Geometry and Symmetry of Coulomb Orbital Dynamics

The Lenz vector and orbital analog computers*

(Ch. 2-4 of Unit 5 12.05.17)

Review of lecture 26
Eccentricity vector € and (g, \)-geometry of orbital mechanics

Analytic geometry derivation of e-construction

Connection formulas for (a,b) and (,\) with (v,R)

Detailed ruler & compass construction of e-vector and orbits
(R=-0.375 elliptic orbit)
(R=~+0.5 hyperbolic orbit)
Properties of Coulomb trajectory families and envelopes
Graphical e-development of orbits
Launch angle fixed-Varied launch energy
Launch energy fixed-Varied launch angle

Launch optimization and orbit family envelopes

Geom.of Coulomb Scatt.AJP 40 4 (1972)
Lenz Vector...analog computersAJP 44 4 (1974)

W. G. Harter
Instituto de Fisica “Gleb Wataghi

» Universidade E:

dual de C: " C

Sao Paulo, Brasil

(Received 31 March 1975; revised 10 June 1975)

P P

A single geometrical diagram based on the Lenz vector shows the qualitative and quantitative
features of all three types of Coulomb orbits. A simple analog computer can be made for an
overhead projector by using this theory, and a number of interesting effects can be efficient!

demonstrated.

L. INTRODUCTION: THE ECCENTRICITY
VECTOR

Occasionally, a geometrical construction and accom-
panying picture is worth a great deal more to the physicist
or the physics student than pages of equations and solu-
tions, especially now that computer graphics are so avail-
able. Since Newton’s time the geometrical approach has
come to be regarded as more clumsy than other methods
of thought, and some very pretty pictures and proofs of
physical phenomena have undoubtedly been lost. An
example of such a construction involving Rutherford scat-
tering was discussed in a recent article’ by my students
and myself, and the following is an improvement of this
which describes general Coulombic orbit mechanics.

The generalization we shall describe below is based
partly on a more recently discovered quantity called the
Lenz-Runge vector®® or the ‘“‘eccentricity”” vector € de-
fined by Eq. (1). There r is the position vector of the or-
biting particle, L is its angular momentum, p is its linear
momentum, m is its mass, and k is the gravitational (or
electrostatic) coefficient:

e=r/r=LXp/km. (1)

Lately this quantity has received a flurry of attention in
group theoretical studies of the hydrogen atom*; however,
we shall use only its geometrical and classical properties.

In particular, the main property of € is that it is a con-
stant vector for any particle moving according to a
Coulomb field. Vector e points along the major axis of
cllipse, parabola, or hyperbola, whichever is the approp-
riate orbit of the particle. Furthermore, the magnitude e
of this vector is the eccentricity of the orbit.

To show that this is consistent with the usual formula-
tion, we take the dot product of this vector € with the
position r as in Eq. (2). This then reduces to the follow-
ing equation (3) of a conic section in polar coordinates,
which is the general orbit equation®:

ercosf=cer=y=LXper/km (2)
=y+LeL/bm,
v == (L*/km)(1 =€ cosd)!, (3)

In Sec. II a simple geometric construction using these
properties is shown to describe qualitatively and quantita-
tively the Coulomb orbits for all three cases: namely, the
attractive case (k << 0) with positive energy, with negative
energy, and the repulsive case (k = 0).
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Fig. 1. Initial position and
momentum must be given
before construction of the re-
sulting orbit is possible,

S(star)

Finally, it is shown how this construction leads to an
analog computer of orbits that can be made for a few dol-
lars to fit onto an overhead projector. This device can be
appreciated by elementary classes (even large elementary
classes if you use the right projector) when they know
only a little about conic sections, since the more tedious
mathematics is built into the device.

II. COMPUTING ORBITS BY RULER AND
COMPASS

We start by simply listing three steps of an orbit con-
struction while demonstrating their application to a par-
ticular case of a satellite orbiting a star. Then a general
proof of the steps will be provided along with further dis-
cussion and applications.

Suppose you are given the initial position and velocity
of a satellite relative to some very massive star. If these
quantities are given in a pictorial form which shows the
angle ¥ between momentum vector vector p =mv and
the radius line PS in Fig. 1, and if the magnitude of v is
given by the ratio R =T/V of the kinetic energy
(T =mv?*2) to the potential energy (V = k/r), then the
construction below proceeds immediately. Otherwise,
these quantities must be calculated before proceeding. (In
the potential energy of the star’s gravity we have
k = —GMm, where M is the star mass and G is the uni-
versal constant of gravitation.) Note that R is minus the
squared ratio of initial velocity to the escape velocity in

Fig. 2. Doubling the angle between the momentum and the position vec-
tors gives a line QP which must contain the orbit focus.
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Fig. 3. A line perpendicul

1o the
scale, linear in the initial R = KE/PE.

will serve as an energy

the case of attractive Coulomb force. For our example
below we will take R to be —%. The construction is
given now.

Step 1. Draw circles around and through the star S
and satellite or planet P as shown in Fig. 2. Mark off arc
QS so it is double the arc RS on the circle around the
planet, and draw straight line through P and Q.

Step 2. Copy the arc SRQ onto the arc PT of the cir-
cle around the star. A line drawn through P and T should
be perpendicular to p and will serve as the R = T/V axis.
Point P corresponds to R =0 while T corresponds to
R = —1, and the R scale is linear (sce Fig. 3).

Step 3. Locate the given ratio on the R scale (for the
example we take R = —%) and extend a line from the
star S through this point until it intersects the line QPS' at
S’. Point S" is the second focus of the conic section orbit
tangent to vector p. In Fig. 4 the appropriate ellipse has
been drawn by using the foci S and S'.

