Lecture 21 Wed. 11.06.2019

Introduction to coupled oscillation and eigenmodes (Ch. 2-4 of Unit 4)

2D harmonic oscillator equations Lagrangian and matrix forms and Reciprocity symmetry 2D harmonic oscillator equation eigensolutions Geometric method *Matrix-algebraic eigensolutions with example* $M = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$ Secular equation Hamilton-Cayley equation and projectors *Idempotent projectors (how eigenvalues* \Rightarrow *eigenvectors) Operator orthonormality and Completeness (Idempotent means:* **P**·**P**=**P**) Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a'-vis Operator vs. State Lagrange functional interpolation formula Diagonalizing Transformations (D-Ttran) from projectors

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

This Lecture's Reference Link Listing

<u>Web Resources - front page</u> <u>UAF Physics UTube channel</u>

Wiki on Pafnuty Chebyshev Nobelprize.org 2005 Physics Award

BoxIt Web Simulations:

<u>A-Type w/Cosine, A-Type w/Freq ratios,</u> <u>AB-Type w/Cosine, AB-Type 2:1 Freq ratio</u>

OscillIt Web Simulations:

Default/Generic, Weakly Damped #18, Forced : Way below resonance,On resonance Way above resonance,Underdamped Complex Response Plot

Coullt Web Simulations:

Stark-Coulomb : Bound-state motion in parabolic coordinates Molecular Ion : Bound-state motion in hyperbolic coordinates Synchrotron Motion, Synchrotron Motion #2 Mechanical Analog to EM Motion (YouTube video) iBall demo - Quasi-periodicity (YouTube video) *Trebuchet* Web Simulations: Default/Generic URL, Montezuma's Revenge, Seige of Kenilworth,

"Flinger",

Position Space (Course), Position Space (Fine) Wacky Waving Solid Metal Arm Flailing Chaos Pendulum - Scooba_Steeve-yt-2015 Triple Double-Pendulum - Cohen-yt-2008 Punkin Chunkin - TheArmchairCritic-2011 Jersey Team Claims Title in Punkin Chunkin - sussexcountyonline-1999 Shooting range for medieval siege weapons. Anybody knows? - twcenter.net/forums The Trebuchet - Chevedden-SciAm-1995 NOVA Builds a Trebuchet

Recent Articles of Interest:

Quantum_Supremacy_Using_a_Programmable_Superconducting_Processor - Arute-n-2019This Indestructible NASA Camera Revealed Hidden Patterns on Jupiter - seeker-yt-2019What did NASA's New Horizons discover around Pluto? - Astrum-yt-2018Synthetic_Chiral_Light_for_Efficient_Control_of_Chiral_Light_Matter_Interaction - Ayuso-np-2019Quantum Computing for Computer Scientists - Helwer-mr-yt-2018, SlidesQuantum Computing and Workforce, Curriculum, and App Devel - Roetteler-MS-2019A_Semi-Classical_Approach_to_the_Calculation_of_Highly_Excited_Rotational_Energies for ...Asymmetric-Top_Molecules - Schmiedt-pccp-2017Quantum_Chaos_- An_Introduction_- Stockmann-cup-2006, Review by E. HellerTunable and broadband coherent perfect absorption by ultrathin blk phos metasurfaces - Guo-josab-2019Vortex_Detection in Vector Fields Using Geometric Algebra - Pollock-aaca-2013.pdf

Quantum Theory for the Computer Age

Principles of Symmetry, Dynamics, and Spectroscopy

Classical Mechanics with a Bang!

Modern Physics and its Classical Foundations

Lectures #12 through #21

In reverse order

2017 Group Theory for QM 2018 Adv CM 2018 AMOP 2019 Advanced Mechanics

Pirelli Relativity Challenge (Introduction level) - Visualizing Waves: Using Earth as a clock, **Tesla's AC Phasors** Phasors using complex numbers. CM wBang Unit 1 - Chapter 10, pdf page=135 Calculus of exponentials, logarithms, and complex fields, RelaWavity Web Simulation - Unit Circle and Hyperbola (Mixed labeling) Smith Chart, Invented by Phillip H. Smith (1905-1987) Select, exciting, and related Research Springer handbook on Molecular Symmetry and Dynamics - Ch 32 - Molecular Symmetry AMOP Ch 0 Space-Time Symmetry - 2019 Seminar at Rochester Institute of Optics, Auxiliary slides, June 19, 2018 Clifford Algebra And The Projective Model Of Homogeneous Metric Spaces -Foundations - Sokolov-x-2013 Geometric Algebra 3 - Complex Numbers - MacDonald-yt-2015 Biquaternion -Complexified Quaternion- Roots of -1 - Sangwine-x-2015 An Introduction to Clifford Algebras and Spinors - Vaz-Rocha-op-2016 Unified View on Complex Numbers and Quaternions- Bongardt-wcmms-2015 Complex Functions and the Cauchy-Riemann Equations - complex2 - Friedman-columbia-2019 An sp-hybridized Molecular Carbon Allotrope- cyclo-18-carbon - Kaiser-s-2019 An Atomic-Scale View of Cyclocarbon Synthesis - Maier-s-2019 Discovery Of Topological Weyl Fermion Lines And Drumhead Surface States in a Room Temperature Magnet - Belopolski-s-2019 "Weyl"ing away Time-reversal Symmetry - Neto-s-2019 Non-Abelian Band Topology in Noninteracting Metals - Wu-s-2019 What Industry Can Teach Academia - Mao-s-2019 RoVib- quantum state resolution of the C60 fullerene - Changala-Ye-s-2019 (Alt) A Degenerate Fermi Gas of Polar molecules - DeMarco-s-2019 An assist from *Physics Girl* (YouTube Channel): *How to Make VORTEX RINGS in a Pool* Crazy pool vortex - pg-vt-2014 Fun with Vortex Rings in the Pool - pg-vt-2014 Excerpts (Page 44-47 in *Preliminary Draft*) from the

Geometric Algebra- A Guided Tour through Space and Time - Reimer-www-2019

Running Reference Link Listing

Lectures #11 through #7

In reverse order

Eric J Heller Gallery:

Main portal, Consonance and Dissonance II, Bessel 21, Chladni

The Semiclassical Way to Molecular Spectroscopy - Heller-acs-1981 Quantum_dynamical_tunneling_in_bound_states_-_Davis-Hellerjcp-1981

Pendulum Web Simulation Cycloidulum Web Simulation

Links to previous lecture: <u>Page=74</u>, <u>Page=75</u>, <u>Page=79</u>

Pendulum Web Sim

Cycloidulum Web Sim

JerkIt Web Simulations: Basic/Generic: Inverted, FVPlot

CMwithBang Lecture 8, page=20

WWW.sciencenewsforstudents.org: Cassini - Saturnian polar vortex

"RelaWavity" Web Simulations:
<u>2-CW laser wave, Lagrangian vs Hamiltonian,</u> <u>Physical Terms Lagrangian L(u) vs Hamiltonian H(p)</u>
<u>Coullt Web Simulation of the Volcanoes of Io</u>
BohrIt Multi-Panel Plot:
Relativistically shifted Time-Space plots of 2 CW light waves

BoxIt Web Simulations:

<u>Generic/Default</u> <u>Most Basic A-Type</u> <u>Basic A-Type w/reference lines</u> <u>Basic A-Type A-Type with Potential energy</u> <u>A-Type with Potential energy and Stokes Plot</u> <u>A-Type w/3 time rates of change</u> <u>A-Type w/3 time rates of change with Stokes Plot</u> <u>B-Type (A=1.0, B=-0.05, C=0.0, D=1.0)</u>

RelaWavity Web Elliptical Motion Simulations:

Orbits with b/a=0.125 Orbits with b/a=0.5 Orbits with b/a=0.7 Exegesis with b/a=0.125 Exegesis with b/a=0.5 Exegesis with b/a=0.7 Contact Ellipsometry

Coullt Web Simulations: Basic/Generic

Exploding Starlet Volcanoes of Io (Color Quantized)

JerkIt Web Simulations:

<u>Basic/Generic</u> Catcher in the Eye - IHO with Linear Hooke perturbation - Force-potential-Velocity Plot

OscillatorPE Web Simulation:

Coulomb-Newton-Inverse_Square, Hooke-Isotropic Harmonic, Pendulum-Circular Constraint

AMOP Ch 0 Space-Time Symmetry - 2019 Seminar at Rochester Institute of Optics, Aux. slides-2018

NASA Astronomy Picture of the Day -<u>Io: The Prometheus Plume (Just Image)</u> <u>NASA Galileo - Io's Alien Volcanoes</u> <u>New Horizons - Volcanic Eruption Plume on Jupiter's moon IO</u> <u>NASA Galileo - A Hawaiian-Style Volcano on Io</u>

<u>Pirelli Site: Phasors animimation</u> <u>CMwithBang Lecture #6, page=70 (9.10.18)</u>

Select, exciting, and related Research & Articles of Interest:

Burning a hole in reality—design for a new laser may be powerful enough to pierce space-time - Sumner-KOS-2019 Trampoline mirror may push laser pulse through fabric of the Universe - Lee-ArsTechnica-2019 Achieving Extreme Light Intensities using Optically Curved Relativistic Plasma Mirrors - Vincenti-prl-2019 <u>A Soft Matter Computer for Soft Robots - Garrad-sr-2019</u> <u>Correlated Insulator Behaviour at Half-Filling in Magic-Angle Graphene Superlattices - cao-n-2018</u> <u>Sorting ultracold atoms in a three-dimensional optical lattice in a</u> realization of Maxwell's Demon - Kumar-n-2018 Synthetic three-dimensional atomic structures assembled atom by atom - Barredo-n-2018 Older ones: Wave-particle duality of C60 molecules - Arndt-Itn-1999 Optical Vortex Knots - One Photon At A Time - Tempone-Wiltshire-Sr-2018 Baryon Deceleration by Strong Chromofields in Ultrarelativistic ,

<u>Baryon_Deceleration_by_Strong_Chromofields_in_Ottrarelativistic_</u>, <u>Nuclear_Collisions - Mishustin-PhysRevC-2007</u>, <u>APS Link & Abstract</u> Hadronic Molecules - Guo-x-2017

Hidden-charm pentaquark and tetraquark states - Chen-pr-2016

Running Reference Link Listing

Lectures #6 through #1

In reverse order

<u>RelaWavity Web Simulation: Contact Ellipsometry</u> <u>BoxIt Web Simulation: Elliptical Motion (A-Type)</u> <u>CMwBang Course: Site Title Page</u> <u>Pirelli Relativity Challenge: Describing Wave Motion With Complex Phasors</u> UAF Physics UTube channel

Velocity Amplification in Collision Experiments Involving Superballs - Harter, 1971 MIT OpenCourseWare: High School/Physics/Impulse and Momentum Hubble Site: Supernova - SN 1987A

BounceItIt Web Animation - Scenarios:

49:1 y vs t, 49:1 V2 vs V1, 1:500:1 - 1D Gas Model w/ faux restorative force (Cool), 1:500:1 - 1D Gas (Warm), 1:500:1 - 1D Gas Model (Cool, Zoomed in),
Farey Sequence - Wolfram Fractions - Ford-AMM-1938
Monstermash BounceItIt Animations: 1000:1 - V2 vs V1, 1000:1 with t vs x - Minkowski Plot
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-2013
Quantum Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2015 Quant. Revivals of Morse Oscillators and Farey-Ford Geometry - Li-Harter-cpl-2015 (Publ.)
Velocity Amplification in Collision Experiments Involving Superballs-Harter-1971
WaveIt Web Animation - Scenarios: Quantum Carpet, Quantum Carpet wMBars, Quantum Carpet BCar, Quantum Carpet BCar_wMBars
Wave Node Dynamics and Revival Symmetry in Quantum Rotors - Harter-JMS-2001 (Publ.)

BounceIt Web Animation - Scenarios:

Generic Scenario: <u>2-Balls dropped no Gravity (7:1) - V vs V Plot (Power=4)</u> 1-Ball dropped w/Gravity=0.5 w/Potential Plot: <u>Power=1, Power=4</u> <u>7:1 - V vs V Plot: Power=1</u> <u>3-Ball Stack (10:3:1) w/Newton plot (y vs t) - Power=4</u> <u>3-Ball Stack (10:3:1) w/Newton plot (y vs t) - Power=1 w/Gaps</u> <u>4-Ball Stack (27:9:3:1) w/Newton plot (y vs t) - Power=4</u> <u>4-Newton's Balls (1:1:1:1) w/Newtonian plot (y vs t) - Power=4</u> <u>5-Ball Totally Inelastic (1:1:1:1:1) w/Gaps: Newtonian plot (t vs x), V6 vs V5 plot</u> <u>5-Ball Totally Inelastic Pile-up w/ 5-Stationary-Balls - Minkowski plot (t vs x1) w/Gaps</u>

BounceIt Dual plots

 $m_{1}:m_{2} = 3:1$ $v_{2} vs v_{1} and V_{2} vs V_{1}, (v_{1}, v_{2}) = (1, 0.1), (v_{1}, v_{2}) = (1, 0)$ $y_{2} vs v_{1} plots: (v_{1}, v_{2}) = (1, 0.1), (v_{1}, v_{2}) = (1, 0), (v_{1}, v_{2}) = (1, -1)$ Estrangian plot $V_{2} vs V_{1}$: $(v_{1}, v_{2}) = (0, 1), (v_{1}, v_{2}) = (1, -1)$ $m_{1}:m_{2} = 4:1$ $v_{2} vs v_{1}, v_{2} vs v_{1}$ $m_{1}:m_{2} = 100:1, (v_{1}, v_{2}) = (1, 0): V_{2} vs V_{1} Estrangian plot, v_{2} vs v_{1} plot$ With g=0 and 70:10 mass ratio With non zero g, velocity dependent damping and mass ratio of 70:35 $M_{1}=49, M_{2}=1 with Newtonian time plot$ $M_{1}=49, M_{2}=1 with V_{2} vs V_{1} plot$ Example with friction Low force constant with drag displaying a Pass-thru, Fall-Thru, Bounce-Off $m_{1}:m_{2}= 3:1 and (v_{1}, v_{2}) = (1, 0) Comparison with Estrangian$

X2 paper: Velocity Amplification in Collision Experiments Involving Superballs - Harter, et. al. 1971 (pdf)
Car Collision Web Simulator: https://modphys.hosted.uark.edu/markup/CMMotionWeb.html
Superball Collision Web Simulator: <u>https://modphys.hosted.uark.edu/markup/BounceItWeb.html</u> ; with Scenarios: <u>1007</u>
BounceIt web simulation with $g=0$ and 70:10 mass ratio
With non zero g, velocity dependent damping and mass ratio of 70:35
Elastic Collision Dual Panel Space vs Space: Space vs Time (Newton), Time vs. Space(Minkowski)
Inelastic Collision Dual Panel Space vs Space: Space vs Time (Newton), Time vs. Space(Minkowski)
Matrix Collision Simulator: $M_1 = 49$, $M_2 = 1$ V ₂ vs V ₁ plot << Under Construction>>

More Advanced QM and classical references will *soon* be available through our: <u>Mechanics References Page</u>

(Now in Development)

<u>AJP article on superball dynamics</u> <u>AAPT Summer Reading List</u> <u>Scitation.org - AIP publications</u> HarterSoft Youtube Channel

2D harmonic oscillator equation eigensolutions Geometric method Matrix-algebraic eigensolutions with example M= $\begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$ Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P) Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

 \mathbf{r}

Fig. 3.3.3 One 2-dimensional coupled oscillator

2D HO kinetic energy $T(v_1, v_2)$ $T = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2$

2D HO potential energy $V(x_1, x_2)$ $V = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2x_2^2 + \frac{1}{2}k_{12}(x_1 - x_2)^2$ $= \frac{1}{2}(k_1 + k_{12})x_1^2 - k_{12}x_1x_2 + \frac{1}{2}(k_2 + k_{12})x_2^2$

Lagrangian L=*T*-*V*

2D harmonic oscillator equation eigensolutions Geometric method Matrix-algebraic eigensolutions with example M= $\begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$ Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P) Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

2D HO potential energy $V(x_1, x_2)$ $V = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2x_2^2 + \frac{1}{2}k_{12}(x_1 - x_2)^2$ $= \frac{1}{2}(k_1 + k_{12})x_1^2 - k_{12}x_1x_2 + \frac{1}{2}(k_2 + k_{12})x_2^2$

Lagrangian L=*T*-*V*

2D HO Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_1}\right) = m_1 \ddot{x}_1 = F_1 = -\frac{\partial V}{\partial x_1} = -\left(k_1 + k_{12}\right)x_1 + k_{12}x_2$$
$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_2}\right) = m_2 \ddot{x}_2 = F_2 = -\frac{\partial V}{\partial x_2} = k_{12}x_1 - \left(k_2 + k_{12}\right)x_2$$

