2019 CMwBang! site

Class YouTube Channel

Lecture 7 Wed. 9.18.2019

Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits (*Ch.* 9 and *Ch.* 11 of Unit 1) *Constructing 2D IHO orbital phasor "clock" dynamics in uniform-body* Constructing 2D IHO orbits using Kepler anomaly plots Mean-anomaly and eccentric-anomaly geometry Calculus and vector geometry of IHO orbits A confusing introduction to Coriolis-centrifugal force geometry (Derived better in Ch. 12) Some Kepler's "laws" for <u>all</u> central (isotropic) force F(r) fields Angular momentum invariance of IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Derived here) Angular momentum invariance of Coulomb: $F(r) = -GMm/r^2$ with U(r) = -GMm/r(Derived in Unit 5) Total energy E = KE + PE invariance of IHO: $F(r) = -k \cdot r$ (Derived here) *Total energy* E = KE + PE *invariance of Coulomb:* $F(r) = -GMm/r^2$ (Derived in Unit 5) Introduction to dual matrix operator contact geometry (based on IHO orbits) Quadratic form ellipse $\mathbf{r} \cdot Q \cdot \mathbf{r} = 1$ vs. inverse form ellipse $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ Duality norm relations ($\mathbf{r} \cdot \mathbf{p} = 1$) *Q-Ellipse tangents* $\mathbf{r'}$ *normal to dual* Q^{-1} *-ellipse position* \mathbf{p} ($\mathbf{r'} \cdot \mathbf{p} = 0 = \mathbf{r} \cdot \mathbf{p'}$) Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry Vector calculus of tensor operation Web Links *Q:Where is this headed? A: Lagrangian-Hamiltonian duality* BoxIt simulation: IHO orbits w/Stokes plot RelaWavity Simulation: IHO orbital time rates of change

RelaWavity Simulation: Exegesis Plot

This Lecture's Reference Link Listing

<u>Web Resources - front page</u> <u>UAF Physics UTube channel</u> Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

<u>Classical Mechanics with a Bang!</u> Modern Physics and its Classical Foundations 2017 Group Theory for QM 2018 Adv CM 2018 AMOP 2019 Advanced Mechanics

Lecture #7

Pirelli Site: Phasors animimation CMwithBang Lecture #6, page=70 (9.10.18) BoxIt Web Simulations: Generic/Default Most Basic A-Type Basic A-Type w/reference lines Basic A-Type w/reference lines Basic A-Type A-Type with Potential energy A-Type with Potential energy and Stokes Plot A-Type w/3 time rates of change A-Type w/3 time rates of change with Stokes Plot B-Type (A=1.0, B=-0.05, C=0.0, D=1.0)

RelaWavity Web Elliptical Motion Simulations: Orbits with b/a=0.125Orbits with b/a=0.5Orbits with b/a=0.7Exegesis with b/a=0.125Exegesis with b/a=0.5Exegesis with b/a=0.7Contact Ellipsometry

Burning a hole in reality—design for a new laser may be powerful enough to pierce space-timeTrampoline mirror may push laser pulse through fabric of the UniverseAchieving Extreme Light Intensities using Optically Curved Relativistic Plasma Mirrors - Vincenti-prl-2019A_Soft_Matter_Computer_for_Soft_Robots - Garrad-sr-2019Correlated Insulator_Behaviour_at_Half-Filling_in_Magic-Angle_Graphene_Superlattices - cao-n-2018

Running Reference Link Listing

0 0	0
RelaWavity Web Simulation: Contact Ellipsometry BoxIt Web Simulation: Elliptical Motion (A-Type) CMwBang Course: Site Title Page Direlli Beletinity Challenges Describing Wave Motion With Complex Phases	Lecture #7 Velocity Amplification in Collision Experiments Involving Superballs MIT OpenCourseWare: High School/Physics/Impulse and Momentum Hubble Site: Supernova - SN 1987A
 UAF Physics UTube channel These <i>are</i> hot off the presses. Out in MISC for quick reference. Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell's Demon - Kumar-n-2018 Synthetic_three-dimensional_atomic_structures_assembled_atom_by_atom - Barredo-n-2 Older ones: Wave-particle_duality_of_C60_molecules - Arndt-Itn-1999 Optical_Vortex_Knots - One Photon_At A_Time - Tempone-Wiltshire-Sr-2018 Baryon_Deceleration_by_Strong_Chromofields_in_Ultrarelativistic_, Nuclear_Collisions - Mishustin-PhysRevC-2007, APS Link & Abstract Hadronic Molecules - Guo-x-2017 	 Bouncelt Web Animation - Scenarios: Generic Scenario: 2-Balls dropped no Gravity (7:1) - V vs V Plot (Power=4) 1-Ball dropped w/Gravity=0.5 w/Potential Plot: Power=1, Power=4 7:1 - V vs V Plot: Power=1 3-Ball Stack (10:3:1) w/Newton plot (y vs t) - Power=4 3-Ball Stack (10:3:1) w/Newton plot (y vs t) - Power=1 3-Ball Stack (10:3:1) w/Newton plot (y vs t) - Power=1 w/Gaps 4-Ball Stack (27:9:3:1) w/Newton plot (y vs t) - Power=4 4-Newton's Balls (1:1:1:1) w/Newtonian plot (y vs t) - Power=4 w/Gaps 6-Ball Totally Inelastic (1:1:1:1:1) w/Gaps: Newtonian plot (t vs x), V6 vs V5 plot 5-Ball Totally Inelastic Pile-up w/ 5-Stationary-Balls - Minkowski plot (t vs x1) w/Gaps
 BounceItIt Web Animation - Scenarios: 49:1 y vs t, 49:1 V2 vs V1, 1:500:1 - 1D Gas Model w/ faux restorative force (C 1:500:1 - 1D Gas (Warm), 1:500:1 - 1D Gas Model (Cool, Zoomed in), Farey Sequence - Wolfram Fractions - Ford-AMM-1938 Monstermash BounceItIt Animations: 1000:1 - V2 vs V1, 1000:1 with t vs x - Minkowski Plot Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-2013 Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpg Quant. Revivals of Morse Oscillators and Farey-Ford Geom Harter-Li-CPL-Velocity Amplification in Collision Experiments Involving Superballs-Harter-197. WaveIt Web Animation - Scenarios:	I-Ball Totally Inelastic Pile-up w/ 5-Stationary-Balls - Vx2 vs Vx1 plot w/GapsBouncelt Dual plots $m_1:m_2 = 3:1$ v_2 vs v_1 and V_2 vs V_1 , $(v_1, v_2)=(1, 0.1)$, $(v_1, v_2)=(1, 0)$ y_2 vs v_1 plots: $(v_1, v_2)=(1, 0.1)$, $(v_1, v_2)=(1, 0)$, $(v_1, v_2)=(1, -1)$ Estrangian plot V_2 vs V_1 : $(v_1, v_2)=(0, 1)$, $(v_1, v_2)=(1, -1)$ $m_1:m_2 = 4:1$ v_2 vs v_1 , y_2 vs y_1 $m_1:m_2 = 100:1$, $(v_1, v_2)=(1, 0)$: $V2$ vs $V1$ Estrangian plot, y_2 vs y_1 plot $bl-2015$ 2015 (Publ.) $With g=0$ and 70:10 mass ratio $With non zero g, velocity dependent damping and mass ratio of 70:35$ $M_1=49, M_2=1$ with Newtonian time plot $M_1=49, M_2=1$ with V_2 vs V_1 plotExample with frictionLow force constant with drag displaying a Pass-thru, Fall-Thru, Bounce-Off $m1:m_2= 3:1$ and $(v1, v2) = (1, 0)$ Comparison with Estrangian