Had we picked R < —1, the intersection S’ on line QP

“would have been in the upper left-hand side of Fig. 4,

whereupon 8" and S would be foci of a hyperbola tangent
to p.

The first thing to understand about the construction is
step 1, where we claim that line QP must contain the
other focus. This is easier to see for the ellipse where the
physical definition of the foci involves the emission of
light or sound at one focus followed by the convergence
at the other. Then step 1 makes the angle of incidence at

Fig. 4. The desired energy R = — % on the R scale points to the correct

orbit focal point at S’ on the focus locus.
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Fig. 5. The algebra of the Lenz vector is shown to correspond with the
construction of Figs. 1-4. (This figure is drawn for positive R.)

P equal to the angle of reflection. Similar properties hold
for the hyperbola except that the reflecting surfaces must
be normal to the curve.

So we are left with the problem of showing where on
line QP the other focus resides. The solution to this in-
volves the construction of the eccentricity vector € of Eq.
(1), which is done in steps 2 and 3. To prove this is cor-
rect, we rewrite Eq. (I) in the form below (the notation
" is used to denote unit vectors:

e=7—=LXp/km

=7 = [(nor)(mv) siny/km |LXp, @

2
my/2 s
e=r-—7—k ; 2sinyLXp,

€=7-2RsinyLXp.

This is labeled in Fig. 5 where, for convenience, the
ratio R is taken to be positive in order to correspond to a
repulsive (k = 0) Coulomb field, wherein the focus S’
falls between Q and P for all initial speeds. However, the
generality of the construction for all cases can be seen.

With this construction in mind now, one may think of
quite a number of orbit problems which can be solved
geometrically. For example, returning to the attractive
gravity of the star S in Fig. 1, suppose we desired to find
in what direction (if any) a projectile at P could be
launched so that it would pass through the point P’ in
Fig. 6(a), if its initial speed is assumed to be such that
we have the energy ratio R = —%.

Now it is well known that the major axis 2a of an orbit
is a function of energy of the orbiting particle only.® For
the orbit drawn in Fig. 4 this distance 2a is equal to the
sum of distances SP and PS". Now we propose to make a
projectile at P with the same energy (with R = —%) go
through P’ in Fig. 6(a). Such an orbit must have its sec-
ond focus on a circle around P that includes point S'. In
Fig. 6(b) it is seen that two points, labeled S'* and S,
on this circle give orbits through P and P’. These are
found by marking distance SM" on line SP’ equal to the
distance SM (this distance is the desired axis length 2a)
and then finding S and S'"" at the intersections of a cir-
cle of radius P'M’ around P’ with the R = —% circle
about P. The resulting two orbits are drawn in Fig. 6(c).
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Eccentricity vector € and (g, \) geometry of orbital mechanics

Isotropic field V=V(r) guarantees conservation angular momentum vector L

(Review of Lect. 26) L=rxp=mrxi
(...for sake of comparison...)

Coulomb V=-k/r also conserves eccentricity vector €  (IHO V=¢/2)r? also conserves Stokes vector S
Si= ( X2 "‘]912 -X2? -pzZ )

pr=£_p><(r><p) Sr=xip1+ xp>

km r km Sc= X1p2 = X2D1

E=0—

A = km-e is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vectoy.Oenerate symmetry groups:U(2) CU(2)
» or:R(3) CR(3)xR(3) CO(4)

Consider dot product of € with a radial vector r: ...or of € with momentum vector p:
per pepXxL
rer repxL rxpeL LeL gop= — =per=p
goy = — =y — =y — 7 km r
Let angle ¢be angle betwggg_e—agd,radial vector r 1L i =0 apogee
e —€
er ) L or r L'lfm 2 A T ;
rcos¢=r—— Ve _ : :
_ For A=L"/km that matches: r= =1 A ifi ¢g== Feni
km l—€cos¢ I—ecos0 ¢ 5
A, .
(a) Attractive (k>0) (b) Attractive (k>0) (c) Repulsive (k<0) e if: ¢=m perigee
Elliptic (E<0) Hyperbolic (E>0) Hyperbolic (E>0) \ o

/  latus
(Rotational p pXL pXL onth i ;adius
(Nothing N r XL E
momentum here p N\ ~ perhelion aphelion
) € N N) 0 QE-c-oo-ooo-- @ ----------------------
— : A
L=rxp is =g \ & > < g > e
normal to the A here) (attrative (repulsivep {Nothing /
) (attracti e=Tr- XL orce force here) perigee apogee
orbit plane.) (atiractive = PAL center)
force center) km center) _




(From Lecture 26 p. 49) Geometry of Coulomb orbits (Let: r =p here)

