
Dµ completeness 

relation)
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑ ′g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

    

D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                    δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dnm

µ g−1( )
g

°G
∑ D ′m ′n

′µ g( )        or:          δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ D ′m ′n

′µ g( )

is a valid expansion of any combination of g including P.

Put g′-expansion of P into P-expansion of
   
g = Dmn

µ g( )
n

µ

∑
m

µ

∑
µ
∑ Pmn

µ

    
g = Dmn

µ g( )
n

µ

∑
(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑

m

µ

∑
µ
∑ ′g

    
g = (µ )

°Gµ
∑ Dmn

µ g( )
n

µ

∑ Dnm
µ ′g −1( )

m

µ

∑
′g

°G
∑ ′g

    
g = (µ )

°G
χ µ g ′g −1( )

µ
∑

′g

°G
∑ ′g    

  
for unitary Dnm

µ  ( )

Useful identity for later

Famous Dµ orthogonality relation
(Begin search for 
much less famous 
Dµ completeness 

relation)

    
g = (µ )

°G
     Dmm

µ g ′g −1( )
m

µ

∑
µ
∑

′g

°G
∑ ′g
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑ ′g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

    

D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                    δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dnm

µ g−1( )
g

°G
∑ D ′m ′n

′µ g( )        or:          δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ D ′m ′n

′µ g( )

is a valid expansion of any combination of g including P.

Put g′-expansion of P into P-expansion of
   
g = Dmn

µ g( )
n

µ

∑
m

µ

∑
µ
∑ Pmn

µ

    
g = Dmn

µ g( )
n

µ

∑
(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑

m

µ

∑
µ
∑ ′g

    
g = (µ )

°Gµ
∑ Dmn

µ g( )
n

µ

∑ Dnm
µ ′g −1( )

m

µ

∑
′g

°G
∑ ′g

    
g = (µ )

°G
χ µ g ′g −1( )

µ
∑

′g

°G
∑ ′g    ⇒      

(µ )

°G
χ µ g ′g −1( )

µ
∑ = δ ′g

g−1

  
for unitary Dnm

µ  ( )

Interesting character
sum-rule

Useful identity for later

Famous Dµ orthogonality relation
(Begin search for 
much less famous 
Dµ completeness 

relation)

    
g = (µ )

°G
     Dmm

µ g ′g −1( )
m

µ

∑
µ
∑

′g

°G
∑ ′g
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑ ′g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

    

D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                    δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dnm

µ g−1( )
g

°G
∑ D ′m ′n

′µ g( )        or:          δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ D ′m ′n

′µ g( )

is a valid expansion of any combination of g including P.

Put g′-expansion of P into P-expansion of
   
g = Dmn

µ g( )
n

µ

∑
m

µ

∑
µ
∑ Pmn

µ

    
g = Dmn

µ g( )
n

µ

∑
(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑

m

µ

∑
µ
∑ ′g

    
g = (µ )

°Gµ
∑ Dmn

µ g( )
n

µ

∑ Dnm
µ ′g −1( )

m

µ

∑
′g

°G
∑ ′g

    
g = (µ )

°G
χ µ g ′g −1( )

µ
∑

′g

°G
∑ ′g    ⇒      

(µ )

°G
χ µ g ′g −1( )

µ
∑ = δ ′g

g−1

  
for unitary Dnm

µ  ( )

Interesting character
sum-rule

Useful identity for later

Famous Dµ orthogonality relation
(Begin search for 
much less famous 
Dµ completeness 

relation)

µ

 

χ k
µ(D3) χ1

µ χr
µ χ i

µ

µ = A1 A1=1 1 1
µ = A2 A2=1 1 −1
µ = E1 E1=2 −1 0

    
g = (µ )

°G
     Dmm

µ g ′g −1( )
m

µ

∑
µ
∑

′g

°G
∑ ′g
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g =

′µ
∑

′m

µ

∑ D ′m ′n
′µ g( )

′n

µ

∑ P ′m ′n
′µ

    
Pmn
µ = 

(µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g

    
Pmn
µ = 

(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑ ′g

    
Pmn
µ =

′µ
∑

′m

µ

∑ D ′m ′n
′µ Pmn

µ( )
′n

µ

∑ P ′m ′n
′µ   ⇒    D ′m ′n

′µ Pmn
µ( ) = δ ′µ µδ ′m mδ ′n n

Dµjk-orthogonality relations

Simply substitute P for g:

Then put in g-expansion of 

    

D ′m ′n
′µ Pmn

µ( ) = δ ′µ µδ ′m mδ ′n n = D ′m ′n
′µ (µ )

°G
Dnm

µ g−1( )
g

°G
∑ g

⎛

⎝
⎜

⎞

⎠
⎟

                    δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dnm

µ g−1( )
g

°G
∑ D ′m ′n

′µ g( )        or:          δ ′µ µδ ′m mδ ′n n =
(µ )

°G
Dmn

µ*
g( )

g

°G
∑ D ′m ′n

′µ g( )

is a valid expansion of any combination of g including P.

