Group Theory in Quantum Mechanics
Lecture 13 31213

Smallest non-Abelian isomorphic groups D3 ~C3,

(Int.J.Mol.Sci, 14, 714(2013) p.755-774 , OTCA Unit 5 Ch. 15 )
(PSDS - Ch. 3 )

D, Algebra

(A _1| D3 Center)
DA ¢;= (All-commuting

operators)
JE

3-Dihedral-axes group Djvs. 3-Vertical-mirror-plane group Cs,
Ds and Csy, are isomorphic (D3 ~ Cs, share product table)
Deriving D3 ~ Cs, products:
By group definition |g)=g|1) of position ket |g)
By nomograms based on U(2) Hamilton-turns
Deriving D3 ~ Cs, equivalence transformations and classes| i

c.=r’+r
Cl - |] + |2 +|3
\_ J
A Maximal Set of Commuting

Non-commutative symmetry expansion and Global-Local solution ™ (Fig. 1521 QTCA)
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D3
Global vs Local symmetry expansion of D3 Hamiltonian

Ist-Stage spectral decomposition of global/local D3 Hamiltonian
All-commuting operators and Ds-invariant class algebra
All-commuting projectors and Ds-invariant characters
Group invariant numbers. Centrum, Rank, and Order

Spectral resolution to irreducible representations (or “irreps”’) foretold by characters or traces
Crystal-field splitting: O(3)DD3 symmetry reduction and D'|D; splitting
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» 3-Dihedral-axes group Dsvs. 3-Vertical-mirror-plane group Cs, ‘
D3 and Csy are isomorphic (D3 ~ Csy, share product table)

Deriving D3 ~ Csy products:
By group definition |g)=g|1) of position ket |g)
By nomograms based on U(2) Hamilton-turns
Deriving D3 ~ C3, equivalence transformations and classes
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3-Dihedral-axes group Dsvs. 3-Vertical-mirror-plane group Cs, ‘
D3 and Csy are isomorphic (D3 ~ Csy, share product table)
Deriving D3 ~ Csy products:
By group definition |g)=g|1) of position ket |g)
By nomograms based on U(2) Hamilton-turns
Deriving D3 ~ C3, equivalence transformations and classes
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane groupCs,
D3 Cav

Fig. 3.1.3 PSDS

o3~lr3

P1 (plane reflections)

(180°)

Figure 3.1.3 Pictorial comparison of D, and C;, symmetry. A propeller having D,
symmetry is shown next to a three-plane paddle having C;, symmetry. The group
operations are labeled by arrows, which indicate the effect they have. For example, p,
is a 180° rotation around the y axis, while Ip; = o5 is a reflection through the xz
plane. (Here axes are fixed and the objects rotate.)

*isomorphic means
mathematically the
same abstract group
even if physically
different action.

Showing that D3 and Cs, are isomorphic™ (D3 ~ C3, share product table)
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Fig. 3.1.3 PSDS

3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane groupCs,

(180°)

03 c:.’»V

o3~lr3

(plane reflections)

Figure 3.1.3 Pictorial comparison of D, and C;, symmetry. A propeller having D,
symmetry is shown next to a three-plane paddle having C;, symmetry. The group
operations are labeled by arrows, which indicate the effect they have. For example, p,
is a 180° rotation around the y axis, while Ip; = o5 is a reflection through the xz
plane. (Here axes are fixed and the objects rotate.)

—1 . . +1

180°D,-Y-axis-rotation: p,=| . +1 - maps to . XZ-mirror-plane reflection: o,=| . -1

—1 . . +1

*isomorphic means
mathematically the
same abstract group
even if physically
different action.

Showing that D3 and Cs, are isomorphic™ (D3 ~ C3, share product table)
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane groupCs,

03 c:.’»V
Mirror-plane-reflection o
equals
Fig. 3.1.3 PSDS 180° 1| -axial-rotation-inversion
& oc=RI=IR )
X
+1
03=|[)3 63 = _1
) (plane reflections) +1
(180°)
-1 - -1
Figure 3.1.3 Pictorial comparison of D, and C;, symmetry. A propeller having D, = +1 -1
symmetry is shown next to a three-plane paddle having C;, symmetry. The group . - | . =1
operations are labeled by arrows, which indicate the effect they have. For example, p,
is a 180° rotation around the y axis, while Ip, = o5 is a reflection through the xz = py1= 1p,
plane. (Here axes are fixed and the objects rotate.)
—1 . . +1
180°D,-Y-axis-rotation: p,=| . 41 . maps to : XZ-mirror-plane reflection: o,=| . -1
—1 . . +1

*isomorphic means
mathematically the
same abstract group
even if physically
different action.

Showing that D3 and Cs, are isomorphic™ (D3 ~ C3, share product table)
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane groupCs,

03 c:.’»V
Y . .
Mirror-plane-reflection o
=01 equals
Fig. 3.1.3 PSDS 180° 1| -axial-rotation-inversion
& oc=RI=IR )
X
+1
03=|[)3 63 = _1
Ip2=02 . .
) (plane reflections) +1
(180°)
-1 - -1
Figure 3.1.3 Pictorial comparison of D, and C;, symmetry. A propeller having D, = +1 -1
symmetry is shown next to a three-plane paddle having C;, symmetry. The group . - | . -
operations are labeled by arrows, which indicate the effect they have. For example, p,
is a 180° rotation around the y axis, while Ip, = o5 is a reflection through the xz = py1= Ip,
plane. (Here axes are fixed and the objects rotate.)
T . 11 (" Inversion )
180°D,-Y-axis-rotation: p,=| . 41 . maps to : XZ-mirror-plane reflection: o,=| . -1 I=-1
commutes
-1 -t with

*isomorphic means
mathematically the
same abstract group
even if physically
different action.

Showing that D3 and Cs, are isomorphic™ (D3 ~ C3, share product table)
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane groupCs,

03 C3V
Mirror-plane-reflection o
equals
Fig. 3.1.3 PSDS 180° 1| -axial-rotation-inversion
& oc=RI=IR )
X
+1
03=|[)3 63 = _1
Py (plane reflections) +1
(180°)
—1 -1
Figure 3.1.3 Pictorial comparison of D, and C;, symmetry. A propeller having D, = +1 -1
symmetry is shown next to a three-plane paddle having C;, symmetry. The group —1 -1
operations are labeled by arrows, which indicate the effect they have. For example, p,
is a 180° rotation around the y axis, while Ip, = o5 is a reflection through the xz = pyI= Ip,
plane. (Here axes are fixed and the objects rotate.)
T . 11 (" Inversion )
180°D,-Y-axis-rotation: p,=| . 41 . maps to : XZ-mirror-plane reflection: o,=| . -1 I=-1
commutes
-1 +1 with
180°D,-p, -axis-rotation: p, maps to : L p,-mirror-plane reflection: o, =p,- 1= Ip, YR

*isomorphic means
mathematically the
same abstract group
even if physically
different action.

Showing that D3 and Cs, are isomorphic™ (D3 ~ C3, share product table)
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane groupCs,

180°D;-p,-axis-rotation: p,

03 C3V
Mirror-plane-reflection o
equals
Fig. 3.1.3 PSDS 180° 1| -axial-rotation-inversion
& oc=RI=IR )
X
+1
03=|[)3 63 - _1
Py (plane reflections) +1
(180°)
-1 - -1
Figure 3.1.3 Pictorial comparison of D, and C;, symmetry. A propeller having D, = +1 -1
symmetry is shown next to a three-plane paddle having C;, symmetry. The group . - | . -
operations are labeled by arrows, which indicate the effect they have. For example, p,
is a 180° rotation around the y axis, while Ip, = o5 is a reflection through the xz = pyI= Ip,
plane. (Here axes are fixed and the objects rotate.)
1 11 (" Inversion )
180°D,-Y-axis-rotation: p,=| . +1 maps to : XZ-mirror-plane reflection: o,=| . -1 I=-1
commutes
-1 +1 with
180°D,-p, -axis-rotation: p, maps to : L p,-mirror-plane reflection: o, =p,- 1= Ip, YR

maps to : Lp,-mirror-plane reflection: o, = p; 1= Ip,

*isomorphic means
mathematically the
same abstract group
even if physically
different action.