r/e = Me,t.rcos @ r=A+recos ¢ r=
AR ; l—€coso
' Y Fcos O (Review of Lect. 2)5)
D rle
N 1 1—-¢€ecosgp 1 Scos¢
€ e ipe— — —
, r A A A
r'/e
. N/ (1+¢€) perhelion
W
D| /e , L~k JK +2E1%m )
. = COS
perhelionNy- aphelion p-=x\/(1-¢) P ,Ltz/m ,Ltz/m
~ : — ™ : o -
All conics defined by: Major axis: py+p-=2a
Defining eccentricity € p++p_:[>\(1+8)+>\(1_8)]/(]‘_82):2>\/’1_82‘
Distance to Foca-point =&+ Distance to Directrix-line Focal axis: p4+- p—=2ac
i 5 p-p—=[N(1+€)-N(1-¢)]/(1-€?)=2Xe/|1-€2|
(x,y) . physical | (7,0) Minor radius: b=/ (a?-a2c2)=\/(a\) (ellipse:e<1)
parameters | constants | parameters  Minor radius: b=V (a?c2-a2)=\/ (\a) (hyperb:e>1)
k k k*m+2°E b’ £’= 1—b—2 (ellipse: £<1) b—2=\/1—82
a=—— FE=— E= 5 = 1i—2 a X a 2
2E 2a k*m a £’= I+— (hyperbola: e>1) —= e’ -1
L r » ’ }
b= . L=Jkml | A= — X =a(l-€?) (ellipse:e<l)
2mE| km a X =a(e?-1) (hyperb:e>1)
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Fig. 6. Typical orbit problem solved geometrically. (a) Problem: Find
orbits that carry a satellite with initial R = — % from P o P'. (b) The
foci of all R = — % orbits reside on a circle around P. The focus S°
from Fig. 4 determines the circle. and then new foci S and S'*' are
found as described in the text. (¢) The two solutions to the problem are
shown.

Clearly, there exist a set of points P’ that can be
reached from P with the initial energy ratio of R = —'%
along two orbits. Outside this set will be points that can-
not be reached by any R = —% orbit. Now it can be seen
that the boundary of this set is composed of points that
can ‘be reached by just one orbit, and this envelope of or-
bits is an cllipse with foci at S and P,

It is possible to demonstrate this phenomena and other
interesting things with a simple analog computer de-
scribed in Sec. III.

III. AN ORBIT DEMONSTRATION COMPUTER

The computer-demonstrator described below is based
upon some principles which were mentioned in Sec. II.
The scale of the computer [Fig. 7(a)] gives the position
of the movable second focus (the first focus is fixed at
the center of the Coulomb field), which varies with the
angle and magnitude of the initial velocity or **injection
vector,” as it is called in space jargon. The concentric
circles labeled —6/10, —5/10, —4/10, . . ., each form
the focus locus for an orbit with fixed R = —6/10,
—5/10, —4/10, respectively, and variable injection angle.
This injection angle is measured as an elevation above the
“horizon™ drawn in the figure, where one can imagine
injecting a ballistic missile or satellite into orbit from a
point near the earth’s surface. In Fig. 7(a) the injection
point is the center of the —6/10, —5/10, —4/10, . . .,
circles and corresponds to point P in Fig. 6(b).

The scale pictured in Fig. 7(a), or one very similar to
it, is to be printed on a transparency and glued to a
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Fig. 7. Coordinate grids for orbital analog computers. (a) Elliptical orbit
scale (0 >R > — 1). This can be used with the apparatus in Figs. 8 or

9. Radial lines marked =10°, £20°, . . ., are each the focus locus for
orbits with an initial velocity = 10°, +20°, . ., , above the horizon
line. The circle marked 20°, 40°, . ., 3407 can be taken as the Earth's
surface, or any circle inside this one can be taken to be the surface of
any celestial body. The R values apply correctly in either case, while
the velocity values are marked for the former case only. (b) Hyperbolic
orbit scale (0 <R <=) and (—* <R < —1). This can only be used
with the apparatus shown in Fig. 9. Outer circles locate foci for orbits
of particles attracted to the force center, while inner circles locate foci
for orbits in a repulsive field. In either case a radial line marked =107,
=200, ..., is the focus locus for an orbit with the initial velocity an
angle +10°, 20°, . . ., above the nadir line.

Plexiglas plotting board that will fit on ap overhead pro-
jector. The plotting board and attachments shown in Fig.
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e-vector and Coulomb orbit construction steps
Copy double angle 2~ (/FPQ ) onto /PFT

Extend /PFT chord PT to make R-ratio scale line
Label chord PT with R=0 at P and R=-1.0 at T.

Mark R-line fractions R=0, +1/4, +1/2,... above P and
R=0,-1/8-1/4,-122,...,-3/4 below P and -5/4,-3/2,... below T.

Pick launch point P Copy F-center circle around launch point P
(radius vector r ) Copy elevation angle ~ (/FPP’ ) onto /P'PQ

and elevation angle ~ from radius  Extend resulting line QPQ’ to make focus locus

(momentum initial p direction )

KE/PE

Reasowr
Line r from I focus /"

Pick initial R=KE/PE value

(here R=-3/8) Draw g-vector

from focus F to R-point N

and beyond to 21 foc A .

V >
r

, ctor

o _ Initial KE _ mv*(0)/2
Initial PE -k /r(0)
focus F and 27 focus F' allow final (

construction of orbital trajectory. =t

Initial velocity ]2_ N v (0)

Escapevelocity | /2 (c0)

/Ooé Here it is an R=-3/8 ellipse.
. (Detailed Analytic geometry of e-vector follows.)




e-vector and Coulomb orbit construction steps
Copy double angle 2~ (/FPQ ) onto /PFT

Copy F-center circle around launch point P
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Pick launch point P
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and elevation angle ~ from radius Extend resulting line QPQ’ to make focus locus ) .
gle~ /i & QPQ Mark R-line fractions R=0, +1/4, +1/2,... above P and
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2/N\ (From Lecture 26 p. 71
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Pick initial R=KE/PE
\\ b iberbola ick initial /PE value
' (here R=+1/2) Draw g-vector 105
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construction of orbital trajectory. L

nd / 2
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Here it is an R=+1/2 hyperbola.

