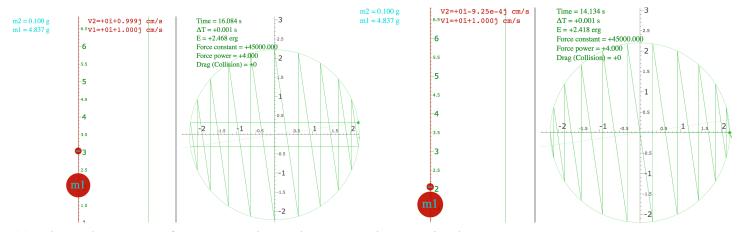
9/5 Assignment Set 3 - Read Unit 1 Ch. 3 thru Ch.7 Due Wed. 9/18/19 Name______

Pseudo-Rotations for Independent Bounce Model

Exercise 1 Estrangian plot in Fig. 5.2 (Details on p.51-59 of Lecture 3) has mass ratio $M_1/m_2 = 49/1$ and has nearly periodic path plot. (Experiment using BounceIt link in Lect.3 p.74-77. https://modphys.hosted.uark.edu/markup/BounceItWeb.php?scenario=1014) (Let small-mass be m_2 =1 here.) Changing to M_1 = 48.3.. gives more nearly periodic symmetry paths seen below.



- (a) What order $N = \underline{\hspace{1cm}}$ of C_N or D_N polygonal symmetry is appearing here?
- (b) Give a closed formula for value of M_1 = 48.3...(to 7 figures) that approaches *exactly* periodic behavior. Simplest formula should relate the tangent of a desired Estrangian rotation half-angle $\theta/2$ to mass M_1 . Plot an Estrangian velocity path on the protractor graph-paper attached assuming initial velocity V_1 =1 and V_2 =0. (c) Ceiling height (It is y_{max} = 7.0 for cases above) may eventually affect or destroy periodicity.
- Use BounceIt to show cases that are affected. (Many have chaotic behavior.)

KE becomes PE

Exercise 2 A mass $m_1=1kg$ ball is trapped (like Fig. 6.3) between two smaller mass $m_2=1gm$ balls of high speed $(v_2(0)=1000m/s \text{ for } x=0)$. Suppose this affects m_1 with an effective force law F(x) of isothermal approximation (6.11). Assume m_1 motion is small and slow around x=0. ("Balls" idealize as point masses here.)

- (a) A further approximation is the one-Dimensional Harmonic Oscillator (1D-HO) force and PE in (6.12). If each mass m_2 start in an interval $Y_0=1m$, derive approximate 1D-HO frequency and period for mass m_1 .
- (b) What if the adiabatic approximation is used instead? Does the frequency decrease, increase, or just become anharmonic? Compare isothermal and adiabatic quantitative results for $m_1=1kg$ ball being hit by two $m_2=1gm$ balls each having speed of $v_2(0)=1000m/s$ as each starts bouncing in a space of $Y_0=1m$ on either side of the equilibrium point x=0 for the 1kg ball.
- (c) How does the frequency decrease or increase in isothermal case *versus* the adiabatic case if we shorten the run interval $Y_0=1m$ to one-quarter meter?...What if we reduce the mass ratio m_1/m_2 by one-quarter?
- (d) Derive the adiabatic frequency and period for the case M=50kg in adiabatic force of two m=0.1kg masses of initial speed $v_0=20m/s$ and range $Y_0=3m$. Compare with Fig. 1.6.3c.