Showing that D3 and Cs, are isomorphic™ (D3 ~ C3, share product table)
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane groupCs,

D3 Cav
Mirror-plane-reflection o
equals
Fig. 3.1.3 PSDS 180° 1| -axial-rotation-inversion
& c=RI=IR )
X
+1
03=|03 63 - _1
s (plane reflections) +1
(180°)
S —1
Figure 3.1.3 Pictorial comparison of D, and C;, symmetry. A propeller having D, - +1 -1
symmetry is shown next to a three-plane paddle having C;, symmetry. The group . - | . -
operations are labeled by arrows, which indicate the effect they have. For example, p,
is a 180° rotation around the y axis, while Ip, = o5 is a reflection through the xz = pyI= Ip,
plane. (Here axes are fixed and the objects rotate.)
1 11 (" Inversion )
180°D,-Y-axis-rotation: p,=| . +1 maps to : XZ-mirror-plane reflection: o,=| . -1 I=-1
commutes
-1 +1 with
180°D,-p, -axis-rotation: p, maps to : L p,-mirror-plane reflection: o, =p,- 1= Ip, YR
180°D;-p,-axis-rotation: p, maps to : L p,-mirror-plane reflection: o, =p; 1= Ip,
D,-product: p,p, maps to : C,, -product: o,0,=plIlp, = p,p, *isomorphic means

mathematically the
same abstract group
even if physically
different action.

Showing that D3 and Cs, are isomorphic™ (D3 ~ C3, share product table)
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3-Dihedral-axes group D3 vs. 3-Vertical-mirror-plane groupCs,

D3 Cav
Mirror-plane-reflection o
equals
Fig. 3.1.3 PSDS 180° 1| -axial-rotation-inversion
9 c=RI=IR )
X
+1
03=|03 63 = _1
P (plane reflections) +1
(180°)
-1 -1
Figure 3.1.3 Pictorial comparison of D, and C;, symmetry. A propeller having D, - +1 -1
symmetry is shown next to a three-plane paddle having C;, symmetry. The group . - | . -
operations are labeled by arrows, which indicate the effect they have. For example, p,
is a 180° rotation around the y axis, while Ip, = o5 is a reflection through the xz = py1= Ip,
plane. (Here axes are fixed and the objects rotate.)
T . i1 . . (" Inversion )
180°D,-Y-axis-rotation: p,=| . 41 . maps to : XZ-mirror-plane reflection: o,=| . -1 . I=-1
commutes
-1 ' -+ with
180°D,-p,-axis-rotation: p, maps to : L p,-mirror-plane reflection: o, =p, I= Ip, 4R
180°D;-p,-axis-rotation: p, maps to : L p,-mirror-plane reflection: o, =p; 1= Ip,
D,-product: p,p, maps to: C,, -product: o,0,=pllp, = p,p, *iSOmOVP}{iC means
mathematically the
D,-product: pr” maps to C,,-product: or’ =plIr'=pr’I=lpxr”  same abstract group
even if physically
different action.

Showing that D3 and Cs, are isomorphic™ (D3 ~ C3, share product table)
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3-Dihedral-axes group Dsvs. 3-Vertical-mirror-plane group Cs,
D3 and Csy are isomorphic (D3 ~ Csy, share product table)
Deriving D3 ~ Csy products:
By group definition |g)=g|1) of position ket |g)
By nomograms based on U(2) Hamilton-turns
Deriving D3 ~ C3, equivalence transformations and classes
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Deriving D3 ~ C3y products - By group definition |g)=g|1) of position ket |g)

r! 1>:|r1>

N
1
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Deriving D3 ~ C3y products - By group definition |g)=g|1) of position ket |g)

plane

o
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Deriving D3 ~ C3y products - By group definition |g)=g|1) of position ket |g)

R

o[ 1)=

¥

S

Q




Deriving D3 ~ C3y products - By group definition |g)=g|1) of position ket |g)




3-Dihedral-axes group Djvs. 3-Vertical-mirror-plane group Cs,
D3 and Csy are isomorphic (D3 ~ Csy share product table)
Deriving D3 ~ Csy, products:
» By group definition |g)=g|1) of position ket |g) ‘
By nomograms based on U(2) Hamilton-turns
Deriving D3 ~ Cs, equivalence transformations and classes
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Deriving D3 ~ C3y, products - By group definition |g)=g|1) of position ket |g)

) N O
L P

Example: Find Cs, product eir'|1)= a1|r')
o _ %




Deriving D3 ~ C3y products - By group definition |g)=g|1) of position ket |g)

Example: Find Cs, product eir'|1)= a1|r')
N 02%§

\ result:

0)
o'~ o) N
1
-

Factor r!
on right D Ap——

acts first)
left is last

(like Hebrew)
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Deriving D3 ~ C3y products - By group definition |g)=g|1) of position ket |g)

Example: Find Cs, product eir'|1)= a1|r')
N 02%§

O1 —
\ result:

0)
our'= o) N
1
-

Other o1 results from graph:
O
o1 {1, r', r’, o1, oo, 0'3} 0-3 >

= {01,02,03,1, r', 1’}

Tuesday, March 12, 2013 22



Deriving D3 ~ C3y products - By group definition |g)=g|1) of position ket |g)

\ result:

0‘11‘1: (0 ) Q

.}.

Other o1 results from graph: ¥ 11+ ' o, o, o 5

o1{l, r',r’, o1, o2, 03} 1t |1 ¢ ¢ o o o|03—2 -

— {617027637 ]-7 rla r2} r r 1 r 6; 0, O, /
\//

....whole Cs, group table: oo

Tuesday, March 12, 2013
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Deriving D3 ~ C3y products - By group definition |g)=g|1) of position ket |g)

P3
axjis

1 1
r' | !
r : r -
P P
P, | P
G; | P

<

D3 and Cs,
clearly are
isomorphic
D3s~Cjy
share
group table

O

...except for
notation

Pk < O

O3
plane
C
3y 88 2 1
form 1 r r o6, o0, O,
2 ]
1 1 r r G, O, O,
1 1 2
r r 1 r G, O, O,
2 2 ]
r r r 1 G, O, O,
> ] 2
6, |6, 6, 6, 1 r r
o 6. 6, 0, r 1 r
2 2 ] 3
o o, 6, o, r r 1
3 3 2 ]
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Fig. 3.1.1 PSDS
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Fig. 2.2.2 PSDS
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Figure 3.1.1 Crystal point symmetry groups. Models are sketched in circles for the 5 8 3 e ¢ Ci
16 non-Abelian groups. (See also Figure 2.11.1.)
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3-Dihedral-axes group Djvs. 3-Vertical-mirror-plane group Cs,
D3 and Csy are isomorphic (D3 ~ Csy share product table)
Deriving D3 ~ Csy, products:
By group definition |g)=g|1) of position ket |g)
By nomograms based on U(2) Hamilton-turns
Deriving D3 ~ Cs, equivalence transformations and classes

Tuesday, March 12, 2013
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Deriving D3 ~ Cs, products by nomograms based on U(2) Hamilton-turns

@

@
kS
e (Fig. 3.1.5 PSDS)

//
b / ——
o @ 2
Al ,
/ 1 FE s 2nd pLANE
Nz -] NORMAL
Nq
15t PLANE .
NORMAL
wl'
Py @
0 T Rlw’] Rlw] = R[w"]
v

——
— —
——

(Fig. 3.1.6 PSDS)

NoN4
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Deriving D3 ~ Csy, products by nomograms based on U(2) Hamilton-turns

Rotation vector ®
Rotation angle = ©

-
-
-
—_—

(From Lect. 8 p. 57...)
7 _
Z | Ry N
/ / 2nd p ANE
/{// 1 2 NORMAL .
Bhen v st Mirror Hamilton Turn
1 PLANE | plane N1—-N2
NORMAL 2nd Mirror (@/ 2 Ar C)

W" plane

€.