Put g′-expansion of P into P-expansion of
   
g = Dmn

µ g( )
n

µ

∑
m

µ

∑
µ
∑ Pmn

µ

    
g = Dmn

µ g( )
n

µ

∑
(µ )

°G
Dnm

µ ′g −1( )
′g

°G
∑

m

µ

∑
µ
∑ ′g

    
g = (µ )

°Gµ
∑ Dmn

µ g( )
n

µ

∑ Dnm
µ ′g −1( )

m

µ

∑
′g

°G
∑ ′g

    
g = (µ )

°G
χ µ g ′g −1( )

µ
∑

′g

°G
∑ ′g    ⇒      

(µ )

°G
χ µ g ′g −1( )

µ
∑ = δ ′g

g−1

  
for unitary Dnm

µ  ( )

Interesting character
sum-rule

Character sum-rule becomes
Diophantine relation if g′=g-1 

   

((µ ) )2

°Gµ
∑ = 1

Useful identity for later

Famous Dµ orthogonality relation
(Begin search for 
much less famous 
Dµ completeness 

relation)

 

χ k
µ(D3) χ1

µ χr
µ χ i

µ

µ = A1 A1=1 1 1
µ = A2 A2=1 1 −1
µ = E1 E1=2 −1 0

    
g = (µ )

°G
     Dmm

µ g ′g −1( )
m

µ

∑
µ
∑

′g

°G
∑ ′g
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution

And review of all-commuting class sums
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Class projector and character formulae

Suppose all-commuting operator C =            commutes with all h in group G so hC = Ch or hCh-1= C.   

   
hgh−1

h=1

°G
∑ = °ngκ g  ,     where: °ng = °G

°κ g
= order of g-self -symmetry group {n such that ngn−1=g}

Total-G-transformation Σh∈Ghgh-1 of g repeats its class-sum κg an integer number °ng =°G/°κg of times.   

   
Cgg

g=1

°G
∑

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)
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Class projector and character formulae

Suppose all-commuting operator C =            commutes with all h in group G so hC = Ch or hCh-1= C.   

Then C must be the following linear combination of class-sums κg.

   
hgh−1

h=1

°G
∑ = °ngκ g  ,     where: °ng = °G

°κ g
= order of g-self -symmetry group {n such that ngn−1=g}

Total-G-transformation Σh∈Ghgh-1 of g repeats its class-sum κg an integer number °ng =°G/°κg of times.   

   
Cgg

g=1

°G
∑

   

Cgg
g=1

°G
∑ = 1

°G
h    h−1

h=1

°G
∑

      
      
      

C = C

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

   

1
°G h=1

°G
∑C = C (Trivial assumption )
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Class projector and character formulae

Suppose all-commuting operator C =            commutes with all h in group G so hC = Ch or hCh-1= C.   

Then C must be the following linear combination of class-sums κg.

   
hgh−1

h=1

°G
∑ = °ngκ g  ,     where: °ng = °G

°κ g
= order of g-self -symmetry group {n such that ngn−1=g}

Total-G-transformation Σh∈Ghgh-1 of g repeats its class-sum κg an integer number °ng =°G/°κg of times.   

   
Cgg

g=1

°G
∑

   

Cgg
g=1

°G
∑ = 1

°G
h    h−1

h=1

°G
∑

      = 1
°G

h Cgg
g=1

°G
∑

⎛
⎝⎜

⎞
⎠⎟

h−1

h=1

°G
∑

      
      

C = C

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

   

1
°G h=1

°G
∑C = C (Trivial assumption )
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Class projector and character formulae

Suppose all-commuting operator C =            commutes with all h in group G so hC = Ch or hCh-1= C.   

Then C must be the following linear combination of class-sums κg.

   
hgh−1

h=1

°G
∑ = °ngκ g  ,     where: °ng = °G

°κ g
= order of g-self -symmetry group {n such that ngn−1=g}

Total-G-transformation Σh∈Ghgh-1 of g repeats its class-sum κg an integer number °ng =°G/°κg of times.   

   
Cgg

g=1

°G
∑

   

Cgg
g=1

°G
∑ = 1

°G
h    h−1

h=1

°G
∑

      = 1
°G

h Cgg
g=1

°G
∑

⎛
⎝⎜

⎞
⎠⎟

h−1

h=1

°G
∑

      = Cg
g=1

°G
∑

1
°G

hgh−1

h=1

°G
∑

      

C = C

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

   

1
°G h=1

°G
∑C = C (Trivial assumption )
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Class projector and character formulae

Suppose all-commuting operator C =            commutes with all h in group G so hC = Ch or hCh-1= C.   