2D HO potential energy $V(x_1, x_2)$ $V = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2x_2^2 + \frac{1}{2}k_{12}(x_1 - x_2)^2$ $= \frac{1}{2}(k_1 + k_{12})x_1^2 - k_{12}x_1x_2 + \frac{1}{2}(k_2 + k_{12})x_2^2$

Lagrangian L=*T*-*V*

2D HO Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_1}\right) = m_1 \ddot{x}_1 = F_1 = -\frac{\partial V}{\partial x_1} = -\left(k_1 + k_{12}\right)x_1 + k_{12}x_2$$
$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_2}\right) = m_2 \ddot{x}_2 = F_2 = -\frac{\partial V}{\partial x_2} = k_{12}x_1 - \left(k_2 + k_{12}\right)x_2$$

2D HO Matrix operator equations

$$\begin{pmatrix} m_{1} & 0 \\ 0 & m_{2} \end{pmatrix} \begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \end{pmatrix} = - \begin{pmatrix} k_{1} + k_{12} & -k_{12} \\ -k_{12} & k_{2} + k_{12} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

2D HO potential energy $V(x_1, x_2)$ $V = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2x_2^2 + \frac{1}{2}k_{12}(x_1 - x_2)^2$ $= \frac{1}{2}(k_1 + k_{12})x_1^2 - k_{12}x_1x_2 + \frac{1}{2}(k_2 + k_{12})x_2^2$

Lagrangian L=*T*-*V*

2D HO Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_1}\right) = m_1 \ddot{x}_1 = F_1 = -\frac{\partial V}{\partial x_1} = -\left(k_1 + k_{12}\right)x_1 + k_{12}x_2$$
$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_2}\right) = m_2 \ddot{x}_2 = F_2 = -\frac{\partial V}{\partial x_2} = k_{12}x_1 - \left(k_2 + k_{12}\right)x_2$$

2D HO Matrix operator equations

$$\begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = - \begin{pmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_2 + k_{12} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Matrix operator notation:

$$\mathbf{M} \cdot |\ddot{\mathbf{x}}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$$

2D HO kinetic energy $T(v_1, v_2)$ $T = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2$ $= \frac{1}{2}\langle \dot{\mathbf{x}} | \mathbf{M} | \dot{\mathbf{x}} \rangle$

$$\frac{2D \text{ HO potential energy } V(x_1, x_2)}{V = \frac{1}{2} (k_1 + k_{12}) x_1^2 - k_{12} x_1 x_2 + \frac{1}{2} (k_2 + k_{12}) x_2^2}$$

$$= \frac{1}{2} \langle \mathbf{x} | \mathbf{K} | \mathbf{x} \rangle \text{ where: } \mathbf{K} = \begin{pmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_2 + k_{12} \end{pmatrix}$$

2D HO Lagrange equations

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_1}\right) = m_1 \ddot{x}_1 = F_1 = -\frac{\partial V}{\partial x_1} = -\left(k_1 + k_{12}\right)x_1 + k_{12}x_2$$
$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_2}\right) = m_2 \ddot{x}_2 = F_2 = -\frac{\partial V}{\partial x_2} = k_{12}x_1 - \left(k_2 + k_{12}\right)x_2$$

2D HO Matrix operator equations

$$\begin{array}{ccc} m_{1} & 0 \\ 0 & m_{2} \end{array} \right) \left(\begin{array}{c} \ddot{x}_{1} \\ \ddot{x}_{2} \end{array} \right) = - \left(\begin{array}{ccc} k_{1} + k_{12} & -k_{12} \\ -k_{12} & k_{2} + k_{12} \end{array} \right) \left(\begin{array}{c} x_{1} \\ x_{2} \end{array} \right)$$

Matrix operator notation:

$$\mathbf{M} \cdot |\ddot{\mathbf{x}}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$$

2D harmonic oscillator equation eigensolutions Geometric method Matrix-algebraic eigensolutions with example M= $\begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$ Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P) Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

Matrix equations and reciprocity symmetry

General form of 2D-HO equation of motion has force matrix components: $\kappa_{11} = k_1 + k_{11}$, $\kappa_{22} = k_2 + k_{22}$ $\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} m_1 \ddot{x}_1 \\ m_2 \ddot{x}_2 \end{pmatrix} = -\begin{pmatrix} \kappa_{11} & \kappa_{12} \\ \kappa_{21} & \kappa_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ Off-diagonal force constants satisfy *Reciprocity Relations*: $-\kappa_{12} = k_{12} = \frac{\partial^2 V}{\partial x_2 \partial x_1} = \frac{\partial^2 V}{\partial x_2 \partial x_1} = \frac{\partial^2 V}{\partial x_1 \partial x_2} = \frac{\partial^2 F_2}{\partial x_1 \partial x_2} = k_{21} = -\kappa_{21}$

Rescaling and symmetrization

Each coordinate (x_1, x_2) is rescaled $(q_1 = s_1 x_1, q_2 = s_2 x_2)$ to symmetrize mass factors on \ddot{q}_j -terms.

$$-\frac{m_1}{s_1}\ddot{q}_1 = \kappa_{11}\frac{q_1}{s_1} + \kappa_{12}\frac{q_2}{s_2} \qquad -\ddot{q}_1 = \frac{\kappa_{11}}{m_1}q_1 + \frac{\kappa_{12}s_1}{m_1s_2}q_2 \equiv K_{11}q_1 + K_{12}q_2$$
$$-\frac{m_2}{s_2}\ddot{q}_2 = \kappa_{12}\frac{q_1}{s_1} + \kappa_{22}\frac{q_2}{s_2} \qquad -\ddot{q}_2 = \frac{\kappa_{12}s_2}{m_2s_1}q_1 + \frac{\kappa_{22}}{m_2}q_2 \equiv K_{21}q_1 + K_{22}q_2$$

New constants K_{ij} have pseudo-reciprocity symmetry for a special scale factor ratio: $\frac{s_2}{s_1} = \sqrt{\frac{m_2}{m_1}}$

$$\mathbf{K}_{21} = \frac{\kappa_{12}s_2}{m_2s_1} = \mathbf{K}_{12} = \frac{\kappa_{12}s_1}{m_1s_2} = \frac{-k_{12}}{\sqrt{m_1m_2}}$$

Diagonal constants K_{jj} are not affected by scaling. To be equal requires: $\frac{\kappa_{11}}{m_1} = \frac{\kappa_{22}}{m_2}$ or: $\frac{\kappa_{11}}{\kappa_{22}} = \frac{m_1}{m_2}$ $\mathbf{K}_{11} = \frac{\kappa_{11}}{m_1} = \frac{k_1 + k_{12}}{m_1} \qquad \qquad \mathbf{K}_{22} = \frac{\kappa_{22}}{m_2} = \frac{k_2 + k_{12}}{m_2}$

Caution is advised since such forced symmetry may give modes with imaginary frequency.

2D harmonic oscillator equation eigensolutions Geometric method

Matrix-algebraic eigensolutions with example $M = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$ Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues \Rightarrow eigenvectors) Operator orthonormality and Completeness (Idempotent means: $\mathbf{P} \cdot \mathbf{P} = \mathbf{P}$) Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

2D harmonic oscillator equation solutions

1. May rewrite equation $\mathbf{M} \cdot |\ddot{\mathbf{x}}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$ in acceleration matrix form: $|\ddot{\mathbf{x}}\rangle = -\mathbf{A}|\mathbf{x}\rangle$ where: $\mathbf{A} = \mathbf{M}^{-1} \cdot \mathbf{K}$

$$\begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \end{pmatrix} = - \begin{pmatrix} m_{1} & 0 \\ 0 & m_{2} \end{pmatrix}^{-1} \begin{pmatrix} k_{1} + k_{12} & -k_{12} \\ -k_{12} & k_{2} + k_{12} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = - \begin{pmatrix} \frac{k_{1} + k_{12}}{m_{1}} & \frac{-k_{12}}{m_{1}} \\ \frac{-k_{12}}{m_{2}} & \frac{k_{2} + k_{12}}{m_{2}} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

2. Need to find *eigenvectors* $|\mathbf{e}_1\rangle$, $|\mathbf{e}_2\rangle$,... of acceleration matrix such that: $\mathbf{A}|\mathbf{e}_n\rangle = \varepsilon_n|\mathbf{e}_n\rangle = \omega_n^2|\mathbf{e}_n\rangle$ Then equations decouple to: $|\mathbf{\ddot{e}}_n\rangle = -\mathbf{A}|\mathbf{e}_n\rangle = -\varepsilon_n|\mathbf{e}_n\rangle = -\omega_n^2|\mathbf{e}_n\rangle$ where ε_n is an *eigenvalue* and ω_n is an *eigenfrequency*

2D harmonic oscillator equation solutions

1. May rewrite equation $\mathbf{M} \cdot |\ddot{\mathbf{x}}\rangle = -\mathbf{K} \cdot |\mathbf{x}\rangle$ in acceleration matrix form: $|\ddot{\mathbf{x}}\rangle = -\mathbf{A}|\mathbf{x}\rangle$ where: $\mathbf{A} = \mathbf{M}^{-1} \cdot \mathbf{K}$

$$\begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \end{pmatrix} = - \begin{pmatrix} m_{1} & 0 \\ 0 & m_{2} \end{pmatrix}^{-1} \begin{pmatrix} k_{1} + k_{12} & -k_{12} \\ -k_{12} & k_{2} + k_{12} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = - \begin{pmatrix} \frac{k_{1} + k_{12}}{m_{1}} & \frac{-k_{12}}{m_{1}} \\ \frac{-k_{12}}{m_{2}} & \frac{k_{2} + k_{12}}{m_{2}} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

2. Need to find *eigenvectors* $|\mathbf{e}_1\rangle$, $|\mathbf{e}_2\rangle$,... of acceleration matrix such that: $\mathbf{A}|\mathbf{e}_n\rangle = \varepsilon_n|\mathbf{e}_n\rangle = \omega_n^2|\mathbf{e}_n\rangle$ Then equations decouple to: $|\mathbf{\ddot{e}}_n\rangle = -\mathbf{A}|\mathbf{e}_n\rangle = -\varepsilon_n|\mathbf{e}_n\rangle = -\omega_n^2|\mathbf{e}_n\rangle$ where ε_n is an *eigenvalue* and ω_n is an *eigenfrequency*

To introduce eigensolutions we take a simple case of unit masses $(m_1=1=m_2)$

So equation of motion is simply: $|\ddot{\mathbf{x}}\rangle = -\mathbf{K}|\mathbf{x}\rangle$

Eigenvectors $|\mathbf{x}\rangle = |\mathbf{e}_n\rangle$ are in special directions where $|\ddot{\mathbf{x}}\rangle = -\mathbf{K}|\mathbf{x}\rangle$ is in same direction as $|\mathbf{x}\rangle$

 2D harmonic oscillator equation eigensolutions
 Geometric method
 Matrix-algebraic eigensolutions with example M= (⁴ 1 / ³ 2) Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P)
 Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

Fig. 3.3.4 Plot of potential function $V(x_1,x_2)$ *showing elliptical* $V(x_1,x_2)$ *=const. level curves.*

Fig. 3.3.4 Plot of potential function $V(x_1,x_2)$ *showing elliptical* $V(x_1,x_2)$ *=const. level curves.*

Fig. 3.3.4 Plot of potential function $V(x_1,x_2)$ showing elliptical $V(x_1,x_2)$ =const. level curves.

Fig. 3.3.4 Plot of potential function $V(x_1,x_2)$ *showing elliptical* $V(x_1,x_2)$ *=const. level curves.*

Fig. 3.3.5 Topography lines of potential function $V(x_1,x_2)$ and orthogonal ε_+ and ε_- normal mode slopes

BoxIt (Beating) Web Simulation (A=1, B=-0.1, C=0, D=1) with Comparison Cosine wave $(T=2\pi)$

2D harmonic oscillator equation eigensolutions Geometric method

 ✓ Matrix-algebraic eigensolutions with example M= (⁴ 1 / ³ 2)
 ✓ Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P) Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

Matrix-algebraic method for finding eigenvector and eigenvalues With example matrix $\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$

An *eigenvector* $|\varepsilon_k\rangle$ of **M** is in a direction that is left unchanged by **M**.

$$\mathbf{M} | \boldsymbol{\varepsilon}_{k} \rangle = \boldsymbol{\varepsilon}_{k} | \boldsymbol{\varepsilon}_{k} \rangle, \text{ or: } (\mathbf{M} - \boldsymbol{\varepsilon}_{k} \mathbf{1}) | \boldsymbol{\varepsilon}_{k} \rangle = \mathbf{0}$$

 $\mathbf{M}|\boldsymbol{\varepsilon}\rangle = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \boldsymbol{\varepsilon} \begin{pmatrix} x \\ y \end{pmatrix} \text{ or: } \begin{pmatrix} 4-\boldsymbol{\varepsilon} & 1 \\ 3 & 2-\boldsymbol{\varepsilon} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

 ε_k is *eigenvalue* associated with eigenvector $|\varepsilon_k\rangle$ direction. A change of basis to $\{|\varepsilon_1\rangle, |\varepsilon_2\rangle, \dots, |\varepsilon_n\rangle\}$ called *diagonalization* gives

 $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \end{pmatrix} = \begin{pmatrix} \boldsymbol{\varepsilon}_{1} & 0 & \cdots & 0 \\ 0 & \boldsymbol{\varepsilon}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\varepsilon}_{n} \end{pmatrix}$

Matrix-algebraic method for finding eigenvector and eigenvalues With example matrix $\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$

An *eigenvector* $|\varepsilon_k\rangle$ of **M** is in a direction that is left unchanged by **M**.

$$\mathbf{M} | \boldsymbol{\varepsilon}_{k} \rangle = \boldsymbol{\varepsilon}_{k} | \boldsymbol{\varepsilon}_{k} \rangle, \text{ or: } (\mathbf{M} - \boldsymbol{\varepsilon}_{k} \mathbf{1}) | \boldsymbol{\varepsilon}_{k} \rangle = \mathbf{0}$$

 ε_k is *eigenvalue* associated with eigenvector $|\varepsilon_k\rangle$ direction. A change of basis to $\{|\varepsilon_1\rangle, |\varepsilon_2\rangle, \dots, |\varepsilon_n\rangle\}$ called *diagonalization* gives

 $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \end{pmatrix} = \begin{pmatrix} \boldsymbol{\varepsilon}_{1} & 0 & \cdots & 0 \\ 0 & \boldsymbol{\varepsilon}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\varepsilon}_{n} \end{pmatrix}$

$$\mathbf{M}|\varepsilon\rangle = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \varepsilon \begin{pmatrix} x \\ y \end{pmatrix} \text{ or: } \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Trying to solve by Kramer's inversion: (A fool's errand!)
$$det \begin{vmatrix} 0 & 1 \\ 0 & 2-\varepsilon \end{pmatrix} \text{ and } y = \frac{det \begin{vmatrix} 4-\varepsilon & 0 \\ 3 & 0 \end{vmatrix}}{det \begin{vmatrix} 4-\varepsilon & 0 \\ 3 & 0 \end{vmatrix}$$

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

Matrix-algebraic method for finding eigenvector and eigenvalues With example matrix $\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$

An *eigenvector* $|\varepsilon_k\rangle$ of **M** is in a direction that is left unchanged by **M**.

$$\mathbf{M} | \boldsymbol{\varepsilon}_{k} \rangle = \boldsymbol{\varepsilon}_{k} | \boldsymbol{\varepsilon}_{k} \rangle, \text{ or: } (\mathbf{M} - \boldsymbol{\varepsilon}_{k} \mathbf{1}) | \boldsymbol{\varepsilon}_{k} \rangle = \mathbf{0}$$

 ε_k is *eigenvalue* associated with eigenvector $|\varepsilon_k\rangle$ direction. A change of basis to $\{|\varepsilon_1\rangle, |\varepsilon_2\rangle, \dots, |\varepsilon_n\rangle\}$ called *diagonalization* gives

 $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \end{pmatrix} = \begin{pmatrix} \boldsymbol{\varepsilon}_{1} & 0 & \cdots & 0 \\ 0 & \boldsymbol{\varepsilon}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\varepsilon}_{n} \end{pmatrix}$

First step in finding eigenvalues: Solve secular equation

$$\det |\mathbf{M} - \boldsymbol{\varepsilon} \mathbf{1}| = 0 = (-1)^n \left(\boldsymbol{\varepsilon}^n + a_1 \boldsymbol{\varepsilon}^{n-1} + a_2 \boldsymbol{\varepsilon}^{n-2} + \dots + a_{n-1} \boldsymbol{\varepsilon} + a_n \right)$$

where:

$$a_1 = -Trace \mathbf{M}, \dots, a_k = (-1)^k \sum \text{diagonal k-by-k minors of } \mathbf{M}, \dots, a_n = (-1)^n \det |\mathbf{M}|$$

$$\mathbf{M}|\varepsilon\rangle = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \varepsilon \begin{pmatrix} x \\ y \end{pmatrix} \text{ or: } \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Trying to solve by Kramer's inversion: (A fool's errand!)