(Fig. 10.A.7 QTCA)

Rlwl Rlw] =R[w"]

(Fig. 3.1.6 PSDS)

(Fig. 10.A.8 QTCA)
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Deriving D3 ~ Cs, products by nomograms based on U(2) Hamilton-turns

(a) onto the xy plane.

1 h¥it SSRER Sy fiic g XAk iy
A L —Bei =) Capaiti p,
h? ATy -d Erosr i py P2
PLE 01 ps] -1 =k R
P2 P33P h zlo =
Pa.l-TPL TRl h? Bt =1

60° arc for 120°
rotation

90° arc for 180°
rotation

L
Figure 3.1.7 Geometrical definition of symmetry group D;. (a) Hamilton arc vectors
are drawn for rotations r, i;, and i5. (b) Group nomogram is obtained by projecting

Tuesday, March 12, 2013
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Deriving D3 ~ Cs, products by nomograms based on U(2) Hamilton-turns

i R R B
R =1 R R
R -R -1, R
R, R -R.: -1
¥y = (5 T 9HRY = {7 To) @Ry = (TG

Tuesday, March 12, 2013
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D3;CDgs  Transyerse 180° rotations )3 Glg z-Axial 120° rotations

120° 240°

Ds
7 A1l
n(60°)

rotations

—P3

—P2
P1
= pt

I3 P A B R SO P2 Ly B3 b0 3 ey = ashe
il o apal. s h b Loipail o mpa | oMo B ard
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Figure 5.7.2 D, nomogram and example of products (p3p, = —h) and (p,p3) = 5.

Tuesday, March 12, 2013
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3-Dihedral-axes group Djvs. 3-Vertical-mirror-plane group Cs,
D3 and Csy are isomorphic (D3 ~ Csy share product table)
Deriving D3 ~ Csy, products:
By group definition |g)=g|1) of position ket |g)
By nomograms based on U(2) Hamilton-turns
Deriving D3 ~ Cs, equivalence transformations and classes ‘

Tuesday, March 12, 2013
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Deriving D3 ~ C3, equivalence transformations and classes

(Fig. 3.2.1 PSDS)

(From Lect. 8 p. 62...)

M

TRT =R’
Figure 3.2.1 Showing class equivalence using
Hamilton’s vectors. Operation R is equivalent

(Fig. 10.A.9 QTCA)

to R = TRT ..
Product R[®"]

' Product
= R[O']*R[O] R[O']°R-1[O]
Product R[®""']
| Product
= R[O]*R[O'] R-1[®]R[O']




Deriving D3 ~ C3, equivalence transformations and classes

P3
axjis

o

Transforming D3 operators using D3 operators

1 1

r 1 r :
r : r -
P P
P, | P
G; | P

axis

axis

Tuesday, March 12, 2013
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Deriving D3 ~ C3, equivalence transformations and classes

P3
axjis

Transforming D3 operators using D3 operators

Example 1: Rotating (3 axis crank using I'l puts it down onto 1

Seems to imply: rlpg(rl)'l :l‘lpgl‘QZ P1

f

1 1

r 1 r 1
r : r -
P P
P, | P
G; | P

axis

p3 axis

Tuesday, March 12, 2013
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Deriving D3 ~ C3, equivalence transformations and classes

P3
axjis

Transforming D3 operators using D3 operators

Example 1: Rotating (3 axis crank using I'l puts it down onto 1

Seems to imply: rlpg(rl)'l =r1p3r2= P1

f

1 1
r 1 r 1
r : r -
P P
P, | P
G; | P

I

Ps

* ;
Ps axis axis
Py Need to check that with table:
o | ripr’ = par’
1’2
ol
1

Tuesday, March 12, 2013
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Deriving D3 ~ C3, equivalence transformations and classes

D3 Transforming D3 operators using D3 operators
axfis

o

Example 1: Rotating (3 axis crank using I'l puts it down onto 1

Seems to imply: rlpg(rl)'l =r1p3r2= P1

f

r
Ps
P1 2
1 1 r° r P, P P axis axis
| 1 2
r r 1 r pop P _ Need to check that with table:
r’ ¥ or 1 b P P r1p3r2=p2r2 — p1 Checks out!
1.2 5
Py pbP Pl o
2 1
P, P, PPy T 1 r

Tuesday, March 12, 2013



Deriving D3 ~ Cs, equivalence transformations and classes

5 Transforming D3 operators using D3 operators

ofs Example 2: Rotating 03 axis crank using 01 puts it down onto Iz

Seems to imply: [ pg(p1) — P1P3 P1— P2

P1

axis

Need to check that with table:

P1Ps P1 — I’ P1—

f

axis

D2 Checks out!

Tuesday, March 12, 2013
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*Non—commutative symmetry expansion and Global-Local solution ‘
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D3
Global vs Local symmetry expansion of D3 Hamiltonian
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Abelian (Commutative) C,, C,, ...,Cs ...

H diagonalized by r’ symmetry operators that COMMUTE
with H ("H =H7r"),
and with each other (¥'r! =r’"1 =rir?).

Tuesday, March 12, 2013
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Abelian (Commutative) C,, C,, ...,Cs ...

H diagonalized by r’ symmetry operators that COMMUTE
with H ("H =H7r"),

and with each other (¥'r! =r’"1 =rir?).

Non-Abelian (do not commute) D, O,,...

While all H symmetry operations COMMUTE
with H (UH=HU )
most do not with each other (UV # VU ).

Tuesday, March 12, 2013
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Abelian (Commutative) C,, C,, ...,Cs ...

H diagonalized by r’ symmetry operators that COMMUTE
with H ("H =H7r"),
and with each other (¥'r! =r’"1 =rir?).

Non-Abelian (do not commute) D, O,,...

While all H symmetry operations COMMUTE
with H (UH=HU )
most do not with each other (UV # VU ).

Q: So how do we write H in terms of non-commutative U ?

Tuesday, March 12, 2013
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Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle ‘
Global vs Local matrix duality for D3

Global vs Local symmetry expansion of D3 Hamiltonian

Tuesday, March 12, 2013
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Global vs Local symmetry and Mock-Mach principle

“Give me a place to stand...
and I will move the Earth”
Archimedes 287-212 B.C.E

Ideas Of dualltY/ I’elathlty gO Way baCk (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R

Lab Based Operations z-Crank docs
operations

R(000) or R(00y)

y-Crank does
operation

S, S R(0OB0)
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Global vs Local symmetry and Mock-Mach principle

“Give me a place to stand...
and I will move the Earth”
Archimedes 287-212 B.C.E

Ideas Of duallty/ I’elathlty gO Way baCk (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local)R

Lab Based Operations z-Crank docs Body Based Operations
§ operations
R(000) or R(00y)

Z-Crank does
operations

: R(-0:00) or R(00-y)

y-Crank does
operation

e V;_‘-n.:_'j_ R(OBO)

Tuesday, March 12, 2013 47



Global vs Local symmetry and Mock-Mach principle

“Give me a place to stand...
and I will move the Earth”
Archimedes 287-212 B.C.E

Ideas Of dualltY/ I’elathlty gO Way baCk (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local)R

Lab Based Operations z-Crank docs Body Based Operations
§ operations
R(000) or R(00y)

R commutes

withall R

Z-Crank does
operations

: R(-000) or R(00-y)

y-Crank does
operation

S, S R(0OB0)
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Global vs Local symmetry and Mock-Mach principle