Then C must be the following linear combination of class-sums κg.

   
hgh−1

h=1

°G
∑ = °ngκ g  ,     where: °ng = °G

°κ g
= order of g-self -symmetry group {n such that ngn−1=g}

Total-G-transformation Σh∈Ghgh-1 of g repeats its class-sum κg an integer number °ng =°G/°κg of times.   

   
Cgg

g=1

°G
∑

   

Cgg
g=1

°G
∑ = 1

°G
h    h−1

h=1

°G
∑

      = 1
°G

h Cgg
g=1

°G
∑

⎛
⎝⎜

⎞
⎠⎟

h−1

h=1

°G
∑

      = Cg
g=1

°G
∑

1
°G

hgh−1

h=1

°G
∑

      = Cg
g=1

°G
∑

°ng

°G
κ g

C = C

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

   

1
°G h=1

°G
∑C = C (Trivial assumption )
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Class projector and character formulae

Suppose all-commuting operator C =            commutes with all h in group G so hC = Ch or hCh-1= C.   

Then C must be the following linear combination of class-sums κg.

   
hgh−1

h=1

°G
∑ = °ngκ g  ,     where: °ng = °G

°κ g
= order of g-self -symmetry group {n such that ngn−1=g}

Total-G-transformation Σh∈Ghgh-1 of g repeats its class-sum κg an integer number °ng =°G/°κg of times.   

   
Cgg

g=1

°G
∑

   

Cgg
g=1

°G
∑ = 1

°G
h    h−1

h=1

°G
∑

      = 1
°G

h Cgg
g=1

°G
∑

⎛
⎝⎜

⎞
⎠⎟

h−1

h=1

°G
∑

      = Cg
g=1

°G
∑

1
°G

hgh−1

h=1

°G
∑

      = Cg
g=1

°G
∑

°ng

°G
κ g

C = C

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

   
Cgg

g=1

°G
∑ = Cg

κ g

°κ gg=1

°G
∑C =

Precise combination of class-sums κg.

   

1
°G h=1

°G
∑C = C (Trivial assumption )
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Class projector and character formulae

Suppose all-commuting operator C =            commutes with all h in group G so hC = Ch or hCh-1= C.   

Then C must be the following linear combination of class-sums κg.

   
hgh−1

h=1

°G
∑ = °ngκ g  ,     where: °ng = °G

°κ g
= order of g-self -symmetry group {n such that ngn−1=g}

Total-G-transformation Σh∈Ghgh-1 of g repeats its class-sum κg an integer number °ng =°G/°κg of times.   

   
Cgg

g=1

°G
∑

   

Cgg
g=1

°G
∑ = 1

°G
h    h−1

h=1

°G
∑

      = 1
°G

h Cgg
g=1

°G
∑

⎛
⎝⎜

⎞
⎠⎟

h−1

h=1

°G
∑

      = Cg
g=1

°G
∑

1
°G

hgh−1

h=1

°G
∑

      = Cg
g=1

°G
∑

°ng

°G
κ g

C = C

Review of all-commuting class sums (Recall Lagrange coset relations in Lect.14 p.14)

   
Cgg

g=1

°G
∑ = Cg

κ g

°κ gg=1

°G
∑C =

Precise combination of class-sums κg.

   

1
°G h=1

°G
∑C = C (Trivial assumption )

(Simple D3 example )
C=8r1+8r2

=8(r1+r2)/2+8(r1+r2)/2
=8(κr)/2+8(κr)/2
=8κr
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
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Pµin terms of κg

κg  in terms of  Pµ 
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(µ)th irep characters χ(µ)(g) given by trace definition:
    
χ µ g( ) ≡ Trace Dµ g( ) = Dmm

µ g( )
m=1

µ
∑

Pµin terms of κg

κg  in terms of  Pµ 
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(µ)th irep characters χ(µ)(g) given by trace definition:
    
χ µ g( ) ≡ Trace Dµ g( ) = Dmm
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
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Details of Mock-Mach relativity-duality for D3 groups and representations

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed(Extrinsic-Global)R,S,..vs.Body-fixed (Intrinsic-Local)R,S,..

...But how do you actually make the R and R operations?

“Give me a place to stand...
and I will move the Earth”

Archimedes 287-212 B.C.E

allR,S,..
commute with
allR,S,..

R|1〉=R-1|1〉
S|1〉=S-1|1〉
...for one state |1) only!

...

