Assignments for Physics 5103 - 2019 Reading in Classical Mechanics with a BANG! and Lectures

9/25/19 Assignment 5 - due Wed Oct.2 - Chapters 9 - 12. "Families of orbits and contact envelopes."

The atoms of NIST or volcanoes of Io

1. Suppose one of the volcanoes on Jupter's moon *Io* detonates in a constant gravity- $g(m \cdot s^{-2})$ vacuum sending equivelocity $\pm v_0(m \cdot s^{-1})$ fragments off at initial elevation angles $\alpha = 0^\circ$, 15°, 30°, 45°, 60°, 75°, and 90° with the latter one going straight up to an altitude of $y=h_0=1$ -unit on the attached plot 1 graph and then falling straight down.

(a.) That one distance unit has what *mks*-value in terms of $g(m \cdot s^{-2})$ and $v_0(m \cdot s^{-1})$? $h_0 = _$ ____(). (b.) Derive the parabolic time-coordinates $x(t) = _$ _____, $y(t) = _$ _____ in terms of $g(m \cdot s^{-2})$ and

 $v_0(m \cdot s^{-1})$ and elevation angle α .

(c.) Derive the parabolic focus-locus coordinates $x_{foc} =$ ______, $y_{foc} =$ ______ in terms of $g(m \cdot s^{-2})$ and $v_0(m \cdot s^{-1})$ and elevation angle α) for $h_0 = 1$ and construct its curve on plot 1. This curve has Thales geometry (subtended angle of circle diameter or rectangle diagonal) that relate to trajectories. Show it on plots 1 to 4.) (d.) Derive the parabolic directrix coordinate $y_{dir} =$ ______ in terms of $h_0 = 1$ and elevation angle α and construct this directrix line on graph for the cases $\alpha = 0^\circ$ to 90° listed above. Plot directrix of envelope, too. (e.) Give general parabolic trajectory curve function y(x) =______ in terms of $g(m \cdot s^{-2})$ and $v_0(m \cdot s^{-1})$ and α for $h_0 = 1$.

Four plots for four different launch angles 90°, 60°, 45°, and 30°

2. For cases $\alpha = 0^\circ$, 30° , 45° , 60° , and 90° construct curve points, tangents, kites, and contacts for $\alpha = 60^\circ$ on an attached $\alpha = 60^\circ$ plot 2, for $\alpha = 45^\circ$ on $\alpha = 45^\circ$ plot 3, and for $\alpha = 30^\circ$ on $\alpha = 30^\circ$ plot 4. *(Separate plots for clarity.)* (a.) Locate the envelope contact points for the cases $\alpha = 0^\circ$, 30° , 45° , 60° , and 90° and construct enough of the envelope points and tangents to accurately represent the envelope on each of plots 2 to 4. If a contact point lies off a graph indicate where. Deduce $y_{envelope}(x) =$ ______ in terms of $h_0 = 1$.

(b.) Each parabola trajectory has kite-like structure (See Fig. 9.4.) as does the envelope. Draw and relate them.

(c.) Do any of the α -trajectories have the same shape as the envelope? If so, tell which one.

3. Now consider time behavior implicit in problem 1. In a "snapshot" of each moment, volcano fragments lie on "blast-front" curve. A geometric time unit T_l is the time for the $\alpha = 90^\circ$ fragment to reach its peak.

(a.) That one time unit has what *mks*-value in terms of $g(m \cdot s^{-2})$ and $v_0(m \cdot s^{-1})$? $T_1 = ($).

(b.) Give a brief explanation addressing why this "snapshot" curve or locus has to be (whichever): a parabola? straight line? circle? ellipse? (Check one and explain choice.)

(c.) Derive and/or construct the "blast-front" curve for the case $\alpha = 90^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_1 units. $T_{90^{\circ}} =$ _____ Find polar angle of contact normal.

(d.) Derive and/or construct the "blast-front" curve for the case $\alpha = 60^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_1 units. $T_{60^{\circ}}$ = _____ Find polar angle of contact normal.

(e.) Derive and/or construct the "blast-front" curve for the case $\alpha = 45^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_1 units. $T_{45^{\circ}} =$ _____ Find polar angle of contact normal.

(f.) Derive and/or construct the "blast-front" curve for the case $\alpha = 30^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_1 units. $T_{30^{\circ}} =$ _____ Find polar angle of contact normal.

Plot 1: Geometry of $\alpha=90^{\circ}$ path and $\alpha=0^{\circ}$ path and where (if ever) they contact a "blast-front".

2.Show geometry of α =60° path contacting envelope and "blast-front", kites, and foci of path and envelope. Show center of "blast-front" and its radius to contact point and its radius to intersection with α =0° path.

3.Show geometry of α =45° path contacting envelope and "blast-front", kites, and foci of path and envelope. Show center of "blast-front" and its radius to contact point and its radius to intersection with α =0° path.

4.Show geometry of α =30° path contacting envelope and "blast-front", kites, and foci of path and envelope. Show center of "blast-front" and its radius to contact point and its radius to intersection with α =0° path.