“Give me a place to stand...
and I will move the Earth”
Archimedes 287-212 B.C.E

Ideas Of dualltY/ I’elathlty gO Way baCk (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local)R

Lab Based Operations z-Crank docs Body Based Operations

— operations
= R(000) or R(00Y)

R commutes

withall R

(‘) Mock-Mach

Nx

Z-Crank does

-Crank does =) operations
“ T opecation R(-0100) or R(00-y)
S <] R(00) ...for one state |1) only! "
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Global vs Local symmetry and Mock-Mach principle

“Give me a place to stand...
and I will move the Earth”
Archimedes 287-212 B.C.E

Ideas Of dualltY/ I’elathlty gO Way baCk (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local)R

Lab Based Operations z-Crank docs Body Based Operations
§ operations
R(000) or R(00y)

R commutes

withall R

| ‘) | Mock-Mach

. relativity principle

—D- ] Z-Crank does
-Crank does R‘ 1 >_R ‘ 1 > operations
Y operation R(-c:00) or R(00-y)
S R(0B0) ...for one state |1) only! "

...But iow do you actually make the R and R operations?

Tuesday, March 12, 2013



Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach, principle
* Global vs Local matrix duality for D3

Global vs Local symmetry expansion of D3 Hamiltonian
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Example of GLOBAL vs LOCAL symmetry algebra
for D3~C3y,

1 |r rii; iy i;

r |1 r i 1; 1)
r r 1 PRENY

i, |iz i1 r r?
iy |ij iz[rf 1 r
iy iy i/ (r r2 1

D 3—deﬁned

local-wave .
bases
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Example of GLOBAL vs LOCAL symmetry algebra

for D3~C3y

1 |r rii; iy i;

r |1 r i 1; 1)
r r 1 PRENY

i, |iz i1 r r?
iy |ij iz[rf 1 r

iy iy i/ (r r2 1

D 3—deﬁned

local-wave .
bases

Lab-fixed (Extrinsic-Global) operations and rotation axes

. i) iH|1)= 13) o
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R(D) =

RO(r) =

RS (1) =

G(r \_
R (1])_

N |

-1

Example of RELATIVITY-DUALITY for D ~C,
To represent external {..T,U,V,... }switch g :\gT on top of group table

RG(iZ):

-1

RG(i3):

Gy

AR

iy i (iy

1 |y i; i

i, (iy i

i i

1 r r°
1 r
r r 1

D, global
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R(D) =

RG(1)=

RO(r) =

RO(r) =

RS (1) =

To represent internal {..T,U,V,... } switch g\:“gT on side of group table

RG(i2):
A

RG(fZ):

G(r \_
R (1])_

A |

Example of RELATIVITY-DUALITY for D ~C,
To represent external {..T,U,V,... }switch g :\gT on top of group table

RG(iZ):

-1

-1

RG(i3):

VA NI

iy i (iy

1 |y i; i

i, (iy i

omk

i i

1 r r°
1 r
r r 1

D, global
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Example of RELATIVITY-DUALITY for D ~C, %ﬁw
3—=3v iy i (i3

To represent external {..T,U,V,... }switch g :\gT on top of group table rl1 o2y i i

RO(1) = RO(r) = RO (%) = RO )= RO = RO ) = r’lr 1) () i

P N AU R 20 T 2 (T Y SN B Y SRR O iy 2[1 r r?

R e e I L T S N O £ N N G ) i211®r21r

11111@ @izilrrZI

S e e e R N L L e e O D3global
SR 1 R B | U R GRS SRR B PO ERPRRP I € IR

RESULT:

Any R(T)

commute (Evenif T and U do not...)

with any R(U).."

...and T-U=V if & only if T-U=V.

To represent internal {..T,U,V,... } switch g\:“gT on side of group table

RO(1)= RE(T) = RG(fZ): RG(iI): RG(i2): RG(_ij,):
R e I (N S L 1 B O ) P

11111@
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Non-commutative symmetry expansion and Global-Local solution
Global vs Local symmetry and Mock-Mach principle
Global vs Local matrix duality for D3
Global vs Local symmetry expansion of D3 Hamiltonian ‘
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Example of RELATIVITY-DUALITY for D ~C,
To represent external {..T,U,V,...

RO (1) = RO(r) = RG (7 = RG(i )= RO ) = RO ) =
1
1 1 . LN (s (Y
1 1 o 1 1 (D).
1 1 1 . : 1 1 Lo @ .
1 . .1 1 IO
1 1 1. . 1 1 IO
1 1 c1 1 1 g
RESULT: So an Hl-matrix
Any R(T) having Global symmetryD,
commute (EvenifT and U do not...) - =
with any R(U). H =H1% 58 58 i1, b1, - 1T
...and T-U=V if & only if T-U=V. LS madef rom

Local symmetry matrices

\switch g ““gJr on top of group table

T

r r i1 i2®

1 |y i; i
r’lr 1|i, (1) i
i/l 2|1 r ¥’
i 3|’ 1 r
ili, ij|r r 1

D, global

To represent internal {..T,U,V,... } switch g::gT on side of group table glg-table
. B B B Dl .
R (D)= RY(T) = RO (1) = RY(i) = RO (i)= RY(i)= 12 ; LY @
1 1 SN[ S S T @Cr R @ .11
I I Al 1 1 (D). rr? 1i) i i
1 1 1 . 1 ol - .- i; i, )1 r r?
| ST A | | A | N S -y )
1 1 1 1 1 SO i li; & |r r2 1
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Example of RELATIVITY-DUALITY for D ~C,
To represent external {..T,U,V,... }switch g :\gT on top of group table

RO (1) = RO (1) = RO () = RO (i )= RO )~ RO )= Dyded
1 localtwave e \ X
P WA R N 20 ST A A R N S B Y SO O li3)
1 1 Co 1 1 (D). :
1 1 1. . 1 1 (D) |r2> 1
1 1] .1 1 IO
1 1 1 1 1 IO
1 1 1 1 1 g ]
H= (1]E|1)=H*
: = (r[E1)=r,*
RESULT: So an Bl-matrix :; _ ifz:ﬁ:lizij*
Any R(T) having Global symmetryD, R TI ©
commute (EvenifT and U do not...) _ _ - . : .
— — _] =2 .3 -3 % [ = (HHEl)=i*
: EIZHIOJrJr +LL + L0, L1, 2 _2 2
...and T-U=V if & only if T-U=V. LS madef rom _
Local symmetry matrices
T tinternal {.T,U,V,... } switch g #~g' on side of group tabl oo D, defned
O represent internal .. 1, U, V,... ¢ SWIIC on S1ac o1 group taolic . . .
b { j 558 SIEE OF Stoup Hamiltonian matrix
RO(1)= RY(I) = RO (F9)= RO(i) = R(i)= RO(i)= Bl= 1) I0)D18) 1) i)
1 1 S C R U Hn B 1 1
1 o1 1. 1 1 EOR B \H KL, I I
1 1 1 . 1 1. . (). . B oH I
1 1 R R 1 IO Gli; i, iy H I K
T e T T e e e e O wlis\is iy 15 H T
S B O Y 1 G S B U R B P e AR Wlis\i, i, 7 B H
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Example of RELATIVITY-DUALITY for D ~C,
To represent external {..T,U,V,... }switch g :\gT on top of group table

RO(1) = RO(r) = RO(P) = RO )= RO )= RO ) = iﬁi;ﬁ_d L
P N AU R 20 T 2 (T Y SN B Y SRR O |13>
1 1 S 1 1 (D). : y
1 I 1. . 1 1 (D) |r2> S
1 e . 11 1 IO .
1 1 1 1 1 NOn Local m matrix
1 ! 1 1 1 O parametrized by 8’s
i) |V .
H= (1[H]|1)=H* 2o ) ¢
) r,= (r[Hll)=r,* (7 3
RESULT: So an H-matrix .- <(r2|EI|1§=r2* A 1)
. 2 1, 74
Any R(T) having Global symmetryD ; “\ _ Gy )7 % (i)
commute (Even if T and U do not...) P T SR P N T
with any R(U). LU L LR LA L AP W I
. Ir 1
...and T-U=V if & only if T-U=V. LS madef rom