“Mock-Mach”
relativity principles
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wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3

i1

xx

yy

i1

i3

|i2〉 (After i2 )

|1〉

Lab-fixed (Extrinsic-Global) operations&axes fixed

r

i3

i2
i1

i1 D3r2

r(120°)

(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
r2 r 1 i2 i3 i1
i1 i3 i2 1 r r2

i2 i1 i3 r2 1 r

i3 i2 i1 r r2 1

Details of RELATIVITY-DUALITY for D3
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Body-fixed (Intrinsic-Local) operations appear
to move their rotation axes (relative to lab)

After i1i2
(veiwed in
lab frame)

i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
i1i2 = r

D3-defined
local-wave
bases

i3 i1
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i1i2|1〉=i1 |i2〉
wave packet fixed
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implies:
i1i2 = r
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local-wave
bases
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wave packet fixed
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Details of RELATIVITY-DUALITY for D3
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wave packet fixed
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Details of RELATIVITY-DUALITY for D3
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wave packet fixed
while lab axes move
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wave packet fixed
while lab axes move
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Details of RELATIVITY-DUALITY for D3
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wave packet fixed
while lab axes move
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wave packet moves
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Details of RELATIVITY-DUALITY for D3
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...but, THEY OBEY THE
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implies:
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D3-defined
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wave packet fixed
while lab axes move

i2|1〉= |i2〉

wave packet moves
with lab axes fixed

i2|1〉=|i2〉i2

i2i3

i1
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yy

i1

i3

|i2〉 (After i2 )
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Lab-fixed (Extrinsic-Global) operations&axes fixed
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(-120°) or (240°) 1 r2 r i1 i2 i3
r 1 r2 i3 i1 i2
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Details of RELATIVITY-DUALITY for D3

|11〉
i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

i1

i3

yx

i3 i1

i2

|i2
〉 (After i2 )

i3 x

y

i1

|1〉

i3

y

i1

x

|i2〉

i3
i1
i2

After i2
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to move their rotation axes (relative to lab)
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i1i2|1〉=i1 |i2〉=r |1〉=r2 |1〉

...but, THEY OBEY THE
SAME GROUP TABLE. i1i2 = r

implies:
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D3-defined
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...and Mock-Mach principle g⏐1〉=g-1⏐1〉

r-1=r2

r

r
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution

101Tuesday, March 26, 2013



1 r r i i i
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r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1
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2
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2
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2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

1 r r i i i
r 1 r i i i
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i i i 1 r r
i i i r 1 r
i i i r r 1

2
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2
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2
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1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 2

DD33 llooccaall
ggrroouupp
ttaabbllee

DD33 gglloobbaall
ggrroouupp
pprroodduucctt
ttaabbllee

CChhaannggee GGlloobbaall ttoo LLooccaall bbyy sswwiittcchhiinngg
......ccoolluummnn--gg wwiitthh ccoolluummnn--gg†

........aanndd rrooww--gg wwiitthh rrooww--gg†

JJuusstt sswwiittcchh r wwiitthh r =r2..† (all others are
self-conjugate)

Compare Global vs Local ⏐g〉-basis vs. Global vs Local ⏐P(µ)〉-basis
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PP(m)PP(n)== δmnδ PP(m)ab cd bc ad
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xx
A

yy
A

xx
E

xy
E

yx
E

yy
E

xx
A

xx
A

yy
A

yy
A

xx
E

xx
E

xy
E

yx
E

yx
E

yy
E

xy
E

xx
E

xy
E

y
E

y
E

y
E

1 2

1 1 ⋅ ⋅ ⋅ ⋅ ⋅

2 ⋅ 2 ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
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PP(m)PP(n)== δmnδ PP(m)ab cd bc ad
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DD33 llooccaall
pprroojjeeccttoorr
pprroodduucctt
ttaabbllee

(all others are
self-conjugate)

Compare Global vs Local ⏐g〉-basis vs. Global vs Local ⏐P(µ)〉-basis

103Tuesday, March 26, 2013



Compare Global vs Local ⏐g〉-basis
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⎜
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Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table
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Compare Global vs Local ⏐g〉-basis
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⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG (r) = RG (r2) = RG (i1) = RG (i2) = RG (i3) =

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2
2

2
2

2
2

1 2 3

2 3 1

3 1 2

1 2 3

3

3 1 2

2 2

DD33 llooccaall
gg††gg--ttaabbllee

Example of RELATIVITY-DUALITY for D3~C3v
To represent external {..T,U,V,... }switch g g† on top of group table

To represent internal {..T,U,V,... } switch g g† on side of group table

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ 1 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

,

⋅ ⋅ ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

RG (1) = RG(r) = RG (r2) = RG( i1) = RG ( i2) = RG( i3) =

RESULT:
Any R(T)
commute

with any R(U)...
(Even if T and U do not...)

...and T·U=V if & only if T·U=V.