X2 paper: <u>Velocity Amplification in Collision Experiments Involving Superballs - Harter, et. al. 1971 (pdf)</u> Car Collision Web Simulator: <u>https://modphys.hosted.uark.edu/markup/CMMotionWeb.html</u> Superball Collision Web Simulator: <u>https://modphys.hosted.uark.edu/markup/BounceItWeb.html</u>; with Scenarios: <u>1007</u> <u>BounceIt web simulation with g=0 and 70:10 mass ratio</u> <u>With non zero g, velocity dependent damping and mass ratio of 70:35</u> Elastic Collision Dual Panel Space vs Space: <u>Space vs Time (Newton)</u>, <u>Time vs. Space(Minkowski)</u> Inelastic Collision Dual Panel Space vs Space: <u>Space vs Time (Newton)</u>, <u>Time vs. Space(Minkowski)</u>

AJP article on superball dynamics <u>AAPT Summer Reading List</u> <u>Scitation.org - AIP publications</u> <u>HarterSoft Youtube Channel</u>

More Advanced QM and classical references at the end of this Lecture

Matrix Collision Simulator: $M_1=49$, $M_2=1$ V₂ vs V₁ plot << Under Construction>>

Introducing 2D IHO orbits and phasor geometry Phasor "clock" geometry

$$\sqrt{\frac{2E}{m}} \cos \theta = v = \frac{dx}{dt} = \frac{d\theta}{dt} \frac{dx}{d\theta}$$

by (1) simple calculus

Review of IHO orbital phasor "clock" dynamics in uniform-body with two "movie" examples

Review of IHO orbital phase dynamics in uniform-body

Geometry of Kepler anomalies for vectors $[\mathbf{r}(\phi), \mathbf{v}(\phi)]$ in coordinate (x,y) space rendered by animation web-apps BoxIt and RelaWavity described below after p.70. RelaWavity web simulation - Contact ellipsometry (User Mouse Input allowed for setting phasor values)

Geometry of Kepler anomalies for vectors $[\mathbf{r}(\phi), \mathbf{v}(\phi)]$ in coordinate (x, y) space rendered by animation web-apps BoxIt and RelaWavity described below after p.7 and p.17. <u>RelaWavity web simulation - Contact ellipsometry</u> (User Mouse Input allowed for setting phasor values)

Constructing 2D IHO orbits using Kepler anomaly plots Mean-anomaly and eccentric-anomaly geometry Calculus and vector geometry of IHO orbits A confusing introduction to Coriolis-centrifugal force geometry (Derived better in Ch. 12)

Constructing 2D IHO orbits using Kepler anomaly plots Mean-anomaly and eccentric-anomaly geometry Calculus and vector geometry of IHO orbits A confusing introduction to Coriolis-centrifugal force geometry (Derived better in Ch. 12)

$$\begin{array}{c} (a) \ Orbits \\ \hline \mathbf{Calculus of IHO orbits} \\ \hline \mathbf{V}(t) \ \mathbf{$$

(a) Orbits
(a) Orbits
To make velocity vector **v**
just rotate by
$$\pi/2$$
 or 90°
the mean-anomaly ϕ of position vector **r**
 ry
 ry

Geometry of Kepler anomalies for vectors $[\mathbf{r}(\phi), \mathbf{v}(\phi), \mathbf{a}(\phi), \mathbf{j}(\phi),]$ in coordinate (x, y) space rendered by animation web-apps BoxIt and RelaWavity.

Geometry of Kepler anomalies for vectors $[\mathbf{r}(\phi)]$ in coordinate (x,y) space and 2-particle (x_1,x_2) space rendered by animation web-apps BoxIt.

BoxIt Web Stokes Simulation

Geometry of Kepler anomalies for vectors $[\mathbf{r}(\phi), \mathbf{v}(\phi), \mathbf{a}(\phi), \mathbf{j}(\phi),]$ in coordinate (x, y) space and 2-particle (x_1, x_2) space rendered by animation web-apps BoxIt. BoxIt Web Simulation - w/Derivatives

Geometry of vectors $[\mathbf{r}(\phi), \mathbf{p}(\phi)]$ and quantum spin S-space BoxIt Web Simulation - B-Type Motion and 2-particle (x_1, x_2) space rendered by animation web-apps BoxIt. Constructing 2D IHO orbits using Kepler anomaly plots Mean-anomaly and eccentric-anomaly geometry Calculus and vector geometry of IHO orbits A confusing introduction to Coriolis-centrifugal force geometry (Derived better in Ch. 12)

Some Kepler's "laws" for all central (isotropic) force F(r) fields(Derived here)Angular momentum invariance of IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Derived here)Angular momentum invariance of Coulomb: $F(r) = -GMm/r^2$ with U(r) = -GMm/r(Derived in Unit 5)Total energy E = KE + PE invariance of IHO: $F(r) = -k \cdot r$ (Derived here)Total energy E = KE + PE invariance of Coulomb: $F(r) = -GMm/r^2$ (Derived in Unit 5)(Derived here)(Derived in Unit 5)Total energy E = KE + PE invariance of Coulomb: $F(r) = -GMm/r^2$ (Derived in Unit 5)

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

$$\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = a \cos \omega t \cdot (b\omega \cos \omega t) - b \sin \omega t \cdot (-a\omega \sin \omega t) = ab \cdot \omega (\cos^2 \omega t + \sin^2 \omega t)$$

$$\begin{pmatrix} r_x \\ r_y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \cos \omega t \\ b \sin \omega t & \cdots \end{pmatrix}$$

$$\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} -a\omega \sin \omega t \\ b \omega \cos \omega t \end{pmatrix}$$

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

 $\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = a \cos \omega t \cdot (b\omega \cos \omega t) - a \sin \omega t \cdot (-b\omega \sin \omega t) = ab \cdot \omega$

for IHO

2. Angular momentum $\mathbf{L} = m\mathbf{r} \times \mathbf{v}$ is conserved

$$L = m |\mathbf{r} \times \mathbf{v}| = m \left(r_x v_y - r_y v_x \right) = m \cdot ab \cdot \omega$$
 for IHO

$$|\mathbf{r} \times \mathbf{v}| = r \cdot v \cdot sin \measuredangle_r$$

2. Angular momentum $\mathbf{L} = m\mathbf{r} \times \mathbf{v}$ is conserved

$$L = m |\mathbf{r} \times \mathbf{v}| = m \left(r_x v_y - r_y v_x \right) = m \cdot ab \cdot \omega$$
 for IHO