Local symmetry matrices

To represent internal {..T,U,V,... } switch g::gT on side of group table

RO(1)= RY(T) = RO (F9) =

RG(i2):
A

RG(_ij):

Q-
o

o

()
(1)

All the global @ commute
with general local B matrix.

local D3 defined

Hamiltonian matrix

H= 1) o)A i) i) i)

(1]
(r |
(r?)
(i, |
(i, |
(i,

hon

IR

H 7
h H

Lol

1> 1
I3 1
[ L
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RESULT: So an BHl-matrix
Any R(T) having Global symmetryD, local-D -defined
commute (Even if T and U do not...) . 3. .
with any R(U). H =% 55201, .00L 451, Hamiltonian matrix
...andm&only if T-U=V. is made from H=s 1) Ir )[r?) il) | iz) |i3 )
Local symmetry matrices

(LWH 1Bl 1 1
(rfjHIjl2l3 l]
B H I
G 2; |1, I3|H I B
o1 |13 Iy 1, H K

hhoH

(i,l25 11, I,
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[st-Stage spectral decomposition of global/local D3 Hamiltonian
All-commuting operators and Ds-invariant class algebra
All-commuting projectors and Ds-invariant characters
Group invariant numbers.: Centrum, Rank, and Order
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Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

1 | ' | i iy s
I'2 1 I'1 i2 i3 il
1'1 1‘2 1 i3 il 19
iy | iy i 1 r! r?
i, | i3 i; | r* 1 rf
is | i iy | ! r? 1
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Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

T .2 : :
1 r- r 1] I 13 Each class-sum K, commutes with all of D,.
2 1 . [ .
r 1 gy 13 1 SR
1 9 ,2 3 1 K,1=1 K,221'1-|-1‘2 K,3=ll-|-12-|-13
r r“ 1 13 1; 1y
: J T ol 12 > K9 2K1 + Ko 2K3
. 2 .3 9 1 K3 2K,3 3!‘61 + 3&2
19 13 11 1 r

K¢'s are mutually commuting with respect to themselves
and all-commuting with respect to the whole group.

1. . .
rk; ¥y =L+l +t1;=K; Of) TK; =K;I
(0}

°G

~1
hgh = here: =
hél g VK, where: v, o

= integer
g

°kg 1s order of class kg and must evenly divide group order °G.
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Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

i, : :
1 I’ r 1] I 13 Each class-sum K, commutes with all of D,.
1 5 S ki=1 | Kg=r"+r Kg =11 + 1 +13
r r‘ 1 13 1; 1y
: s T 2 » K9 2K1 + Ko 2K3
! 2 .3 9 1 K3 2K,3 3!"{,1 + 3&2
19 13 13 r“ 1 r
is | i iy | ! r? 1
v
Note also: Kg =3K,+31

2
Kz—K2—2°I=O
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Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

1 rort | i iy i Each class-sum K, commutes with all of D,.
2 1 . » »
r 1 r 1y 13 1 SR
1 9 ,2 ,3 1 F&1=1 K,2=I'1-|-I‘2 K,3=ll-|-12-|-13
r r‘ 1 13 1; 1y
3 T 1 1 2 > K9 2K1 + Ko 2K3
. K 2K 3k1 + 3K
i, [ i3 i | r® 1 r! 2 L R
i TR o2 1 Class products give spectral polynomial and
all-commuting projectors P(%/ )

Ngte also: 0= K,g —9kg = (kg —3-1)(kg +3-1)(kg —0-1) <_K§:3'K2 +31
Ky —K,—21=0

0=(x,—21)(x,+1)
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[st-Stage spectral decomposition of global/local D3 Hamiltonian
All-commuting operators and Ds-invariant class algebra
All-commuting projectors and Ds-invariant characters
Group invariant numbers.: Centrum, Rank, and Order
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Spectral analysis of non-commutative “Group-table Hamiltonian™

Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

1 rort | i iy i Each class-sum K, commutes with all of D,.
) T . . .
r 1 r Ip 13 1 RO
1 9 2 .3 ! K,1=1 K,2=I'1-|-I‘2 kg =11 +19 +13
r r‘ 1 13 1; 1y
. — —> > K2 2K1 + Ko 2K3
R B Lo K 2K 3k1 + 3K
i2 i3 il r2 1 r1 3 3 1 2
is i; iy | ! or? 1 Class products give spectral polynomial and
all-commuting projectors P(%= P4 P42 and PF
0=x3 —9kg = (kg —3-1)(kg +3-1)(kg —0-1)

Tuesday, March 12, 2013

68



Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

T .2 . .
1 rr 1] 12 13 Each class-sum K, commutes with all of D,.
1 5 S ki=1 | Kg=r"+r Kg =11 + 1 +13

r r° 1 13 11 Iy
? K2 2K1 + K2 2K3

i | iy i3 1 rl r?

. 9 1 K3 2K,3 3!"{,1 + 3K,2
19 13 1y r- 1 r
is i, i rl 2 1 Class products give spectral polynomial and

all-commuting projectors P(%= P4 P42 and PF
0= kK3 — 9Kkg = (n3—3-1)(n3|—|—3-1)(n3—0-1)
|

0=(1;—31)P"

4 _

K,P =43P

pi _ (63 +31)(; — 01)
 (#3+3)(+3-0)
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Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

T .2 : .
1 rr 1] 12 13 Each class-sum K, commutes with all of D,.
1 5 S ki=1 | Kg=r"+r Kg =11 + 1 +13

r r° 1 13 11 Iy
> K2 261 + Ko k3

i | iy i3 1 rl r?

. 9 1 K3 2K,3 3!’61 + 3K,2
19 13 1y r- 1 r
is i, i rl 2 1 Class products give spectral polynomial and

all-commuting projectors P(%= P4 P42 and PF
0= kK3 — 9Kkg = (n3—3-1)(n3|—|—3-1)(n3—0-1)
|

0=(k,—~31P" 0=(K,+31)P

4 _

+3-p K, =-3

K,P

pAl _ (K, +31)(x;—01)
(+3+3)(+3-0)

(k;—31)(x;—01)
(=3-3)(=3-0)
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Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

T .2 : .
1 rr 1] 12 13 Each class-sum K, commutes with all of D,.
1 5 S ki=1 | Kg=r"+r Kg =11 + 1 +13

r rv 1 13 11 Iy
> K2 261 + Ko k3

i | iy i3 1 rl r?

