
      
 

                 
 

           

    
Fk = !!qk + Γmn

k !qm !qn

Trebuchets, SuperBall Missles, and
Related Multi-Frame Mechanics

A millenial embarrassment
(and redemption)

for Physics

Computer Aided Development of Principles, Concepts, and Connections

1.
Theoretical

Analysis

2.
Numerical
Synthesis

3.
Laboratory
Observation

A
Post-Modern

Scientific Method

Bill Harter and Dave Wall
University of Arkansas

HARTER-Soft
Elegant Educational Tools Since 2001

and



      
 

                 
 

           

BANG!

(Bigger
BANG!)

(Still
Bigger
BANG!)

 What Galileo
might have
tried to solve

What Galileo
did solve 

(simple
harmonic
pendulum)

The Trebuchet
(~103 BC-1520?)

Superball
Missles

(1965-2004)

Multistage Throwing Devices
Am. J. Phys. 39, 656 (1971)
 (A class project )



      
 

                 
 

           

 θ
 φ rb

"
R

x

Elementary Trebuchet Model - Multiple Rotating and Translating Frames

θ =0  
φ = 135  

X   

135

Y    

X   

Y    θ = - 45  φ = 180  

-45  

θ

   

Post-Launch Coordinate ManifoldPre-Launch Coordinate Manifold

(Translational
frame recoil
possible, too)

Siege of Kenilworth
1215

(Re-enacted on NOVA)



      
 

                 
 

           

Bull whip
cracking

Fly-fishing

Tennis serving

Throwing Slinging

Chopping

Cultivating and Digging
Reaping

Splitting 

Hammering 

Early Human Agriculture and Infrastructure Building Activity

Baseball &
Football

Lacrosse

Batting 

Cultivating and Digging

Tennis rallying

Golfing  

Later Human Recreational Activity

Water skiing

Hammer throwing

Space Probe “Planetary Slingshot”

“Ring-The-Bell”
(at the Fair)

What Trebuchet mechanics
is really good for...



      
 

                 
 

           

L

Later on
(Steer or guide)

v

Most velocity v
gained earlier here.

m
F  mostly
serves  to
steer m here.

r b

Rotation of body rb provides most of energy of arm-racquet lever L.

Early on
(Gain the energy/momentum)

Driving
Force:

Gravity

L F

Large force F
nearly parallel
to velocity v
so  v increases
 rapidly.

rb

m
v

L

L

Trebuchet  analogy with racquet swing   -    What we learn

                Preparation
Center-of-mass for semi-rigid
arm-racquet system L is "cocked."

             Energy Input
Most of speed gained early
 by arm-racquet system L.

rb

r b r b

L
Follow-Through
Arm-racquet system
L  flies nearly freely.

 Small applied forces
mostly for steering.

Ball hit occurs.

Force F nearly
perpendicular
to velocity v
so v increases
very little. ���

���
���

������

��	
�����
�

��

F



      
 

                 
 

           

An Opposite to Trebuchet Mechanics- The “Flinger”

F

Not much
increase in
velocity vDriving

Force
:

Gravity

F v

Maximum
increase in
velocity v
just before
m slides off
end

Later on
(Last-minute “cram” for energy)

Early on
(Not much happening)

Anti-analogy can be useful pedagogy

"

rb

"Trebuchet-like experiment Flinger experiment

rb

α

skateboard wheel
slides on pool que-stick

skateboard wheel swings



      
 

                 
 

           

"rb"-rb

R "

ω

Initial
( 6 o'clock position)

Final
( 3 o'clock
position)

Trebuchet model in rotating beam frame

"
ω

rb Initial Final

Flinger model in rotating beam frame
Assume: Constant beam ω 

     

1
2
mv2 =

1
2
mω2 rb + "( )2 − 1

2
mω2rb

2 =
1
2
mω2" 2rb + "( )

     

1
2
mv2 =

1
2
mω2 rb + "( )2 − 1

2
mω2 rb

2 + "2( ) =
1
2
mω2 2rb "( )

Assume: Constant beam ω 

Initial
6 o’clock 

R2=rb
2+"2

6
o’clock

6
o’clock

Final
3 o’clock 

Initial
3 o’clock 

Final
3 o’clock 

Final Trebuchet KE Final Flinger KE

R
9

o’clock

Initial
9 o’clock 

R2=rb
2+"2-2rb"