3. Equal area is swept by radius vector in each equal time interval T

$$A_{T} = \int_{0}^{T} \frac{\mathbf{r} \times d\mathbf{r}}{2} = \int_{0}^{T} \frac{\mathbf{r} \times \frac{d\mathbf{r}}{dt}}{2} dt = \int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} dt = \frac{L}{2m} \int_{0}^{T} dt = \frac{L}{2m} T$$

$$for IHO$$

$$|er \cdot d\mathbf{r} \cdot \sin \frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{dt}$$

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

 $\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = a \cos \omega t \cdot (b\omega \cos \omega t) - a \sin \omega t \cdot (-b\omega \sin \omega t) = ab \cdot \omega$ 2. Angular momentum $L = m\mathbf{r} \times \mathbf{v}$ is conserved

$$L = m\mathbf{r} \times \mathbf{v} = m\left(r_x v_y - r_y v_x\right) = m \cdot ab \cdot \boldsymbol{\omega} = m \cdot ab \cdot \frac{2\pi}{\tau}$$
 for IHO

3. Equal area is swept by radius vector in each equal time interval T

$$A_T = \int_0^T \frac{\mathbf{r} \times d\mathbf{r}}{2} = \int_0^T \frac{\mathbf{r} \times \frac{d\mathbf{r}}{dt}}{2} dt = \int_0^T \frac{\mathbf{r} \times \mathbf{v}}{2} dt = \frac{L}{2m} \int_0^T dt = \frac{L}{2m} T$$
 for IHO

In one period: $\tau = \frac{1}{\upsilon} = \frac{2\pi}{\omega} = \frac{2mA_{\tau}}{L}$ the area is: $A_{\tau} = \frac{L\tau}{2m}$ (= $ab \cdot \pi$ for ellipse orbit)

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}} = \mathbf{r} \times \mathbf{v}/2$ is constant

 $\mathbf{r} \times \mathbf{v} = r_x v_y - r_y v_x = a \cos \omega t \cdot (b\omega \cos \omega t) - a \sin \omega t \cdot (-b\omega \sin \omega t) = ab \cdot \omega$ 2. Angular momentum $L = m\mathbf{r} \times \mathbf{v}$ is conserved

$$L = m\mathbf{r} \times \mathbf{v} = m\left(r_x v_y - r_y v_x\right) = m \cdot ab \cdot \boldsymbol{\omega} = m \cdot ab \cdot \frac{2\pi}{\tau}$$
 for IHO

3. Equal area is swept by radius vector in each equal time interval T

$$A_T = \int_0^T \frac{\mathbf{r} \times d\mathbf{r}}{2} = \int_0^T \frac{\mathbf{r} \times \frac{d\mathbf{r}}{dt}}{2} dt = \int_0^T \frac{\mathbf{r} \times \mathbf{v}}{2} dt = \frac{L}{2m} \int_0^T dt = \frac{L}{2m} T$$
 for IHO

In one period: $\tau = \frac{1}{\upsilon} = \frac{2\pi}{\omega} = \frac{2mA_{\tau}}{L}$ the area is: $A_{\tau} = \frac{L\tau}{2m}$ (= $ab \cdot \pi$ for ellipse orbit)

(Recall from Lecture 6: $\omega = \sqrt{k/m} = \sqrt{G\rho_{\oplus} 4\pi/3}$)

(IHO formulas from Lect. 6 p.70-79)

Some Kepler's "laws" for all central (isotropic) force F(r) fields
Angular momentum invariance of IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Derived here)Angular momentum invariance of Coulomb: $F(r) = -GMm/r^2$ with U(r) = -GMm/r(Derived in Unit 5)
(Derived here)Total energy E = KE + PE invariance of IHO: $F(r) = -k \cdot r$
Total energy E = KE + PE invariance of Coulomb: $F(r) = -GMm/r^2$ (Derived in Unit 5)
(Derived here)

Some Kepler's "laws" that apply to any central (isotropic) force F(r)Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^2/2$ and Coulomb: $F(r)=-GMm/r^2$ with U(r)=-GMm/r

Some Kepler's "laws" that apply to any central (isotropic) force F(r)Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^2/2$ and Coulomb: $F(r)=-GMm/r^2$ with U(r)=-GMm/r

Some Kepler's "laws" that apply to any central (isotropic) force F(r)Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^2/2$ and Coulomb: $F(r)=-GMm/r^2$ with U(r)=-GMm/r

 $\tau = \frac{1}{\upsilon} = \frac{2\pi}{\omega} = \frac{2mA_{\tau}}{L} = \frac{2m \cdot ab \cdot \pi}{L} = \begin{cases} L \\ L \\ Applies to \\ any central \\ F(r) \\ Coulomb \end{cases}$

 $\frac{2m \cdot ab \cdot \pi}{m \cdot ab \cdot \sqrt{G\rho_{\oplus} 4\pi / 3}}$ $\frac{2m \cdot ab \cdot \pi}{m \cdot a^{-1/2} b \sqrt{GM_{\oplus}}}$

(IHO formulas from Lect. 6 p.70-79)

Some Kepler's "laws" that apply to any central (isotropic) force F(r)Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^2/2$ and Coulomb: $F(r)=-GMm/r^2$ with U(r)=-GMm/r

ot a function of b)

Some Kepler's "laws" for all central (isotropic) force F(r) fields
Angular momentum invariance of IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$
Angular momentum invariance of Coulomb: $F(r) = -GMm/r^2$ with U(r) = -GMm/r(Derived here)
(Derived in Unit 5) \bullet Total energy E = KE + PE invariance of IHO: $F(r) = -k \cdot r$
Total energy E = KE + PE invariance of Coulomb: $F(r) = -GMm/r^2$ (Derived in Unit 5)
(Derived here) \bullet Total energy E = KE + PE invariance of Coulomb: $F(r) = -GMm/r^2$ (Derived in Unit 5)
(Derived in Unit 5)