. (Detailed Analytic geometry of e-vector follows.)
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Fig. . Orbital computer design: cheaper model that computes elliptical
orbits only using the scale of Fig. 7(a). A Plexiglas sheet that is about
Y% in. thick has a string hole at the orbit's center. A transparency
(Xerox, 3-M, etc.) of Fig. 7(a) is taped in position on the underside.
(Caution: One should avoid marking pens that permanently mark plas-
tic.)
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8 go with Fig. 7(a) and can be assembled in a few min-
utes by using odds and ends. A more sophisticated ap-
paratus is shown in Fig. 9. The simple apparatus of Fig.
8 produces the well-known elliptical orbits and trajec-
tories of planets and satellites, but not the hyperbolic
trajectories characteristic of higher-than-escape velocity
meteors or of the repulsive Coulomb force problems. The
second apparatus (Fig. 9) is designed to handle all cases,
provided that the appropriate focal point scale is inserted.

The operation of either plotter begins with the position-
ing of second focal point S" according to the scale on the
plotting board. Then the marking pen is poked into a
small identation at P and held while the strings to S and
S’ are tightened. Finally, you slide the pen out along the
board in such a way that the strings stay tight and the de-
sired trajectory is drawn.

The apparatus in Fig. 8 will thus make an ellipse since
the sum of distances SP and S'P is constant. The ap-
paratus in Fig. 9 does the same when the spool brakes are

o

o /TN staine
/7 N\ [ = \cuawe
— \ | 2 | and
[ =) | \ ! markinG
! / / PEN TIP

::22;-5 cLUTCH
Fig. 9. Orbital computer design: a more elaborate model that computes
general Coulomb orbits. The ellipse drawing mode is obtained when,
first, the clamp is opened to allow the string to slide and then the spool
brakes are tightened after the initial adjustment has been made with the
use of the scale in Fig. 7(a). The hyperbola drawing mode is obtained
when the string clamp and spool clutch are tightened but the brakes are
released. The spools must turn together after the initial adjustment has
been made with the use of the scale in Fig. 7(b). One hand can maintain
the string tension while drawing the orbit, and the other hand can con-
trol the paying out of string. (Alternately, springs on the spool axis ac-
complish the same thing.)
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Fig. 10. Sample computer trajectory problem. One finds the minimum-
energy trajectory for a given range p. Initial velocity v and @ follow
casily from the geometry of the computer scale in Fig. 7(a).

tightened and the string clamp on the marking pen is
loosened.

The apparatus in Fig. 9 will produce a hyperbola if the
difference between distances SP and S'P is constant. This
is accomplished by tightening the string clamp and the
clutch so that two string spools reel equal amounts of
string in or out and the constant difference in length is
maintained.

IV. SOME USES FOR COMPUTERS

For the computer to be set up to draw elliptical orbits,
there is one important question that can be answered im-
mediately: To throw with minimim initial velocity a free
falling spacecraft between two fixed points near the earth
and a distance p apart, what initial angle # and speed v
are needed? (We imagine a fixed coordinate system here,
not a rotating one.)

Measuring this range by a great circle angle p, we see
that the focus of the orbit must be on a line through the
Earth’s center, making an angle p/2 with the launch point
P. The smallest R circle [recall Fig. 7(a)] intersecting
this line is the one tangent to it and represents the solu-
tion to the problem. Indeed, the algebraic solution to this
problem follows from the diagram in Fig. 10 and is given
there. Note that the angle @ approaches 45° as the range
becomes small compared to the radius of the Earth.

Note that one may change the radius of the starting
point P by simply reinterpreting the scale of the compu-
ter. For example, if the starting point is located at a
height of, say, four times the Earth’s radius, then the vel-
ocities marked on this scale are all divided by the square
root of this factor, in this case, by 2.

With the computer set up to draw hyperbolic orbits and
the appropriate scales available, there are a number of in-
teresting problems to examine. For example, the
attractive-field positive-energy scale allows one to exhibit
the paths of meteorites. Given the impact direction and
speed, one can extrapolate to find its origin.

The hyperbolic computer setup can be used to de-
monstrate Rutherford scattering for either the repulsive
field (see Ref. 1) or the attractive field. At the same time
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Three pairs of parameters for Coulomb orbits:

Algebra 0f€—COﬂSt7‘MCflOn geometry 1.Cartesian (a,b), 2.Physics (E,L), 3.Polar (,\)

. . KE . b*
The eccentricty parameter relates ratios R = ——and — Now we relate a 4th pair: 4.Initial (v,R)
a
4 )
£2= 1+4R(R+1)sin2y
b2 . .2 b2 2 . . . p2
=1-— forellipse (e<1) where: 4R(R+l)sin"y=——=¢"—1 implying: R(R+])<0  (or:-R">R)
a’ a® (or: 0>R>-1
b2 ) b2 7 : : : _R2 R
=1+ — for hyperbola (¢ >1) where: 4R(R+l)sin“y=+— =¢e“—1 implying: R(R+1)>0  (or:-R"<R)
a? a2 (or: O<R<-1)
- J
—k : KE . ... .
Total 2—:E =energy = KE+PE relates ratio R= 7E to individual radii a, b, and A.
a
— — 1 1
—=F=KE+PE=R PE+PE=(R+])PE= (R+1)—k or: —=(R+l)—=(R+])
2a r 2a r
1 : L :
a=— = assuming unit 1nitial radius (r=1).
2(R+1)  2(R+D)
. b = b — .
4R(R+])sin“y=7F — implies: 2\/ FR(RH)siny=—or: b= 2a\/ FR(R+1)siny
a

a

FR . /iR . : . .
b=r |[—siny| = [——siny assuming unit initial radius (=1
[ R+l }/[ R+l 4 5 ( )D

