Name 1

Assignment 8 Oct 23, 2019 Due Wednesday Oct 30: Based on Unit 2 Chapter 1-3 and Unit 3 Chapter 1-3.

Well-known Coordinates (OCC) NOTE: Save copy of solution to this Ex.1(b) for next Assignment 9.

1. Find Jacobian, Kajobian, En, Em, metric tensors g, and g for OCC (a) and (b). (You may do (b) then reduce to (a).)
(a) Cylindrical coordinates {q/=p, ¢?=0, g’=z}: x=x!=p cos, y=x?=p sind, z=x3.
(b) Spherical coordinates: {g/=r, g?=0, ¢3=0 }: x=x!=rsin0 cosd, y=x?=rsin® sin®, z=x3=rcos0.

"Plopped" Parabolic Coordinates (GCC) (In attached figure)

2. Consider the GCC(Cartesian) definition: g/ = (x)2 +y ¢ = (y)?-x

(a) Does an analytic Cartesian coordinate definition x/ = xJ(g™) exist? If so, show.

(b) Derive the Jacobian, Kajobian, unitary vectors En, Em, and metric tensors for this GCC.

(c) On the appropriate graph on attached pages sketch the unitary vectors at the point (x=1, y=1) (Arrow) and at the
point (x=1, y=0). Where, if anywhere, is the grid an OCC however briefly? Indicate loci on graph.

(d) Find and indicate where, if anywhere, are there Jacobian or Kajobian singularities of this GCC. Show on graph.

"Sliding" Parabolic Coordinates (GCC) (In attached figure)

3. Consider the Cartesian(GCC) definition: x = 0.4 (¢/)? - ¢, y =q! - 0.4 (¢%)?

(a) Does an analytic GCC coordinate definition g™ = g™(xJ) exist? If so, show.

(b) Derive the Jacobian, Kajobian, unitary vectors En, Em, and metric tensors for this GCC.

(c) On the appropriate graph on attached pages sketch the unitary vectors near point (x=1, y=1) (Arrow) and near
point (x=1, y=0). Where, if anywhere, is the grid an OCC however briefly? Indicate loci on graph.

(d) Find and indicate where, if anywhere, are there Jacobian or Kajobian singularities of this GCC. Show on graph.

4. Covariant vs Contravariant Geometry (In attached figure)

GCC components of a vector V in attached figure are realized by line segments OA, BV, etc. Give each segment
length by single terms of the form ¥, or ¥ times (Ngmm)*!, (Ngmm)-1, (Ngmm)*1, or (Ngmm)-! with the correct m=1 or 2.
Also label each unitary vector as E; , E! , E;, or E2, whichever it is.

You should be able to do this quickly without looking at the text figures.

Extra Credit 3D problem: ”Unprofessional” Paraboloidal Coordinates (GCC) (In attached figure)

5. The surface z= f(x,y) =% x?+y? (See xyz-plot) introduces 3D partial derivative chain rules. It is the (¢3=0)-surface
in a 3D GCC coordinate grid ¢/=x, ¢>=y, ¢*=2x>+y*~ z. It contains a projection of an orthogonal (x,y) Cartesian
coordinate grid on the surface that is obviously not orthogonal most places.

a. Derive the 3-by-3 Jacobian J(x,y,z) and Kajobian K(x,y,z) for (¢3=0).

b. Extract covariant {EI,EZ,E3} and contravariant {El JE2ES } vectors represented in Cartesian (x,),z) basis.

c. Derive the 3-by-3 covariant metric g (x,) and contravariant metric g(x,y) for (¢°=0) and tell which if any points on
the surface have grids that are locally orthogonal and which if any are locally orthonormal.

(Larger graph provided separately for Ex.S5d and Ex.5e.

d. Calculate and sketch covariant {E,,E,,E;} on (¢°=0) surface where (x=4,y=-2) and where (x=3,y=+2).

e. Calculate and sketch contravariant {EI,EZ,E3} on (¢°=0) surface where (x=4,y=+2) and where (x=0,y=+4).
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Above is 2D plot for Ex. 4
Below is 3D (xyz) plot for Extra credit Ex.5.