DD33 gglloobbaall
gggg††--ttaabbllee

|11〉

i2

i3

i1

|i3〉

|i2〉

|i1〉
|r2〉

|r〉

x

y

D
3
-defined

local-wave
bases

1 r r i i i
r 1 r i i i
r r 1 i i i
i i i 1 r r
i i i r 1 r
i i i r r 1

2

2
2

2
2

2

1 2 3

3 1 2

2 3 1

1 3 2

2 1 3

3 2 1

i2

i1

i3
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Compare Global ⏐P(µ)〉-basis vs Local ⏐P(µ)〉-basis

MMaattrriixx ““PPllaacceehhoollddeerrss”” PP ffoorr GGLLOOBBAALL gg ooppeerraattoorrss iinn DD
33

gg = PP PP PP
A1 A2 E

xx+ + + + +

D

D

D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A
1

A
2

E

xy
Dyx

D

D

xx

yy

D
E

xy
Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)

Dxx
A
1(g) Dyy

A
2(g) Dxx

E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

(m)
ab

Dxx
A
1

Dyy
A
2

Dxx
E

Dxy
E

Dyx
E

Dyy
E
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Compare Global ⏐P(µ)〉-basis vs Local ⏐P(µ)〉-basis

MMaattrriixx ““PPllaacceehhoollddeerrss”” PP ffoorr GGLLOOBBAALL gg ooppeerraattoorrss iinn DD
33

gg = PP PP PP
A1 A2 E

xx+ + + + +

D

D

D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A
1

A
2

E

xy
Dyx

D

D

xx

yy

D
E

xy
Dyx

PP
E
xy PP

E
yx PP

E
yy

1

(g)

Dxx
A
1(g) Dyy

A
2(g) Dxx

E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1
1

1

(m)
ab

gg = P PP PP
A1 A2 E

xx+ + + + +

D

D

D

Dyy

Dyy

xx

yy

xx

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

D

⋅

⋅

⋅ ⋅ ⋅
⋅

⋅ ⋅
⋅

⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅
⋅

⋅ ⋅ ⋅
1

⋅

⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅

·
⋅

⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞
⎟
⎟
⎟
⎟
⎟
⎟

A
1

A
2

E

xy
Dyx

Dxx

Dxy

PP
E
xy PP

E
yx PP

E
yy

1

(g)

Dxx
A
1(g) Dyy

A
2(g) Dxx

E
(g) Dxy

E
(g) Dyx

E
(g) Dyy

E
(g)

1 ·

·Dyx

E

E
1 ⋅
⋅ 1

1 ⋅
⋅ 1

E

PP ......ffoorr LLOOCCAALL gg ooppeerraattoorrss iinn DD
33

(m)
ab

Dxx
A
1

Dyy
A
2

Dxx
E

Dxy
E

Dyx
E

Dyy
E

Dxx
A
1

Dyy
A
2

Dxx
E

Dxy
E

Dyx
E

Dyy
E
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Compare Global ⏐P(µ)〉-basis vs Local ⏐P(µ)〉-basis
MMaattrriixx ““PPllaacceehhoollddeerrss”” PP ffoorr GGLLOOBBAALL gg ooppeerraattoorrss iinn DD

33

gg = PP PP PP
A1 A2 E

xx+ + + + +

D

D

D

D

xx

yy

xx

yy

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ D ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅
⋅ ⋅

⋅ ⋅ ⋅
1

⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

1
⋅

⋅ ⋅ ⋅ ⋅
⋅

⋅

⎛

⎝

⎜
⎜
⎜
⎜
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Note how any global g-matrix commutes with any local g-matrix
a b ⋅ ⋅
c d ⋅ ⋅
⋅ ⋅ a b
⋅ ⋅ c d

⋅

A ⋅ B ⋅
⋅ A ⋅ B
C D

C D

=

A ⋅ B ⋅
⋅ A ⋅ B
C D

C D

⋅

a b ⋅ ⋅
c d ⋅ ⋅
⋅ ⋅ a b
⋅ ⋅ c d

aA bA aB bB
cA dA cB dB
aC bC aD bD
cC dC cD dD

=

Aa Ab Ba Bb
Ac Ad Bc Bd
Ca Cb Da Db
Cc Cd Dc Dd
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

   mn
µ = Pmn

µ 1
norm

1

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g

114Tuesday, March 26, 2013



⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:
    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.23-28 

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.23-28 

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
        = Pmn

µ g 1
(µ )

°G

Use 
Mock-Mach
commutation

and

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.23-28 

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.23-28 

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G
compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.23-28 

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.23-28 

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.23-28 

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

   
        = Dn ′n

µ (g−1)
′n =1

µ

∑ m ′n
µ

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.23-28 

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

   
        = Dn ′n

µ (g−1)
′n =1

µ

∑ m ′n
µ

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

Local    -matrix component g

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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⏐P(µ)〉-basis are projected by                                                acting on original ket ⏐1〉 to give:

Left-action of global g on irep-ket 

   
g mn

µ = D ′m m
µ g( )

′m

µ

∑ ′m n
µ

  ′m n
µ g mn

µ = D ′m m
µ g( )

Matrix is same as given on p.23-28 

 mn
µ

    
Pmn
µ = 

(µ )

°G
Dmn

µ*
g( )

g

°G
∑ g = Pnm

µ†
For unitary D(µ): (p.33)

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g subject to normalization:

   
′m ′n
′µ

mn
µ =

1 P ′n ′m
′µ Pmn

µ 1

norm2 = δ ′µ µδ ′m m
1 P ′n n

µ 1

norm2 = δ ′µ µδ ′m mδ ′n n
    
norm = 1 Pnn

µ 1 = (µ )