. 9 1 K3 2K,3 3K,1 + 3!4,2
19 13 1y r- 1 r
is i, i rl 2 1 Class products give spectral polynomial and

all-commuting projectors P(%= P4 P42 and PF
0= kK3 — 9kg = (kg — 3 - 1)(k3 +3 1)(kg —0-1)

0=(x,—31)P" 0=(k,+31)r 0=(k;—01)P"

k,P" =+0-P"
pAl _ (K, +31)(x;—01)
(+3+3)(+3-0)
(x; —31)(x;—01)
(=3-3)(-3-0)
pE _ (K, —31)(x;+31)
(+0-3)(+0+3)

4 _

+3-p K, =-3

K,P

Tuesday, March 12, 2013 71



Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

T .2 : :
1 r T 1] I 13 Each class-sum K, commutes with all of D,.
1 9 ’ . . K,1=1 Kg =TI =T kg =11 + 19 + 13

r r“ 1 13 1; 1y
) » K9 2K1 + K9 2K3

11 1o 13 1 r r

. 9 1 K3 2K,3 3K,1 + 3!4,2
19 13 1y 1 r

r

rl 2 1 Class products give spectral polynomial and
all-commuting projectors P(%= P4 P42 and PF
0= kK3 — 9kg = (kg — 3 - 1)(k3 +3 1)(kg —0-1)

0=(x,—31)P" 0=(k,+31)r 0=(k;—01)P"
K,P =43P K, =3 k,P’ =+0-P"

Class resolzﬁﬁon into sum of eggenvalue - Projector 4 (Ky+31)(1c;—01)
K, =1P L+ 1 + 1-P b= (+3+3)(+3-0)
K, = 2.PA1 _9. — 1-pt (k3 —31)(x;—01)

P . (—3-3)(—-3-0)
K;=3P1-3P "7+ 0P pi_ (€= 310k +31)

(+0-3)(+0+3)
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Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

0= kK3 — 9kg = (kg — 3 - 1)(k3 +3 1)(kg —0-1)

T 2 : .
1 r r 1} 12 13 Each class-sum K, commutes with all of D,.
r | 1 | iy i3 1 I S
L 2 T ki=1 | Kp=r +T kg =1j +1y +13
r rv 1 i3 i 1y
: T 2 ’ K2 2K1 + K2 k3
11 1o 13 1 r r
a1 2 1 K3 2K3 3K1 + 3K
12 13 13 | r* 1 r
13 i; iy rl 12 1 Class products give spectral polynomial and

all-commuting projectors P(“= P4 P2 and PX

0=(x,—31)P" 0=(k,+31)r 0=(k;—01)P"
E E
K,P 1 =43P Ky =3 K,P’ =+0-P
Class resolzﬂlﬁon into sum of eé'genvalue - Projector p _ (G +31)(K; ~01)
kK, =1P1+1Pr -+ 1P -

K, =2-P1-2.p " - 1.pF

K, =3P1-3p" 4+ 0P’
Inverse resolution gives D4 Character Table

P = (K, +%, +K,)6=(1+r+r’ +i +i, +i,)/6

(+3+3)(+3-0)
(x; —31)(x;—01)
(=3-3)(=3-0)
pE _ (K, —31)(x;+31)
(+0-3)(+0+3)

= (K, +%, +K,)6=(+r+r"—i, —i, —i;)/6

P’ =2k, -k, +0)/3=(21-r—r")/3
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Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

T .2 : .
1 rr 1] 12 13 Each class-sum K, commutes with all of D,.
2 i B —
r 1 1p, 13 1 EEEErE—
1 9 ,2 3 ,1 K,1=1 K,221'1-|-1‘2 K,3=ll-|-12-|-13
r rv 1 13 11 Iy
: ? K2 2K1 + Ko 2K3
i | iy i3 1 rl r?
. 9 1 K3 2K,3 3!‘61 + 3&2
12 13 13 r- 1 r
is i, i rl 2 1 Class products give spectral polynomial and

all-commuting projectors P(%= P4 P42 and PF
0= kK3 — 9kg = (kg — 3 - 1)(k3 +3 1)(kg —0-1)

| E
0=(k,—~31P" 0=(K,+31) 0=(x;—-01)P
E E
K,P 1 =43P Ky =3 K,P’ =+0-P
Class resolzﬂlﬁon into sum of eggenvalue - Projector i _ (K5 +31)(k; ~01)
K, =1PT+1 + 1-P (+3+3)(+3-0)
! £ (K, —31)(%; —01)
K2:2'P I_2. — 1P (—3—3)(-3-0)

pE _ (kK;—31)(k;+31)

_.pd 1. pE
Ky =3P 3 + 0P (+0—3)(+0+3)

Inverse resolution gives D4 Character Table v u
Xe | X X X5

A 2 ° ° .
Pl =(k, +x, +K;)/6 =(1+r+r" +i +i, +i;)/6
a=A |1 1 1

= (K, +%, —K,)6=(+r+r"—i, —i, —i,)/6 o = _

PP =(2x,—%,+0)3=(21-r—r?)/3 a=E |2 -1 0
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Spectral analysis of non-commutative “Group-table Hamiltonian™
Ist Step: Spectral resolution of D;-Center (Class algebra of D; )

0= kK3 — 9kg = (kg — 3 - 1)(k3 +3 1)(kg —0-1)

T .2 : .
1 rr 1] 12 13 Each class-sum K, commutes with all of D,.
2 1 . . .
r 1 1p, 13 1 EEEErE—
1 9 ,2 3 1 K,1=1 fi',gzl'l-l-l‘2 K,3=ll-|-12-|-13
r rv 1 13 11 Iy
: ? K2 2K1 + K2 2K3
11 19 13 1 I‘1 1‘2
. 9 1 K3 2K,3 3!‘61 + 3&2
19 13 1y r- 1 r
is i, i rl 2 1 Class products give spectral polynomial and

all-commuting projectors P(“= P4 P2 and PX

0=(k,—~31P"
4 _

K,P =43P

0=(x,+31)F

K, - =-3

0=(k,-0-1)P"

k,P" =+0-P"

Class resolzﬁﬁon into sum of eggenvalue - Projector
kK, =1P1+1Pr -+ 1P
K, =2P1-2.p" - [P~

K, =3P1-3p" 4+ 0P’
Inverse resolution gives D4 Character Table
P =(ic,+%, +K,)6=(1+r+r> +i +i, +1,)/6

= (K, +%, —K,)6=(+r+r"—i, —i, —i,)/6

P’ =(2x, -k, +0)3=(21-r-r")/3

pi _ (K5 +31)(x;—01)
 (#343)(+3-0)

Irreducible
characters
are traces

Xx'Y=Tr D\ (r)
of

irreducible
representations

D(OL)(I',{)

(K, —31)(x;—01)
(=3-3)(-3-0)
pE _ (K — 3-1)(1(3 +31)

(+0-3)(+0+3)

X | X X X5
a=A|1 1 1
o = _
a=E | 2 -1 0
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Ist-Step in spectral analysis of D3 “group-table ”Hamiltonian: Algebra of D3 Center(Classes)
All-commuting operators and Ds-invariant class algebra
All-commuting projectors and Ds-invariant characters

» Group invariant numbers: Centrum, Rank, and Order ‘
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~

-
D; Algebra —
Maximal Se
/f B)A1 —1 D3 C€$Of Commutinjg
VA2 D= (All-commuting Upereners
operators) r PE
E , i (Fig. 15.2.1 QTCA)
N S r? PE
C-=1;+1, +l
SR ) E
A Maximal Set of Commuting PE
y
_ J
. . y " g k=l r+rl i+,
Important invariant numbers or “characters P=1 1 1l
%= Irreducible representation (irrep) dimension or level degeneracy P=1 1 -1je
For symmetry group or algebra G PE =2 -1 03

Centrum: K(G)=X, (f 06)0 =Number of classes, invariants, irrep types, all-commuting ops

irrep(Ql)

Rank:  p(G)=X ) (f OC)I =Number of irrep idempotents Pn(%), mutually-commuting ops

irrep(o

Order:  °(G)=X, ., () (f OC)2 =Total number of irrep projectors Pf,,‘j% or symmetry ops
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D; Al gebra

~

/ 4 DA

PA2

C]=1

\WX
ﬁ Maximal Se

D3 Center\ of Commutinjg
(All-commuting Operators
operators) r -

11

2 PE
r I’22

Important invariant numbers or *“characters”

a — L] L] . . L]
V%= TIrreducible representation (irrep) dimension or level degeneracy
For symmetry group or algebra G

3 k=1 r’+r° i1+i2+i3
Pi=1 1 16
P=1 1 -1)6
PE=2 -1 03

Centrum: K(G)=X, ep(c) (f 06)0 =Number of classes, invariants, irrep types, all-commuting ops

Rank:

