
Group Theory in Quantum Mechanics
Lecture 12 (3.7.13) 

CN symmetry systems coupled, uncoupled, and re-coupled
(Geometry of U(2) characters - Ch. 6-12 of Unit 3 )

(Principles of Symmetry, Dynamics, and Spectroscopy - Sec. 1-12 of Ch. 2 )

Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Group Zoo
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W
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(a) Infinite Square Well at t=0 (b) Bohr Rotor at t=0
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(c) Half-time revival at t=τ/2 (d) Half-time revival at t=τ/2

Bohr-Image

wave

“Flipped”

revival

πt = 0.5000τ1
= 1.5τbeat

t = 1.0000τ1
= 3.0τbeat

After only 50 round-trips  
M's wave does a partial revival 
as it makes an upside down-delta 
function around x=0.8W.

All ∞-well peak must be made of
sine wave components.

   So how is the ∞-well “flipped
revival explained?
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Bohr-Image

wave

“Flipped”

revival

πt = 0.5000τ1
= 1.5τbeat

t = 1.0000τ1
= 3.0τbeat

After only 50 round-trips  
M's wave does a partial revival 
as it makes an upside down-delta 
function around x=0.8W.

4. Bohr rotor half-time revival
is same-side-up copy of initial 
peak on opposite side of ring.
So that upside-down Bohr-image 
will appear upside-down on the 
other side at half-time revival. 

1.
All ∞-well peak must be made of
sine wave components.

2. Bohr rotor peak made of sine wave 
components is anti-symmetric, so an 
upside-down mirror image peak must 
accompany any peak.

3. So how is the ∞-well “flipped
revival explained?
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n=14

 HEB(14) gives eigensolution of a 6-by-6 constrained Bloch matrix HCM(6) using its sine-waves only
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C24 lattice reduced to C12 symmetry
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Fig. 2.12.1 PSDS
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Bohr-It simulations assume ring-periodic-boundary conditions
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Bohr-It simulations assume ring-periodic-boundary conditions Band-It simulations line-non-periodic scattering conditions
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Fig. 2.12.7 PSDS

Fig. 2.12.8 PSDS

41Thursday, March 7, 2013



Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Group Zoo

42Thursday, March 7, 2013



Finally! Symmetry groups that are not just CN 
(And some that are)

Fig. 2.11.1 PSDS
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Finally! Symmetry groups that are not just CN 
(And some that are)
Starting with D2

Fig. 2.11.1 PSDS
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Finally! Symmetry groups that are not just CN 
(And some that are)
Starting with D2 and C2h and C2v 

Fig. 2.11.1 PSDS
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D2 Symmetry (The 4-Group)

Fig. 2.1.2 PSDS

Fig. 2.1.1 PSDS
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  
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1− R y

2
 1  = Py

+ + Py
−

reducible
projectors

Completness
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
− gives irrep projectors

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−

   

P++ ≡ Px
+ ⋅Py

+ =
1+ Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1+ Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1− Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1− Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1+ Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )

gives irrep projectors

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−

   

P++ ≡ Px
+ ⋅Py

+ =
1+ Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1+ Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1− Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1− Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1+ Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )    

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−

Rx = (+1)P++ + (−1)P−+ + (+1)P+− + (−1)P−−

R y = (+1)P++ + (+1)P−+ + (−1)P+− + (−1)P−−

R z = (+1)P++ + (−1)P−+ + (−1)P+− + (+1)P−−

     (completeness is first)

gives irrep projectors

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−

   

P++ ≡ Px
+ ⋅Py

+ =
1+ Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1+ Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1− Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1− Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1+ Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )    

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−

Rx = (+1)P++ + (−1)P−+ + (+1)P+− + (−1)P−−

R y = (+1)P++ + (+1)P−+ + (−1)P+− + (−1)P−−

R z = (+1)P++ + (−1)P−+ + (−1)P+− + (+1)P−−

     (completeness is first)

   

C2
x 1 Rx

+ 1 1
− 1 −1

×
C2

y 1 R y

+ 1 1
− 1 −1

=  

C2
x ×C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 −1⋅1 1⋅1 −1⋅1
+ ⋅− 1⋅1 1⋅1 1⋅(−1) 1⋅(−1)
− ⋅− 1⋅1 −1⋅1 1⋅(−1) −1⋅(−1)

gives irrep projectors

Shortcut notation for getting D2 character table

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−

   

P++ ≡ Px
+ ⋅Py

+ =
1+ Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1+ Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1− Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1− Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1+ Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )    