$$\begin{aligned} x = \frac{\det \begin{vmatrix} 0 & 1 \\ 0 & 2-\varepsilon \end{vmatrix}}{\det \begin{vmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{vmatrix}} \text{ and } y = \frac{\det \begin{vmatrix} 4-\varepsilon & 0 \\ 3 & 0 \end{vmatrix}}{\det \begin{vmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{vmatrix}$$
Only possible non-zero $\{x, y\}$ if denominator is zero, too!

$$0 = \det |\mathbf{M} - \varepsilon \cdot \mathbf{1}| = \det \begin{vmatrix} 4 & 1 \\ 3 & 2 \end{vmatrix} - \varepsilon \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = \det \begin{vmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{vmatrix}$$

$$0 = (4-\varepsilon)(2-\varepsilon) - 1\cdot3 = 8 - 6\varepsilon + \varepsilon^2 - 1\cdot3 = \varepsilon^2 - 6\varepsilon + 5$$

$$0 = \varepsilon^2 - Trace(\mathbf{M})\varepsilon + \det(\mathbf{M})$$

Matrix-algebraic method for finding eigenvector and eigenvalues With example matrix $\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$

 $|\mathbf{M}|\varepsilon$

An *eigenvector* $|\varepsilon_k\rangle$ of **M** is in a direction that is left unchanged by **M**.

$$\mathbf{M} | \boldsymbol{\varepsilon}_{k} \rangle = \boldsymbol{\varepsilon}_{k} | \boldsymbol{\varepsilon}_{k} \rangle, \text{ or: } (\mathbf{M} - \boldsymbol{\varepsilon}_{k} \mathbf{1}) | \boldsymbol{\varepsilon}_{k} \rangle = \mathbf{0}$$

 ε_k is *eigenvalue* associated with eigenvector $|\varepsilon_k\rangle$ direction. A change of basis to $\{|\varepsilon_1\rangle, |\varepsilon_2\rangle, \dots |\varepsilon_n\rangle\}$ called *diagonalization* gives

 $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \end{pmatrix} = \begin{pmatrix} \boldsymbol{\varepsilon}_{1} & 0 & \cdots & 0 \\ 0 & \boldsymbol{\varepsilon}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\varepsilon}_{n} \end{pmatrix}$

First step in finding eigenvalues: Solve secular equation

$$\det |\mathbf{M} - \boldsymbol{\varepsilon} \mathbf{1}| = 0 = (-1)^n \left(\boldsymbol{\varepsilon}^n + a_1 \boldsymbol{\varepsilon}^{n-1} + a_2 \boldsymbol{\varepsilon}^{n-2} + \dots + a_{n-1} \boldsymbol{\varepsilon} + a_n \right)$$

where:

$$a_1 = -Trace\mathbf{M}, \dots, a_k = (-1)^k \sum \text{diagonal k-by-k minors of } \mathbf{M}, \dots, a_n = (-1)^n \det |\mathbf{M}|$$

Secular equation has *n*-factors, one for each eigenvalue.

det
$$|\mathbf{M} - \varepsilon \mathbf{1}| = 0 = (-1)^n (\varepsilon - \varepsilon_1) (\varepsilon - \varepsilon_2) \cdots (\varepsilon - \varepsilon_n)$$

$$= \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \varepsilon \begin{pmatrix} x \\ y \end{pmatrix} \text{ or: } \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Trying to solve by Kramer's inversion: (A fool's errand!)

$$x = \frac{\det \begin{pmatrix} 0 & 1 \\ 0 & 2-\varepsilon \end{pmatrix}}{\det \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}} \text{ and } y = \frac{\det \begin{pmatrix} 4-\varepsilon & 0 \\ 3 & 0 \end{pmatrix}}{\det \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}}$$

Only possible non-zero $\{x, y\}$ if denominator is zero, too!

$$0 = \det |\mathbf{M} - \varepsilon \cdot \mathbf{1}| = \det \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} - \varepsilon \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \det \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}$$

$$0 = (4-\varepsilon)(2-\varepsilon) - 1 \cdot 3 = 8 - 6\varepsilon + \varepsilon^2 - 1 \cdot 3 = \varepsilon^2 - 6\varepsilon + 5$$

$$0 = \varepsilon^2 - Trace(\mathbf{M})\varepsilon + \det(\mathbf{M}) = \varepsilon^2 - 6\varepsilon + 5$$

$$0 = (\varepsilon - 1)(\varepsilon - 5)$$
 so let: $\varepsilon_1 = 1$ and: $\varepsilon_2 = 5$

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M= (4 1 3 2)
Secular equation
Hamilton-Cayley equation ← d projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P)
Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

Matrix-algebraic method for finding eigenvector and eigenvalues With example matrix $\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$

 $|\mathbf{M}|\varepsilon$

An *eigenvector* $|\varepsilon_k\rangle$ of **M** is in a direction that is left unchanged by **M**.

$$\mathbf{M} | \boldsymbol{\varepsilon}_{k} \rangle = \boldsymbol{\varepsilon}_{k} | \boldsymbol{\varepsilon}_{k} \rangle, \text{ or: } (\mathbf{M} - \boldsymbol{\varepsilon}_{k} \mathbf{1}) | \boldsymbol{\varepsilon}_{k} \rangle = \mathbf{0}$$

 ε_k is *eigenvalue* associated with eigenvector $|\varepsilon_k\rangle$ direction. A change of basis to $\{|\varepsilon_1\rangle, |\varepsilon_2\rangle, \dots, |\varepsilon_n\rangle\}$ called *diagonalization* gives

 $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \end{pmatrix} = \begin{pmatrix} \boldsymbol{\varepsilon}_{1} & 0 & \cdots & 0 \\ 0 & \boldsymbol{\varepsilon}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\varepsilon}_{n} \end{pmatrix}$

First step in finding eigenvalues: Solve secular equation

$$\det |\mathbf{M} - \boldsymbol{\varepsilon} \mathbf{1}| = 0 = (-1)^n \left(\boldsymbol{\varepsilon}^n + a_1 \boldsymbol{\varepsilon}^{n-1} + a_2 \boldsymbol{\varepsilon}^{n-2} + \dots + a_{n-1} \boldsymbol{\varepsilon} + a_n \right)$$

where:

$$a_1 = -Trace \mathbf{M}, \dots, a_k = (-1)^k \sum \text{diagonal k-by-k minors of } \mathbf{M}, \dots, a_n = (-1)^n \det |\mathbf{M}|$$

Secular equation has *n*-factors, one for each eigenvalue.

det
$$|\mathbf{M} - \varepsilon \mathbf{1}| = 0 = (-1)^n (\varepsilon - \varepsilon_1) (\varepsilon - \varepsilon_2) \cdots (\varepsilon - \varepsilon_n)$$

Each ε replaced by **M** and each ε_k by $\varepsilon_k \mathbf{1}$ gives *Hamilton-Cayley* matrix equation. $\mathbf{0} = (\mathbf{M} - \varepsilon_1 \mathbf{1})(\mathbf{M} - \varepsilon_2 \mathbf{1}) \cdots (\mathbf{M} - \varepsilon_n \mathbf{1})$

Obviously true if **M** has diagonal form. (But, that's circular logic. Faith needed!)

$$= \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \varepsilon \begin{pmatrix} x \\ y \end{pmatrix} \text{ or: } \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Trying to solve by Kramer's inversion: (A fool's errand!)

$$x = \frac{\det \begin{pmatrix} 0 & 1 \\ 0 & 2-\varepsilon \end{pmatrix}}{\det \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}} \text{ and } y = \frac{\det \begin{pmatrix} 4-\varepsilon & 0 \\ 3 & 0 \end{pmatrix}}{\det \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}}$$

Only possible non-zero $\{x, y\}$ if denominator is zero, too!

$$0 = \det |\mathbf{M} - \varepsilon \cdot \mathbf{1}| = \det \begin{vmatrix} 4 & 1 \\ 3 & 2 \end{vmatrix} - \varepsilon \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \det \begin{vmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}$$

$$0 = (4-\varepsilon)(2-\varepsilon) - 1 \cdot 3 = 8 - 6\varepsilon + \varepsilon^2 - 1 \cdot 3 = \varepsilon^2 - 6\varepsilon + 5$$

$$0 = \varepsilon^2 - Trace(\mathbf{M})\varepsilon + \det(\mathbf{M}) = \varepsilon^2 - 6\varepsilon + 5$$

$$0 = (\varepsilon - 1)(\varepsilon - 5)$$
 so let: $\varepsilon_1 = 1$ and: $\varepsilon_2 = 5$

$$0 = \mathbf{M}^{2} - 6\mathbf{M} + 5\mathbf{1} = (\mathbf{M} - 1 \cdot \mathbf{1})(\mathbf{M} - 5 \cdot \mathbf{1})$$
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}^{2} - 6 \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} + 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M= (4 1 3 2)
Secular equation
Hamilton-Cayley equation and projectors
Hamilton-Cayley equation and projectors
Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P)
Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

Matrix-algebraic method for finding eigenvector and eigenvalues With example matrix M

An *eigenvector* $|\varepsilon_k\rangle$ of **M** is in a direction that is left unchanged by **M**.

$$\mathbf{M} | \boldsymbol{\varepsilon}_{k} \rangle = \boldsymbol{\varepsilon}_{k} | \boldsymbol{\varepsilon}_{k} \rangle, \text{ or: } (\mathbf{M} - \boldsymbol{\varepsilon}_{k} \mathbf{1}) | \boldsymbol{\varepsilon}_{k} \rangle = \mathbf{0}$$

 ε_k is *eigenvalue* associated with eigenvector $|\varepsilon_k\rangle$ direction. A change of basis to $\{|\varepsilon_1\rangle, |\varepsilon_2\rangle, \dots, |\varepsilon_n\rangle\}$ called *diagonalization* gives

 $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \end{pmatrix} = \begin{pmatrix} \boldsymbol{\varepsilon}_{1} & 0 & \cdots & 0 \\ 0 & \boldsymbol{\varepsilon}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\varepsilon}_{n} \end{pmatrix}$

First step in finding eigenvalues: Solve secular equation

$$\det |\mathbf{M} - \boldsymbol{\varepsilon} \mathbf{1}| = 0 = (-1)^n \left(\boldsymbol{\varepsilon}^n + a_1 \boldsymbol{\varepsilon}^{n-1} + a_2 \boldsymbol{\varepsilon}^{n-2} + \dots + a_{n-1} \boldsymbol{\varepsilon} + a_n \right)$$

where:

$$a_1 = -Trace \mathbf{M}, \dots, a_k = (-1)^k \sum \text{diagonal k-by-k minors of } \mathbf{M}, \dots, a_n = (-1)^n \det |\mathbf{M}|$$

Secular equation has *n*-factors, one for each eigenvalue.

$$\det |\mathbf{M} - \boldsymbol{\varepsilon} \mathbf{1}| = 0 = (-1)^n (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_1) (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_2) \cdots (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_n)$$

Each ε replaced by **M** and each ε_k by $\varepsilon_k \mathbf{1}$ gives *Hamilton-Cayley* matrix equation. $\mathbf{0} = (\mathbf{M} - \varepsilon_1 \mathbf{1})(\mathbf{M} - \varepsilon_2 \mathbf{1}) \cdots (\mathbf{M} - \varepsilon_n \mathbf{1})$

Obviously true if \mathbf{M} has diagonal form. (But, that's circular logic. Faith needed!)

Replace j^{th} HC-factor by (1) to make *projection operators*

 $\mathbf{p}_{1} = (\mathbf{1})(\mathbf{M} - \varepsilon_{2}\mathbf{1})\cdots(\mathbf{M} - \varepsilon_{n}\mathbf{1})$ $\mathbf{p}_{2} = (\mathbf{M} - \varepsilon_{1}\mathbf{1})(\mathbf{1})\cdots(\mathbf{M} - \varepsilon_{n}\mathbf{1})$ \vdots $\mathbf{p}_{n} = (\mathbf{M} - \varepsilon_{1}\mathbf{1})(\mathbf{M} - \varepsilon_{2}\mathbf{1})\cdots(\mathbf{1})$

 $\mathbf{M}|\varepsilon\rangle = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \varepsilon \begin{pmatrix} x \\ y \end{pmatrix} \text{ or: } \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Trying to solve by Kramer's inversion: (A fool's errand!) $\begin{aligned} x = \frac{\det \begin{pmatrix} 0 & 1 \\ 0 & 2-\varepsilon \end{pmatrix}}{\det \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}} \text{ and } y = \frac{\det \begin{pmatrix} 4-\varepsilon & 0 \\ 3 & 0 \end{pmatrix}}{\det \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}}$ Only possible non-zero $\{x, y\}$ if denominator is zero, too! $0 = \det |\mathbf{M} - \varepsilon \cdot \mathbf{1}| = \det \begin{vmatrix} 4 & 1 \\ 3 & 2 \end{vmatrix} - \varepsilon \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \det \begin{vmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}$ $0 = (4-\varepsilon)(2-\varepsilon) - 1 \cdot 3 = 8 - 6\varepsilon + \varepsilon^2 - 1 \cdot 3 = \varepsilon^2 - 6\varepsilon + 5$ $0 = \varepsilon^2 - Trace(\mathbf{M})\varepsilon + \det(\mathbf{M}) = \varepsilon^2 - 6\varepsilon + 5$

$$0 = (\varepsilon - 1)(\varepsilon - 5)$$
 so let: $\varepsilon_1 = 1$ and: $\varepsilon_2 = 5$

$$0 = \mathbf{M}^{2} - 6\mathbf{M} + 5\mathbf{1} = (\mathbf{M} - 1 \cdot \mathbf{1})(\mathbf{M} - 5 \cdot \mathbf{1})$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}^{2} - 6\begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} + 5\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{p}_{1} = (\mathbf{1})(\mathbf{M} - 5 \cdot \mathbf{1}) = \begin{pmatrix} 4 - 5 & 1 \\ 3 & 2 - 5 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix}$$

$$\mathbf{p}_{2} = (\mathbf{M} - 1 \cdot \mathbf{1})(\mathbf{1}) = \begin{pmatrix} 4 - 1 & 1 \\ 3 & 2 - 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix}$$

$$\mathbf{I} = \left(\begin{array}{cc} 4 & 1 \\ 3 & 2 \end{array}\right)$$

An *eigenvector* $|\varepsilon_k\rangle$ of **M** is in a direction that is left unchanged by **M**.

$$\mathbf{M} | \boldsymbol{\varepsilon}_{k} \rangle = \boldsymbol{\varepsilon}_{k} | \boldsymbol{\varepsilon}_{k} \rangle, \text{ or: } (\mathbf{M} - \boldsymbol{\varepsilon}_{k} \mathbf{1}) | \boldsymbol{\varepsilon}_{k} \rangle = \mathbf{0}$$

 ε_k is *eigenvalue* associated with eigenvector $|\varepsilon_k\rangle$ direction. A change of basis to $\{|\varepsilon_1\rangle, |\varepsilon_2\rangle, \dots, |\varepsilon_n\rangle\}$ called *diagonalization* gives

 $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \end{pmatrix} = \begin{pmatrix} \boldsymbol{\varepsilon}_{1} & 0 & \cdots & 0 \\ 0 & \boldsymbol{\varepsilon}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\varepsilon}_{n} \end{pmatrix}$

First step in finding eigenvalues: Solve secular equation

$$\det |\mathbf{M} - \boldsymbol{\varepsilon} \mathbf{1}| = 0 = (-1)^n \left(\boldsymbol{\varepsilon}^n + a_1 \boldsymbol{\varepsilon}^{n-1} + a_2 \boldsymbol{\varepsilon}^{n-2} + \dots + a_{n-1} \boldsymbol{\varepsilon} + a_n \right)$$

where:

$$a_1 = -Trace \mathbf{M}, \dots, a_k = (-1)^k \sum \text{diagonal k-by-k minors of } \mathbf{M}, \dots, a_n = (-1)^n \det |\mathbf{M}|$$

Secular equation has *n*-factors, one for each eigenvalue.

$$\det |\mathbf{M} - \boldsymbol{\varepsilon} \mathbf{1}| = 0 = (-1)^n (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_1) (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_2) \cdots (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_n)$$

Each ε replaced by **M** and each ε_k by $\varepsilon_k \mathbf{1}$ gives *Hamilton-Cayley* matrix equation. $\mathbf{0} = (\mathbf{M} - \varepsilon_1 \mathbf{1})(\mathbf{M} - \varepsilon_2 \mathbf{1}) \cdots (\mathbf{M} - \varepsilon_n \mathbf{1})$

Obviously true if **M** has diagonal form. (But, that's circular logic. Faith needed!)