P(G)=X

irrep(Q)

(f OC)] =Number of irrep idempotents P,g‘}l),

Order:  °(G)=X, ., () (f OC)2 =Total number of irrep projectors Pf,,‘j% or symmetry ops

3
=4
6

mutually-commuting ops

78
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» Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces
Crystal-field splitting: O(3)DD3 symmetry reduction and D! D; splitting
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Spectral resolution to irreducible representations (or “irreps”’) foretold by characters or traces

RO(1)=
1 {1
r! 1
2 1 -
A 1
12 :

l’Al=(1<1+ K,+K4)/6= (1+r+r2+i1+i2+i3)/6:> R(P)=

RO(r)=

RE(r?)=

e ek e ek e

e ek e ek e

RO(i))=

e e e e
e T Wy S Gy W

ek e ek e

ek e ek e

RO(i,)=

/6

TmceR(PA1 )=1

RO(y)=

Tuesday, March 12, 2013
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Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces

RO(1)=
1 {1
r! 1
2 1 -
A 1
12 :

l’Al=(1<1+ K,+K4)/6= (1+r+r2+i1+i2+i3)/6:> R(P)=

RO(r)=

RE(r?)=

e ek e ek e

e ek e ek e

RO(i))=

e e e e
e T Wy S Gy W

ek e ek e

ek e ek e

RO(i,)=

RO(y)=

/6 TmceR(PA1 )=1

So: R(PAI) reduces to:

.....

.....
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Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces

RE()=
L {1
7! 1
1"2 1

PA1=(K1+ K,+K,)/6= (1+r+r2+i1+i2+i3)/6:> R(PA1 )=

=(K+ K= K;)/6= (1+1r+1°—i,~i,~1;)/6— R(P 7)=

RO(r)=

RE(r?)=

ke ek e ek

ke ek e ek

RO(i))=

ok ek e e e

RO(i,)=

RO(y)=

/6 T raceR(PAl) =1

/6 TraceR(P )

So: R(PAI) reduces to:

R )

-----

.....
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Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces

RE()=
L {1
7! 1
I"2 1

PAl=(1<1+ K,+K;)/6= (1+r+r2+il+i2+i3)/6:> R(PA1 )=

=(K 1+ K= K4 /6= (1+r+1°—i,—i,~1,)/6— R(

P"=(2K,-k,+0)3=(21-r-r’+0+0+0)/3 = R(P")=

RO (r)= RE(r?)=

e ek e ek

RO(i))=

RO(i,)=

/6

/6

/3

T raceR(PAl) =1

So: R(PAI) reduces to:

TraceR(P )

R )

TraceR(P")=4

So: R(PE ) reduces to:

RO(y)=

-----

.....

Tuesday, March 12, 2013
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» Spectral resolution to irreducible representations (or “irre‘ps ") foretold by characters or traces
Crystal-field splitting: O(3)DD3 symmetry reduction and D! D; splitting
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Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces

RY(1)= RY(r)= RY(r?)= RY(iy) = RY(iy) = RY(i3) =
L 1 1 - 1 1 1
! 1 1 Co 1 1 1
2 1 1 - : 1 1 1
i 1 ’ 1 I 1] 1 ’ 1 ’ 1
i 1 1 1 1 1 1
i 1 1 1 1 1 1

I 1 1 1 1 1 y
D (g)
I 1 1 1 1 1
y 1 1 1 1 1 1 y y
R(P )= /6 = TraceR(P"1)=1  So: R(P"lg) reduces to:
I 1 1 1 1 1
I 1 1 1 1 1
I 1 1 1 1 1
1 1 1 -1 -1 -1
1 1 1 -1 -1 -1
1 1 1 -1 -1 -1
R = /6 TraceR =
(P -1 -1 -1 1 1 1 ( )
-1 -1 -1 1 1 1
-1 -1 -1 1 1 1
2 -1 -1 0 0 O
-1 2 -1 0 0 O
rpFy=| T8 b2 000 s hracer(pFy =4
o 0 o0 2 -1 -1
o 0 o0 -1 2 -1
O 0 o0 -1 -1 1
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Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces

RO(1)= RY(r)= RO(r*)= RO(i))= RY(i,)= RY(i;) =
L1 1 1 - 1 1 1
r! 1 1 Co 1 1 1
2 1 1 1 : 1 1 1
i 1 ’ 1 I 1] 1 ’ 1 ’ 1
i 1 1 1 - - 1 1 1
i 1 1 o1 1 1 1

1 1 1 1 1 1 y
D (g)
1 1 1 1 1 1
y 1 1 1 1 1 1 y 4
R(P1)= /6 = TraceR(P"1)=1  So: R(P"'g) reduces to:
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 -1 -1 -1 D "(g)
1 1 1 -1 -1 -1
1 1 1 -1 -1 -1
R = /6 TraceR = R
() U1 1 () (P -2
-1 -1 -1 1 1 1
-1 -1 -1 1 1 1
2 -1 -1 0 0 O
-1 2 -1 0 0 O
rpEy=| L 12000 s er(PE ) =4
o o o0 2 -1 -1
o o o0 -1 2 -1
o o0 o0 -1 -1 1
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Spectral resolution to irreducible representations (or “irreps”) is foretold by characters or traces

RE()=

R(PH=

R 7)=

R(PH)=

e e e e

ek e e e

-1
-1
-1

e e e e

RO(r)=

ke e e e

ot ek e e e

RE(r?)=

/6 = TraceR(P1)=1

/6 TraceR(P )

3 = TraceR(PE):4

RO(i))=

So: R(PAlg) reduces to:

R(

R(P"g)

g)

RO(i,)=

4
D “(g)

D “(g)

Tuesday, March 12, 2013
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» Spectral resolution to irreducible representations (or “irre‘ps ") foretold by characters or traces
Crystal-field splitting: O(3)DD3 symmetry reduction and D! D; splitting
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Spectral resolution to irreducible representations (or “irreps”’) foretold by characters or traces

RO(1)=
1 {1
r! 1
2 1 -
i1 1
12 )

TmceR(PA1 )=1

TraceR(P )

TmceR(PE) =4

RO(r)=

So: R(PAlg) reduces to:

R(P ~g)

R(P"g)

RE(r?)=

4
D (g)

D “(g)

RO(i))=

RO(i,)= RO(y)=

\So: R(g) reduces to:
QLDAl
(2) ' '

D “(g)
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» Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces
Crystal-field splitting: O(3)DD3 symmetry reduction and D! D; splitting k
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Spectral resolution to irreducible representations (or “ireps’”’) foretold by characters or traces
RY (i) =

RE()=

3

RO (r)= RE(r?)=

RO(i))=

RO(i,)=

{R“(¢2)}has lots of empty space and looks like it could be reduced.

But, {R%(g)} cannot be diagonalized all-at-once. (Not all ¢ commute.)

Nevertheless, {R(2)} can be block-diagonalized
all-at-once mto “ireps’” A,

,and £

R(g) reduces to:

4
D (g)

D “(g)

12

E

22 )
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Spectral resolution to irreducible representations (or “ireps’”’) foretold by characters or traces

RE()=

3

RO(r)=

RE(r?)=

RO(i))=

RO(i,)=

{R“(¢2)}has lots of empty space and looks like it could be reduced.

But, {R%(g)} cannot be diagonalized all-at-once. (Not all ¢ commute.)

Nevertheless, {R(2)} can be block-diagonalized
all-at-once mto “ireps’” A,

We relate traces of {R°(g)} :

(2)=

1y e’y iy, )

TraceR® (g)=

6 0 0

to D3 character table:

(2)= | {1} {r'r'} {i.i,i,}
x'(g=1 1 1 1
x (g)= -
xi@=12 -l 0

,and £

R(g) reduces to:

( Al
D
/ (2)

M@ |11
+x (2) -
2@ 22 =21 0

6 0 0

RO (iy) =
1 - .
| 1 -
1 . -1
1 - : 1 - .
. . 1
1 .
D “(g)
p" D"
%DE DE

21
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Spectral resolution to irreducible representations (or “ireps’”’) foretold by characters or traces

3

{R“(¢2)}has lots of empty space and looks like it could be reduced.