! d" and"Sliding" Parabolic Coordinates are 2D (xy) plots for Ex.2 and Ex.3 (despite 3D appearance (only) of latter.
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Assignment 8 (contd.) - Extra credit Ex. 5
"Unprofessional” Paraboloidal Coordinates



Name 5

Assignment 8 Solutions
Ex.1 Compute Jacobian, Kajobian, En, Em, metric tensors gu, and g for the following OCC.
(c) Cylindrical coordinates {g/=p, g?=}: x=x/=p cosd, y=x?=p sind.
Spherical coordinates: {g!=r, g?=0, g3=¢ }: x=x!=rsin® cosd, y=x?=rsin® sind, z=x3=rcos0.
3.6.1 Jacobian, Kajobian, En, Em, metric g.» and g™ for spherical coordinates and cylindrical coordinates
Spherical coordinates: {g/=r, ¢?=0, ¢°=0 }: x=x!=rsin® cosd, y=x2=rsin® sind, z=x3=rcos0, reduce to cylindrical coordinates {g/=p,
G?=0}: x=x!=p cosd, y=x2=p sin¢ for p=r and 6=m/2: (So spherical coordinates are detailed first below.)
Jacobian matrices and determinants:

E E, E¢
aow &
gr 39 g¢ sinfcos¢ rcosfcosd —rsin@sing cosp 0 —psing P
J= 8% (% £ =|sin@sing rcosOsing rsinfcosd |——>—|sing 0 pcos¢ detJ = detJ" = ag;;}} = sinewpz
cosO —rsin@ 0 = 0 -p 0 -
a0
ar 90 J¢

“Kajobian” matrix inverses of J.

rcos@sing rsinfcosg
—rsin@ 0

rcosfcos¢  —rsin@sing
—rsinf 0

rcosfcosd —rsinBsing|

rcosfsing  rsinfcos¢

sin@sing rsinfcosg sinfcos¢ —rsinBsing sinfcos¢ —rsinBsing

o or or cos@ 0 cos6@ 0 sin@sing  rsin@cosd
ox g 0z sin@sing rcos@sing _ sin@cos¢p rcosBcos | sin@cos@ rcosBcos) | sinfcos¢ sin@sing  cosO cos¢ sing O
Ko 37.9 aj 879 B cos@ —rsin@ cos@ —rsin@ sin@sing  rcosOsing - cosfcosp cos@sing B sin@ 0 0 _l
T T ax oy 0z | r2sinf - r r r ?:;”2 P
99 3¢ 99 el - sifl¢ CO_S¢ 0 _sing  cosg
ox dy oz rsin@ rsinf p P

Covariant metric tensor gyv is matrix product g=J7-J of Jacobian and its transpose. OCC g’s are diagonal.
Covariant: g =1, g, =r", 80 = r?sin’ 0, Contravariant:  g” =1, g¥=1/r*, g”=1/r"sin’0,

Assignment 8 Solutions (contd.)

Ex.2 "Plopped” Parabolic Coordinate solutions Consider the GCC(Cartesian) definition: q] = (x)2 ty,q 2= (}72 -X
(a) Does an analytic Cartesian coordinate definition xJ = xJ (M) exist? Not a very useful one.

(b) Derive the Jacobian, Kajobian, unitary vectors En,, Em, and metric tensors for this GCC.

(c) On the appropriate graph on the following page sketch the unitary vectors at the point (x=1, y=1) (Arrow) and at the point (x=1, y=0).
Where, if anywhere, are they OCC?
(d) Find and indicate where, if anywhere, are the singularities of this GCC.

Inverting:
o7 o7’ s o o [2y _1]
or oy |_|[E'|_[22 1 og' a7’ =(E E): 1 2z
or oz | ()1 2 oy oy | T
or Oy g o’
= = 2ul|2y| 1 49 +1

detJ =1+ 4zy = 0 when: acy:fl g,, = E *E, :[ y]*[ y]—ZL2

o 4 Lj{1)lgl <1+4:1:y)
g" =EE =(20 120 1)=42"+1

g?=FE =(20 1p(-1 2)=2y-2) g,=E-E, = [2y].[_1]ﬁ = Q(x—_y)Q
g =ERE = (1 (-1 2y) =144y 91 {1+ day)
detg =g, 9, — 9,9, = (detJ)* = (1 + 4ay)’ G,y = E.E = .[1] 1 _ ﬂ
OCC where: ¢* =0=2y —z)or: y =1

[ g] (1+ 4wy)2




"Plopped” Parabolic Coordinates

Assignment 8 (contd.) - solutions

Ex.3 "Sliding" Parabolic Coordinates Cartesian(GCC) definition: x = 0.4 (ql)z - q2

Name

q2=+2 orthogonality
loci

1

1

"Sliding" Parabolic Coordinates

cy=q'-04@)?

(@) Does an analytic GCC coordinate definition ¢ = ¢ (xJ) exist? (// =const. = y= q/ -04(x— 0.4((//)2)2

q° =const.= x=—q*> —04(y+0.4(¢*)*)*

Not practical to solve quartic equation for g/ or ¢2.

(b) Derive the Jacobian, Kajobian, unitary vectors En, Em, and metric tensors for this GCC.