Replace j^{th} HC-factor by (1) to make projection operators $\mathbf{p}_{k} = \prod_{j \neq k} (\mathbf{M} - \varepsilon_{j} \mathbf{1})$ $\mathbf{p}_{1} = (\mathbf{1})(\mathbf{M} - \varepsilon_{2} \mathbf{1}) \cdots (\mathbf{M} - \varepsilon_{n} \mathbf{1})$ $\mathbf{p}_{2} = (\mathbf{M} - \varepsilon_{1} \mathbf{1})(-1) \cdots (\mathbf{M} - \varepsilon_{n} \mathbf{1})$ \vdots $\mathbf{p}_{n} = (\mathbf{M} - \varepsilon_{1} \mathbf{1})(\mathbf{M} - \varepsilon_{2} \mathbf{1}) \cdots (-1)$ (Assume distinct e-values here: Non-degeneracy clause) $\varepsilon_{j} \neq \varepsilon_{k} \neq \cdots$

Each \mathbf{p}_k contains *eigen-bra-kets* since: $(\mathbf{M} - \varepsilon_k \mathbf{1})\mathbf{p}_k = 0$ or: $\mathbf{M}\mathbf{p}_k = \varepsilon_k \mathbf{p}_k = \mathbf{p}_k \mathbf{M}$.

 $\mathbf{M}|\varepsilon\rangle = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \varepsilon \begin{pmatrix} x \\ y \end{pmatrix} \text{ or: } \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Trying to solve by Kramer's inversion: (A fool's errand!) $\begin{aligned} x = \frac{\det \begin{vmatrix} 0 & 1 \\ 0 & 2-\varepsilon \end{vmatrix}}{\det \begin{vmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{vmatrix}} \text{ and } y = \frac{\det \begin{vmatrix} 4-\varepsilon & 0 \\ 3 & 0 \end{vmatrix}}{\det \begin{vmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{vmatrix}$ Only possible non-zero $\{x, y\}$ if denominator is zero, too! $0 = \det |\mathbf{M} - \varepsilon \cdot \mathbf{1}| = \det \begin{vmatrix} 4 & 1 \\ 3 & 2 \end{vmatrix} - \varepsilon \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \det \begin{vmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}$ $0 = (4-\varepsilon)(2-\varepsilon) - 1\cdot3 = 8 - 6\varepsilon + \varepsilon^2 - 1\cdot3 = \varepsilon^2 - 6\varepsilon + 5$ $0 = \varepsilon^2 - Trace(\mathbf{M})\varepsilon + \det(\mathbf{M}) = \varepsilon^2 - 6\varepsilon + 5$

$$0 = (\varepsilon - 1)(\varepsilon - 5)$$
 so let: $\varepsilon_1 = 1$ and: $\varepsilon_2 = 5$

$$0 = \mathbf{M}^{2} - 6\mathbf{M} + 5\mathbf{1} = (\mathbf{M} - 1\cdot\mathbf{1})(\mathbf{M} - 5\cdot\mathbf{1})$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}^{2} - 6\begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} + 5\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{p}_{1} = (\mathbf{1})(\mathbf{M} - 5\cdot\mathbf{1}) = \begin{pmatrix} 4 - 5 & 1 \\ 3 & 2 - 5 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix}$$

$$\mathbf{p}_{2} = (\mathbf{M} - 1\cdot\mathbf{1})(\mathbf{1}) = \begin{pmatrix} 4 - 1 & 1 \\ 3 & 2 - 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix}$$

$$\mathbf{Mp}_{1} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} = 1 \cdot \mathbf{p}_{1}$$

$$\mathbf{Mp}_{2} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = 5 \cdot \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = 5 \cdot \mathbf{p}_{2}$$
a jor jinding eigenvector and eigenvalues with e.

$$\mathbf{M} = \left(\begin{array}{cc} 4 & 1 \\ 3 & 2 \end{array}\right)$$

An *eigenvector* $|\varepsilon_k\rangle$ of **M** is in a direction that is left unchanged by **M**.

$$\mathbf{M} | \boldsymbol{\varepsilon}_{k} \rangle = \boldsymbol{\varepsilon}_{k} | \boldsymbol{\varepsilon}_{k} \rangle, \text{ or: } (\mathbf{M} - \boldsymbol{\varepsilon}_{k} \mathbf{1}) | \boldsymbol{\varepsilon}_{k} \rangle = \mathbf{0}$$

 ε_k is *eigenvalue* associated with eigenvector $|\varepsilon_k\rangle$ direction. A change of basis to $\{|\varepsilon_1\rangle, |\varepsilon_2\rangle, \dots, |\varepsilon_n\rangle\}$ called *diagonalization* gives

 $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{2} \rangle & \cdots & \langle \boldsymbol{\varepsilon}_{n} | \mathbf{M} | \boldsymbol{\varepsilon}_{n} \rangle \end{pmatrix} = \begin{pmatrix} \boldsymbol{\varepsilon}_{1} & 0 & \cdots & 0 \\ 0 & \boldsymbol{\varepsilon}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\varepsilon}_{n} \end{pmatrix}$

First step in finding eigenvalues: Solve secular equation

$$\det |\mathbf{M} - \boldsymbol{\varepsilon} \mathbf{1}| = 0 = (-1)^n \left(\boldsymbol{\varepsilon}^n + a_1 \boldsymbol{\varepsilon}^{n-1} + a_2 \boldsymbol{\varepsilon}^{n-2} + \dots + a_{n-1} \boldsymbol{\varepsilon} + a_n \right)$$

where:

$$a_1 = -Trace \mathbf{M}, \dots, a_k = (-1)^k \sum \text{diagonal k-by-k minors of } \mathbf{M}, \dots, a_n = (-1)^n \det |\mathbf{M}|$$

Secular equation has *n*-factors, one for each eigenvalue.

$$\det |\mathbf{M} - \boldsymbol{\varepsilon} \mathbf{1}| = 0 = (-1)^n (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_1) (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_2) \cdots (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_n)$$

Each ε replaced by **M** and each ε_k by $\varepsilon_k \mathbf{1}$ gives *Hamilton-Cayley* matrix equation. $\mathbf{0} = (\mathbf{M} - \varepsilon_1 \mathbf{1})(\mathbf{M} - \varepsilon_2 \mathbf{1}) \cdots (\mathbf{M} - \varepsilon_n \mathbf{1})$

Obviously true if **M** has diagonal form. (But, that's circular logic. Faith needed!)

 $\mathbf{M}|\varepsilon\rangle = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \varepsilon \begin{pmatrix} x \\ y \end{pmatrix} \text{ or: } \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Trying to solve by Kramer's inversion: (A fool's errand!) $\begin{aligned} x = \frac{\det \begin{pmatrix} 0 & 1 \\ 0 & 2-\varepsilon \end{pmatrix}}{\det \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}} \text{ and } y = \frac{\det \begin{pmatrix} 4-\varepsilon & 0 \\ 3 & 0 \end{pmatrix}}{\det \begin{pmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix}} \end{aligned}$ Only possible non-zero $\{x, y\}$ if denominator is zero, too! $0 = \det |\mathbf{M} - \varepsilon \cdot \mathbf{1}| = \det \begin{vmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} - \varepsilon \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \det \begin{vmatrix} 4-\varepsilon & 1 \\ 3 & 2-\varepsilon \end{pmatrix} \end{vmatrix}$ $0 = (4-\varepsilon)(2-\varepsilon) - 1\cdot 3 = 8 - 6\varepsilon + \varepsilon^2 - 1\cdot 3 = \varepsilon^2 - 6\varepsilon + 5$ $0 = \varepsilon^2 - Trace(\mathbf{M})\varepsilon + \det(\mathbf{M}) = \varepsilon^2 - 6\varepsilon + 5$

$$0 = (\varepsilon - 1)(\varepsilon - 5)$$
 so let: $\varepsilon_1 = 1$ and: $\varepsilon_2 = 5$

$$0 = \mathbf{M}^{2} - 6\mathbf{M} + 5\mathbf{1} = (\mathbf{M} - 1 \cdot \mathbf{1})(\mathbf{M} - 5 \cdot \mathbf{1})$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}^{2} - 6\begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} + 5\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{p}_{1} = (\mathbf{1})(\mathbf{M} - 5 \cdot \mathbf{1}) = \begin{pmatrix} 4 - 5 & 1 \\ 3 & 2 - 5 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix}$$

$$\mathbf{p}_{2} = (\mathbf{M} - 1 \cdot \mathbf{1})(\mathbf{1}) = \begin{pmatrix} 4 - 1 & 1 \\ 3 & 2 - 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix}$$

$$\mathbf{Mp}_{1} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} = 1 \cdot \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} = 1 \cdot \mathbf{p}_{1}$$

$$\mathbf{Mp}_{2} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = 5 \cdot \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = 5 \cdot \mathbf{p}_{2}$$

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M= (4 1 3 2) Secular equation Hamilton-Cayley equation and projectors
→ Idempotent projectors (w eigenvalues ⇒ eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P) Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

$$\begin{aligned} \text{Matrix-algebraic method for finding eigenvector and eigenvalues}} & \text{With example matrix} & \mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \\ \mathbf{p}_{j} \mathbf{p}_{k} = \mathbf{p}_{j} \prod_{m \neq k} (\mathbf{M} - \varepsilon_{m} \mathbf{1}) = \prod_{m \neq k} (\mathbf{p}_{j} \mathbf{M} - \varepsilon_{m} \mathbf{p}_{j} \mathbf{1}) & \mathbf{M} \mathbf{p}_{k} = \varepsilon_{k} \mathbf{p}_{k} = \mathbf{p}_{k} \mathbf{M} \\ \text{Multiplication properties of } \mathbf{p}_{j} : \\ \mathbf{p}_{j} \mathbf{p}_{k} = \prod_{m \neq k} (\varepsilon_{j} \mathbf{p}_{j} - \varepsilon_{m} \mathbf{p}_{j}) = \mathbf{p}_{j} \prod_{m \neq k} (\varepsilon_{j} - \varepsilon_{m}) = \begin{cases} \mathbf{0} & \text{if } : j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m}) & \text{if } : j = k \end{cases} & \mathbf{P}_{k} = k \end{aligned}$$

$$\begin{aligned} \text{Matrix-algebraic method for finding eigenvector and eigenvalues}} & \text{With example matrix} & \mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \\ \mathbf{p}_{j} \mathbf{p}_{k} = \mathbf{p}_{j} \prod_{m \neq k} (\mathbf{M} - \varepsilon_{m} \mathbf{1}) = \prod_{m \neq k} (\mathbf{p}_{j} \mathbf{M} - \varepsilon_{m} \mathbf{p}_{j} \mathbf{1}) & \mathbf{M} \mathbf{p}_{k} = \varepsilon_{k} \mathbf{p}_{k} = \mathbf{p}_{k} \mathbf{M} \\ \text{Multiplication properties of } \mathbf{p}_{j} : \\ \mathbf{p}_{j} \mathbf{p}_{k} = \prod_{m \neq k} (\varepsilon_{j} \mathbf{p}_{j} - \varepsilon_{m} \mathbf{p}_{j}) = \mathbf{p}_{j} \prod_{m \neq k} (\varepsilon_{j} - \varepsilon_{m}) = \begin{cases} \mathbf{0} & \text{if } : j \neq k \\ \mathbf{p}_{k} \prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m}) & \text{if } : j = k \end{cases} \\ \mathbf{p}_{k} \prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m}) & \text{if } : j = k \end{cases} \\ \text{Last step:} \\ \text{make Idempotent Projectors: } \mathbf{P}_{k} = \frac{\mathbf{p}_{k}}{\prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} = \frac{\prod_{m \neq k} (\mathbf{M} - \varepsilon_{m} \mathbf{1})}{\prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} = \frac{\prod_{m \neq k} (\mathbf{M} - \varepsilon_{m} \mathbf{1})}{\prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} = \frac{\mathbf{1}_{k} \begin{pmatrix} \mathbf{M} - \mathbf{1} \\ \mathbf{1} - \mathbf{1} \end{pmatrix}}{\mathbf{1}_{k} (\varepsilon_{k} - \varepsilon_{m})} \\ \mathbf{p}_{2} = (\mathbf{M} - \mathbf{1} \mathbf{1}) = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \end{aligned}$$

$$\begin{aligned} &Matrix-algebraic method for finding eigenvector and eigenvalues \\ &\mathbf{p}_{j}\mathbf{p}_{k} = \mathbf{p}_{j}\prod_{m\neq k} (\mathbf{M}-\varepsilon_{m}\mathbf{1}) = \prod_{m\neq k} (\mathbf{p}_{j}\mathbf{M}-\varepsilon_{m}\mathbf{p}_{j}\mathbf{1}) \\ &\mathbf{M}\mathbf{p}_{k} = \varepsilon_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M} \\ &\mathbf{M}\mathbf{p}_{k} = \varepsilon_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M} \\ &\mathbf{M}\mathbf{p}_{k} = \varepsilon_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M} \\ &\mathbf{p}_{1} = (\mathbf{M}-5\cdot\mathbf{1}) = \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} \\ &\mathbf{p}_{1} = (\mathbf{M}-5\cdot\mathbf{1}) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{2} = (\mathbf{M}-1\cdot\mathbf{1}) = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \\ &\mathbf{p}_{2} = (\mathbf{M}-1\cdot\mathbf{1}) = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \\ &\mathbf{p}_{2} = (\mathbf{M}-1\cdot\mathbf{1}) = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2} \\ &\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{2}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2}\mathbf{p}_{2}\mathbf{p}_{1}\mathbf{p}_{2$$

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M= (4 1 3 2) Secular equation Hamilton-Cayley equation and projectors
→ Idempotent projectors (how eigenvalues⇒eigenvectors)
Operator orthonormality and Completeness (Idempotent means: P·P=P) Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

$$\begin{aligned} & \text{Matrix-algebraic method for finding eigenvector and eigenvalues} \\ & \mathbf{p}_{j}\mathbf{p}_{k} = \mathbf{p}_{j}\prod_{m \neq k} (\mathbf{M} - \varepsilon_{m}\mathbf{1}) = \prod_{m \neq k} (\mathbf{p}_{j}\mathbf{M} - \varepsilon_{m}\mathbf{p}_{j}\mathbf{1}) \\ & \mathbf{M}\mathbf{p}_{k} = \varepsilon_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M} \\ & \mathbf{M}\mathbf{p}_{k} = \varepsilon_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M} \\ & \mathbf{p}_{i} = (\mathbf{M} - 5\cdot\mathbf{1}) = \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} \\ & \mathbf{p}_{i} = (\mathbf{M} - 5\cdot\mathbf{1}) = \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = (\mathbf{M} - 1\cdot\mathbf{1}) = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \\ & \mathbf{p}_{2} = (\mathbf{M} - 1\cdot\mathbf{1}) = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = (\mathbf{M} - 1\cdot\mathbf{1}) = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = (\mathbf{M} - 1\cdot\mathbf{1}) = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = (\mathbf{M} - 1\cdot\mathbf{1}) = \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & -1\cdot\mathbf{1} \\ -3 & 1 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ & \mathbf{p}_{i}\mathbf{p}$$

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M= (4 1 3 2) Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors)
→ Operator orthonormality and Completeness (Idempotent means: P·P=P)
Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M= (4 1 3 2) Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P)
✓ Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a'-vis Operator vs. State Lagrange functional interpolation formula Diagonalizing Transformations (D-Ttran) from projectors

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

 $\mathbf{M} = \mathbf{MP}_1 + \mathbf{MP}_2 + \dots + \mathbf{MP}_n = \varepsilon_1 \mathbf{P}_1 + \varepsilon_2 \mathbf{P}_2 + \dots + \varepsilon_n \mathbf{P}_n$

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M= (4 1 3 2) Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P) Spectral Decompositions
Functional spectral decomposition ← Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula Diagonalizing Transformations (D-Ttran) from projectors