RE()=

RO(r)=

But, {R%(g)} cannot be diagonalized all-at-once. (Not all ¢ commute.)

Nevertheless, {R(2)} can be block-diagonalized
all-at-once mto “ireps’” A,

We relate traces of {R°(g)} :

(@)= {1} {rhr®) (i)
TmceRG(g)z 6 0 0
to D3 character table:
(2)= | {1} {r'r’} {i.i,i,}
x"(@=1 1 1 1
x (g)= -
x'(@=] 2 -1 0

RE(r*)= RO(i))= RO(i,)= RO(y)=
1 - 1 - | 1
| T 1 1 - -
| S N 1 -1 : . 1
..... 1 | : 1 - 1 - .
| .1 - | |
1 1 ] |
,and £ R(g) reduces to:
( A
Dl
// (2)
A D “(g)
x (g |1 1 1 o
D D
+x “(g) — no o
— E
2y g |22 21 0 - "D D
6 0 0 \ D,

So {RG(g)} can be block-diagonalized into a direct sum® of “ireps” RG(g)ZDAI(g)@D (2)®2D"(g)

Tuesday, March 12, 2013
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Spectral resolution to irreducible representations (or “irreps”) foretold by characters or traces
» Crystal-field splitting: O(3)DD3 symmetry reduction and D! D; splitting
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Spectral splitting in symmetry breaking foretold by character analysis
U(6)DD;

E, RO(U(6))| D3 =D*(g)®D (g)D2D"'(g)

Tuesday, March 12, 2013
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Spectral splitting in symmetry breaking foretold by character analysis
U(6)DD;

RE(U(6))| D3 =D*(g)®D " (2)®2D"/(g)

Crystal-field splitting: O(3)DD3 symmetry reduction and D! 1Ds3 splitting

> 4
04 OR R, SYMMETRY y:
~
-
=
L e
L e // i =
iy, o
\\ by e e
22+1 b
DEGENERACY Bty
~
Ea
~
S
~

()

M
SYMMETRY

-----

(Fig. 5.6.1 PSDS)

D“(R)

D*(R)

DY(R)y

)
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Spectral splitting in symmetry breaking foretold by character analysis
U(6)2Ds RE(U(6))|Ds =D*(g)dD " (2)©2D"(2)

Crystal-field splitting: O(3)DD3 symmetry reduction and D! 1Ds3 splitting

(a)

0’ OR R, SYMMETRY b // . SY";JETRY (Flg 561 PSDS)

s = E::/_/_/— e (y) D:Q | 1 R DQ,—Q ;

5 : D*(R)
Q + ;<
DEG:NE:!ACY et : DY(R) = ( Dy_4 .0 ) JM‘E ( D*(R) )
N @
\\\ @ 5 o D_Q'Q ..... D_Q'_Q 07(R9
: + 1)TT
> sm( ) R(3) character
¢, =T n
Use R(3)~U(2) character formula: ) (—)= T where: 20+1 (From Lect. 11 p. 11)
n .
sm; is V-orbital dimension
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Spectral splitting in symmetry breaking foretold by character analysis
U(6)2Ds RE(U(6))|Ds =D*(g)dD " (2)©2D"(2)

Crystal-field splitting: O(3)DD3 symmetry reduction and D! 1Ds3 splitting

(a)

0: OR R, SYMMETRY b // . SY“';JETRY (Flg 561 PSDS)
: = E::/_/_/_ e (y) D:Q ... I)Q'_‘2 '
5 ' D*(R)
Q + ;<
DEG:NE:!ACY = ~ = : DY(R) = ( Dy 4.0 ) JM&‘ ( D*(R) )
N @
S~ @ 5 o D_Q"2 ..... D_Q'_‘2 D”“E
: + 1)TT
, o sm( ) R(3) character
Use R(3)~U(2) character formula: ) (—)= Z where: 20+1 (From Lect. 11 p. 11)
n .
sm; is V-orbital dimension
: 1
/ sin(/ +7)©
M) =
1'(©)= "2
sin —
2
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Spectral splitting in symmetry breaking foretold by character analysis

U(6)DD;

RE(U(6))| D3 =D*(g)®D " (2)®2D"/(g)

Crystal-field splitting: O(3)DD3 symmetry reduction and D'|D; splitting

Oy OR R, SYMMETRY

20 +1

DEGENERACY ~

SYMMETRY

QL Da(R)
DYR) = ( Dy 40 ‘Me DA(R)
D D D7(R)

. 20+ D
op SN
Use R(3)~U(2) character formula: X ‘== Z_
n sin —
27 n
)(K(G)) =0 — =& : 1
3 %g(e)): sm(€+®2)®
(=0 1 1 1 sin 2
1 30 -1 2
2 5 -1 1 ...and D3 character table:
3o 7 A @= {13 ') i
4 9 0 1 A
! = 1 1 1
5 11 -1 -1 x ()
6 3 1 1 |X ®= -
7 15 0 —1]|x"(®=|2 ~1 0

(Fig. 5.6.1 PSDS)

R(3) character
where: 20+1

is V-orbital dimension

(From Lect. 11 p. 11)
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Spectral splitting in symmetry breaking foretold by character analysis
U(6)DD;

Crystal-field splitting: O(3)DD3 symmetry reduction and D'|D; splitting

()
s M

O4 OR Ry SYMMETRY
SYMMETRY
> gt BN . NNENE

(Fig. 5.6.1 PSDS)

RE(U(6))| D3 =D*(g)®D " (2)®2D"/(g)

0 & E’_/_/_ 5 ) DQ. : ... DQ'__S2 ‘
o ——— ' D*(R)
DEG:il;;ACY \\\\ : D*(R) = ( DQ"’-Q ) ‘Mg ( D*(R) )
b S0 i A D , D?(R)
. (20+1
> s1n( t+hr R(3) character
¢, T n
Use R(3)~U(2) character formula: ) (—)= T where: 20+1 (From Lect. 11 p. 11)
n .
sm; is (-orbital dimension
2
/
x(©|0=0 — =& sin(/ ++)© ”
3 @)= ey e
/=0 1 1 1 sin— = . 14;
> (=0 1
1 3 0 -1 1 : 1 |04,®4-®E,
2 5 -1 1 ...and D3 character table: 2 1 2 |14,  @®2E,
3 7 1 =1 (= |{} {'r’} {i.i,i} 3 1 2 | 14,024 -B2E,
4 9 0 1 @)= 1 1 1 4 1 3 | 14,®24.83E,
6 13 1 1% '8 6 3 4 | 34,024.04E
N ) r 0 1 1
7 15 0 -1|x"'(@) 7 0 5 | 24,®34.®5E,
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Spectral splitting in symmetry breaking foretold by character analysis
U(6)2>D; . RO(U(6))|Ds =D (g)®D " (2)2D"(2)

Crystal-field splitting: O(3)DD3 symmetry reduction and D'|D; splitting

f(a) (g) fA1 f fE1 R(3)DD;
/=0 | 1 |14, o
E;
2 1 2 |14, B2E,
3 1 2 | 14,824 .82E, Vs
4 1 3 | 14,024.03E, 000 e E,
5 2 3 |24, 4.®3E, ﬁj
6 3 4 | 34,824.04E,
7 2 5 | 24,©34.@5E, 0 =3
...................... E]
Aljfz
1
D3 character table:
()= |{1}y {r'r*} {i.i,i,} /
A(g) = (=4
x (g) B 1 1 1 ....... E]
xi (@)= 2 -1 0
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