Kepler laws involve \measuredangle -momentum conservation in isotropic force F(r)Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^2/2$ Total energy=KE + PE is constant

$$KE + PE = \frac{1}{2}\mathbf{v}\cdot\mathbf{M}\cdot\mathbf{v} + \frac{1}{2}\mathbf{r}\cdot\mathbf{K}\cdot\mathbf{r}$$

$$= \frac{1}{2}\begin{pmatrix}v_{x} & v_{y} \\ v_{y} \end{pmatrix} \cdot \begin{pmatrix}m & 0 \\ 0 & m\end{pmatrix} \cdot \begin{pmatrix}v_{x} \\ v_{y} \end{pmatrix} + \begin{pmatrix}r_{x} & r_{y} \\ r_{x} \end{pmatrix} \cdot \begin{pmatrix}k & 0 \\ 0 & k\end{pmatrix} \cdot \begin{pmatrix}r_{x} \\ r_{y} \end{pmatrix}$$

$$= \frac{1}{2}mv_{x}^{2} + \frac{1}{2}mv_{y}^{2} + \frac{1}{2}kr_{x}^{2} + \frac{1}{2}kr_{y}^{2}$$

$$= \frac{1}{2}m(-a\omega\sin\omega t)^{2} + \frac{1}{2}m(b\omega\cos\omega t)^{2} + \frac{1}{2}k(a\cos\omega t)^{2} + \frac{1}{2}k(b\sin\omega t)^{2}$$

$$\begin{pmatrix}v_{x} \\ v_{y} \end{pmatrix} = \begin{pmatrix}-a\omega\sin\omega t \\ b\omega\cos\omega t\end{pmatrix} \quad \begin{pmatrix}r_{x} \\ r_{y} \end{pmatrix} = \begin{pmatrix}x \\ y \end{pmatrix} = \begin{pmatrix}a\cos\omega t \\ b\sin\omega t\end{pmatrix}$$

Kepler laws involve \measuredangle -momentum conservation in isotropic force F(r)Now consider orbital energy conservation of the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ Total IHO energy=KE + PE is constant

$$KE + PE = \frac{1}{2}\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} + \frac{1}{2}\mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r}$$

$$= \frac{1}{2} \begin{pmatrix} v_x & v_y \\ v_x \end{pmatrix} \bullet \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \bullet \begin{pmatrix} v_x \\ v_y \end{pmatrix} + \begin{pmatrix} r_x & r_y \\ v_y \end{pmatrix} \bullet \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \bullet \begin{pmatrix} r_x \\ r_y \end{pmatrix}$$

$$= \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}kr_x^2 + \frac{1}{2}kr_y^2$$

$$= \frac{1}{2}m(-a\omega\sin\omega t)^2 + \frac{1}{2}m(b\omega\cos\omega t)^2 + \frac{1}{2}k(a\cos\omega t)^2 + \frac{1}{2}k(b\sin\omega t)^2$$

$$= \frac{1}{2}ma^2\omega^2(\sin^2\omega t) + \frac{1}{2}mb^2\omega^2(\cos^2\omega t)^2 + \frac{1}{2}ka^2(\cos^2\omega t) + \frac{1}{2}kb^2(\sin^2\omega t)$$

$$= \frac{1}{2}m\omega^2(a^2 + b^2) \qquad \text{Given} : k = m\omega^2$$

Kepler laws involve \measuredangle -momentum conservation in isotropic force F(r)Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^2/2$ Total IHO energy=KE + PE is constant

$$KE + PE = \frac{1}{2}\mathbf{v}\cdot\mathbf{M}\cdot\mathbf{v} + \frac{1}{2}\mathbf{r}\cdot\mathbf{K}\cdot\mathbf{r}$$

$$= \frac{1}{2}\left(\begin{array}{ccc} v_{x} & v_{y} \\ v_{y} \end{array}\right) \cdot \left(\begin{array}{ccc} m & 0 \\ 0 & m \end{array}\right) \cdot \left(\begin{array}{ccc} v_{x} \\ v_{y} \\ v_{y} \end{array}\right) + \left(\begin{array}{ccc} r_{x} & r_{y} \\ r_{y} \\ v_{y} \end{array}\right) \cdot \left(\begin{array}{ccc} k & 0 \\ 0 & k \\ v_{y} \\ v_{y} \end{array}\right) \cdot \left(\begin{array}{ccc} r_{x} \\ r_{y} \\ v_{y} \\$$

Some Kepler's "laws" for all central (isotropic) force F(r) fields
Angular momentum invariance of IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ (Derived here)
(Derived in Unit 5)
(Derived in Unit 5)
(Derived here)Angular momentum invariance of Coulomb: $F(r) = -GMm/r^2$ with U(r) = -GMm/r(Derived in Unit 5)
(Derived here)Total energy E = KE + PE invariance of IHO: $F(r) = -k \cdot r$ (Derived in Unit 5)
(Derived here)Total energy E = KE + PE invariance of Coulomb: $F(r) = -GMm/r^2$ (Derived in Unit 5)

Kepler laws involve \measuredangle -momentum conservation in isotropic force F(r)Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^2/2$ Total IHO energy=KE + PE is constant

$$KE + PE = \frac{1}{2}\mathbf{v}\cdot\mathbf{M}\cdot\mathbf{v} + \frac{1}{2}\mathbf{r}\cdot\mathbf{K}\cdot\mathbf{r}$$

$$= \frac{1}{2}\left(\begin{array}{ccc} v_{x} & v_{y} \\ 0 & m\end{array}\right) \cdot \left(\begin{array}{ccc} m & 0 \\ 0 & m\end{array}\right) \cdot \left(\begin{array}{ccc} v_{x} \\ v_{y} \\ \end{array}\right) + \left(\begin{array}{ccc} r_{x} & r_{y} \\ v_{y} \end{array}\right) \cdot \left(\begin{array}{ccc} k & 0 \\ 0 & k\end{array}\right) \cdot \left(\begin{array}{ccc} r_{x} \\ r_{y} \\ \end{array}\right)$$

$$= \frac{1}{2}mv_{x}^{2} + \frac{1}{2}mv_{y}^{2} + \frac{1}{2}kr_{x}^{2} + \frac{1}{2}kr_{y}^{2}$$

$$= \frac{1}{2}m(-a\omega\sin\omega t)^{2} + \frac{1}{2}m(b\omega\cos\omega t)^{2} + \frac{1}{2}k(a\cos\omega t)^{2} + \frac{1}{2}k(b\sin\omega t)^{2}$$

$$= \frac{1}{2}ma^{2}\omega^{2}(\sin^{2}\omega t) + \frac{1}{2}mb^{2}\omega^{2}(\cos^{2}\omega t)^{2} + \frac{1}{2}ka^{2}(\cos^{2}\omega t) + \frac{1}{2}kb^{2}(\sin^{2}\omega t)$$

$$= \frac{1}{2}m\omega^{2}(a^{2} + b^{2}) \quad \text{Given } : k = m\omega^{2}$$

$$E = KE + PE = \frac{1}{2}m\omega^{2}(a^{2} + b^{2}) = \frac{1}{2}k(a^{2} + b^{2}) \quad \text{since: } \omega = \sqrt{\frac{k}{m}} = \sqrt{G\rho_{\oplus}4\pi/3} \quad \text{or: } m\omega^{2} = k$$

We'll see that the Coul. orbits are simpler:

(*like the period*...not a function of *b*)