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−

Rx = (+1)P++ + (−1)P−+ + (+1)P+− + (−1)P−−

R y = (+1)P++ + (+1)P−+ + (−1)P+− + (−1)P−−

R z = (+1)P++ + (−1)P−+ + (−1)P+− + (+1)P−−

     (completeness is first)

   

C2
x 1 Rx

+ 1 1
− 1 −1

×
C2

y 1 R y

+ 1 1
− 1 −1

=  

C2
x ×C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 −1⋅1 1⋅1 −1⋅1
+ ⋅− 1⋅1 1⋅1 1⋅(−1) 1⋅(−1)
− ⋅− 1⋅1 −1⋅1 1⋅(−1) −1⋅(−1)

   

C2
x 1 Rx

+ 1 1
− 1 −1

  ×   
C2

y 1 R y

+ 1 1
− 1 −1

  

=  

C2
x ×C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 −1⋅1 1⋅1 −1⋅1
+ ⋅− 1⋅1 1⋅1 1⋅(−1) 1⋅(−1)
− ⋅− 1⋅1 −1⋅1 1⋅(−1) −1⋅(−1)

   =   

D2 1 Rx R y R z

+ ⋅+ 1 1 1 1
− ⋅+ 1 -1 1 -1
+ ⋅− 1 1 −1 −1
− ⋅− 1 -1 −1 1

gives irrep projectors

Shortcut notation for getting D2 character table

reducible
projectors

Completness
Spec.decomps
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D2 spectral decomposition: The old “1=1•1 trick” again
Two C2 subgroup minimal equations and their projectors:
 
  Rx2- 1 = 0,         Ry2- 1 = 0.  

   

Px
+ =

1+ Rx
2

Px
− =

1− Rx
2

 1  = Px
+ + Px

−

Rx = Px
+ − Px

−
   

Py
+ =

1+ R y

2

Py
− =

1− R y

2
 1  = Py

+ + Py
−

R y = Py
+ − Py

−

The old “1=1•1 trick” 
  
1 = 1 ⋅1 = Px

+ + Px
−( ) ⋅ Py

+ + Py
−( ) = Px

+ ⋅Py
+ + Px

− ⋅Py
+ + Px

+ ⋅Py
− + Px

− ⋅Py
−

   

P++ ≡ Px
+ ⋅Py

+ =
1+ Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1+ Rx + R y + R z( )

P−+ ≡ Px
− ⋅Py

+ =
1− Rx( ) ⋅ 1+ R y( )

2 ⋅2
= 1

4
1− Rx + R y − R z( )

P+− ≡ Px
+ ⋅Py

− =
1+ Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1+ Rx − R y − R z( )

P−− ≡ Px
− ⋅Py

− =
1− Rx( ) ⋅ 1− R y( )

2 ⋅2
= 1

4
1− Rx − R y + R z( )    

1   = (+1)P++ + (+1)P−+ + (+1)P+− + (+1)P−−

Rx = (+1)P++ + (−1)P−+ + (+1)P+− + (−1)P−−

R y = (+1)P++ + (+1)P−+ + (−1)P+− + (−1)P−−

R z = (+1)P++ + (−1)P−+ + (−1)P+− + (+1)P−−

     (completeness is first)

   

C2
x 1 Rx

+ 1 1
− 1 −1

×
C2

y 1 R y

+ 1 1
− 1 −1

=  

C2
x ×C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 −1⋅1 1⋅1 −1⋅1
+ ⋅− 1⋅1 1⋅1 1⋅(−1) 1⋅(−1)
− ⋅− 1⋅1 −1⋅1 1⋅(−1) −1⋅(−1)

   

C2
x 1 Rx

+ 1 1
− 1 −1

  ×   
C2

y 1 R y

+ 1 1
− 1 −1

  

=  

C2
x ×C2

y 1 ⋅1 Rx ⋅1 1 ⋅R y Rx ⋅R y

+ ⋅+ 1⋅1 1⋅1 1⋅1 1⋅1
− ⋅+ 1⋅1 −1⋅1 1⋅1 −1⋅1
+ ⋅− 1⋅1 1⋅1 1⋅(−1) 1⋅(−1)
− ⋅− 1⋅1 −1⋅1 1⋅(−1) −1⋅(−1)