°G
where:

Left-action of local    on irep-ket        is quite different 
 mn
µ

 g

    
g mn

µ = gPmn
µ 1

(µ )

°G

    
Pmn
µ g−1= Pmn

µ P ′m ′n
µ D ′m ′n

µ (g−1)
′n =1

µ

∑
′m =1

µ

∑

   
        = Dn ′n

µ (g−1)
′n =1

µ

∑ m ′n
µ

    
        = Dn ′n

µ (g−1)
′n =1

µ

∑ Pm ′n
µ 1

(µ )

°G
    
        = Pmn

µ g−1 1
(µ )

°G
    
        = Pmn

µ g 1
(µ )

°G

    
           =         Pm ′n

µ    Dn ′n
µ (g−1)

′n =1

µ

∑

compute g-1 right action 

Use 
Mock-Mach
commutation

and
inverse

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

Hamiltonian and D3 global-g and local-   group matrices in ⏐P(µ)〉-basis  g
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D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices
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D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1            Pyy

A2          Pxx
E1         Pyx

E1         Pxy
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( )
⋅ ⋅ Dyx

E1* g( ) ⋅ Dyy
E1* g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1* g( ) ⋅ Dyy

E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices

here
Local    -matrix
is not concentrated g
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RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pxy

E1     Pyx
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) ⋅ Dxy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1 ⋅ Dxy

E1

⋅ ⋅ Dyx
E1 g( ) ⋅ Dyy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1 ⋅ Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1            Pyy

A2          Pxx
E1         Pyx

E1         Pxy
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( )
⋅ ⋅ Dyx

E1* g( ) ⋅ Dyy
E1* g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1* g( ) ⋅ Dyy

E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices

here
Local    -matrix
is not concentrated g

here
global g-matrix
is not concentrated
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D3 local-   group matrices in ⏐P(µ)〉-basis  g

   

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pyx

E1    Pxy
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) Dxy

E1 ⋅ ⋅

⋅ ⋅ Dyx
E1 g( ) Dyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1 g( ) Dxy

E1

⋅ ⋅ ⋅ ⋅ Dyx
E1 g( ) Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

RP g( ) = TRG g( )T † =                                      

  Pxx
A1        Pyy

A2        Pxx
E1     Pxy

E1     Pyx
E1     Pyy

E1     

D A1 g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2 g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1 g( ) ⋅ Dxy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1 ⋅ Dxy

E1

⋅ ⋅ Dyx
E1 g( ) ⋅ Dyy

E1 g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1 ⋅ Dyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

RP g( ) = TRG g( )T † =                                     

  Pxx
A1            Pyy

A2          Pxx
E1         Pyx

E1         Pxy
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( ) ⋅

⋅ ⋅ ⋅ Dxx
E1* g( ) ⋅ Dxy

E1* g( )
⋅ ⋅ Dyx

E1* g( ) ⋅ Dyy
E1* g( ) ⋅

⋅ ⋅ ⋅ Dyx
E1* g( ) ⋅ Dyy

E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

RP g( ) = TRG g( )T † =                                     

  Pxx
A1           Pyy

A2          Pxx
E1        Pxy

E1           Pyx
E1         Pyy

E1     

D A1* g( ) ⋅ ⋅ ⋅ ⋅ ⋅

⋅ D A2* g( ) ⋅ ⋅ ⋅ ⋅

⋅ ⋅ Dxx
E1* g( ) Dxy

E1* g( ) ⋅ ⋅

⋅ ⋅ Dyx
E1* g( ) Dyy

E1* g( ) ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Dxx
E1* g( ) Dxy

E1* g( )
⋅ ⋅ ⋅ ⋅ Dyx

E1* g( ) Dyy
E1* g( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   m ′n
µ g mn

µ = Dn ′n
µ (g−1) = D ′n n

µ* (g)

Local    -matrix component g

  ′m n
µ g mn

µ = D ′m m
µ g( )

Global g-matrix component

D3 global-g group matrices in ⏐P(µ)〉-basis 

⏐P(µ)〉-base
ordering to
concentrate

global-g 
D-matrices

⏐P(µ)〉-base
ordering to
concentrate

local-
D-matrices

and
H-matrices

 g
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Review: Spectral resolution of D3 Center (Class algebra) and its subgroup splitting

General formulae for spectral decomposition (D3 examples)
         Weyl g-expansion in irep Dµjk(g) and projectors Pµjk

                  Pµjk transforms right-and-left
                  Pµjk -expansion in g-operators
          Dµjk(g) orthogonality relations
         Class projector character formulae
                   Pµ in terms of κg and κg  in terms of  Pµ 

Details of Mock-Mach relativity-duality for D3 groups and representations
        Lab-fixed(Extrinsic-Global) vs. Body-fixed (Intrinsic-Local)
        Compare Global vs Local ⏐g〉-basis and Global vs Local ⏐P(µ)〉-basis
                   