9
o’clock

=
1
2
mω2 4rb "( )

beamframe beamframe
(flinger)(trebuchet) beamframe beamframe

v
beamframe

v
beamframe

    

1
2
mv2 =V r0( )−V rf( ) =

1
2
mω2rf

2 −
1
2
mω2r0

2
beamframe

2
mω2

"
22rb −"( )

 Flinger KE is                more than 6 o’clock trebuchet
     but misdirected2

mω2
"
2

Flinger KE is                       less than 9 o’clock trebuchet
    and misdirected



      
 

                 
 

           

"rb"-rb

R "

ω

Trebuchet model in lab frame

"
ω

rb

Initial Final

Flinger model in lab frame
Assume: Constant beam ω 

v = ω2" 2rb + "( )v2 =
ω2 2rb "( )

6
o’clock

R
9

o’clock

beamframe

beamframe
(flinger)

(trebuchet)

v
beamframe

v

vrotation
labframe

v

vrotation labframe
v

ω rb+"( )=

     

vlab frame trebuchet( ) =

ω rb + "+ 2"rb

2 "rb

( )  half -cocked  6 o�clock  

ω rb + "+( )  fully-cocked  9 o�clock  










     









ω2 4rb "( )

half -cocked  6 o�clock

fully-cocked  9 o�clock

beamframe

2

     

vlab frame flinger( ) =

= ω " 2rb + "( )+rb + "( )2 = ω 2 rb + "( )2 −rb
2

ω rb+"=( )

     

=
5.00ω 
5.82ω 






           =

5.16ω 
6.00ω






          =

5.00ω 
5.82ω






rb = 2 , "= 1( ), rb = 1.5 , "= 1.5( ), rb = 1 , "= 2( )

     

    = 3.74ω          = 3.96ω             = 4.12ω

rb = 2 , "= 1( ), rb = 1.5 , "= 1.5( ), rb = 1 , "= 2( )

(compare)



      
 

                 
 

           

Many Approaches to Mechanics (Trebuchet Equations)
Each has advantages and disadvantages (Trebuchet exposes them) 

 • French Approach
Tres elegant

Lagrange Equations
in Generalized Coordinates

 • German Approach
Pride and Precision

Riemann Christoffel Equations
in Differential Manifolds

 • Anglo-Irish Appproach
Powerfully Creative

Hamilton’s Equations
Phase Space

 • U.S. Approach
Quick’n dirty

Newton F=Ma Equations
Cartesian coordinates

    
Fk = !!qk + Γmn

k !qm !qn

     

!pj =−
H

qj
,       !qk =

H

pk
.

   

F" =
d
dt

T

!q "
−

T

q "

 • Unified Approach

    
Fk = !!qk + Γmn

k !qm !qn

1.
Theoretical

Analysis

2.
Numerical
Synthesis

3.
Laboratory
Observation

A
Post-Modern

Scientific Method

All approaches have one thing in common:
The Art of Approximation

Physics lives and dies by the art of
approximate models and analogs.

graphics

numerics



      
 

                 
 

           

     

T =
1
2

MR2 +mr2( ) !θ2     −    
1
2
mr" !θ !φ cos(θ−φ)

      −
1
2
mr" !φ !θ cos(θ−φ)  +       

1
2
m"2 !φ2           

=
1
2
!θ !φ( )

γθ ,θ γθ ,φ
γφ, θ γφ ,φ













!θ
!φ











Another thing in common:
Equations Require  Kinetic Energy T

in terms of coordinates and derivitives.

It helps to use
 Covariant Metric γµν

matrix:

The γµν  give

 Covariant Momentum
(a.k.a. “canonical” momentum)

     

pθ
pφ












=
γθ ,θ γθ ,φ
γφ, θ γφ ,φ













!θ
!φ











    
pµ = γµν !q

ν
The inverse γµν  give
 Contravariant Momentum
(a.k.a. “generalized” velocity)

sum 

     

!θ
!φ











=
γθ , θ γθ ,φ

γφ ,θ γφ,φ













pθ
pφ













sum 

    
!qν pν = γνµpµ

     
=

1
2
γµν !q

µ !qν
sum 



      
 

                 
 

           

Trebuchet equations nonlinear and Lagrange-Hamilton methods are a bit messy..

Riemann Christofffel Equations give less mess..

...they are immediately computer integrable. (..and help with qualitative analysis..)