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

Matrix and operator Spectral Decompositons $\mathbf{M} = \left(\begin{array}{cc} 4 & 1 \\ 3 & 2 \end{array}\right)$ $\mathbf{p}_{j}\mathbf{p}_{k} = \mathbf{p}_{j}\prod_{m\neq k} (\mathbf{M} - \varepsilon_{m}\mathbf{1}) = \prod_{m\neq k} (\mathbf{p}_{j}\mathbf{M} - \varepsilon_{m}\mathbf{p}_{j}\mathbf{1}) \qquad \mathbf{M}\mathbf{p}_{k} = \varepsilon_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M}$ lication properties of \mathbf{p}_{j} : $\mathbf{p}_{j}\mathbf{p}_{k} = \prod_{m\neq k} (\varepsilon_{j}\mathbf{p}_{j} - \varepsilon_{m}\mathbf{p}_{j}) = \mathbf{p}_{j}\prod_{m\neq k} (\varepsilon_{j} - \varepsilon_{m}) = \begin{cases} \mathbf{0} & if: j\neq k \\ \mathbf{p}_{k}\prod_{m\neq k} (\varepsilon_{k} - \varepsilon_{m}) & if: j = k \end{cases}$ $\mathbf{p}_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M}$ $\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M}$ Multiplication properties of **p**_{*j*}: Last step. make *Idempotent Projectors:* $\mathbf{P}_{k} = \frac{\mathbf{P}_{k}}{\prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} = \frac{\prod_{m \neq k} (\mathbf{M} - \varepsilon_{m} \mathbf{1})}{\prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} = \frac{\prod_{m \neq k} (\mathbf{M} - \varepsilon_{m} \mathbf{1})}{\prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} = k_{1} \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{3}{2} \end{pmatrix}}{k_{1}} = |\varepsilon_{1}\rangle\langle\varepsilon_{1}|$ $\mathbf{P}_{j}\mathbf{P}_{k} = \begin{cases} \mathbf{0} & if: j \neq k \\ \mathbf{P}_{k} & if: j = k \end{cases} \quad \begin{array}{c} \mathbf{M}\mathbf{p}_{k} = \varepsilon_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M} \\ implies: \\ \mathbf{M}\mathbf{P}_{k} = \varepsilon_{k}\mathbf{P}_{k} = \mathbf{P}_{k}\mathbf{M} \end{cases} \quad \mathbf{P}_{2} = \frac{(\mathbf{M}-1\cdot\mathbf{1})}{(5-1)} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = k_{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}}{k_{2}} = |\varepsilon_{2}\rangle\langle\varepsilon_{2}|$ The **P**_{*i*} are *Mutually Ortho-Normal* $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_1 | \boldsymbol{\varepsilon}_1 \rangle & \langle \boldsymbol{\varepsilon}_1 | \boldsymbol{\varepsilon}_2 \rangle \\ \langle \boldsymbol{\varepsilon}_2 | \boldsymbol{\varepsilon}_1 \rangle & \langle \boldsymbol{\varepsilon}_2 | \boldsymbol{\varepsilon}_2 \rangle \end{pmatrix}$ as are bra-ket $\langle \varepsilon_j | \text{and} | \varepsilon_j \rangle$ inside **P**_j's $= \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$...and the \mathbf{P}_i satisfy a $\mathbf{P}_1 + \mathbf{P}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Completeness Relation: $1 = P_1 + P_2 + ... + P_n$ $\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} = 1\mathbf{P}_1 + 5\mathbf{P}_2 = 1|1\rangle\langle 1| + 5|2\rangle\langle 2| = 1 \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{3}{4} & \frac{3}{4} \end{pmatrix} + 5 \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}$ $=|\varepsilon_1\rangle\langle\varepsilon_1|+|\varepsilon_2\rangle\langle\varepsilon_2|$ $= |\varepsilon_1\rangle \langle \varepsilon_1| + |\varepsilon_2\rangle \langle \varepsilon_2| + \dots + |\varepsilon_n\rangle \langle \varepsilon_n|$ Eigen-operators $\mathbf{MP}_k = \varepsilon_k \mathbf{P}_k$ then give *Spectral Decomposition* of operator **M** $\mathbf{M} = \mathbf{MP}_1 + \mathbf{MP}_2 + \dots + \mathbf{MP}_n = \varepsilon_1 \mathbf{P}_1 + \varepsilon_2 \mathbf{P}_2 + \dots + \varepsilon_n \mathbf{P}_n$...and *Functional Spectral Decomposition* of any function *f*(**M**) of **M** $f(\mathbf{M}) = f(\varepsilon_1)\mathbf{P}_1 + f(\varepsilon_2)\mathbf{P}_2 + \dots + f(\varepsilon_n)\mathbf{P}_n$

 $\mathbf{M} = \left(\begin{array}{cc} 4 & 1 \\ 3 & 2 \end{array}\right)$ Matrix and operator Spectral Decompositons $\mathbf{p}_1 = (\mathbf{M} - 5 \cdot \mathbf{1}) = \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} \qquad \mathbf{p}_1 \mathbf{p}_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\mathbf{p}_{j}\mathbf{p}_{k} = \mathbf{p}_{j}\prod(\mathbf{M} - \boldsymbol{\varepsilon}_{m}\mathbf{1}) = \prod(\mathbf{p}_{j}\mathbf{M} - \boldsymbol{\varepsilon}_{m}\mathbf{p}_{j}\mathbf{1}) \qquad \mathbf{M}\mathbf{p}_{k} = \boldsymbol{\varepsilon}_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M}$ dication properties of \mathbf{p}_j : $\mathbf{p}_j \mathbf{p}_k = \prod_{m \neq k} \left(\varepsilon_j \mathbf{p}_j - \varepsilon_m \mathbf{p}_j \right) = \mathbf{p}_j \prod_{m \neq k} \left(\varepsilon_j - \varepsilon_m \right) = \begin{cases} \mathbf{0} & if : j \neq k \\ \mathbf{p}_k \prod_{m \neq k} \left(\varepsilon_k - \varepsilon_m \right) & if : j = k \end{cases}$ $\mathbf{p}_1 \mathbf{p}_2 = \left(\mathbf{M} - 1 \cdot \mathbf{I} \right) = \left(\begin{array}{c} 3 & 1 \\ 3 & 1 \end{array} \right)$ $(tricky \ step)$ Factoring bra-kets into "Ket-Bras: Multiplication properties of **p**_{*j*}: Last step. make *Idempotent Projectors:* $\mathbf{P}_{k} = \frac{\mathbf{P}_{k}}{\prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} = \frac{\prod_{m \neq k} (\mathbf{M} - \varepsilon_{m} \mathbf{1})}{\prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} = \frac{\prod_{m \neq k} (\mathbf{M} - \varepsilon_{m} \mathbf{1})}{\prod_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} = k_{1} \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{3}{2} \end{pmatrix}}{k_{1}} = |\varepsilon_{1}\rangle\langle\varepsilon_{1}|$ $\mathbf{P}_{j}\mathbf{P}_{k} = \begin{cases} \mathbf{0} & if: j \neq k \\ \mathbf{P}_{k} & if: j = k \end{cases} \quad \begin{array}{c} \mathbf{M}\mathbf{p}_{k} = \varepsilon_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M} \\ implies: \\ \mathbf{M}\mathbf{P}_{k} = \varepsilon_{k}\mathbf{P}_{k} = \mathbf{P}_{k}\mathbf{M} \end{cases} \quad \mathbf{P}_{2} = \frac{(\mathbf{M}-1\cdot\mathbf{1})}{(5-1)} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = k_{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}}{k_{2}} = |\varepsilon_{2}\rangle\langle\varepsilon_{2}|$ The **P**_{*i*} are *Mutually Ortho-Normal* as are bra-ket $\langle \varepsilon_i | \text{and} | \varepsilon_i \rangle$ inside \mathbf{P}_i 's $= \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right)$...and the \mathbf{P}_i satisfy a $\mathbf{P}_1 + \mathbf{P}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Completeness Relation: $1 = P_1 + P_2 + ... + P_n$ $\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} = 1\mathbf{P}_1 + 5\mathbf{P}_2 = 1|1\rangle\langle 1| + 5|2\rangle\langle 2| = 1 \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{3}{4} & \frac{3}{4} \end{pmatrix} + 5 \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}$ $=|\varepsilon_1\rangle\langle\varepsilon_1|+|\varepsilon_2\rangle\langle\varepsilon_2|$ $= |\varepsilon_1\rangle \langle \varepsilon_1| + |\varepsilon_2\rangle \langle \varepsilon_2| + \dots + |\varepsilon_n\rangle \langle \varepsilon_n|$ Example: $\mathbf{M}^{50} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} = \mathbf{1}^{50} \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{3}{4} & \frac{3}{4} \end{pmatrix} + \mathbf{5}^{50} \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1+3\cdot5^{50} & 5^{50}-1 \\ 3\cdot5^{50}-3 & 5^{50}+3 \end{pmatrix}$ Eigen-operators $\mathbf{MP}_k = \varepsilon_k \mathbf{P}_k$ then give *Spectral Decomposition* of operator **M** $\mathbf{M} = \mathbf{MP}_1 + \mathbf{MP}_2 + \dots + \mathbf{MP}_n = \varepsilon_1 \mathbf{P}_1 + \varepsilon_2 \mathbf{P}_2 + \dots + \varepsilon_n \mathbf{P}_n$...and *Functional Spectral Decomposition* of any function *f*(**M**) of **M** $f(\mathbf{M}) = f(\varepsilon_1)\mathbf{P}_1 + f(\varepsilon_2)\mathbf{P}_2 + \dots + f(\varepsilon_n)\mathbf{P}_n$

 $\mathbf{M} = \left(\begin{array}{cc} 4 & 1 \\ 3 & 2 \end{array}\right)$ Matrix and operator Spectral Decompositons $\mathbf{p}_1 = (\mathbf{M} - 5 \cdot \mathbf{1}) = \begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} \qquad \mathbf{p}_1 \mathbf{p}_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\mathbf{p}_{j}\mathbf{p}_{k} = \mathbf{p}_{j}\prod(\mathbf{M} - \boldsymbol{\varepsilon}_{m}\mathbf{1}) = \prod(\mathbf{p}_{j}\mathbf{M} - \boldsymbol{\varepsilon}_{m}\mathbf{p}_{j}\mathbf{1}) \qquad \mathbf{M}\mathbf{p}_{k} = \boldsymbol{\varepsilon}_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M}$ lication properties of \mathbf{p}_j : $\mathbf{p}_j \mathbf{p}_k = \prod_{m \neq k} \left(\varepsilon_j \mathbf{p}_j - \varepsilon_m \mathbf{p}_j \right) = \mathbf{p}_j \prod_{m \neq k} \left(\varepsilon_j - \varepsilon_m \right) = \begin{cases} \mathbf{0} & if : j \neq k \\ \mathbf{p}_k \prod_{m \neq k} (\varepsilon_k - \varepsilon_m) & if : j = k \end{cases}$ $\mathbf{p}_2 = (\mathbf{M} - 1 \cdot \mathbf{1}) = \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix}$ (tricky step)Factoring bra-kets into "Ket-Bras: Multiplication properties of \mathbf{p}_i : $\begin{array}{l} \text{Last step.} \\ \text{make Idempotent Projectors: } \mathbf{P}_{k} = \frac{\mathbf{P}_{k}}{\prod\limits_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} = \frac{\prod\limits_{m \neq k} (\mathbf{M} - \varepsilon_{m} \mathbf{1})}{\prod\limits_{m \neq k} (\varepsilon_{k} - \varepsilon_{m})} \end{array} \end{array} \begin{array}{l} \mathbf{P}_{1} = \frac{(\mathbf{M} - 5 \cdot \mathbf{1})}{(1 - 5)} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} = k_{1} \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix} \otimes \frac{\left(\frac{1}{2} & -\frac{1}{2}\right)}{k_{1}} = |\varepsilon_{1}\rangle\langle\varepsilon_{1}| \end{aligned}$ $\mathbf{P}_{j}\mathbf{P}_{k} = \begin{cases} \mathbf{0} & if: j \neq k \\ \mathbf{P}_{k} & if: j = k \end{cases} \quad \begin{array}{c} \mathbf{M}\mathbf{p}_{k} = \varepsilon_{k}\mathbf{p}_{k} = \mathbf{p}_{k}\mathbf{M} \\ implies: \\ \mathbf{M}\mathbf{P}_{k} = \varepsilon_{k}\mathbf{P}_{k} = \mathbf{P}_{k}\mathbf{M} \\ \mathbf{M}\mathbf{P}_{k} = \varepsilon_{k}\mathbf{P}_{k} = \mathbf{P}_{k}\mathbf{M} \end{cases} \quad \mathbf{P}_{2} = \frac{(\mathbf{M} - 1 \cdot \mathbf{1})}{(5 - 1)} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = k_{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}}{k_{2}} = |\varepsilon_{2}\rangle\langle\varepsilon_{2}|$ The **P**_{*i*} are *Mutually Ortho-Normal* as are bra-ket $\langle \varepsilon_i | \text{and} | \varepsilon_i \rangle$ inside \mathbf{P}_i 's $= \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$...and the \mathbf{P}_i satisfy a $\mathbf{P}_1 + \mathbf{P}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Completeness Relation: $1 = P_1 + P_2 + ... + P_n$ $\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} = 1\mathbf{P}_1 + 5\mathbf{P}_2 = 1|1\rangle\langle 1| + 5|2\rangle\langle 2| = 1 \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{3}{4} & \frac{3}{4} \end{pmatrix} + 5 \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}$ $= |\varepsilon_1\rangle \langle \varepsilon_1| + |\varepsilon_2\rangle \langle \varepsilon_2| + \dots + |\varepsilon_n\rangle \langle \varepsilon_n|$ $=|\varepsilon_1\rangle\langle\varepsilon_1|+|\varepsilon_2\rangle\langle\varepsilon_2|$ Examples: $\mathbf{M}^{50} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} = \mathbf{1}^{50} \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{3}{4} & \frac{3}{4} \end{pmatrix} + \mathbf{5}^{50} \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1+3\cdot5^{50} & 5^{50}-1 \\ 3\cdot5^{50}-3 & 5^{50}+3 \end{pmatrix}$ Eigen-operators $\mathbf{MP}_k = \varepsilon_k \mathbf{P}_k$ then give *Spectral Decomposition* of operator **M** $\mathbf{M} = \mathbf{MP}_1 + \mathbf{MP}_2 + \dots + \mathbf{MP}_n = \varepsilon_1 \mathbf{P}_1 + \varepsilon_2 \mathbf{P}_2 + \dots + \varepsilon_n \mathbf{P}_n$...and *Functional Spectral Decomposition* of any function *f*(**M**) of **M** $\sqrt{\mathbf{M}} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} = \pm \sqrt{1} \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{3}{4} & \frac{3}{4} \end{pmatrix} \pm \sqrt{5} \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}$ $f(\mathbf{M}) = f(\varepsilon_1)\mathbf{P}_1 + f(\varepsilon_2)\mathbf{P}_2 + \dots + f(\varepsilon_n)\mathbf{P}_n$

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M= (4 1 3 2) Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P) Spectral Decompositions Functional spectral decomposition
✓ Orthonormality vs. Completeness vis-a`-vis Operator vs. State
Lagrange functional interpolation formula Diagonalizing Transformations (D-Ttran) from projectors

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

Orthonormality vs. Completeness vis-a`-vis Operator vs. State Operator expressions for orthonormality appear quite different from expressions for completeness. $\mathbf{P}_{j}\mathbf{P}_{k} = \delta_{jk}\mathbf{P}_{k} = \begin{cases} \mathbf{0} & if: j \neq k \\ \mathbf{P}_{k} & if: j = k \end{cases} \qquad \mathbf{1} = \mathbf{P}_{1} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n}$ Orthonormality vs. Completeness vis-a`-vis Operator vs. State Operator expressions for orthonormality appear quite different from expressions for completeness. $\mathbf{P}_{j}\mathbf{P}_{k} = \delta_{jk}\mathbf{P}_{k} = \begin{cases} \mathbf{0} & \text{if } : j \neq k \\ \mathbf{P}_{k} & \text{if } : j = k \end{cases} \qquad \mathbf{1} = \mathbf{P}_{1} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n}$

 $|\varepsilon_{j}\rangle\langle\varepsilon_{j}|\varepsilon_{k}\rangle\langle\varepsilon_{k}|=\delta_{jk}|\varepsilon_{k}\rangle\langle\varepsilon_{k}| \text{ or: } \langle\varepsilon_{j}|\varepsilon_{k}\rangle=\delta_{jk} \qquad \mathbf{1}=|\varepsilon_{l}\rangle\langle\varepsilon_{l}|+|\varepsilon_{2}\rangle\langle\varepsilon_{2}|+...+|\varepsilon_{n}\rangle\langle\varepsilon_{n}|$

Orthonormality vs. Completeness vis-a`-vis Operator vs. State Operator expressions for orthonormality appear quite different from expressions for completeness. $\mathbf{P}_{j}\mathbf{P}_{k} = \delta_{jk}\mathbf{P}_{k} = \begin{cases} \mathbf{0} & if: j \neq k \\ \mathbf{P}_{k} & if: j = k \end{cases} \qquad \mathbf{1} = \mathbf{P}_{1} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n}$

 $|\varepsilon_{j}\rangle\langle\varepsilon_{j}|\varepsilon_{k}\rangle\langle\varepsilon_{k}|=\delta_{jk}|\varepsilon_{k}\rangle\langle\varepsilon_{k}| \text{ or: } \langle\varepsilon_{j}|\varepsilon_{k}\rangle=\delta_{jk} \qquad \mathbf{1}=|\varepsilon_{I}\rangle\langle\varepsilon_{I}|+|\varepsilon_{2}\rangle\langle\varepsilon_{2}|+...+|\varepsilon_{n}\rangle\langle\varepsilon_{n}|$

State vector representations of orthonormality are quite **similar** to representations of completeness. Like 2-sides of the same coin.