   =   

D2 1 Rx R y R z

++ = A1 1 1 1 1

−+ = A2 1 -1 1 -1

+− = B1 1 1 −1 −1

−− = B2 1 -1 −1 1

gives irrep projectors

Shortcut notation for getting D2 character table

reducible
projectors

Completness
Spec.decomps

Note
common
notation
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Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Group Zoo
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Fig. 2.8.1 PSDS
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Fig. 2.8.2 PSDS
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Breaking CN cyclic coupling into linear chains
           Review of 1D-Bohr-ring related to infinite square well (and review of revival)
           Breaking C2N+2 to approximate linear N-chain
               Band-It simulation: Intro to scattering approach to quantum symmetry

Breaking C2N cyclic coupling down to CN symmetry 
        Acoustical modes vs. Optical modes
        Intro to other examples of band theory
        Avoided crossing view of band-gaps

Finally! Symmetry groups that are not just CN 
        The “4-Group(s)” D2 and C2v 
        Spectral decomposition of D2

                       Some D2 modes
        Outer product properties and the Group Zoo
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Fig. 2.2.2 PSDS
Fig. 2.11.1 PSDS
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Fig. 2.2.2 PSDS
Fig. 3.1.1 PSDS
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C6 is product C3× C2 (but C4 is NOT C2× C2) 

   

C3 1 r r2

0( )3 1 1 1

1( )3 1 e2π i /3 e−2π i /3

2( )3 1 e−2π i /3 e2π i /3

  ×   

C2 1 R

0( )2 1 1

1( )2 1 −1

  =  

C3 × C2 1 r r2 1 ⋅R r ⋅R r2 ⋅R

0( )3 ⋅ 0( )2 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1

1( )3 ⋅ 0( )2 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1

2( )3 ⋅ 0( )2 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1

0( )3 ⋅ 1( )2 1⋅1 1⋅1 1⋅1 1⋅ (−1) 1⋅ (−1) 1⋅ (−1)

1( )3 ⋅ 1( )2 1⋅1 1⋅1 e−2π i /3 ⋅1 1⋅ (−1) e2π i /3 ⋅ (−1) e−2π i /3 ⋅ (−1)

2( )3 ⋅ 1( )2 1⋅1 e−2π i /3 ⋅1 1⋅1 1⋅ (−1) e−2π i /3 ⋅ (−1) e2π i /3 ⋅ (−1)
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C6 is product C3× C2 (but C4 is NOT C2× C2) 

   

C3 1 r r2

0( )3 1 1 1

1( )3 1 e2π i /3 e−2π i /3

2( )3 1 e−2π i /3 e2π i /3

  ×   

C2 1 R

0( )2 1 1

1( )2 1 −1

  =  

C3 × C2 1 r r2 1 ⋅R r ⋅R r2 ⋅R

0( )3 ⋅ 0( )2 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1 1⋅1

1( )3 ⋅ 0( )2 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1 1⋅1 e2π i /3 ⋅1 e−2π i /3 ⋅1

2( )3 ⋅ 0( )2 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1 1⋅1 e−2π i /3 ⋅1 e2π i /3 ⋅1

0( )3 ⋅ 1( )2 1⋅1 1⋅1 1⋅1 1⋅ (−1) 1⋅ (−1) 1⋅ (−1)

1( )3 ⋅ 1( )2 1⋅1 1⋅1 e−2π i /3 ⋅1 1⋅ (−1) e2π i /3 ⋅ (−1) e−2π i /3 ⋅ (−1)

2( )3 ⋅ 1( )2 1⋅1 e−2π i /3 ⋅1 1⋅1 1⋅ (−1) e−2π i /3 ⋅ (−1) e2π i /3 ⋅ (−1)

   

                                                      =   

C3 × C2 = C6 1 r = h2 r2 = h4 R = h3 r ⋅R = h r2 ⋅R = h5

0( )3 ⋅ 0( )2 = 0( )6 1 1 1 1 1 1

1( )3 ⋅ 0( )2 = 2( )6 1 e2π i /3 e−2π i /3 1 e2π i /3 e−2π i /3

2( )3 ⋅ 0( )2 = 4( )6 1 e−2π i /3 e2π i /3 1 e−2π i /3 e2π i /3

0( )3 ⋅ 1( )2 = 3( )6 1 1 1 -1 -1 -1

1( )3 ⋅ 1( )2 = 5( )6 1 e2π i /3 e−2π i /3 -1 -e2π i /3 −e−2π i /3

2( )3 ⋅ 1( )2 = 1( )6 1 e−2π i /3 e2π i /3 −1 −e−2π i /3 −e2π i /3
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