     

!pθ -
L
θ

=−MgR sin θ+ mgr sin θ
     
=Fθ

=Fφ

   

!pφ -
L

=−mg" sinφ 
φ

+Fθ

+Fφ

   
d
dt

L
!θ











=
L
θ

d
dt

L
!φ











=
L
φ

      

     

−MgR sin θ+ mgr sin θ = MR2 + mr2( ) !!θ−mr" !!φ cos(θ−φ)−mr" !φ2 sin(θ−φ)

−mg" sin φ =  m"2 !!φ−mr"!!θ cos(θ−φ) + mr " !θ2 sin(θ−φ) 

Lagrange quations need rearrangement to solve numerically

  
Fk = !!qk + Γmn

k !qm !qn    where : Γmn;"
1
2

γn"

qm
+
γ"m

qn
−
γmn

q"

















     

!!θ
!!φ










 =

1
µ

m"2 mr " cos(θ−φ)

mr " cos(θ−φ) MR2 + mr2













−mr" !φ2 sin(θ−φ) + mr −MR( )g sin θ

mr" !θ2 sin(θ−φ)−mg" sin φ



















  where:  µ = m"2 MR2 + mr2 sin2(θ−φ)







Lagrangian
L=T-V

T = mn !qm !qnγ



      
 

                 
 

           

m2

m1
m1

m2

Bang1!

Bang2!

m1

m2

2-Bang Model 

m1

m2

m2

BANG!
m1

Super-elastic Bounce 

START
m1-m2

collision

m1:m2
= 7:1

m1:m2
= 3:1

100%
Energy

Transfer

 <- m1  turn - around ->

m1
first hits
ground (Bang1) (Bang2)

Space Plot
  (x versus y) 

 Velocity Plot
   (Vy1 versus Vy2) 

Class of W. G. Harter,
“Velocity Amplification
in Collision Experiments
 Involving Superballs,”
Am. J. Phys.
39, 656 (1971)
 (A class project )

Analogous
Superball
Models

END

END

END
0%

Energy
Transfer

m1:m2
= :1Optimal Throw

FINAL V
is 2 times
INITIAL V

Fastest Throw

FINAL V
is 3 times
INITIAL V

Graphic
Solution



      
 

                 
 

           

φB

φB

START φB → -π/2   (9 o'clock)

FINAL  φB → π/2   (3 o'clock)

MID  φB = 0   (6 o'clock)

Beam-Relative ViewLab View

θB

θB

θB

     

!θFINAL =

1−
4mr 2

MR2

1 +
4mr2

MR2

!θINITIAL

R

R

R

r

r

r

" 

" 

FINAL Beam angular
velocity for r="

Hamiltonian
Model 

Approximation  conserves
total energy

and total angular momentum
(Assumes internal forces large

compared to gravity which is then
ignored after initial impulse)

     
!φFINAL = !θFINAL + 2 !θINITIAL

     
=

2 !θINITIAL
3 !θINITIAL








Optimal Throw
 Quickest Throw 

FINAL beam-relative
lever angular
velocity for r="

     
!θFINAL = !θINITIAL( )

!θFINAL = 0( )



      
 

                 
 

           

     
KEFINAL

mass m =
1
2

mr2 !φFINAL + !θFINAL( )2

     

=
1
2

mr2 2 !θINITIAL( )2

4 !θINITIAL( )2










     

!θFINAL =

1−
4mr 2

MR2

1 +
4mr2

MR2

!θINITIAL

FINAL Beam angular
velocity for r="

     
!φFINAL = !θFINAL + 2 !θINITIAL

     
=

2 !θINITIAL
3 !θINITIAL








Optimal Throw
 Quickest Throw 

FINAL beam-relative
lever angular velocity
for r="

     
!θFINAL = !θINITIAL( )

!θFINAL = 0( )

     
=

0
!θINITIAL







Optimal Throw
 Quickest Throw 

FINAL “Bottom line” lab velocity for r="

ω rb + "+( )2 "rb

 fully-cocked  9 o�clock  
Consistent with

velocity

r
"

"
r

R

m 

M



      
 

                 
 

           

X

Y

φ

"

Ax(t)

X-stimulated pendulum:
(Quasi-Linear Resonance)

X

Y

Y-stimulated pendulum:
(Non-Linear Resonance)

φ

"

d2φ   g           Ax(t)

dt2    "            "
___ + __ φ  =  ____      

Forced Harmonic Resonance  

A Newtonian F=Ma equation
Lorentz equation (with Γ=0)

d2φ       g   Ay (t)

dt2        "      "
___ + ( _ + ___ ) φ  = 0      

Parametric Resonance  

A Schrodinger-like equation
(Time t replaces coord. x)  

Ay(t)

For small φ
(cos φ ~1 ) : 

Coupled Rotation and Translation (Throwing)
Early non-human (or in-human) machines: trebuchets, whips..     (3000 BC-1542 AD)

d2φ       g+Ay(t)             Ax(t)

dt2            "                       " 
___ +  ______  sin φ + _____  cos φ  = 0    General case: A Nasty equation! 