Latus radius is similarly related:

12
[ =—=F 2rRsin27/j
a

(Review of Lect. 26 p.107-108)




KE b2 ‘Cartesian (a,b), 2.Physics (E,L), 3.Polar (g,\)
The eccentricty parameter relates ratios R=——and —

Algebra of e-construction geometry %‘W > of parameters for Coulomb orbits:
N

ow we relate a 4th pair: 4.Initial (,R)

~— _— \ T~

S
//
|

(e°= H4R(R+)sin"y R \
b ) b* \ |
=1- —zelllpse(e <) 4R(R+H)sm~y=— — \
a a
? B
= 1+— hyperbola (€ > 1) 4R(R+])sin"y =+—
\_ a a_ /

a= = assuming unit initial radius (r=1).

_ 2(RH)  2(RH])

- \ e
TR . FR . . o , -

b=r, |——siny| =,|——siny assuming unit initial radius (»=1)

- R+ R+l

Latus radius 1s similarly related:

12
[ =—=F 2rRsin2y]
a

2

From &~ result (at top):

g = 2\ FR(RH)siny = \/+(l-€?)
(Review of Lect. 26 p.107-109)




Eccentricity vector € and (g, \)-geometry of orbital mechanics

Analytic geometry derivation of e-construction
Connection formulas for (a,b) and (,\) with (+,R)
Detailed ruler & compass construction of e-vector and orbits
> (R=-0.375 elliptic orbit)
(R=4+0.5 hyperbolic orbit)
Properties of Coulomb trajectory families and envelopes
Graphical e-development of orbits
Launch angle fixed-Varied launch energy

Launch energy fixed-Varied launch angle
Launch optimization and orbit family envelopes



R=-3/8 elliptic orbit
construction
Ext.end FP to make R=-3/8
majo,r axzs, Sum -
& FPP :(r+r'=2a) at
, .
L Intersect
of r'-arc
7/
FP

Coullt Web Simulation
Elliptical R=-3/8
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Strike radius-r arc about R=-3/8 elliptic orbit
. / . . .

point P to intersect original construction

radius-r circle about focus ¥ R=-3/8

at ends of bisection lineBB’. V=45
Draw radius-a circle at ¥

tangent to bisection lineBB

radius-a

Coullt Web Simulation
Elliptical R=-3/8
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R=-3/8 elliptic orbit
construction
R=-3/8
V=49

Draw radius-a

Draw radius-a and radius-b circles.ar O Coullt Web Simulation
(Center of bisection line (£b). Elliptical R=-3/8
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R=-3/8 elliptic orbit
construction
R=-3/8
V=49

P .

Draw radius-a cirele a

Draw radius-a and radius-b circles.at O
(Center of bisection line (+b).



R=-3/8 elliptic orbit

\/3—4 construction
.2 _

8=\/1—|—;1R(R+14)sm Y= ru 73 R=-3/8
AR5 V=45
b= isin}/ —\/E =.54

R+1 10

2
A= b—=2Rsin2y = §=.375

a 8

b = 24/ R(R+1)siny = tan 34°
a

. . /
Draw radius-a circle at F

Draw radius-a and radius-b circlds.at O
(Center of bisection line (+b).) Do (a.b)-ellinse construction.



Eccentricity vector € and (g, \)-geometry of orbital mechanics

Analytic geometry derivation of e-construction
Connection formulas for (a,b) and (,\) with (7,R)
Detailed ruler & compass construction of e-vector and orbits
(R=-0.375 elliptic orbit)
> (R=~+0.5 hyperbolic orbit)
Properties of Coulomb trajectory families and envelopes
Graphical e-development of orbits

Launch angle fixed-Varied launch energy
Launch energy fixed-Varied launch angle
Launch optimization and orbit family envelopes

Lenz Vector...analog computersAJP 44 4 (1974)

Fig. 7. Coordinate grids for orbital analog computers. (a) Elliptical orbit

scale (0 >R > ~ 1). This can be used with the apparatus in Figs. 8 or .

9. Radial lines marked =10°, £20°, . . ., are each the focus locus for =~

orbits with an initial velocity = 10°, £20°, .., , above the horizon
line. The circle marked 20°, 40°, |, . ., 3407 can be taken as the Earth's

surface, or any circle inside this one can be taken to be the surface of

any celestial body. The R values apply correctly in either case, while
the velocity values are marked for the former case only. (b) Hyperbolic
orbit scale (0 <R < =) and (—=* <R < —1). This can only be used
with the apparatus shown in Fig. 9. Outer circles locate foci for orbits
of particles attracted to the force center, while inner circles locate foci
for orbits in a repulsive field. In either case a radial line marked =107,
=200, .. ., is the focus locus for an orbit with the initial velocity an
angle =10°, £20°, . . ., above the nadir line.