 $\{|x\rangle, |y\rangle\}\text{-orthonormality with }\{|\varepsilon_1\rangle, |\varepsilon_2\rangle\}\text{-completeness}$ $\langle x|y\rangle = \delta_{x,y} = \langle x|\mathbf{1}|y\rangle = \langle x|\varepsilon_1\rangle \langle \varepsilon_1|y\rangle + \langle x|\varepsilon_2\rangle \langle \varepsilon_2|y\rangle.$

 $\{|\varepsilon_{I}\rangle, |\varepsilon_{2}\rangle\} \text{-orthonormality with } \{|x\rangle, |y\rangle\} \text{-completeness}$ $\langle \varepsilon_{i}|\varepsilon_{j}\rangle = \delta_{i,j} = \langle \varepsilon_{i}|\mathbf{1}|\varepsilon_{j}\rangle = \langle \varepsilon_{i}|x\rangle\langle x|\varepsilon_{j}\rangle + \langle \varepsilon_{i}|y\rangle\langle y|\varepsilon_{j}\rangle$

Orthonormality vs. Completeness vis-a`-vis Operator vs. State Operator expressions for orthonormality appear quite different from expressions for completeness. $\mathbf{P}_{j}\mathbf{P}_{k} = \delta_{jk}\mathbf{P}_{k} = \begin{cases} \mathbf{0} & if: j \neq k \\ \mathbf{P}_{k} & if: j = k \end{cases} \qquad \mathbf{1} = \mathbf{P}_{1} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n}$

 $|\varepsilon_{j}\rangle\langle\varepsilon_{j}|\varepsilon_{k}\rangle\langle\varepsilon_{k}|=\delta_{jk}|\varepsilon_{k}\rangle\langle\varepsilon_{k}| \text{ or: } \langle\varepsilon_{j}|\varepsilon_{k}\rangle=\delta_{jk} \qquad \mathbf{1}=|\varepsilon_{I}\rangle\langle\varepsilon_{I}|+|\varepsilon_{2}\rangle\langle\varepsilon_{2}|+...+|\varepsilon_{n}\rangle\langle\varepsilon_{n}|$

State vector representations of orthonormality are quite **similar** to representations of completeness. Like 2-sides of the same coin.

 $\{|x\rangle, |y\rangle\} \text{-orthonormality with } \{|\varepsilon_I\rangle, |\varepsilon_2\rangle\} \text{-completeness} \\ \langle x|y\rangle = \delta_{x,y} = \langle x|\mathbf{1}|y\rangle = \langle x|\varepsilon_1\rangle \langle \varepsilon_1|y\rangle + \langle x|\varepsilon_2\rangle \langle \varepsilon_2|y\rangle. \\ \langle x|y\rangle = \delta(x,y) = \psi_1(x)\psi_1^*(y) + \psi_2(x)\psi_2^*(y) + ... \\ Dirac \ \delta\text{-function} \\ \{|\varepsilon_I\rangle, |\varepsilon_2\rangle\} \text{-orthonormality with } \{|x\rangle, |y\rangle\} \text{-completeness} \\ \langle \varepsilon_i|\varepsilon_j\rangle = \delta_{i,j} = \langle \varepsilon_i|\mathbf{1}|\varepsilon_j\rangle = \langle \varepsilon_i|x\rangle \langle x|\varepsilon_j\rangle + \langle \varepsilon_i|y\rangle \langle y|\varepsilon_j\rangle$

However Schrodinger wavefunction notation $\psi(x) = \langle x | \psi \rangle$ shows quite a difference...

Orthonormality vs. Completeness vis-a`-vis Operator vs. State Operator expressions for orthonormality appear quite different from expressions for completeness. $\mathbf{P}_{j}\mathbf{P}_{k} = \delta_{jk}\mathbf{P}_{k} = \begin{cases} \mathbf{0} & if: j \neq k \\ \mathbf{P}_{k} & if: j = k \end{cases} \qquad \mathbf{1} = \mathbf{P}_{1} + \mathbf{P}_{2} + ... + \mathbf{P}_{n}$

 $|\varepsilon_{j}\rangle\langle\varepsilon_{j}|\varepsilon_{k}\rangle\langle\varepsilon_{k}|=\delta_{jk}|\varepsilon_{k}\rangle\langle\varepsilon_{k}| \text{ or: } \langle\varepsilon_{j}|\varepsilon_{k}\rangle=\delta_{jk} \qquad \mathbf{1}=|\varepsilon_{I}\rangle\langle\varepsilon_{I}|+|\varepsilon_{2}\rangle\langle\varepsilon_{2}|+...+|\varepsilon_{n}\rangle\langle\varepsilon_{n}|$

State vector representations of orthonormality are quite **similar** to representations of completeness. Like 2-sides of the same coin.

> $\{|x\rangle, |y\rangle\} \text{-orthonormality with } \{|\varepsilon_{I}\rangle, |\varepsilon_{2}\rangle\} \text{-completeness}$ $\langle x|y\rangle = \delta_{x,y} = \langle x|\mathbf{1}|y\rangle = \langle x|\varepsilon_{1}\rangle\langle \varepsilon_{1}|y\rangle + \langle x|\varepsilon_{2}\rangle\langle \varepsilon_{2}|y\rangle.$ $\langle x|y\rangle = \delta(x,y) = \psi_{I}(x)\psi_{I}^{*}(y) + \psi_{2}(x)\psi_{2}^{*}(y) + ...$ Dirac δ -function $\{|\varepsilon_{I}\rangle, |\varepsilon_{2}\rangle\} \text{-orthonormality with } \{|x\rangle, |y\rangle\} \text{-completeness}$ $\langle \varepsilon_{i}|\varepsilon_{j}\rangle = \delta_{i,j} = \langle \varepsilon_{i}|\mathbf{1}|\varepsilon_{j}\rangle = \langle \varepsilon_{i}|x\rangle\langle x|\varepsilon_{j}\rangle + \langle \varepsilon_{i}|y\rangle\langle y|\varepsilon_{j}\rangle$ $\langle \varepsilon_{i}|\varepsilon_{j}\rangle = \delta_{i,j} = ... + \psi_{I}^{*}(x)\psi_{J}(x) + \psi_{2}(y)\psi_{2}^{*}(y) + ... \rightarrow \int dx\psi_{I}^{*}(x)\psi_{J}(x)$

However Schrodinger wavefunction notation $\psi(x) = \langle x | \psi \rangle$ shows quite a difference... ...particularly in the orthonormality integral.

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M= (4 1 3 2) Secular equation Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P) Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State
✓ Lagrange functional interpolation formula Diagonalizing Transformations (D-Ttran) from projectors

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

A Proof of Projector Completeness (Truer-than-true by Lagrange interpolation) Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{1} = \mathbf{P}_{1} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{1} = \mathbf{P}_{1} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Each polynomial term $P_m(x)$ has zeros at each point $x=x_j$ except where $x=x_m$. Then $P_m(x_m)=1$.

Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{1} = \mathbf{P}_{1} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Each polynomial term $P_m(x)$ has zeros at each point $x=x_j$ except where $x=x_m$. Then $P_m(x_m)=1$. So at each of these points this L-approximation becomes exact: $L(f(x_j))=f(x_j)$.

Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{I} = \mathbf{P}_{l} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Each polynomial term $P_m(x)$ has zeros at each point $x=x_j$ except where $x=x_m$. Then $P_m(x_m)=1$. So at each of these points this L-approximation becomes exact: $L(f(x_j))=f(x_j)$.

If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x)) = f(x) may be exact everywhere.

$$1 = \sum_{m=1}^{N} P_m(x) \qquad x = \sum_{m=1}^{N} x_m P_m(x) \qquad x^2 = \sum_{m=1}^{N} x_m^2 P_m(x)$$

Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{I} = \mathbf{P}_{l} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Each polynomial term $P_m(x)$ has zeros at each point $x=x_j$ except where $x=x_m$. Then $P_m(x_m)=1$. So at each of these points this L-approximation becomes exact: $L(f(x_j))=f(x_j)$.

If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x)) = f(x) may be exact everywhere.

$$I = \sum_{m=1}^{N} P_m(x) \qquad x = \sum_{m=1}^{N} x_m P_m(x) \qquad x^2 = \sum_{m=1}^{N} x_m^2 P_m(x)$$

One point determines a constant level line,

Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{I} = \mathbf{P}_{l} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Each polynomial term $P_m(x)$ has zeros at each point $x=x_j$ except where $x=x_m$. Then $P_m(x_m)=1$. So at each of these points this L-approximation becomes exact: $L(f(x_j))=f(x_j)$.

If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x)) = f(x) may be exact everywhere.

$$1 = \sum_{m=1}^{N} P_m(x) \qquad x = \sum_{m=1}^{N} x_m P_m(x) \qquad x^2 = \sum_{m=1}^{N} x_m^2 P_m(x)$$

One point determines a constant level line, two separate points uniquely determine a sloping line,

Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{I} = \mathbf{P}_{l} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Each polynomial term $P_m(x)$ has zeros at each point $x=x_j$ except where $x=x_m$. Then $P_m(x_m)=1$. So at each of these points this L-approximation becomes exact: $L(f(x_j))=f(x_j)$.

If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x)) = f(x) may be exact everywhere.

$$1 = \sum_{m=1}^{N} P_m(x) \qquad x = \sum_{m=1}^{N} x_m P_m(x) \qquad x^2 = \sum_{m=1}^{N} x_m^2 P_m(x)$$

One point determines a constant level line, two separate points uniquely determine a sloping line, three separate points uniquely determine a parabola, etc.

Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{I} = \mathbf{P}_{l} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Each polynomial term $P_m(x)$ has zeros at each point $x=x_j$ except where $x=x_m$. Then $P_m(x_m)=1$. So at each of these points this L-approximation becomes exact: $L(f(x_j))=f(x_j)$.

If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x)) = f(x) may be exact everywhere.

$$1 = \sum_{m=1}^{N} P_m(x) \qquad x = \sum_{m=1}^{N} x_m P_m(x) \qquad x^2 = \sum_{m=1}^{N} x_m^2 P_m(x)$$

One point determines a constant level line, two separate points uniquely determine a sloping line, three separate points uniquely determine a parabola, etc.

Lagrange interpolation formula \rightarrow *Completeness formula* as $x \rightarrow M$ and as $x_k \rightarrow \varepsilon_k$ and as $P_k(x_k) \rightarrow P_k$

Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{I} = \mathbf{P}_{l} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Each polynomial term $P_m(x)$ has zeros at each point $x=x_j$ except where $x=x_m$. Then $P_m(x_m)=1$. So at each of these points this L-approximation becomes exact: $L(f(x_j))=f(x_j)$.

If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x)) = f(x) may be exact everywhere.

$$1 = \sum_{m=1}^{N} P_m(x) \qquad x = \sum_{m=1}^{N} x_m P_m(x) \qquad x^2 = \sum_{m=1}^{N} x_m^2 P_m(x)$$

One point determines a constant level line, two separate points uniquely determine a sloping line, three separate points uniquely determine a parabola, etc.

Lagrange interpolation formula \rightarrow *Completeness formula* as $x \rightarrow M$ and as $x_k \rightarrow \varepsilon_k$ and as $P_k(x_k) \rightarrow P_k$

All distinct values $\varepsilon_1 \neq \varepsilon_2 \neq ... \neq \varepsilon_N$ satisfy $\Sigma \mathbf{P}_k = \mathbf{1}$.

Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{I} = \mathbf{P}_{1} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Each polynomial term $P_m(x)$ has zeros at each point $x=x_j$ except where $x=x_m$. Then $P_m(x_m)=1$. So at each of these points this L-approximation becomes exact: $L(f(x_j))=f(x_j)$.

If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x)) = f(x) may be exact everywhere.

$$1 = \sum_{m=1}^{N} P_m(x) \qquad x = \sum_{m=1}^{N} x_m P_m(x) \qquad x^2 = \sum_{m=1}^{N} x_m^2 P_m(x)$$

One point determines a constant level line, two separate points uniquely determine a sloping line, three separate points uniquely determine a parabola, etc.

Lagrange interpolation formula \rightarrow *Completeness formula* as $x \rightarrow M$ and as $x_k \rightarrow \varepsilon_k$ and as $P_k(x_k) \rightarrow P_k$

All distinct values $\varepsilon_1 \neq \varepsilon_2 \neq \dots \neq \varepsilon_N$ satisfy $\Sigma \mathbf{P}_k = \mathbf{1}$. Completeness is *truer than true* as is seen for N = 2.

$$\mathbf{P}_{1} + \mathbf{P}_{2} = \frac{\prod_{j \neq 1} \left(\mathbf{M} - \varepsilon_{j} \mathbf{1}\right)}{\prod_{j \neq 1} \left(\varepsilon_{1} - \varepsilon_{j}\right)} + \frac{\prod_{j \neq 1} \left(\mathbf{M} - \varepsilon_{j} \mathbf{1}\right)}{\prod_{j \neq 1} \left(\varepsilon_{2} - \varepsilon_{j}\right)} = \frac{\left(\mathbf{M} - \varepsilon_{2} \mathbf{1}\right)}{\left(\varepsilon_{1} - \varepsilon_{2}\right)} + \frac{\left(\mathbf{M} - \varepsilon_{1} \mathbf{1}\right)}{\left(\varepsilon_{2} - \varepsilon_{1}\right)} = \frac{\left(\mathbf{M} - \varepsilon_{1} \mathbf{1}\right)}{\left(\varepsilon_{1} - \varepsilon_{2}\right)} = \frac{-\varepsilon_{2} \mathbf{1} + \varepsilon_{1} \mathbf{1}}{\left(\varepsilon_{1} - \varepsilon_{2}\right)} = \mathbf{1} \text{ (for all } \varepsilon_{j})$$
A Proof of Projector Completeness (Truer-than-true)

Compare matrix completeness relation and functional spectral decompositions

$$\mathbf{1} = \mathbf{P}_{1} + \mathbf{P}_{2} + \dots + \mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} \mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} \frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})} \qquad f(\mathbf{M}) = f(\boldsymbol{\varepsilon}_{1})\mathbf{P}_{1} + f(\boldsymbol{\varepsilon}_{2})\mathbf{P}_{2} + \dots + f(\boldsymbol{\varepsilon}_{n})\mathbf{P}_{n} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\mathbf{P}_{k} = \sum_{\boldsymbol{\varepsilon}_{k}} f(\boldsymbol{\varepsilon}_{k})\frac{\prod_{m \neq k} (\mathbf{M} - \boldsymbol{\varepsilon}_{m} \mathbf{1})}{\prod_{m \neq k} (\boldsymbol{\varepsilon}_{k} - \boldsymbol{\varepsilon}_{m})}$$

with *Lagrange interpolation formula* of function f(x) approximated by its value at N points $x_1, x_2, ..., x_N$.

$$L(f(x)) = \sum_{k=1}^{N} f(x_k) \cdot P_k(x) \quad \text{where: } P_k(x) = \frac{\prod_{j \neq k}^{N} (x - x_j)}{\prod_{j \neq k}^{N} (x_k - x_j)}$$

Each polynomial term $P_m(x)$ has zeros at each point $x=x_j$ except where $x=x_m$. Then $P_m(x_m)=1$. So at each of these points this L-approximation becomes exact: $L(f(x_j))=f(x_j)$.

If f(x) happens to be a polynomial of degree N-1 or less, then L(f(x)) = f(x) may be exact everywhere.

$$1 = \sum_{m=1}^{N} P_m(x) \qquad x = \sum_{m=1}^{N} x_m P_m(x) \qquad x^2 = \sum_{m=1}^{N} x_m^2 P_m(x)$$

One point determines a constant level line, two separate points uniquely determine a sloping line, three separate points uniquely determine a parabola, etc.

Lagrange interpolation formula \rightarrow *Completeness formula* as $x \rightarrow M$ and as $x_k \rightarrow \varepsilon_k$ and as $P_k(x_k) \rightarrow P_k$

All distinct values $\varepsilon_1 \neq \varepsilon_2 \neq ... \neq \varepsilon_N$ satisfy $\Sigma \mathbf{P}_k = \mathbf{1}$. Completeness is *truer than true* as is seen for N = 2.

$$\mathbf{P}_{1} + \mathbf{P}_{2} = \frac{\prod_{j \neq 1} \left(\mathbf{M} - \varepsilon_{j} \mathbf{1} \right)}{\prod_{j \neq 1} \left(\varepsilon_{1} - \varepsilon_{j} \right)} + \frac{\prod_{j \neq 1} \left(\mathbf{M} - \varepsilon_{j} \mathbf{1} \right)}{\prod_{j \neq 1} \left(\varepsilon_{2} - \varepsilon_{j} \right)} = \frac{\left(\mathbf{M} - \varepsilon_{2} \mathbf{1} \right)}{\left(\varepsilon_{1} - \varepsilon_{2} \right)} + \frac{\left(\mathbf{M} - \varepsilon_{1} \mathbf{1} \right)}{\left(\varepsilon_{2} - \varepsilon_{1} \right)} = \frac{\left(\mathbf{M} - \varepsilon_{2} \mathbf{1} \right) - \left(\mathbf{M} - \varepsilon_{1} \mathbf{1} \right)}{\left(\varepsilon_{1} - \varepsilon_{2} \right)} = \mathbf{1} \text{ (for all } \varepsilon_{j} \text{)}$$

However, only *select* values ε_k work for eigen-forms $\mathbf{MP}_k = \varepsilon_k \mathbf{P}_k$ or orthonormality $\mathbf{P}_j \mathbf{P}_k = \delta_{jk} \mathbf{P}_k$.