Hamiltonian and D3 group matrices in global and local ⏐P(µ)〉-basis      
        Hamiltonian local-symmetry eigensolution
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H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 
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Hab
α

= Pma
µ H Pnb

µ

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 
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Hab
α

= Pma
µ H Pnb

µ

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

Let:
   mn
µ ≡ Pmn

µ = Pmn
µ 1

norm
1
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

   

m n( )† = n m

   Pmn
µ( )† = Pnm

µ

Projector conjugation  p.31
(norm)2
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Mock-Mach
commutation

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!

r r = r r
(p.89)
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

   

Use Pmn
µ -orthonormality

P ′m ′n
′µ Pmn

µ = δ ′µ µδ ′n mP ′m n
µ

(p.18)
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
µ*

g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
µ*

g( ) = rg
g=1

°G

∑ Dab
µ*

g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟

    
mn
µ = Pmn

µ 1
norm

1
= (µ )

°G ⋅norm
Dmn

µ*
g( )

g

°G
∑ g

subject to normalization (from p. 116-122):

    
norm = 1 Pnn

µ 1 = (µ )

°G
(which will cancel out)
So, fuggettabout it!
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)=r0 +r1+r1
*+i1+i2 +i3   

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3   

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2 

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Coefficients               are irreducible representations (ireps) of g
 
Dmn

µ g( )

   

g = 1 r1 r2 i1 i2 i3

D A1 g( ) =
D A2 g( ) =
Dx,y

E1 g( ) =

1
1

1 ⋅
⋅ 1

⎛

⎝⎜
⎞

⎠⎟

1
1

−2
1 − 2

3

2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
1

−2
1

2
3

− 2
3 −2

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1 − 2

3

− 2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

−2
1

2
3

2
3

2
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
−1

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     

Hxx
E1 Hxy

E1

Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1
2

2r0 -r1-r1
*-i1-i2+2i3 3(-r1+r1

*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              =r0 +2r1+2i12 +i3

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                =r0 +2r1 -2i12 -i3

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      =r0 -r1 -i12 +i3

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  =0

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     =r0 -r1 +i12 -i3

Hxx
E1 Hxy

E1

Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1

2
2r0 -r1-r1

*-i1-i2 +2i3 3(-r1+r1
*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                       =
r0 -r1-i12 +i3 0

0 r0 -r1-i12 -i3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
For:r1 =r1

*and: i1 =i2

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Choosing local C2={1,i3} symmetry with
local constraints r1=r1*=r2 and i1=i2  
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Hab
α

= Pma
µ H Pnb

µ = 1 Pam
µ HPnb

µ 1 = 1 HPam
µ Pnb

µ 1 = δmn 1 HPab
µ 1 = 1 H g

g=1

°G

∑ Dab
α*
g( ) = rg

g=1

°G

∑ Dab
α*
g( )

                                 Pxx
A1    Pyy

A2    Pxx
E1 Pxy

E1    Pyx
E1 Pyy

E1     

H( )P = T H( )G T † =

H A1 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ H A2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ Hxx

E1 Hxy
E1 ⋅ ⋅

⋅ ⋅ Hyx
E1 Hyy

E1 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ Hxx
E1 Hxy

E1

⋅ ⋅ ⋅ ⋅ Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H A1 = r0D
A1*(1)+ r1D

A1*(r1)+ r1
*DA1*(r2)+ i1D

A1*(i1)+ i2D
A1*(i2)+ i3D

A1*(i3)  =r0 +r1+r1
*+i1+i2 +i3              =r0 +2r1+2i12 +i3

H A2 = r0D
A2*(1)+ r1D

A2*(r1)+ r1
*DA2*(r2)+ i1D

A2*(i1)+i2D
A2*(i2)+i3D

A2*(i3) =r0 +r1+r1
*-i1-i2 -i3                =r0 +2r1 -2i12 -i3

Hxx
E1 = r0Dxx

E*
(1)+ r1Dxx

E*
(r1)+ r1

*Dxx
E*

(r2)+ i1Dxx
E*

(i1)+ i2Dxx
E*

(i2)+ i3Dxx
E*

(i3)  =(2r0 -r1-r1
*-i1-i2 +2i3)/2      =r0 -r1 -i12 +i3

Hxy
E1 = r0Dxy

E*
(1)+ r1Dxy

E*
(r1)+ r1

*Dxy
E*

(r2)+ i1Dxy
E*

(i1)+ i2Dxy
E*

(i2)+ i3Dxy
E*

(i3)  = 3(-r1+r1
*-i1+i2 )/2 =Hyx

E*  =0

Hyy
E1 = r0Dyy

E*
(1)+ r1Dyy

E*
(r1)+ r1

*Dyy
E*

(r2)+ i1Dyy
E*

(i1)+ i2Dyy
E*

(i2)+ i3Dyy
E*

(i3)  =(2r0 -r1-r1
*+i1+i2 -2i3)/2     =r0 -r1 +i12 -i3

Hxx
E1 Hxy

E1

Hyx
E1 Hyy

E1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= 1

2
2r0 -r1-r1

*-i1-i2 +2i3 3(-r1+r1
*-i1+i2 )

