9/25/19 Assignment 5-due Wed Oct. 2 - Chapters 9-12. "Families of orbits and contact envelopes."

The atoms of NIST or volcanoes of Io

1. Suppose one of the volcanoes on Jupter's moon Io detonates in a constant gravity- $g\left(\mathrm{~m} \cdot \mathrm{~s}^{-2}\right)$ vacuum sending equivelocity $\pm v_{0}\left(m \cdot s^{-1}\right)$ fragments off at initial elevation angles $\alpha=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}$, and 90° with the latter one going straight up to an altitude of $y=h_{0}=1$-unit on the attached plot 1 graph and then falling straight down.
(a.) That one distance unit has what $m k s$-value in terms of $g\left(m \cdot s^{-2}\right)$ and $v_{0}\left(m \cdot s^{-1}\right) ? h_{0}=$ \qquad ()
(b.) Derive the parabolic time-coordinates $x(t)=$ \qquad , $y(t)=$ \qquad in terms of $g\left(m \cdot s^{-2}\right)$ and $v_{o}\left(m \cdot s^{-1}\right)$ and elevation angle α.
(c.) Derive the parabolic focus-locus coordinates $x_{f o c}=$ \qquad , $y_{f o c}=$ \qquad in terms of $g\left(m \cdot s^{-2}\right)$ and $v_{0}\left(m \cdot s^{-1}\right.$ and elevation angle α) for $h_{0}=1$ and construct its curve on plot 1 . This curve has Thales geometry (subtended angle of circle diameter or rectangle diagonal) that relate to trajectories. Show it on plots 1 to 4.) (d.) Derive the parabolic directrix coordinate $y_{d i r}=$ \qquad in terms of $h_{0}=1$ and elevation angle α and construct this directrix line on graph for the cases $\alpha=0^{\circ}$ to 90° listed above. Plot directrix of envelope, too.
(e.) Give general parabolic trajectory curve function $y(x)=$ \qquad in terms of $g\left(m \cdot s^{-2}\right)$ and $v_{0}\left(m \cdot s^{-1}\right)$ and α for $h_{0}=1$.

Four plots for four different launch angles $90^{\circ}, 60^{\circ}, 45^{\circ}$, and 30°
2. For cases $\alpha=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$, and 90° construct curve points, tangents, kites, and contacts for $\alpha=60^{\circ}$ on an attached $\alpha=60^{\circ}$ plot 2, for $\alpha=45^{\circ}$ on $\alpha=45^{\circ}$ plot 3, and for $\alpha=30^{\circ}$ on $\alpha=30^{\circ}$ plot 4. (Separate plots for clarity.) (a.) Locate the envelope contact points for the cases $\alpha=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$, and 90° and construct enough of the envelope points and tangents to accurately represent the envelope on each of plots 2 to 4 . If a contact point lies off a graph indicate where. Deduce $y_{\text {envelope }}(x)=$ \qquad in terms of $h_{0}=1$.
(b.) Each parabola trajectory has kite-like structure (See Fig. 9.4.) as does the envelope. Draw and relate them.
(c.) Do any of the α-trajectories have the same shape as the envelope? If so, tell which one.
3. Now consider time behavior implicit in problem 1. In a "snapshot" of each moment, volcano fragments lie on "blast-front" curve. A geometric time unit T_{l} is the time for the $\alpha=90^{\circ}$ fragment to reach its peak.
(a.) That one time unit has what $m k s$-value in terms of $g\left(m \cdot s^{-2}\right)$ and $v_{0}\left(m \cdot s^{-1}\right)$? $T_{I}=$ \qquad ()
(b.) Give a brief explanation addressing why this "snapshot" curve or locus has to be (whichever): a parabola?
\qquad straight line? \qquad circle? \qquad ellipse?__(Check one and explain choice.)
(c.) Derive and/or construct the "blast-front" curve for the case $\alpha=90^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_{1} units. $T_{90^{\circ}}=$ \qquad Find polar angle of contact normal.
(d.) Derive and/or construct the "blast-front" curve for the case $\alpha=60^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_{1} units. $T_{60^{\circ}}=$ \qquad Find polar angle of contact normal.
(e.) Derive and/or construct the "blast-front" curve for the case $\alpha=45^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_{1} units. $T_{45^{\circ}}=$ \qquad Find polar angle of contact normal.
(f.) Derive and/or construct the "blast-front" curve for the case $\alpha=30^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_{l} units. $T_{30^{\circ}}=$ \qquad Find polar angle of contact normal.

Plot 1: Geometry of $\alpha=90^{\circ}$ path and $\alpha=0^{\circ}$ path and where (if ever) they contact a "blast-front".

2. Show geometry of $\alpha=60^{\circ}$ path contacting envelope and "blast-front", kites, and foci of path and envelope. Show center of "blast-front" and its radius to contact point and its radius to intersection with $\alpha=0^{\circ}$ path.

3. Show geometry of $\alpha=45^{\circ}$ path contacting envelope and "blast-front", kites, and foci of path and envelope. Show center of "blast-front" and its radius to contact point and its radius to intersection with $\alpha=0^{\circ}$ path.

4. Show geometry of $\alpha=30^{\circ}$ path contacting envelope and "blast-front", kites, and foci of path and envelope. Show center of "blast-front" and its radius to contact point and its radius to intersection with $\alpha=0^{\circ}$ path.