/
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Major diameter 2a is difference (r-r'=2a). R=+1/2 hyperbal IC
Major radius a is half of difference (r-r’)/2=a

Major diameter 2a needs to be centered on F-F focal axis orbit construction

R=+1/2
V=45

Coullt Web Simulation
Hyperbolic R=1/2
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Major diameter 2a is difference (r-r'=2a). R=+]/2 hyperbglic
Major radius a is half of difference (r-r')/12=a ...,

Major diameter 2a needs to be centered on F-F focal axis orbit construction
1. Bisect F-P radius r using F-P circle intersections to define r/2 sections. ----:

R=+1/2
V=49

Coullt Web Simulation
Hyperbolic R=1/2
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Major diameter 2a is difference (r-r'=2a). R=+1/ hyperbal IC
Major radius a is half of difference (r-r’)/2=a eee oo,

Major diameter 2a needs to be centered on F-F focal axis ----=--==sesemsemnee- . orbit construction
1. Bisect F-P,radius r using F-P cii;cle intersections to define r/2 sections. ----1
2. Bisect F-F focal axis using F-F' circle intersections to locate orbit center C.--- R=+1/

V=49




Major diameter 2a is difference (r-r'=2a). R=+1/2 hyper bolic
Major radius a is half of difference (r-r')/2=a =iy -

Major diameter 2a needs to be centered on F-F focal axis ----=--==sesemsemnee- . E orbit construction
1. Bisect F-P,radius r using F-P cifcle intersections to define r/2 sections. ----+ 5
2. Bisect F-F focal axis using F-F' circle intersections to locate orbit center C.--- 5 R=+1/

3. Bisect F'-P radius r’ using F'-P circle intersections. ------=-=-=sesmsmsmmsmsmaemsmnn. :

V=49




Major diameter 2a is difference (r-r'=2a). R=+1/2 hyperbal iC
Major radius a is half of difference (r-r')/2=a i -

Major diameter 2a needs to be centered on F-F focal axis -we-veeemeememeemn--. b . orbit construction

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections. --..: i

2. Bisect F-F focal axis using E-F circle intersections to locate orbit center C.--- R=+1/2
3. Bisect F'-P radius r’ using F'-P circle intersections. ----------w--weemeemaemaemaemnns :

4. Swing radius r’[2.0nto r/2 section to make major radius a=(r-r’)/2. 7:4 5°
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Major diameter 2a is difference (r-r'=2a). R=+1/2 hyper bolic
Major radius a is half of difference (r-r')/2=a =iy -

Major diameter 2a needs to be centered on F-F focal axis «--«--==--vsseseeeee- - orbit construction

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections. ----+ 1 .

2. Bisect F-F focal axis using F-F circle intersections to locate orbit center C --- R=+1/
3. Bisect F'-P radius r’ using F'-P circle intersections. ------=-=-=sesmsmsmmsmsmaemsmnn. :

4. Swing radius r’12.0nto r/2 section to make major radius a=(r-r’)/2. Y :4 5°

5. Copy circle of major radius a=(r-r’)/2 about orbit centpr C .
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Major diameter 2a is difference (r-r'=2a).

Major radius a is half of difference (r-r’)/2=a

Major diameter 2a needs to be centered on F-F focal axis

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections.

2. Bisect F-F focal axis using E-F circle intersections to locate orbit center C.

3. Bisect ¥'-P radius r’ using F’-P circle intersections.

4. Swing radius ¥’ 12.0nto r/2 section to make major radius a=(r-r’)/2.

5. Copy circle of major radius a=(r-r’)/2 about orbit centpr C .
6. Draw of diameter 2ae about orbit center C|.

R=+1/2 hyperbolic
orbit construction

R=+1/2
V=49



Major diameter 2a is difference (r-r'=2a).
Major radius a is half of difference (r-r’)/2=a
. . 4 .
Major diameter 2a needs to be centered on F-F focal axis
1. Bisect F-P radius r using F-P circle intersections to define r/2 sections.
. 4 . . /. . . .
2. Bisect F-F focal axis using F-F  circle intersections to locate orbit center C.

3. Bisect ¥'-P radius r’ using F’-P circle intersections.

4. Swing radius ¥’ 12.0nto r/2 section to make major radius a=(r-r’)/2.

5. Copy circle of major radius a=(r-r’)/2 about orbit centpr C .
6. Draw of diameter 2ae about orbit center C|.
7. Erect minor radius b tangent to a-circle from point a op Cg-axis to point b on

R=+1/2 hyperbolic
orbit construction

R=+1/2
V=49



Major diameter. 2a is difference (r-r'=2a).

Major radius a is half of difference (r-r’)/2=a
. . ) 4 .

Major diameter 2a needs to be centered on F-F focal axis

1. Bisect F-P radius r using F-P circle intersections to define r/2 sections.
. 4 . . /. . . .

2. Bisect F-F focal axis using F-F circle intersections to locate orbit center C.
. ’ . ’ . 4 . . .

3. Bisect F -P radius r using F -P circle intersections.

4. Swing radius ¥ [2\onto r/2 section to make major radius a=(r-r’)/2.

5. Copy circle of major radius a=(r-r’)/2 about orbit centpr C .

6. Draw of diameter 2ae about orbit center C|.

7. Erect minor radius b\ tangent to a-circle from point a op Cg-axis to point b on
8. Complete orbit a-X-b\box between and a-cfrcle and its

KE /
Q PE
+0.50

L +0.25

0.0

-0.50
F

R=+1/2 hyperbolic
orbit construction

R=+1/2
V=49



R=+1/2 hyperbolic

9. Draw section\of hyperbolic orbit. ) )
orbit construction

R=+1/2
V=45




R=+1/2 hyperbolic

9. Draw section\of hyperbolic orbit. . .
orbit construction

R=+1/2
V=49

EEEEEF PRy r-arc

Construction based
on: r-r¥=2a or: r=r-2a
15t draw an r-arc about focus F.

T -1.0



---------- distance

9. Draw section\of hyperbolic orbit.

r-arc

r-arc-minus-2a +0.50

(also on Ce-line)

Construction based
on: r-=2a or: = r-2a
15t draw an r-arc about focus F.