Kepler laws involve \measuredangle -momentum conservation in isotropic force F(r)Now consider orbital energy conservation of the IHO: $F(r) = -k \cdot r$ with $U(r) = k \cdot r^2/2$ Total IHO energy=KE + PE is constant

$$\begin{split} &KE + PE = \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} + \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\ &= \frac{1}{2} \begin{pmatrix} v_x & v_y \end{pmatrix} \bullet \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \bullet \begin{pmatrix} v_x \\ v_y \end{pmatrix} + \begin{pmatrix} r_x & r_y \end{pmatrix} \bullet \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \bullet \begin{pmatrix} r_x \\ r_y \end{pmatrix} \\ &= \frac{1}{2} m v_x^2 + \frac{1}{2} m v_y^2 + \frac{1}{2} k r_x^2 + \frac{1}{2} k r_y^2 \\ &= \frac{1}{2} m (-a\omega \sin \omega t)^2 + \frac{1}{2} m (b\omega \cos \omega t)^2 + \frac{1}{2} k (a \cos \omega t)^2 + \frac{1}{2} k (b \sin \omega t)^2 \\ &= \frac{1}{2} m a^2 \omega^2 (\sin^2 \omega t) + \frac{1}{2} m b^2 \omega^2 (\cos^2 \omega t)^2 + \frac{1}{2} k a^2 (\cos^2 \omega t) + \frac{1}{2} k b^2 (\sin^2 \omega t) \\ &= \frac{1}{2} m \omega^2 (a^2 + b^2) = \frac{1}{2} k (a^2 + b^2) \quad \text{since: } \omega = \sqrt{\frac{k}{m}} = \sqrt{G \rho_{\oplus} 4\pi / 3} \quad \text{or: } m \omega^2 = k \\ \text{We'll see that the Coul. orbits are simpler: } (like the period...not a function of b) \end{split}$$

$$E = KE + PE = \frac{1}{2}mv_{x}^{2} + \frac{1}{2}mv_{y}^{2} - \frac{k}{r} = \frac{1}{2}mv_{x}^{2} + \frac{1}{2}mv_{y}^{2} - \frac{GM_{\oplus}m}{r} = -\frac{GM_{\oplus}m}{a}$$

Introduction to dual matrix operator contact geometry (based on IHO orbits) Quadratic form ellipse r•Q•r=1 vs.inverse form ellipse p•Q⁻¹•p=1 Duality norm relations (r•p=1) Q-Ellipse tangents r' normal to dual Q⁻¹-ellipse position p (r'•p=0=r•p') Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry Vector calculus of tensor operation

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ is called positive-definite (if $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}$ always >0)

$$\begin{pmatrix} \mathbf{x} & \mathbf{y} \end{pmatrix} \bullet \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ a^2 & \mathbf{0} \\ 0 & \frac{1}{b^2} \end{pmatrix} \bullet \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = 1 = \begin{pmatrix} \mathbf{x} & \mathbf{y} \end{pmatrix} \bullet \begin{pmatrix} \frac{x}{a^2} \\ \frac{y}{b^2} \end{pmatrix} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ called inverse or dual ellipse:

$$\begin{pmatrix} p_x & p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} \bullet \begin{pmatrix} p_x \\ p_y \end{pmatrix} = 1 = \begin{pmatrix} p_x & p_y \\ p_x & p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 p_x \\ a^2 p_y \end{pmatrix} = a^2 p_x^2 + b^2 p_y^2$$

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ is called positive-definite (if $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}$ always >0)

$$\begin{pmatrix} \mathbf{x} & \mathbf{y} \end{pmatrix} \bullet \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ a^2 & \mathbf{0} \\ 0 & \frac{1}{b^2} \end{pmatrix} \bullet \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = 1 = \begin{pmatrix} \mathbf{x} & \mathbf{y} \end{pmatrix} \bullet \begin{pmatrix} \frac{x}{a^2} \\ \frac{y}{b^2} \end{pmatrix} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
Defined mapping between ellipses

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ called inverse or dual ellipse:

$$\begin{pmatrix} p_x & p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} \bullet \begin{pmatrix} p_x \\ p_y \end{pmatrix} = 1 = \begin{pmatrix} p_x & p_y \\ p_x & p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 p_x \\ a^2 p_x \\ b^2 p_y \end{pmatrix} = a^2 p_x^2 + b^2 p_y^2$$

Introduction to dual matrix operator contact geometry (based on IHO orbits) Quadratic form ellipse $\mathbf{r} \cdot Q \cdot \mathbf{r} = 1$ vs.inverse form ellipse $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ Duality norm relations ($\mathbf{r} \cdot \mathbf{p} = 1$) Q-Ellipse tangents \mathbf{r}' normal to dual Q^{-1} -ellipse position $\mathbf{p} (\mathbf{r}' \cdot \mathbf{p} = 0 = \mathbf{r} \cdot \mathbf{p}')$ Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry Vector calculus of tensor operation

(a) Quadratic form ellipse and Inverse quadratic form ellipse

based on Unit 1 Fig. 11.6

(a) Quadratic form ellipse and *Inverse quadratic form ellipse*

based on Unit 1 Fig. 11.6

Here plot of **p**-ellipse is re-scaled by scalefactor $S=a \cdot b$ **p**-ellipse *x*-radius=1/*a* plotted at: S(1/a)=b (=1 for a=2, b=1) **p**-ellipse *y*-radius=1/*b* plotted at: S(1/b)=a (=2 for a=2, b=1) Introduction to dual matrix operator geometry (based on IHO orbits) Quadratic form ellipse $\mathbf{r} \cdot Q \cdot \mathbf{r} = 1$ vs.inverse form ellipse $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ Duality norm relations ($\mathbf{r} \cdot \mathbf{p} = 1$) Q-Ellipse tangents $\mathbf{r'}$ normal to dual Q^{-1} -ellipse position \mathbf{p} ($\mathbf{r'} \cdot \mathbf{p} = 0 = \mathbf{r} \cdot \mathbf{p'}$) Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry Vector calculus of tensor operation

(a) Quadratic form ellipse and *Inverse quadratic form ellipse*

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = l$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q} \cdot l \cdot \mathbf{p} = l = \mathbf{p} \cdot \mathbf{r}$

Here plot of **p**-ellipse is re-scaled by scalefactor $S=a \cdot b$ **p**-ellipse *x*-radius=1/*a* plotted at: S(1/a)=b (=1 for a=2, b=1) **p**-ellipse *y*-radius=1/*b* plotted at: S(1/b)=a (=2 for a=2, b=1)

(a) Quadratic form ellipse and *Inverse quadratic form ellipse*

 $\begin{array}{l} \textbf{Quadratic form } \mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = l \text{ has mutual duality relations with inverse form } \mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p} = l = \mathbf{p} \cdot \mathbf{r} \\ \textbf{Q} & \textbf{r} \\ \textbf{Q} & \textbf{Q} \\ \textbf{Q} & \textbf{r} \\ \textbf{Q} & \textbf{Q} \\ \textbf{Q} \\ \textbf{Q} & \textbf{Q} \\ \textbf{Q}$