Inverting:
Jr Ox 4, ) &
gr Y 24 B
d¢  oq (B, E)=|°
1 2
@ @ 1 _éqZ
aq¢" 08¢ 5
1 2
detJ =1— —6q1q2 =0 when: ¢'¢* = 25
25 16
4 ,)(4
— — 16 2
911:E1.E1: 5q .5q :2_5(q1) +1 1 1l
1 1 g =EE =
4 ) =1
2 -4
gm:El-EZ: 5qH 4 2]:_(q1+q2)
151 >
5
1) -1 9, =EE =
16 2
9y = Ez.Ez = _éqz]’[_éqz 1+2_5(q2)
5 5
16 ,,)
1.2
detg = 9,,9,, = 9,,9,, = (det.J)* = [1 - 25 T4q ] g7 = EE’ =

4,
¢+l
5
dq" 0dq'
e R S e
or Oy | |E|_
2 2| 7 w2
8_'1 9q E 1—Eq1q2
or Jy 25
4, 4, 16 2
—— 1 o —— 1 =
5(] ][ 5(] :+25<q2) +1
detg 16 ’
1-24?
25‘1(1
4, 4, 4
_z 1 -1 K
5q [ + q ] 5(q J,-qz)
detg 16 2
1_712
-5
4, 4, 16 2
-1 — o —1 — e
+5q ][ +5q ]z 1+25(ql)
detg 16 ?
1_712
=



Name 7

Assignment 8§ solution to Ex.4 GCC Coordinate diagram.
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Differential dr = %dq1 aa 3 dq =E dq +E dq or approximation Ar =E Aq +E Aq shows how to scale
q

covariant vectors E, (Aq' =1, qu =0)and E, ( Ag' =0, qu =1). As sketched above, vectors E, and E,
approximately frame a “unit” parallelogram-grid-cell between points (¢' = 69,4% =666) , (¢' =70,4* =666) ,
(¢' =69,4° =667) ,and (¢' =70,4> = 667) separated by unit GCC difference Ag™ =1. Of course the vectors would be

better approximations of a smaller cell, say, a nano unit cell with Ag™ =107 . Any consistent scale may be applied to
draw E,-vectors since they have different units than the GCC gm-coordinates themselves. But, then the contravariant

Em-vectors must scale inversely so that E_«E" =1 and E <E" =0 .

Assignment 8 solution to Extra credit Ex.5 3D-GCC Coordinates
4 The surface z = f(x,y) =3 1x24 y is (¢3=0) part of a 3D GCC coordinate grid ¢/=x, ¢g?=y, ¢3 =% x>+ y2 — z containing a projection of
orthogonal (x,y) Cartesian coordmate grid. (That grid on the surface is obviously not orthogonal most places. )

a. Derive Jacobian J(x,y) and Kajobian K(x,y) for (¢3=0). b. Extract {El ,EZ,E3} and {El ,EZ,E3} in (x,),z) basis.

Kajobian is easiest and derived first: Inverse is Jacobian. It happens to be identical to Kajobian here!
ox 9 oz Jar
1 2 3 ¢ &y o 1 0 E=¢

9 " g Lyl w2 .2 13_v.3 X 1

dx  ox ox E'=Vg E°=Vqg" E’=Vq o' 9l o 3"

' ot a? |2 ! 0 x O E 01 2y |E=Y)

d  dy I 0 1 2y R dq

' 9?9 0 0 -1 roo 00 -1 E3:§r

oz oz oz > A o g

c. Derive the 3-by-3 covariant metric gvv(¥,)) and contravariant metric g*V(x,y) for (¢3=0) and tell which if any points on the surface have
grids that are locally orthogonal and which if any are locally orthonormal.
The covariant and contravariant metrics are not identical. Only origin has orthogonality or orthonomality.



Name

g =ELE!' g?=gLE*? g =ELE’ g =ErE g, =ErE, g;=EE;
=1 =0 = +x =1+x° =2xy =X
2 _p2.p2 23 _ p2.p3 = b0
g”? =E*E* g~ =E%E . 8n=ErEy gy =EprE; |_ 010
" - 33 . ‘3"23; 2% =1+4y’ =2y 00 1
g7 =E"E 833 =EyE;
+x +2y = Hx?+4y” X —2y =1

d. Calculate and sketch covariant {El’Ez’Es} on (g3=0) surface at (x=4,y=-2) and (x=3,y=+2).

e. Calculate and sketch contravariant {EI,E2 JE? } on (¢3=0) surface at (x=4,y=+2) and (x=0,y=+4).Assignment X-solutions

"Unprofessional" Paraboloidal Coordinates (contd.)

E=(/0x)
E,=(0 1 2y)
l‘ (0 0-1)

E'=(/10 0)

E>=(010)

. E’=(x 2y-1)
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