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Assignment 10 - PHYS 5103-11/06/19-Due Wed. Nov. 13  CMwBang! Ch 4.1 thru Ch.4.4. and Lectures 20-21 

Ex.1 The “standard” Lorentzian (Note: Review complex 2-pole potential  φ(z)=1/z and f(z)=-1/z2 (10.42) in Unit 1-Ch.10 Fig.10.11.) 
In physics literature, a standard Lorentzian function generally means a form !  with constant Γ.  In the Near-Resonant 
Approximation (NRA is (4.2.18) and (4.2.33)) the L(Δ) is a low Δ and Γ approximation to exact G-equations (4.2.15). A clear NRA 
derivation is given in Lect. 20 p. 49 to 53 and geometries of these NRA are sketched on p. 58 to 68. 
(a) Reduce (4.2.15) to NRA functions of detuning “beat rate” Δ=ωs-ω0, decay rate Γ, and phase lag angle ρ. 
Indicate what part of these expressions is the standard Lorentzian. 
(b) Show that NRA for complex response G=Re G +iIm G gives circular arcs in the complex ω=| ω |e ιθ=| ω |e ιρ =Δ+iΓ plane for constant 
decay rate Γ and variable detuning or beat rate  Δ.  How does this circle deviate from what is almost a circle in Fig. 4.2.6?  (Consider higher 
Γ values for which NRA breaks down such as Fig. 4.2.14.) Relate to dipole scalar-Φ and vector-A potential field values plotted over 
coordinate lines for dipole force function f(z)=1/z2 discussed in Ch. 10 of Unit 1. (See (10.42) and Fig. 10.11.) 
(c) Do ruler-&-compass construction of NRA versions of the following Lorentz functions in figures below for b=½ and for b=¼. 
Construction is similar to that of IHO elliptical orbits (Unit 1 Fig. 3.6 p. 53 or Lect.7 p.22) in that it involves 90° points of a zig-zags. 

! .(See p. 58-68 of Lect. 20.) 

     !  
(d) (Xtra credit)Study the Riemann-Cauchy equations for analytic function G* of  Δ-iΓ that relate Δ and Γ partial derivatives of ! and !
(Recall Unit 1 eq.(10.32) or (better) Lect. 12 p.61) and consider what max our min values result from those derivatives being zero. 

Ex.2 Max and min G-values (Part (b-c) involves some derivative algebra!) 
Derive equations for the extreme values for the exact Lorentz-Green response functions ! as asked below.  
Compare these to Near-Resonant Approximations (NRA) given in  preceding Ex.1.Exact plots by calculator help to check algebraic answers. 
(a1) Find  values which give maxima for:  assuming  is constant and  varies. 
(a2) Find  values which give maxima for:  assuming  is constant and  varies.  
Do (a1) and (a2) give the same results? 

"
Ex.3 Coupled oscillation by projection P-operators
Two identical mass M=1kg blocks slide friction-free on a rod and are connected by springs k1=16N·m-1 and k2=37N·m-1 to ends of a box 
and coupled to each other by spring k12=36N·m-1. 
(a) Write Lagrangian equations of motion and derive a K-matrix form of them. 
(b) Solve for eigenmodes and eigenfrequencies of system and plot their directions on an X,Y-graph. Use spectral decomposition methods 
(Lect. 21 p. 36-53 or Appendix 4.C) to derive eigensolution projectors and eigenvectors. 
(c) Given initial conditions (X(0)=1,Y(0)=0,V0=0), plot the resulting path in the XY-plane. Show it is a parabola.(Tschebycheff function) 
(d) Use spectral decomposition (Lect. 21 or Appendix 4.C) to derive square-roots H=√K. (How many different square-roots does K have?) 
(This is an important part of relating Classical coupled oscillators to Quantum coupled oscillators. See Lect. 22.)  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Assignment 10 Solutions to Oscillator Response Ex.1 and Ex.2

Near-Resonant-Approximate (NRA) Lorentz functions G=1/H solve 1st order equations of form H·ψ=φ.
That is, ψ=(1/H)· φ =G·φ, where H=Δ+iΓ or H*=Δ-iΓ and G=1/(Δ+iΓ) or G*=1/(Δ-iΓ) are given below.

    �  and conjugate: �

This uses the complex inversion function f(z)=1/z and (more commonly) its conjugate f*(z)= f (z*)=1/z*.

�

The fact that the complex z-derivative of f (z*) is identically zero gives real derivative chain-relations.

�

The zeroing of  and  are called Riemann-Cauchy relations. For Lorentz function G* we have:

�

Zero Δ-derivative of �  and max/min � occur if Δ=±Γ, when � is half its max value 1/Γ. Zero Δ-
derivative of �  and max/min � occur when Δ=0, where �  is zero. 

There is symmetry between these functions. Just flip Δ with Γ and �  with � and get:
Zero Γ-derivative of �  and max/min � occur if Γ=±Δ, when � is half its max value 1/Δ. Zero Γ-
derivative of �  and max/min � occur when Γ=0, where �  is zero. 
G functions describe orthogonal circles using angle θ=ρ measured clockwise off Γ-axis for Γ =const. or measured 
counterclockwise off Δ-axis for Δ =const.as shown in the figure 4.2.13. (Below)

�  (From Fig. 4.2.13)
Fig. 4.2.14 shows non-ideal Lorentzian geometry with asymmetric circles as described in Ex.2.
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Assignment 10   Solutions to Oscillator Response problems Ex.2

Extrema for X=ReGΓ(ω,ω0), ImGΓ(ω,ω0), |GΓ(ω,ω0)| defined by  may differ from ones with .

�

Real G versus stimulus frequency ω:

�

Real G versus oscillator natural frequency ω0:

�

Imaginary G versus stimulus frequency ω:

�

Imaginary G versus oscillator natural frequency ω0:

�

Magnitude |G| versus stimulus frequency ω:

�

  

Interesting case (not assigned) E~ mω2 |G|2 versus stimulus frequency ω:

�  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Assignment 10 – Solutions to Ex.3: Normal mode and coupled oscillators

�
Lagrangian: !                Hamiltonian: H=T+V. 

 gives:  

Find eigenbase vectors that diagonalize !  

Eigenvalue secular equation: !  

E-vector projectors: ! , !  

   !        !  

Lo-K-eigenvalue:λ ↓=25 eigenfrequency: ω↓=√ λ =5. Hi-K-eigenvalue: λ↑=100 eigenfrequency: ω↑=√ λ =10. 

K-e-vectors:  !     !  

(e-vector norm lies on P-diagonal of chosen column, here 2nd column of P25 and 1st column of P100.) 

Decomposition of K:   !  

Square root of K: !            

                ! !  

Note also that square of general (C=0)-matrix H is K=! . 

This will be an important part of relating Classical coupled oscillators to Quantum coupled oscillators and two-level 
systems like spin-½ . (Next Lecture 22.) 
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