Here plot of **p**-ellipse is re-scaled by scalefactor $S=a \cdot b$ **p**-ellipse *x*-radius=1/*a* plotted at: S(1/a)=b (=1 for a=2, b=1) **p**-ellipse *y*-radius=1/*b* plotted at: S(1/b)=a (=2 for a=2, b=1)

Link \Rightarrow BoxIt simulation of IHO orbits Link \rightarrow IHO orbital time rates of change Link \rightarrow IHO Exegesis Plot Introduction to dual matrix operator geometry (based on IHO orbits) Quadratic form ellipse $\mathbf{r} \cdot Q \cdot \mathbf{r} = 1$ vs.inverse form ellipse $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ Duality norm relations ($\mathbf{r} \cdot \mathbf{p} = 1$) Q-Ellipse tangents $\mathbf{r'}$ normal to dual Q^{-1} -ellipse position \mathbf{p} ($\mathbf{r'} \cdot \mathbf{p} = 0 = \mathbf{r} \cdot \mathbf{p'}$) Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry Vector calculus of tensor operation

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = l$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q} \cdot l \cdot \mathbf{p} = l = \mathbf{p} \cdot \mathbf{r}$

$$\mathbf{p} = \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix} = \begin{pmatrix} (1/a)\cos\phi \\ (1/b)\sin\phi \end{pmatrix} \text{ where: } \begin{aligned} x = r_x = a\cos\phi = a\cos\phi t \\ y = r_y = b\sin\phi = b\sin\omega t \end{aligned} \text{ so: } \mathbf{p} \cdot \mathbf{r} = I \end{aligned}$$

Here plot of **p**-ellipse is re-scaled by scalefactor $S=a \cdot b$ **p**-ellipse *x*-radius=1/*a* plotted at: S(1/a)=b (=1 for a=2, b=1) **p**-ellipse *y*-radius=1/*b* plotted at: S(1/b)=a (=2 for a=2, b=1)

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = l$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q} \cdot l \cdot \mathbf{p} = l = \mathbf{p} \cdot \mathbf{r}$

$$\mathbf{p} = \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix} = \begin{pmatrix} (1/a)\cos\phi \\ (1/b)\sin\phi \end{pmatrix} \text{ where: } \begin{aligned} x = r_x = a\cos\phi = a\cos\phi t \\ y = r_y = b\sin\phi = b\sin\phi t \end{aligned} \text{ so: } \mathbf{p} \cdot \mathbf{r} = I \\ \mathbf{p} \text{ is perpendicular to velocity } \mathbf{v} = \mathbf{\dot{r}}, a \text{ mutual orthogonality} \end{aligned}$$

$$\mathbf{\dot{r}} \bullet \mathbf{p} = \mathbf{0} = \begin{pmatrix} \dot{r}_x & \dot{r}_y \end{pmatrix} \bullet \begin{pmatrix} p_x \\ p_y \end{pmatrix} = \begin{pmatrix} -a\sin\phi & b\cos\phi \end{pmatrix} \bullet \begin{pmatrix} (1/a)\cos\phi \\ (1/b)\sin\phi \end{pmatrix} \text{ where: } \begin{aligned} \dot{r}_x = -a\sin\phi \\ \dot{r}_y = b\cos\phi \end{aligned} \text{ and: } \begin{aligned} p_x = (1/a)\cos\phi \\ p_y = (1/b)\sin\phi \end{aligned}$$

Geometry of dual ellipse Kepler anomalies for vectors $[\mathbf{r}(\phi), \mathbf{p}(\phi)]$ and $d/_{dt}[\mathbf{r}(\phi), \mathbf{p}(\phi),]$ in coordinate (*x*,*y*) space rendered by animation web-app in RelaWavity and described in Lect. 12-advanced.

Introduction to dual matrix operator geometry (based on IHO orbits) Quadratic form ellipse **r**•Q•**r**=1 vs.inverse form ellipse **p**•Q⁻¹•**p**=1 Duality norm relations (**r**•**p**=1) Q-Ellipse tangents **r'** normal to dual Q⁻¹-ellipse position **p** (**r'**•**p**=0=**r**•**p'**) → Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry Vector calculus of tensor operation

Diagonal **R**-matrix acts on vector
$$\mathbf{v}^{try}$$
.
Resulting vector has slope changed by factor $a/b = 2$.
 $\mathbf{R} \cdot \mathbf{v}^{try} = \begin{pmatrix} 1/a & 0 \\ 0 & 1/b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a \\ y/b \end{pmatrix}$
(It increases if $a > b$.)
Diagonal ($\mathbf{R}^2 = \mathbf{Q}$)-matrix acts on vector \mathbf{v}^{try} .
Resulting vector has slope changed by factor a^2/b^2
 $\mathbf{Q} \cdot \mathbf{v}^{try} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix}$
(It increases if $a > b$.)
Either process can go on forever...
Diagonal ($\mathbf{R}^{2n} = \mathbf{Q}^n$)-matrix acts on vector \mathbf{v}^{try} .
Resulting vector has slope changed by factor a^{2n}/b^2
(It increases if $a > b$.)
Either process can go on forever...
Diagonal ($\mathbf{R}^{2n} = \mathbf{Q}^n$)-matrix acts on vector \mathbf{v}^{try} .
Resulting vector has slope changed by factor a^{2n}/b^2
(It increases if $a > b$.)
Either process can go on forever...
Diagonal ($\mathbf{R}^{2n} = \mathbf{Q}^n$)-matrix acts on vector \mathbf{v}^{try} .
Resulting vector has slope changed by factor a^{2n}/b^2
(It increases if $a > b$.)
Either process can go on forever...
Diagonal ($\mathbf{R}^{2n} = \mathbf{Q}^n$)-matrix acts on vector \mathbf{v}^{try} .
Resulting vector has slope changed by factor a^{2n}/b^2
(It increases if $a > b$.)
Either process can go on forever...
Diagonal ($\mathbf{R}^{2n} = \mathbf{Q}^n$)-matrix acts on vector \mathbf{v}^{try} .
Resulting vector has slope changed by factor a^{2n}/b^2
(It increases if $a > b$.)
 \mathbf{R}^n (It is "immune" to \mathbf{R} , \mathbf{Q} or \mathbf{Q}^n :
 \mathbf{R}^n (It is "immune" to \mathbf{R}^{-1} , \mathbf{Q}^{-1} or \mathbf{Q}^n :
 $\mathbf{R}^{-1}|x| = (a)|x|$ $\mathbf{Q}^{-n}|x| = (a^2)^n|x|$