General φ :
 

For small φ
(sin φ ~φ ) : 

(1542-2004 AD)



      
 

                 
 

           

(a) (b)

Chaotic motion from both linear and non-linear resonance (a) Trebuchet, (b) Whirler .

Positioned for linear resonance Positioned for nonlinear resonance

The “Arkansas Whirler”

(picture of Hog)



      
 

                 
 

           

    

d2φ

dx2
+ E −V(x)( )φ = 0

Jerked-Pendulum
Trebuchet Dynamics  

Schrodinger Wave Equation

   V(x) =−V0 cos(Nx)
With periodic potential

Schrodinger Equation
Parametric Resonance  

Related to

Mathieu Equation

    

d2φ

dx2
+ E +V0 cos(Nx)( )φ = 0 

Jerked Pendulum Equation

     

d2φ

dt2
+

g

"
+

Ay t( )
"












φ = 0

On  periodic roller coaster: y=-Ay cos wyt

  

d2φ

dt2
+

g

"
+
ωy

2Ay

"
cos(ωyt)












φ = 0

   

    
Ay t( ) = ωy

2Ay cos(ωyt)

  
ωy t=Nx   

Connection
Relations

    

N 2

ωy
2

dx2 = dt2

   

N
ωy

dx = dt

     

d2φ

dx2
+

N 2

ωy
2

g

"
+
ωy

2Ay

"
cos(Nx)












φ = 0

    

E =
N 2

ωy
2

g

"

    
V0 =

N 2Ay

"

QM Energy E-to-ωy Jerk frequency Connection 

QM Potential V0-Ay Amplitude Connection 

(Let N=2 to get
edge modes)



      
 

                 
 

           

0+

1+

1-

2+

2-

3+
3-

Stable Inverted
Band(0)

Stable Hanging
Band(1)

1+

2-

2+

3-

0+
1-

Unstable Resonance
Gap (1)

B
1

B
2

A
2

A
1

A
1

B
1

B
2

Unstable Resonance
Gap (2)

Stable Hanging
Band(2)

V=2.0 Bands

    

E =
N 2

ωy
2

g

"

QM Energy E-Related to-
ωy Jerk frequency

  

    
V0 =

N 2Ay

"

QM Potential V0-Ay Amplitude
 Connection 

E

V0

    

ωy = N
g

E "



      
 

                 
 

           

sinφ(t)
 0+A

1 
Mode

Y-acceleration:A(t)=-Ayωy
2cosωyt

Ay=0.5

Equivalent V-well bottoms

ωy(A1)=2.9646

sinφ(t)

ωy(B1)=6.02475

Ay=0.5

 1-B
1 

Mode
Equivalent V-well tops

0+

1+

1-

2+

2-

3+
3-

Stable Inverted
Band(0)

Stable Hanging
Band(1)

1+

2-

2+

3-

0+
1- B

1

B
2

A
2

A
1

A
1

B
1

B
2

Unstable Resonance
Gap (2)

Stable Hanging
Band(2)

V=2.0 Bands

Gap (1)
Unstable Resonance

 1+B
2 

Mode
Ay=0.5

ωy(B2)=1.4668

Equivalent V-well bottoms

Equivalent V-well tops

sinφ(t)

 2-A
2 

Mode

ωy(A2)=1.01054

Ay=0.5

 2+A
1 

Mode

ωy(A1)=0.9566

Ay=0.5

sinφ(t)

sinφ(t)

Gap (1)
Unstable Resonance



      
 

                 
 

           

(Bigger
BANG!)

(Still
Bigger
BANG!)

Supernova Superballs 

Class of W. G. Harter,
“Velocity Amplification
in Collision Experiments
 Involving Superballs,”
Am. J. Phys.
39, 656 (1971)
 (A class project )

Super Trebuchet?

Supersonic? 

Coming Next to Theaters Near You??!!

(Multi-frame)

Most important: Quantum multiframe trebuchets...they’re already inside you! (Proteins RNA)