2D harmonic oscillator equations Lagrangian and matrix forms and Reciprocity symmetry

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M=(4 1 Secular equation (3 2)
Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P)
Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula
→ Diagonalizing Transformations (D-Ttran) from projectors

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

2D-HO eigensolution example with asymmetric (A-Type) symmetry Initial state projection, mixed mode beat dynamics with variable phase Diagonalizing Transformations (D-Ttran) from projectors Given our eigenvectors and their Projectors. $\mathbf{P}_{1} = \frac{(\mathbf{M} - 5 \cdot \mathbf{I})}{(1 - 5)} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} = k_{1} \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \end{pmatrix}}{k_{1}} = |\varepsilon_{1}\rangle\langle\varepsilon_{1}|$

$$\mathbf{P}_{2} = \frac{(\mathbf{M} - 1 \cdot \mathbf{1})}{(5 - 1)} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = k_{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{3}{2} & \frac{1}{2} \end{pmatrix}}{k_{2}} = |\boldsymbol{\varepsilon}_{2}\rangle \langle \boldsymbol{\varepsilon}_{2}|$$

Diagonalizing Transformations (D-Ttran) from projectors Given our eigenvectors and their Projectors. $\mathbf{P}_{1} = \frac{(\mathbf{M} - 5 \cdot \mathbf{1})}{(1 - 5)} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} = k_{1} \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix} \otimes \frac{\left(\frac{1}{2} & -\frac{1}{2}\right)}{k_{1}} = |\boldsymbol{\varepsilon}_{1}\rangle\langle\boldsymbol{\varepsilon}_{1}|$ $\mathbf{P}_{2} = \frac{(\mathbf{M} - 1 \cdot \mathbf{1})}{(5 - 1)} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = k_{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \frac{\left(\frac{3}{2} & \frac{1}{2}\right)}{k_{2}} = |\boldsymbol{\varepsilon}_{2}\rangle\langle\boldsymbol{\varepsilon}_{2}|$

Load distinct bras $\langle \varepsilon_1 |$ and $\langle \varepsilon_2 |$ into d-tran rows, kets $|\varepsilon_1 \rangle$ and $|\varepsilon_2 \rangle$ into <u>inverse</u> d-tran columns.

Diagonalizing Transformations (D-Ttran) from projectors Given our eigenvectors and their Projectors. $\mathbf{P}_{1} = \frac{(\mathbf{M} - 5 \cdot \mathbf{l})}{(1 - 5)} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} = k_{1} \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix} \otimes \frac{\left(\frac{1}{2} & -\frac{1}{2}\right)}{k_{1}} = |\boldsymbol{\varepsilon}_{1}\rangle\langle\boldsymbol{\varepsilon}_{1}|$ $\mathbf{P}_{2} = \frac{(\mathbf{M} - 1 \cdot \mathbf{l})}{(5 - 1)} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = k_{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \frac{\left(\frac{3}{2} & \frac{1}{2}\right)}{k_{2}} = |\boldsymbol{\varepsilon}_{2}\rangle\langle\boldsymbol{\varepsilon}_{2}|$

Load distinct bras $\langle \varepsilon_1 |$ and $\langle \varepsilon_2 |$ into d-tran rows, kets $|\varepsilon_1 \rangle$ and $|\varepsilon_2 \rangle$ into <u>inverse</u> d-tran columns.

$$\left\{ \left\langle \boldsymbol{\varepsilon}_{1} \right| = \left(\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \end{array} \right), \left\langle \boldsymbol{\varepsilon}_{2} \right| = \left(\begin{array}{cc} \frac{3}{2} & \frac{1}{2} \end{array} \right) \right\} , \quad \left\{ \left| \boldsymbol{\varepsilon}_{1} \right\rangle = \left(\begin{array}{cc} \frac{1}{2} \\ -\frac{3}{2} \end{array} \right), \left| \boldsymbol{\varepsilon}_{2} \right\rangle = \left(\begin{array}{cc} \frac{1}{2} \\ \frac{1}{2} \end{array} \right) \right\} \right\}$$

 $\begin{array}{c} (\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}) \leftarrow (1,2) \ d-Tran \ matrix \\ \begin{pmatrix} \left\langle \boldsymbol{\varepsilon}_{1} \middle| x \right\rangle & \left\langle \boldsymbol{\varepsilon}_{1} \middle| y \right\rangle \\ \left\langle \boldsymbol{\varepsilon}_{2} \middle| x \right\rangle & \left\langle \boldsymbol{\varepsilon}_{2} \middle| y \right\rangle \end{array} \end{pmatrix} = \left(\begin{array}{c} \frac{1}{2} & -\frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} \end{array} \right) \\ \begin{pmatrix} \left\langle x \middle| \boldsymbol{\varepsilon}_{1} \right\rangle & \left\langle x \middle| \boldsymbol{\varepsilon}_{2} \right\rangle \\ \left\langle y \middle| \boldsymbol{\varepsilon}_{1} \right\rangle & \left\langle y \middle| \boldsymbol{\varepsilon}_{2} \right\rangle \end{array} \right) = \left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{array} \right) \\ \end{array}$

Diagonalizing Transformations (D-Ttran) from projectors Given our eigenvectors and their Projectors. $\mathbf{P}_{1} = \frac{(\mathbf{M} - 5 \cdot \mathbf{I})}{(1 - 5)} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} = k_{1} \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \end{pmatrix}}{k_{1}} = |\boldsymbol{\varepsilon}_{1}\rangle\langle\boldsymbol{\varepsilon}_{1}|$ $\mathbf{P}_{2} = \frac{(\mathbf{M} - 1 \cdot \mathbf{1})}{(5 - 1)} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = k_{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{3}{2} & \frac{1}{2} \end{pmatrix}}{k_{2}} = |\boldsymbol{\varepsilon}_{2}\rangle \langle \boldsymbol{\varepsilon}_{2}|$ Load distinct bras $\langle \varepsilon_1 |$ and $\langle \varepsilon_2 |$ into d-tran rows, kets $|\varepsilon_1 \rangle$ and $|\varepsilon_2 \rangle$ into <u>inverse</u> d-tran columns. $\left\{ \left\langle \boldsymbol{\varepsilon}_{1} \right| = \left(\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \end{array} \right), \left\langle \boldsymbol{\varepsilon}_{2} \right| = \left(\begin{array}{cc} \frac{3}{2} & \frac{1}{2} \end{array} \right) \right\} , \quad \left\{ \left| \boldsymbol{\varepsilon}_{1} \right\rangle = \left| \begin{array}{cc} \frac{1}{2} \\ -\frac{3}{2} \end{array} \right|, \left| \boldsymbol{\varepsilon}_{2} \right\rangle = \left| \begin{array}{cc} \frac{1}{2} \\ \frac{1}{2} \end{array} \right| \right\}$ $(\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2) \leftarrow (1,2) d$ -Tran matrix $(1,2) \leftarrow (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2)$ INVERSE d-Tran matrix $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_1 | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_1 | \boldsymbol{y} \rangle \\ \langle \boldsymbol{\varepsilon}_2 | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_2 | \boldsymbol{y} \rangle \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix} , \quad \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_1 \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_2 \rangle \\ \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_1 \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_2 \rangle \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$ Use Dirac labeling for all components so transformation is $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{y} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{y} \rangle \end{pmatrix} \cdot \begin{pmatrix} \langle \boldsymbol{x} | \mathbf{K} | \boldsymbol{x} \rangle & \langle \boldsymbol{x} | \mathbf{K} | \boldsymbol{y} \rangle \\ \langle \boldsymbol{y} | \mathbf{K} | \boldsymbol{x} \rangle & \langle \boldsymbol{y} | \mathbf{K} | \boldsymbol{y} \rangle \end{pmatrix} \cdot \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix} = \begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{K} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{K} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{K} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{K} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix}$ $\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix} \quad \cdot \quad \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \quad \cdot \quad \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \quad = \quad \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$

Diagonalizing Transformations (D-Ttran) from projectors Given our eigenvectors and their Projectors. $\mathbf{P}_{1} = \frac{(\mathbf{M} - 5 \cdot \mathbf{I})}{(1 - 5)} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} = k_{1} \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \end{pmatrix}}{k_{1}} = |\boldsymbol{\varepsilon}_{1}\rangle\langle\boldsymbol{\varepsilon}_{1}|$ $\mathbf{P}_{2} = \frac{(\mathbf{M} - 1 \cdot \mathbf{1})}{(5 - 1)} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = k_{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{3}{2} & \frac{1}{2} \end{pmatrix}}{k_{2}} = |\boldsymbol{\varepsilon}_{2}\rangle \langle \boldsymbol{\varepsilon}_{2}|$ Load distinct bras $\langle \varepsilon_1 |$ and $\langle \varepsilon_2 |$ into d-tran rows, kets $|\varepsilon_1 \rangle$ and $|\varepsilon_2 \rangle$ into <u>inverse</u> d-tran columns. $\left\{ \left\langle \boldsymbol{\varepsilon}_{1} \right| = \left(\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \end{array} \right), \left\langle \boldsymbol{\varepsilon}_{2} \right| = \left(\begin{array}{cc} \frac{3}{2} & \frac{1}{2} \end{array} \right) \right\} , \quad \left\{ \left| \boldsymbol{\varepsilon}_{1} \right\rangle = \left| \begin{array}{cc} \frac{1}{2} \\ -\frac{3}{2} \end{array} \right|, \left| \boldsymbol{\varepsilon}_{2} \right\rangle = \left| \begin{array}{cc} \frac{1}{2} \\ \frac{1}{2} \end{array} \right| \right\}$ $(\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2) \leftarrow (1,2) d$ -Tran matrix $(1,2) \leftarrow (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2)$ INVERSE d-Tran matrix $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_1 | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_1 | \boldsymbol{y} \rangle \\ \langle \boldsymbol{\varepsilon}_2 | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_2 | \boldsymbol{y} \rangle \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix} , \quad \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_1 \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_2 \rangle \\ \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_1 \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_2 \rangle \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$ Use Dirac labeling for all components so transformation is OK $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{y} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{y} \rangle \end{pmatrix} \cdot \begin{pmatrix} \langle \boldsymbol{x} | \mathbf{K} | \boldsymbol{x} \rangle & \langle \boldsymbol{x} | \mathbf{K} | \boldsymbol{y} \rangle \\ \langle \boldsymbol{y} | \mathbf{K} | \boldsymbol{x} \rangle & \langle \boldsymbol{y} | \mathbf{K} | \boldsymbol{y} \rangle \end{pmatrix} \cdot \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix} = \begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{K} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{K} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{K} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{K} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix}$ $\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix} \quad \cdot \quad \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \quad \cdot \quad \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \quad = \quad \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$ Check inverse-d-tran is really inverse of your d-tran. $\begin{array}{c|c} \langle \boldsymbol{\varepsilon}_{1} | 1 \rangle & \langle \boldsymbol{\varepsilon}_{1} | 2 \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | 1 \rangle & \langle \boldsymbol{\varepsilon}_{2} | 2 \rangle \end{array} \end{array} \right) \cdot \left(\begin{array}{c} \langle 1 | \boldsymbol{\varepsilon}_{1} \rangle & \langle 1 | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle 2 | \boldsymbol{\varepsilon}_{1} \rangle & \langle 2 | \boldsymbol{\varepsilon}_{2} \rangle \end{array} \right) = \left(\begin{array}{c} \langle \boldsymbol{\varepsilon}_{1} | 1 | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | 1 | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | 1 | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | 1 | \boldsymbol{\varepsilon}_{2} \rangle \end{array} \right)$

$$\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix} \quad \cdot \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \quad = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Diagonalizing Transformations (D-Ttran) from projectors Given our eigenvectors and their Projectors. $\mathbf{P}_{1} = \frac{(\mathbf{M} - 5 \cdot \mathbf{I})}{(1 - 5)} = \frac{1}{4} \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} = k_{1} \begin{pmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \end{pmatrix}}{k_{1}} = |\boldsymbol{\varepsilon}_{1}\rangle\langle\boldsymbol{\varepsilon}_{1}|$ $\mathbf{P}_{2} = \frac{(\mathbf{M} - 1 \cdot \mathbf{1})}{(5 - 1)} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} = k_{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \frac{\begin{pmatrix} \frac{3}{2} & \frac{1}{2} \end{pmatrix}}{k_{2}} = |\boldsymbol{\varepsilon}_{2}\rangle\langle\boldsymbol{\varepsilon}_{2}|$ Load distinct bras $\langle \varepsilon_1 |$ and $\langle \varepsilon_2 |$ into d-tran rows, kets $|\varepsilon_1 \rangle$ and $|\varepsilon_2 \rangle$ into <u>inverse</u> d-tran columns. $\left\{ \left\langle \boldsymbol{\varepsilon}_{1} \right| = \left(\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \end{array} \right), \left\langle \boldsymbol{\varepsilon}_{2} \right| = \left(\begin{array}{cc} \frac{3}{2} & \frac{1}{2} \end{array} \right) \right\} , \quad \left\{ \left| \boldsymbol{\varepsilon}_{1} \right\rangle = \left| \begin{array}{cc} \frac{1}{2} \\ -\frac{3}{2} \end{array} \right|, \left| \boldsymbol{\varepsilon}_{2} \right\rangle = \left| \begin{array}{cc} \frac{1}{2} \\ \frac{1}{2} \end{array} \right| \right\}$ $(\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2) \leftarrow (1,2) d$ -Tran matrix $(1,2) \leftarrow (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2)$ INVERSE d-Tran matrix $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_1 | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_1 | \boldsymbol{y} \rangle \\ \langle \boldsymbol{\varepsilon}_2 | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_2 | \boldsymbol{y} \rangle \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix} , \quad \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_1 \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_2 \rangle \\ \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_1 \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_2 \rangle \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}$ Use Dirac labeling for all components so transformation is OK $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{y} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{y} \rangle \end{pmatrix} \cdot \begin{pmatrix} \langle \boldsymbol{x} | \mathbf{K} | \boldsymbol{x} \rangle & \langle \boldsymbol{x} | \mathbf{K} | \boldsymbol{y} \rangle \\ \langle \boldsymbol{y} | \mathbf{K} | \boldsymbol{x} \rangle & \langle \boldsymbol{y} | \mathbf{K} | \boldsymbol{y} \rangle \end{pmatrix} \cdot \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix} = \begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \mathbf{K} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \mathbf{K} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \mathbf{K} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \mathbf{K} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix}$ $\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{-3}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$ Check inverse-d-tran is really inverse of your d-tran. In standard quantum matrices inverses are "easy" $\begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{y} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{y} \rangle \end{pmatrix} \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{y} \rangle \end{pmatrix} \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{y} \rangle \end{pmatrix} = \begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{1} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{1} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{1} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{1} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{1} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{1} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix} \begin{pmatrix} \langle \boldsymbol{\varepsilon}_{1} | \boldsymbol{1} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{1} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{z} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{z} \rangle \end{pmatrix} = \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{z}_{1} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{z} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{z} \rangle \end{pmatrix} = \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{z}_{2} | \boldsymbol{x} \rangle & \langle \boldsymbol{\varepsilon}_{2} | \boldsymbol{y} \rangle \end{pmatrix} = \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix}^{\dagger} = \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix}^{\dagger} = \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix}^{\dagger} = \begin{pmatrix} \langle \boldsymbol{x} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{2} \rangle \\ \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{1} \rangle & \langle \boldsymbol{y} | \boldsymbol{\varepsilon}_{2} \rangle \end{pmatrix}^{\dagger} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \\ \langle \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\dagger} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \\ \langle \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\dagger} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \\ \langle \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\dagger} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \\ \langle \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\dagger} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \\ \langle \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\dagger} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\ast} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\dagger} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \rangle \end{pmatrix}^{\ast} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\ast} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\ast} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\ast} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \rangle \end{pmatrix}^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\ast} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \rangle^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle \end{pmatrix}^{\ast} = \begin{pmatrix} \langle \boldsymbol{z} | \boldsymbol{z} | \boldsymbol{z} \rangle \rangle \end{pmatrix}^{\ast} & \langle \boldsymbol{z} | \boldsymbol{z} \rangle$ 2D harmonic oscillator equations

Lagrangian and matrix forms and Reciprocity symmetry

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M=(4 1 Secular equation (3 2)
Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P)
Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula Diagonalizing Transformations (D-Ttran) from projectors

 2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed π/2 phase
 2D-HO eigensolution example with asymmetric (A-Type) symmetry Initial state projection, mixed mode beat dynamics with variable phase

$$\mathbf{P}_{1} = \frac{\begin{pmatrix} K_{11} - K_{2} & K_{12} \\ K_{12} & K_{22} - K_{2} \end{pmatrix}}{K_{1} - K_{2}} = \frac{\begin{pmatrix} 10 - 11 & -1 \\ -1 & 10 - 11 \end{pmatrix}}{9 - 11} = \frac{\begin{pmatrix} 1 & +1 \\ +1 & 1 \end{pmatrix}}{2}$$

$$\mathbf{P}_{2} = \frac{\begin{pmatrix} K_{11} - K_{1} & K_{12} \\ K_{12} & K_{22} - K_{1} \end{pmatrix}}{K_{2} - K_{1}} = \frac{\begin{pmatrix} 10 - 9 & -1 \\ -1 & 10 - 9 \end{pmatrix}}{11 - 9} = \frac{\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}}{2}$$

Eigenbra vectors: $\langle \varepsilon_1 | = (1/\sqrt{2} + 1/\sqrt{2}), \langle \varepsilon_2 | = (1/\sqrt{2} - 1/\sqrt{2})$

Eigenbra vectors: $\langle \varepsilon_1 | = (1/\sqrt{2} + 1/\sqrt{2}), \langle \varepsilon_2 | = (1/\sqrt{2} - 1/\sqrt{2})$ *Mixed mode dynamics*

$$\begin{aligned} |x(t)\rangle &= |\varepsilon_1\rangle \quad \langle \varepsilon_1 | x(0) \rangle e^{-i\omega_1 t} + |\varepsilon_2\rangle \quad \langle \varepsilon_2 | x(0) \rangle e^{-i\omega_2 t} \\ \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} &= \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \langle \varepsilon_1 | x(0) \rangle e^{-i\omega_1 t} + \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \langle \varepsilon_2 | x(0) \rangle e^{-i\omega_2 t} \end{aligned}$$

Fig. 3.3.9 Beats in weakly coupled symmetric oscillators with equal mode magnitudes.