Diagonal **R**-matrix acts on vector
$$\mathbf{v}^{s/p}$$
.
Resulting vector has slope changed by factor $a/b = 2$.
 $\mathbf{R} \cdot \mathbf{v}^{s/v} = \begin{pmatrix} 1/a & 0 \\ 0 & 1/b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a \\ y/b \end{pmatrix}$
(it increases if $a > b$.)
Diagonal ($\mathbf{R}^2 = \mathbf{Q}$)-matrix acts on vector $\mathbf{v}^{s/p}$.
Resulting vector has slope changed by factor a^2/b^2
 $\mathbf{Q} \cdot \mathbf{v}^{s/v} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix}$
Either process can go on forever...
Diagonal ($\mathbf{R}^{2a} = \mathbf{Q}^{a}$)-matrix acts on vector $\mathbf{v}^{s/p}$.
Resulting vector has slope changed by factor a^{2s/b^2}
Either process can go on forever...
Diagonal ($\mathbf{R}^{2a} = \mathbf{Q}^{a}$)-matrix acts on vector $\mathbf{v}^{s/p}$.
Resulting vector has slope changed by factor $a^{2s/b^{2a}} = 4^{a}$.
...Finally, the result approaches *EIGENVECTOR* $|y| = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
of ∞ -slope which is "immune" to \mathbf{R} . \mathbf{Q} or \mathbf{Q}^{a} :
 $\mathbf{R} | y| = (1/b) | y\rangle$ $\mathbf{Q}^{a} | y| = (1/b^{2} \sqrt{a}^{a} | y)$
Eigenvalues
 $\mathbf{R} | a | a | b | y|$
 $\mathbf{R} | x| = (1/a) | x|$
 $\mathbf{R} | x| = (1$

 Introduction to dual matrix operator geometry (based on IHO orbits) Quadratic form ellipse r•Q•r=1 vs.inverse form ellipse p•Q⁻¹•p=1 Duality norm relations (r•p=1) Q-Ellipse tangents r' normal to dual Q⁻¹-ellipse position p (r'•p=0=r•p')
 Operator geometric sequences and eigenvectors
 Alternative scaling of matrix operator geometry Vector calculus of tensor operation

Introduction to dual matrix operator geometry (based on IHO orbits) Quadratic form ellipse $\mathbf{r} \cdot Q \cdot \mathbf{r} = 1$ vs.inverse form ellipse $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ Duality norm relations ($\mathbf{r} \cdot \mathbf{p} = 1$) Q-Ellipse tangents \mathbf{r}' normal to dual Q^{-1} -ellipse position $\mathbf{p} (\mathbf{r}' \cdot \mathbf{p} = 0 = \mathbf{r} \cdot \mathbf{p}')$ Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry Vector calculus of tensor operation

Derive matrix "normal-to-ellipse" geometry by vector calculus: Let matrix $Q = \begin{pmatrix} A & B \\ B & D \end{pmatrix}$ define the ellipse $1 = \mathbf{r} \cdot Q \cdot \mathbf{r} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A & B \\ B & D \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A \cdot x + B \cdot y \\ B \cdot x + D \cdot y \end{pmatrix} = A \cdot x^2 + 2B \cdot xy + D \cdot y^2 = 1$

Derive matrix "normal-to-ellipse" geometry by vector calculus: Let matrix $Q = \begin{pmatrix} A & B \\ B & D \end{pmatrix}$ define the ellipse $1 = \mathbf{r} \cdot Q \cdot \mathbf{r} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A & B \\ B & D \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A \cdot x + B \cdot y \\ B \cdot x + D \cdot y \end{pmatrix} = A \cdot x^2 + 2B \cdot xy + D \cdot y^2 = 1$

Compare operation by Q on vector **r**

with

vector derivative or gradient of $\mathbf{r} \cdot Q \cdot \mathbf{r}$ $\frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \cdot Q \cdot \mathbf{r}) = \nabla (\mathbf{r} \cdot Q \cdot \mathbf{r})$ $\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} (A \cdot x^2 + 2B \cdot xy + D \cdot y^2) = \begin{pmatrix} 2A \cdot x + 2B \cdot y \\ 2B \cdot x + 2D \cdot y \end{pmatrix}$

$$\left(\begin{array}{cc} A & B \\ B & D \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} A \cdot x + B \cdot y \\ B \cdot x + D \cdot y \end{array}\right)$$

Derive matrix "normal-to-ellipse" geometry by vector calculus: Let matrix $Q = \begin{pmatrix} A & B \\ B & D \end{pmatrix}$ define the ellipse $1 = \mathbf{r} \cdot Q \cdot \mathbf{r} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A & B \\ B & D \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A \cdot x + B \cdot y \\ B \cdot x + D \cdot y \end{pmatrix} = A \cdot x^2 + 2B \cdot xy + D \cdot y^2 = 1$

with

Compare operation by Q on vector **r**

vector derivative or gradient of $\mathbf{r} \cdot Q \cdot \mathbf{r}$ $\frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \cdot Q \cdot \mathbf{r}) = \nabla (\mathbf{r} \cdot Q \cdot \mathbf{r})$ $\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} (A \cdot x^2 + 2B \cdot xy + D \cdot y^2) = \begin{pmatrix} 2A \cdot x + 2B \cdot y \\ 2B \cdot x + 2D \cdot y \end{pmatrix}$

$$\left(\begin{array}{cc} A & B \\ B & D \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} A \cdot x + B \cdot y \\ B \cdot x + D \cdot y \end{array}\right)$$

 $\frac{\partial}{\partial \mathbf{r}} \left(\frac{\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}}{2} \right) = \nabla \left(\frac{\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}}{2} \right) = \mathbf{Q} \cdot \mathbf{r}$

Very simple result:

Introduction to dual matrix operator geometry (based on IHO orbits) Quadratic form ellipse $\mathbf{r} \cdot Q \cdot \mathbf{r} = 1$ vs.inverse form ellipse $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ Duality norm relations ($\mathbf{r} \cdot \mathbf{p} = 1$) Q-Ellipse tangents $\mathbf{r'}$ normal to dual Q^{-1} -ellipse position \mathbf{p} ($\mathbf{r'} \cdot \mathbf{p} = 0 = \mathbf{r} \cdot \mathbf{p'}$) (Still more) Operator geometric sequences and eigenvectors Alternative scaling of matrix operator geometry Vector calculus of tensor operation

Q:Where is this headed? Preview of Lecture 8 A: Lagrangian-Hamiltonian duality

AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

<u>Web Resources - front page</u> UAF Physics UTube channel Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

2014 AMOP 2017 Group Theory for QM 2018 AMOP

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Representaions Of Multidimensional Symmetries In Networks - harter-jmp-1973

Alternative Basis for the Theory of Complex Spectra

Alternative_Basis_for_the_Theory_of_Complex_Spectra_I - harter-pra-1973

Alternative Basis for the Theory of Complex Spectra II - harter-patterson-pra-1976

Alternative_Basis_for_the_Theory_of_Complex_Spectra_III_-_patterson-harter-pra-1977

Frame Transformation Relations And Multipole Transitions In Symmetric Polyatomic Molecules - RMP-1978

Asymptotic eigensolutions of fourth and sixth rank octahedral tensor operators - Harter-Patterson-JMP-1979

Rotational energy surfaces and high-J eigenvalue structure of polyatomic molecules - Harter - Patterson - 1984

Galloping waves and their relativistic properties - ajp-1985-Harter

Rovibrational Spectral Fine Structure Of Icosahedral Molecules - Cpl 1986 (Alt Scan)

Theory of hyperfine and superfine levels in symmetric polyatomic molecules.