25t set compass to (7-2a) using
r-arc-minus-2a on Ce-line. T

-1.0

R=+1/2 hyperbolic
orbit construction

R=+1/2
V=49



R=+1/2 hyperbolic

9. Draw section\of hyperbolic orbit. . .
orbit construction

R=+1/2
V=49

B r-arc
KE/
. PE
r-arc-minus-2a e +0.50
EEEEEEEEEEEE distance
(also on Ce-line)
‘ s,

Construction based
on: r-=2a or: = r-2a
15t draw an r-arc about focus F.

25t set compass to (7-2a) using

: r-arc-minus-2a on Ce-line. T 10

3" draw (r-2a)-arc about focus F’.

--------------------------------




R=+1/2 hyperbolic

9. Draw section\of hyperbolic orbit. . .
orbit construction

R=+1/2
V=45

,,7@”7", __________________________________________________________ :
""""""" % / /\ :
| / KE) :
r-arc-minus-2a |,. I'=r-2a 050
. dista 1CC € E
(also on Ce-line) e
E P [ +0.25 :

: <A :
: * :
:  Construction based
on: r-r'=2a or: r'=r-2a ‘\‘
v+ IS'draw an r-arc about focus F. :
. 25 set compass to (r-2a) using
r-arc-minus-Z2a on Ce-line. T s :
3" draw (r-2a)-arc about focus F’. .-~ Orbit points at intersections.

-------------------------------------------------------
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9. Draw section\of hyperbolic orbit. ) )
orbit construction
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9. Draw section\of hyperbolic orbit. ) )
orbit construction

R=+1/2
V=45




R=+1/2 hyperbolic

9. Draw section\of hyperbolic orbit. ) )
orbit construction
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9. Draw section\of hyperbolic orbit.

8:\/1+4R(R+1)sin2}/: % =1.58
1 1

= —— = — .
2(R+1) 3
1 O,
b= isin}/ —\/: =.408
R+l 6 0

2
A= b—=2Rsin27/ = l=.5 y

a 2

é = 24/ R(R+1)siny = tan50.7°
a

-1.0
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orbit construction

R=+1/2
V=45
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Eccentricity vector € and (c,\)-geometry of orbital mechanics

Analytic geometry derivation of e-construction

Connection formulas for (a,b) and (,\) with (+,R)

Detailed ruler & compass construction of e-vector and orbits

(R=-0.375 elliptic orbit)
(R=~+0.5 hyperbolic orbit)

Properties of Coulomb trajectory families and envelc,

¥ Graphical e-development of orbits

¥ Launch angle fixed-Varied launch energy
Launch energy fixed-Varied launch angle
Launch optimization and orbit family envelopes

Lenz Vector...analog computersAJP 44 4 (1974)

(a) (b)

Fig. 11. Sample computer trajectories. (a) Family of hyperbolic orbits
with R = 1. (b) Family of hyperbolic orbits with R < 1.

one can show approximately the effects of the solar wind,
if we imagine that the force field for each floating dust
particle is proportional to the local solar flux (i.e., 1/r%)
minus the solar gravity. The latter is propertional to the
mass of the particle, while the former is proportional to
the particle cross section, so we expect the repulsive solar
wind to become larger for smaller particles. In any case if
some fixed or nearly fixed object is emitting particles in
all directions with about the same speed, we can use the
computer to track them and show the envelopes of the
trajectories that are analogous to the ones for the elliptical
orbits. Indeed, the envelope changes from a concave
hyperpola (see Ref. 1, Fig. 2) to a plane [Fig. Il(a)] toa
convex hyperbola [Fig. 11(b)] as the field becomes more
repulsive (i.e.., as R becomes less). The latter reminds
one of the shape of a comet.

V. CONCLUSION

So far, I have only used the simple model of the com-
puter in class, and I am waiting to try out the more com-
plicated instrument. However, | have found that most
students are quite fascinated by this business and many
have been stimulated to learn much more about it.

Undoubtedly, many alternative schemes are possible.
For example, a large plotting board in front of the class
might be better than the overhead projector. (One could
still use it in an unruly class where dimming the lights
becomes a hazard!) Another suggestion involves replacing
the scales in Fig. 7 with a simple piece of polar graph
paper made into a movable transparency. Now for each
“*shot"* you must compute the R scale. | An R circle has a
radius equal to = R/R + 1) times the distance to the
force center, where the sign taken is that of the total
energy T + V.] However, in this way you may vary your
initial position and make midcourse corrections.

It is hoped that the ideas for problems and solutions
suitable for this type of analog computer, some of which
were listed in Sec. III and at the end of Sec. II, can lead
to interesting projects for many students,
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Graphs and protractors make Coulomb trajectory analysis easier
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Fig. 7. Coordinate grids for orbital analog computers. (a) Elliptical orbit
scale (0 >R > = 1). This can be used with the apparatus in Figs. 8 or
9. Radial lines marked =107, £20°, . . ., are each the focus locus for =~
orbits with an initial velocity = 10°, £20° . .., above the horizon

line. The circle marked 20°, 40°, |, . ., 3407 can be taken as the Earth's /
surface, or any circle inside this one can be taken to be the surface of

any celestial body. The R values apply correctly in either case, while
the velocity values are marked for the former case only. (b) Hyperbolic
orbit scale (0 <R < =) and (—=* <R < —1). This can only be used
with the apparatus shown in Fig. 9. Outer circles locate foci for orbits
of particles attracted to the force center, while inner circles locate foci
for orbits in a repulsive field. In either case a radial line marked =107,
is the focus locus for an orbit with the initial velocity an
angle £10°, £20°, . . ., above the nadir line.
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Fig. 7. Coordinate grids for orbital analog computers. (a) Elliptical orbit

scale (0 >R > ~ 1). This can be used with the apparatus in Figs. 8 or .