Fig. 3.3.9 Beats in weakly coupled symmetric oscillators with equal mode magnitudes.

Videos of Coupled Pendula aided by Overhead Projector

Launch embedded videos using your browser/App or ∉ view on YouTube ⇒

Stronger coupling on the left, illustrated indirectly by a darker looking spring on screen

BoxIt (Beating) Web Simulation (A=1, B=-0.1, C=0, D=1)

BoxIt (Beating) Web Simulation (A=1, B=-0.1, C=0, D=1) with frequency ratios

Approximating decimal frequencies $\omega = \alpha$ using successive levels of *continued fractions*.

Pi (π =3.14159265...) converges rather quickly by cf.

$$A_{0} = \alpha = 3.14159265...$$

$$A_{1} = \frac{1}{A_{0} - n_{0}} = 7.06...$$

$$A_{1} = \frac{1}{A_{1} - n_{1}} = 15.99...$$

$$A_{2} = \frac{1}{A_{1} - n_{1}} = 15.99...$$

$$A_{3} = \frac{1}{A_{2} - n_{2}} = 1.003...$$

$$n_{0} = INT(A_{0}) = 3$$

$$\pi \cong 3 + \frac{1}{7} = \frac{22}{7} = 3.1428$$

$$\pi \cong 3 + \frac{1}{7 + \frac{1}{15}} = \frac{333}{106} = 3.141509$$

$$\pi \cong 3 + \frac{1}{7 + \frac{1}{15}} = \frac{355}{113} = 3.14159292$$

Not so much for the *Golden Mean G*= $(1+\sqrt{5})/2=1.618...$

$A_0 = G = 1.618033989$	$n_0 = INT(A_0) = 1$	$G \cong = 1.000$
$A_1 = \frac{1}{A_0 - n_0} = 1.6180$	$n_1 = INT(A_1) = 1$	$G \cong 1 + \frac{1}{1} = \frac{2}{1} = 2.000$ $G \cong 1 + \frac{1}{1} = \frac{3}{1} = 1.500$
$A_2 = \frac{1}{A_1 - n_1} = 1.6180$	$n_2 = INT(A_2) = 1$	$1 + \frac{1}{1}$ 2 1.500
$A_3 = \frac{1}{A_2 - n_2} = 1.6180$	$n_3 = INT(A_3) = 1$	$G \cong 1 + \frac{1}{1 + \frac{1}{1 + 1}} = \frac{5}{3} = 1.666.$

2D harmonic oscillator equations

Lagrangian and matrix forms and Reciprocity symmetry

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M=(4 1 Secular equation (3 2)
Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P)
Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula Diagonalizing Transformations (D-Ttran) from projectors

 2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed π/2 phase
 2D-HO eigensolution example with asymmetric (A-Type) symmetry Initial state projection, mixed mode beat dynamics with variable phase

2D-HO beats and mixed mode geometry

2D harmonic oscillator equations

Lagrangian and matrix forms and Reciprocity symmetry

2D harmonic oscillator equation eigensolutions Geometric method
Matrix-algebraic eigensolutions with example M=(4 1 Secular equation (3 2)
Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P)
Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula Diagonalizing Transformations (D-Ttran) from projectors

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

 2D-HO eigensolution example with asymmetric (A-Type) symmetry Initial state projection, mixed mode beat dynamics with variable phase

 $Det(\mathbf{K}) = 7.13 - 27 = 91 - 27 = 64$ $Trace(\mathbf{K}) = 7 + 13 = 20$

Eigen-projectors \mathbf{P}_k

$$\mathbf{P}_{1} = \frac{\begin{pmatrix} K_{11} - K_{2} & K_{12} \\ K_{12} & K_{22} - K_{2} \end{pmatrix}}{K_{1} - K_{2}} = \frac{\begin{pmatrix} 7 - 16 & -3\sqrt{3} \\ -3\sqrt{3} & 13 - 16 \end{pmatrix}}{4 - 16} = \frac{\begin{pmatrix} 9 & +3\sqrt{3} \\ +3\sqrt{3} & 3 \end{pmatrix}}{12}$$
$$= \frac{\begin{pmatrix} 3 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}}{4} = \begin{pmatrix} \sqrt{3}/2 \\ 1/2 \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 & 1/2 \end{pmatrix} = |\varepsilon_{1}\rangle\langle\varepsilon_{1}|$$

 $k_{12}=3\sqrt{3}$ $k_1 = 7 - 3\sqrt{3}$ $k_{2}=13-3\sqrt{3}$ $\int m_1 = 1 \text{ prepress} m_2 = 1 \text{ prepress}$ $\mathbf{K} = \begin{pmatrix} K_{11} & K_{12} \\ K_{12} & K_{22} \end{pmatrix} = \begin{pmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_2 + k_{12} \end{pmatrix} = \begin{pmatrix} 7 & -3\sqrt{3} \\ -3\sqrt{3} & 13 \end{pmatrix}$ The **K** secular equation $K^2 - Trace(\mathbf{K})K + Det(\mathbf{K}) = K^2 - 20K + 64 = 0 = (K - 4)(K - 16)$ $\frac{Det(\mathbf{K}) = 7 \cdot 13 - 27 = 91 - 27 = 64}{Trace(\mathbf{K}) = 7 + 13 = 20}$ $K_1 = \omega_0^2(\varepsilon_1) = 4, \quad K_2 = \omega_0^2(\varepsilon_2) = 16,$ Eigenvalues K_k and squared eigenfrequencies $\omega_0(\varepsilon_k)^2$ Eigen-projectors \mathbf{P}_k $\mathbf{P}_{1} = \frac{\begin{pmatrix} K_{11} - K_{2} & K_{12} \\ K_{12} & K_{22} - K_{2} \end{pmatrix}}{K_{12} - K_{12}} = \frac{\begin{pmatrix} 7 - 16 & -3\sqrt{3} \\ -3\sqrt{3} & 13 - 16 \end{pmatrix}}{4 - 16} = \frac{\begin{pmatrix} 9 & +3\sqrt{3} \\ +3\sqrt{3} & 3 \end{pmatrix}}{12} \qquad \qquad \mathbf{P}_{2} = \frac{\begin{pmatrix} K_{11} - K_{1} & K_{12} \\ K_{12} & K_{22} - K_{1} \end{pmatrix}}{K_{2} - K_{1}} = \frac{\begin{pmatrix} 7 - 4 & -3\sqrt{3} \\ -3\sqrt{3} & 13 - 4 \end{pmatrix}}{16 - 4} = \frac{\begin{pmatrix} 3 & -3\sqrt{3} \\ -3\sqrt{3} & 9 \end{pmatrix}}{12}$ $= \frac{\begin{pmatrix} 3 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}}{4} = \begin{pmatrix} \sqrt{3}/2 \\ 1/2 \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 & 1/2 \end{pmatrix} = |\varepsilon_1\rangle\langle\varepsilon_1|$ $=\frac{\begin{pmatrix}1 & -\sqrt{3}\\ -\sqrt{3} & 3\end{pmatrix}}{4} = \begin{pmatrix}-1/2\\ \sqrt{3}/2\end{pmatrix} \left(-1/2 & \sqrt{3}/2\right) = |\varepsilon_2\rangle \langle \varepsilon_2|$

 $k_{12} = 3\sqrt{3}$ $k_{2}=13-3\sqrt{3}$ $k_1 = 7 - 3\sqrt{3}$ $\prod_{i=1}^{n} m_i = 1 \prod_{i=1}^{n} m_2 = 1 \prod_{i=1}^{n} m_2 = 1$ $\mathbf{K} = \begin{pmatrix} K_{11} & K_{12} \\ K_{12} & K_{22} \end{pmatrix} = \begin{pmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_2 + k_{12} \end{pmatrix} = \begin{pmatrix} 7 & -3\sqrt{3} \\ -3\sqrt{3} & 13 \end{pmatrix}$ The **K** secular equation $K^2 - Trace(\mathbf{K})K + Det(\mathbf{K}) = K^2 - 20K + 64 = 0 = (K - 4)(K - 16)$ $\frac{Det(\mathbf{K}) = 7 \cdot 13 - 27 = 91 - 27 = 64}{Trace(\mathbf{K}) = 7 + 13 = 20}$ Eigenvalues K_k and squared eigenfrequencies $\omega_0(\varepsilon_k)^2$ $K_1 = \omega_0^2(\varepsilon_1) = 4$, $K_2 = \omega_0^2(\varepsilon_2) = 16$, Eigen-projectors \mathbf{P}_k $\mathbf{P}_{1} = \frac{\begin{pmatrix} K_{11} - K_{2} & K_{12} \\ K_{12} & K_{22} - K_{2} \end{pmatrix}}{K_{12} - K_{12}} = \frac{\begin{pmatrix} 7 - 16 & -3\sqrt{3} \\ -3\sqrt{3} & 13 - 16 \end{pmatrix}}{4 - 16} = \frac{\begin{pmatrix} 9 & +3\sqrt{3} \\ +3\sqrt{3} & 3 \end{pmatrix}}{12} \qquad \qquad \mathbf{P}_{2} = \frac{\begin{pmatrix} K_{11} - K_{1} & K_{12} \\ K_{12} & K_{22} - K_{1} \end{pmatrix}}{K_{12} - K_{12}} = \frac{\begin{pmatrix} 7 - 4 & -3\sqrt{3} \\ -3\sqrt{3} & 13 - 4 \end{pmatrix}}{16 - 4} = \frac{\begin{pmatrix} 3 & -3\sqrt{3} \\ -3\sqrt{3} & 9 \end{pmatrix}}{12}$ $=\frac{\begin{pmatrix}3&\sqrt{3}\\\sqrt{3}&1\end{pmatrix}}{4}=\begin{pmatrix}\sqrt{3}/2\\1/2\end{pmatrix}\begin{pmatrix}\sqrt{3}/2&1/2\end{pmatrix}=|\varepsilon_1\rangle\langle\varepsilon_1|$ $=\frac{\begin{pmatrix}1&-\sqrt{3}\\-\sqrt{3}&3\end{pmatrix}}{4}=\begin{pmatrix}-1/2\\\sqrt{3}/2\end{pmatrix}\begin{pmatrix}-1/2&\sqrt{3}/2\end{pmatrix}=|\varepsilon_2\rangle\langle\varepsilon_2|$ Eigenbra vectors: $\langle \varepsilon_1 | = (\sqrt{3}/2 \quad 1/2), \quad \langle \varepsilon_2 | = (-1/2 \quad \sqrt{3}/2)$

2D harmonic oscillator equations

Lagrangian and matrix forms and Reciprocity symmetry

2D harmonic oscillator equation eigensolutions Geometric method Matrix-algebraic eigensolutions with example M=(4 1 Secular equation (3 2) Hamilton-Cayley equation and projectors Idempotent projectors (how eigenvalues⇒eigenvectors) Operator orthonormality and Completeness (Idempotent means: P·P=P) Spectral Decompositions Functional spectral decomposition Orthonormality vs. Completeness vis-a`-vis Operator vs. State Lagrange functional interpolation formula Diagonalizing Transformations (D-Ttran) from projectors

2D-HO eigensolution example with bilateral (B-Type) symmetry Mixed mode beat dynamics and fixed $\pi/2$ phase

2D-HO eigensolution example with asymmetric (A-Type) symmetry Initial state projection, mixed mode beat dynamics with variable phase

 $k_{12} = 3\sqrt{3}$ $k_1 = 7 - 3\sqrt{3}$ $k_{2}=13-3\sqrt{3}$ $\prod_{n_1=1}^{n_1=1} \prod_{m_2=1}^{n_2=1} \prod_{n_2=1}^{n_2=1} \prod_{n_2=1}$ $\mathbf{K} = \begin{pmatrix} K_{11} & K_{12} \\ K_{12} & K_{22} \end{pmatrix} = \begin{pmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_2 + k_{12} \end{pmatrix} = \begin{pmatrix} 7 & -3\sqrt{3} \\ -3\sqrt{3} & 13 \end{pmatrix}$ The **K** secular equation $K^2 - Trace(\mathbf{K})K + Det(\mathbf{K}) = K^2 - 20K + 64 = 0 = (K - 4)(K - 16)$ $\frac{Det(\mathbf{K}) = 7 \cdot 13 - 27 = 91 - 27 = 64}{Trace(\mathbf{K}) = 7 + 13 = 20}$ $K_1 = \omega_0^2(\varepsilon_1) = 4, \quad K_2 = \omega_0^2(\varepsilon_2) = 16,$ Eigenvalues K_k and squared eigenfrequencies $\omega_0(\varepsilon_k)^2$ Eigen-projectors \mathbf{P}_k Eigenbra vectors: $\langle \varepsilon_1 | = (\sqrt{3}/2 \ 1/2), \langle \varepsilon_2 | = (-1/2 \ \sqrt{3}/2)$ Spectral decomposition of initial state $\mathbf{x}(0) = (1,0)$: $\mathbf{1} \cdot \mathbf{x}(0) = (\mathbf{P}_1 + \mathbf{P}_2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} \otimes \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

 $k_{12} = 3\sqrt{3}$ $k_{2}=13-3\sqrt{3}$ $k_1 = 7 - 3\sqrt{3}$ $\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{$ $\mathbf{K} = \begin{pmatrix} K_{11} & K_{12} \\ K_{12} & K_{22} \end{pmatrix} = \begin{pmatrix} k_1 + k_{12} & -k_{12} \\ -k_{12} & k_2 + k_{12} \end{pmatrix} = \begin{pmatrix} 7 & -3\sqrt{3} \\ -3\sqrt{3} & 13 \end{pmatrix}$ The **K** secular equation $K^2 - Trace(\mathbf{K})K + Det(\mathbf{K}) = K^2 - 20K + 64 = 0 = (K - 4)(K - 16)$ $\frac{Det(\mathbf{K}) = 7 \cdot 13 - 27 = 91 - 27 = 64}{Trace(\mathbf{K}) = 7 + 13 = 20}$ $K_1 = \omega_0^2(\varepsilon_1) = 4, \quad K_2 = \omega_0^2(\varepsilon_2) = 16,$ Eigenvalues K_k and squared eigenfrequencies $\omega_0(\varepsilon_k)^2$ Eigen-projectors \mathbf{P}_k Eigenbra vectors: $\langle \varepsilon_1 | = (\sqrt{3}/2 \ 1/2), \langle \varepsilon_2 | = (-1/2 \ \sqrt{3}/2)$ Spectral decomposition of initial state $\mathbf{x}(0) = (1,0)$: $\mathbf{1} \cdot \mathbf{x}(0) = (\mathbf{P}_1 + \mathbf{P}_2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \sqrt{3} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \otimes \begin{pmatrix} \sqrt{3} & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} \otimes \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 \end{pmatrix}$ $= \begin{pmatrix} \sqrt{3} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \begin{pmatrix} \sqrt{3} \\ \frac{\sqrt{3}}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} (-\frac{1}{2})$ (Note projection onto eigen-axes)
Spectral decomposition of 2D-HO mode dynamics for lower symmetry

Spectral decomposition of 2D-HO mode dynamics for lower symmetry

Spectral decomposition of 2D-HO mode dynamics for lower symmetry