- I) Trigonal and tetrahedral molecules: Elementary spin-1/2 cases in vibronic ground states PRA-1979-Harter-Patterson (Alt scan)
- II) Elementary cases in octahedral hexafluoride molecules Harter-PRA-1981 (Alt scan)

Rotation-vibration spectra of icosahedral molecules.

- I) Icosahedral symmetry analysis and fine structure harter-weeks-jcp-1989 (Alt scan)
- II) Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene weeks-harter-jcp-1989 (Alt scan)
- III) Half-integral angular momentum harter-reimer-jcp-1991

Rotation-vibration scalar coupling zeta coefficients and spectroscopic band shapes of buckminsterfullerene - Weeks-Harter-CPL-1991 (Alt scan) Nuclear spin weights and gas phase spectral structure of 12C60 and 13C60 buckminsterfullerene -Harter-Reimer-Cpl-1992 - (Alt1, Alt2 Erratum) Gas Phase Level Structure of C60 Buckyball and Derivatives Exhibiting Broken Icosahedral Symmetry - reimer-diss-1996

Fullerene symmetry reduction and rotational level fine structure/ the Buckyball isotopomer 12C 13C59 - jcp-Reimer-Harter-1997 (HiRez) Wave Node Dynamics and Revival Symmetry in Quantum Rotors - harter - jms - 2001

Molecular Symmetry and Dynamics - Ch32-Springer Handbooks of Atomic, Molecular, and Optical Physics - Harter-2006

Resonance and Revivals

- I) QUANTUM ROTOR AND INFINITE-WELL DYNAMICS ISMSLi2012 (Talk) OSU knowledge Bank
- II) <u>Comparing Half-integer Spin and Integer Spin Alva-ISMS-Ohio2013-R777 (Talks)</u>
- III) Quantum Resonant Beats and Revivals in the Morse Oscillators and Rotors (2013-Li-Diss)

Resonance and Revivals in Quantum Rotors - Comparing Half-integer Spin and Integer Spin - Alva-ISMS-Ohio2013-R777 (Talk)

Molecular Eigensolution Symmetry Analysis and Fine Structure - IJMS-harter-mitchell-2013

Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2013

QTCA Unit 10 Ch 30 - 2013

AMOP Ch 0 Space-Time Symmetry - 2019

*Index/Search is disabled - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display. <u>https://modphys.hosted.uark.edu/markup/AMOP_References.html</u> AMOP reference links (Updated list given on 2nd and 3rd pages of each class presentation)

(Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 23-26), (PSDS - Ch. 5, 7)

Int.J.Mol.Sci, 14, 714(2013), QTCA Unit 8 Ch. 23-25, QTCA Unit 9 Ch. 26, PSDS Ch. 5, PSDS Ch. 7

Intro spin ½ coupling <u>Unit 8 Ch. 24 p3</u> H atom hyperfine-B-level crossing <u>Unit 8 Ch. 24 p15</u>

Hyperf. theory <u>Ch. 24 p48.</u>

Hyperf. theory Ch. 24 p48. <u>Deeper theory ends p53</u>

Intro 2p3p coupling <u>Unit 8 Ch. 24 p17</u>. Intro LS-jj coupling <u>Unit 8 Ch. 24 p22</u>. CG coupling derived (start) <u>Unit 8 Ch. 24 p39</u>. CG coupling derived (formula) <u>Unit 8 Ch. 24 p44</u>. Lande' g-factor

<u>Unit 8 Ch. 24 p26</u>.

Irrep Tensor building <u>Unit 8 Ch. 25 p5</u>.

Irrep Tensor Tables <u>Unit 8 Ch. 25 p12</u>.

Wigner-Eckart tensor Theorem. <u>Unit 8 Ch. 25 p17</u>.

Tensors Applied to d,f-levels. <u>Unit 8 Ch. 25 p21</u>.

Tensors Applied to high J levels. <u>Unit 8 Ch. 25 p63</u>. *Intro 3-particle coupling.* <u>Unit 8 Ch. 25 p28</u>.

Intro 3,4-particle Young Tableaus <u>GrpThLect29 p42</u>.

Young Tableau Magic Formulae <u>GrpThLect29 p46-48</u>.

*Index/Search is disabled - a web based A.M.O.P. oriented reference page, with thumbnail/previews, greater control over the information display. <u>https://modphys.hosted.uark.edu/markup/AMOP_References.html</u> and eventually full on Apache-SOLR Index and search for nuanced, whole-site content/metadata level searching.

AMOP reference links (Updated list given on 2nd and 3rd and 4th pages of each class presentation)

Predrag Cvitanovic's: Birdtrack Notation, Calculations, and Simplification

Chaos_Classical_and_Quantum_- 2018-Cvitanovic-ChaosBook Group Theory - PUP_Lucy_Day_- Diagrammatic_notation_- Ch4 Simplification_Rules_for_Birdtrack_Operators_- Alcock-Zeilinger-Weigert-zeilinger-jmp-2017 Group Theory - Birdtracks_Lies_and_Exceptional_Groups_- Cvitanovic-2011 Simplification_rules_for_birdtrack_operators-_jmp-alcock-zeilinger-2017 Birdtracks for SU(N) - 2017-Keppeler

Frank Rioux's: <u>UMA</u> method of vibrational induction

Quantum_Mechanics_Group_Theory_and_C60 - Frank_Rioux - Department_of_Chemistry_Saint_Johns_U Symmetry_Analysis_for_H20-_H20GrpTheory-_Rioux Quantum_Mechanics-Group_Theory_and_C60 - JChemEd-Rioux-1994 Group_Theory_Problems-_Rioux-_SymmetryProblemsX Comment_on_the_Vibrational_Analysis_for_C60_and_Other_Fullerenes_Rioux-RSP

Supplemental AMOP Techniques & Experiment

Many Correlation Tables are Molien Sequences - Klee (Draft 2016)

High-resolution_spectroscopy_and_global_analysis_of_CF4_rovibrational_bands_to_model_its_atmospheric_absorption-_carlos-Boudon-jqsrt-2017 Symmetry and Chirality - Continuous_Measures_-_Avnir

Special Topics & Colloquial References

r-process_nucleosynthesis_from_matter_ejected_in_binary_neutron_star_mergers-PhysRevD-Bovard-2017