3(−r1
*+r1-i1+i2 ) 2r0 -r1-r1

*+i1+i2 -2i3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                       =
r0 -r1-i12 +i3 0

0 r0 -r1-i12 -i3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
For:r1 =r1

*and: i1 =i2

   

H( )G = rgg
g=1

oG
∑ =

r0 r2 r1 i1 i2 i3
r1 r0 r1 i3 i1 i2
r2 r1 r0 i2 i3 i1
ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1
i3 i2 i1 r1 r2 r0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

H matrix in
⏐g〉-basis:

H matrix in
⏐P(µ)〉-basis:

D3 Hamiltonian local- H matrices in ⏐P(µ)〉-basis 

Choosing local C2={1,i3} symmetry with
local constraints r1=r1*=r2 and i1=i2  

C2={1,i3} 
Local symmetry
determines all levels
and eigenvectors with
just 4 real parameters
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PE =( 2 -1 -1 -1 -1 +2)/6
PE =( 0 1 -1 -1 +1 0)/√3/2

x,x

y,x

PA1= ( 1 1 1 1 1 1)/6x,x

PA2= ( 1 1 1 -1 -1 -1)/6y,y

1 r1 r2 i
1
i
2
i
3

PE =( 0 -1 1 -1 +1 0)/√3/2

PE =( 2 -1 -1+1 +1 -2)/6
x,y

y,y

1 r1 r2 i
1
i
2
i
3

1 r1 r2 i
1
i
2
i
3

SSppeeccttrraall EEffffiicciieennccyy:: SSaammee DD((aa))
mmnn
pprroojjeeccttoorrss ggiivvee aa lloott!!

••EEiiggeennssttaatteess ((sshhoowwnn bbeeffoorree))

••CCoommpplleettee HHaammiillttoonniiaann

••LLooccaall ssyymmmmeetteerryy eeiiggeennvvaalluuee ffoorrmmuullaaee

H r r i i i1 2 1 2 3
− − − − +H r r i i i1 2 1 2 3
1
2

1
2

1
2

1
2

√3
2
( + − +r r i i1 2 1 2 )−

√3
2
( − − +r r i i1 2 1 2 )+ − − + + −H r r i i i1 2 1 2 3

1
2

1
2

1
2

1
2

A
1
-block

A
2
-block

(L.S.=> off-diagonal zero.)

H r r i i i1 2 1 2 3⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

3

r1= r2= r1*= r, i1= i2= i1*= i

+ + +r i i2 2 3HA
1
-level:

+ − −r i i2 2 3HA
1
-level:

− − +r i i3HE
x
-level:

− + −r iHE
y
-level: i

gives:

mn
(g)

(µ)

°G mn
PP(µ)= ΣgD

(µ)* g
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i2

i3

i1

++
++

+
+

-
+

-
+

-
+

+
+

+

+

- -

-- +
+

- -

-
+

-

-

+

-
+

-

| 〉A1
xx

| 〉A2
yy

| 〉E
xy | 〉E

yy

| 〉E
xx | 〉E

yx

| 〉E1
xy

| 〉E1
xx

| 〉

| 〉A1
xx

| 〉A2
yy

E1
yx

| 〉E1
yy

D
3
>C

2
i
3
projector states

|(m)〉 =P(m)|1〉eb eb

ii
3
global (y)

anti-symmetry

ii
3
global (y)

anti-symmetry

ii
3
global

(x) symmetry

ii
3
local

(x) symmetry

ii
3
local (y)

anti-symmetry

eb eb

Global (LAB) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉

=(-1)e |(m)〉
eb eb eb

eb

Local (BOD) symmetry

ii
3
|(m)〉 = ii

3
P(m)|1〉= P(m)ii

3
|1〉

= P(m)ii
3

†|1〉=(-1)b |(m)〉
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+

+

- -

-- +
+

- -

-
+

-

-

+

-
+

-

| 〉A1
xx

| 〉A2
yy

| 〉E
xy | 〉E

yy

| 〉E
xx | 〉E

yx

| 〉E1
xy

| 〉E1
xx

| 〉

| 〉A1
xx

| 〉A2
yy

E1
yx

| 〉E1
yy

When there is no there, there...

ii3 global (y)
anti-symmetry

ii3 global (y)
anti-symmetry

ii3 global
(x) symmetry

ii3 local
(x) symmetry

ii3 local (y)
anti-symmetry

Nobody Home
where LOCAL
and GLOBAL

clash!clash!!

clash!clash!!

clash!clash!!

clash!clash!!
clash!clash!!
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