9. Radial lines marked =10°, £20°, . . . , are each the focus locus for
orbits with an initial velocity = 10°, +20° above the horizon
line. The circle marked 20°, 40°, |, . ., 3407 can be taken as the Earth's
surface, or any circle inside this one can be taken to be the surface of
any celestial body. The R values apply correctly in either case, while
the velocity values are marked for the former case only. (b) Hyperbolic
orbit scale (0 <R < =) and (—=* <R < —1). This can only be used
with the apparatus shown in Fig. 9. Outer circles locate foci for orbits
of particles attracted to the force center, while inner circles locate foci
for orbits in a repulsive field. In either case a radial line marked =107,
is the focus locus for an orbit with the initial velocity an
angle £10°, £20°, . . ., above the nadir line.
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Eccentricity vector € and (c,\)-geometry of orbital mechanics

Analytic geometry derivation of e-construction

Connection formulas for (a,b) and (,\) with (+,R)

Detailed ruler & compass construction of e-vector and orbits
(R=-0.375 elliptic orbit)

(R=+0.5 hyperbolic orbit)
Properties of Coulomb trajectory families and envelopes

¥ Graphical e-development of orbits

Launch angle fixed-Varied launch energy
Launch energy fixed-Varied launch angle
- Launch optimization and orbit family envelopes

(a) (b)

Fig. 1. Sample computer trajectories. (a) Family of hyperbolic orbits
with R = 1. (b) Family of hyperbolic orbits withR < 1.

Fig. 7. Coordinate grids for orbital analog computers. (a) Elliptical orbit

scale (0 >R > ~ 1). This can be used with the apparatus in Figs. 8 or .

9. Radial lines marked =10°, £20°, . . ., are each the focus locus for =~

orbits with an initial velocity = 10°, £20°, .., , above the horizon
line. The circle marked 20°, 40°, |, . ., 3407 can be taken as the Earth's

surface, or any circle inside this one can be taken to be the surface of _,/

any celestial body. The R values apply correctly in either case, while
the velocity values are marked for the former case only. (b) Hyperbolic
orbit scale (0 <R < =) and (—=* <R < —1). This can only be used
with the apparatus shown in Fig. 9. Outer circles locate foci for orbits
of particles attracted to the force center, while inner circles locate foci
for orbits in a repulsive field. In either case a radial line marked =107,
=200, .. ., is the focus locus for an orbit with the initial velocity an
angle =10°, £20°, . . ., above the nadir line.
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Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes
Problem:
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Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes
Problem:

Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet)

Solution:|Prime fodus ¥’ lies on radial line that bisects longitude angle
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inch optimization and orbit family envelopes

Graphs and protractors help Coulomb trajectory lau
Problem:
With launch angle «=22.5° find maximum range of trajectory.
Solution:|Prime fodus ¥’ lies on radial line that bisects longitude angle
Launch Elgvation Angle
Optimal prime focus F' lies o ,;\i“\‘ ;8(;: L
. . R i o A
line connecting START and FINISH 120 e
. I 130 T 50°
at tangenf point of minimal AT ~_ A
140 P NG 40° |
o | / AN » \ A
energy circle SF’. 1500 /] N 30° s
1600 e | A
Lo \
\170 / T \ 100/
\‘;1 D lz R S i
‘:1 e \\\\\\lumlll Do . 0° 7
7/800 \ S QW 3\4CO 350° Y \}sQo y é 77 > / - ‘L
\ N 3300 ) 304 7,/
70° & N0 N_ 409/ 200
\\jﬁ;@cilo \\ 50° 2
S TERE AN ARG
So90s el - T—tp —T K X2
= ALl SNC 2
—280° Y26 S 800 —
§A§A R li.i;,i/ﬁ,,tf‘fw »\ i nm; F
=T {F = FINISH
=260° 100°=
%zsm uog
é/ 2400 12 0°\§
< 230° 13005
/////// 22(° 140°
712100 1509 o
2, %'01900 Ao 170° 160?\\\\\\\ WO
/////M///\,;,m lllw\\\\\

Range Longitude




Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes

Problem:
With launch angle «=22.5° find maximum range of trajectory.

Solution:|Prime fodus ¥’ lies on radial line that bisects longitude angle
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Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes

Problem:
With launch angle «=22.5° find maximum range of trajectory.

Solution:|Prime fodus ¥’ lies on radial line that bisects longitude angle

Launch Elgvation Angle
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Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes

Problem:
With launch angle «=22.5° find maximum range of trajectory.

Solution:|Prime fodus ¥’ lies on radial line at 103.5° that bisects longitude angle 207°
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Launch optimization

Optimal vy has only one

elliptic path to target

Optimum (sm
focus-locustcircle to

Achigé ranée P

These\angles

0+p/

Optimum energy angle relations

are equal
because of
equal-focal
reflection
angles

O+p/7=m/2

For low range p
the optimum angle 0

approaches 8 =m /4
(The well-known s

cs resuly.)




Launch optimization

Higher\vo allows tw
elliptic paths to target

target

Earthscenter

Optimal vy has only one

elliptic path to target

Optimum (sm
focus-locustcircle to

Achigé ranée P

These\angles

0+p/

Optimum energy angle relations

are equal
because of
equal-focal
reflection
angles

focus

(The well-known s

O+p/7=m/2
=(1t—p)/4

p=mt—46

For low range p
the optimum angle 0

approaches 8 =m /4
homore physi
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