Name 14
Assignment 10 - PHYS 5103-11/06/19-Due Wed. Nov. 13 CMwBang! Ch 4.1 thru Ch.4.4. and Lectures 20-21

Ex.1 The “standard” Lorentzian (Note: Review complex 2-pole potential O(z)=1/z and f(z)=-1/2z2 (10.42) in Unit 1-Ch.10 Fig.10.11.)

In physics literature, a standard Lorentzian function generally means a form Im L(A) =T/ (A2 + Fz) with constant I. In the Near-Resonant
Approximation (NRA is (4.2.18) and (4.2.33)) the L(A) is a low A and I" approximation to exact G-equations (4.2.15). A clear NRA
derivation is given in Lect. 20 p. 49 to 53 and geometries of these NRA are sketched on p. 58 to 68.

(a) Reduce (4.2.15) to NRA [(A—i')=Re L+iIm L =|L|
Indicate what part of these expressions is the standard Lorentzian.

¢ functions of detuning “beat rate” A=ws-wo, decay rate I, and phase lag angle p.

(b) Show that NRA for complex response G=Re G +ilm G gives circular arcs in the complex w=|® |e'*=| ® |e'? =A+iI plane for constant
decay rate I" and variable detuning or beat rate A. How does this circle deviate from what is almost a circle in Fig. 4.2.6? (Consider higher
I" values for which NRA breaks down such as Fig. 4.2.14.) Relate to dipole scalar-® and vector-A potential field values plotted over
coordinate lines for dipole force function f{z)=1/z? discussed in Ch. 10 of Unit 1. (See (10.42) and Fig. 10.11.)

(¢) Do ruler-&-compass construction of NRA versions of the following Lorentz functions in figures below for b=% and for b=%.
Construction is similar to that of IHO elliptical orbits (Unit 1 Fig. 3.6 p. 53 or Lect.7 p.22) in that it involves 90° points of a zig-zags.

Re Gﬂ’o (0,)= % and ImGwO (0,)= (See p. 58-68 of Lect. 20.)
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(d) (Xtra credif)Study the Riemann-Cauchy equations for analytic function G* of A-iI" that relate A and I' partial derivatives of G, and G,
(Recall Unit 1 eq.(10.32) or (better) Lect. 12 p.61) and consider what max our min values result from those derivatives being zero.

Ex.2 Max and min G-values (Part (b-c) involves some derivative algebra!)

Derive equations for the extreme values for the exact Lorentz-Green response functions Gw0 (@,) as asked below.

Compare these to Near-Resonant Approximations (NRA) given in preceding Ex.1.Exact plots by calculator help to check algebraic answers.
(a1) Find values which give maxima for: Re G“’o (ws ), Im G“’O (ws ), and | G‘*’o (ws) | assuming (), is constant and (), varies.

(a2) Find values which give maxima for: Re Gwo (@), Im G“’o (o), and | G“’o (@) ] assuming @, is constant and @, varies.

Do (a1) and (a2) give the same results?

| —
X, y=x,

Ex.3 Coupled oscillation by projection P-operators

Two identical mass M=1kg blocks slide friction-free on a rod and are connected by springs k;=16N-m-! and k>=37N-m-! to ends of a box
and coupled to each other by spring k;2=36N-m-..

(a) Write Lagrangian equations of motion and derive a K-matrix form of them.

(b) Solve for eigenmodes and eigenfrequencies of system and plot their directions on an X,Y-graph. Use spectral decomposition methods
(Lect. 21 p. 36-53 or Appendix 4.C) to derive eigensolution projectors and eigenvectors.

(¢) Given initial conditions (X(0)=1,Y(0)=0,V¢=0), plot the resulting path in the XY-plane. Show it is a parabola.(Zschebycheff function)

(d) Use spectral decomposition (Lect. 21 or Appendix 4.C) to derive square-roots H=\K. (How many different square-roots does K have?)
(This is an important part of relating Classical coupled oscillators to Quantum coupled oscillators. See Lect. 22.)
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Assignment 10 Solutions to Oscillator Response Ex.1 and Ex.2

Near-Resonant-Approximate (NRA) Lorentz functions G=1/H solve 1st order equations of form H-y=¢.
That is, y=(1/H)- 0 =G-0, where H=A+il" or H*=A-iI" and G=1/(A+iI") or G*=1/(A-iI") are given below.
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This uses the complex inversion function f{z)=1/z and (more commonly) its conjugate f*(z)=f (z*)=1/z".
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The fact that the complex z-derivative of f (z*) is identically zero gives real derivative chain-relations.
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Let: Ref(2") = f~ and: Imf(z") = f7 _1 (V-f*) +2 (V xf*)
’ v 2 2
The zeroing of Vef" and V xf" are called Riemann-Cauchy relations. For Lorentz function G* we have:
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Zero A-derivative of G; and max/min G, =1/2A occur if A=+I", when G; =1/2I"is half its max value 1/T". Zero A-
derivative of G; and max/min G; =1/T occur when A=0, where G; =0 is zero.

There is symmetry between these functions. Just flip Awith I"and & with G; and get:
Zero T'-derivative of G; and max/min G, =1/2T occur if I'=+A, when G, =1/2Ais half its max value 1/A. Zero T-
derivative of @ and max/min G; =1/A occur when I'=0, where G; =0 is zero.

G functions describe orthogonal circles using angle 6=p measured clockwise off I'-axis for I =const. or measured
counterclockwise off A-axis for A =const.as shown in the figure 4.2.13. (Below)
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Fig. 4.2.14 shows non-ideal Lorentzian geometry with asymmetric circles as described in Ex.2.
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Assignment 10 Solutions to Oscillator Response problems Ex.2

Extrema for X=ReGr(®,wo), InGr(®,00), |Gr(®,00)! defined by Z—X = 0 may differ from ones Witha—X =0.
w

o w

G (w,w) = ReG (w,w) +i ImG (w,w) = |G (w ,w)| e’

r\"o’ T

1 W —w? oTw 1

2 2 - = 2 2 +Z 2 2 = < eip
w, —w —i2lw (wg - wz) + (QI‘w) (wg - wz) + <2Fw) \/(wg — W)+ (2Tw)?
Real G versus stimulus frequency :
9 (W =), [(w —w )2 +(2Fw)2]

0= iReG (W, w) = —
Ow (W — W) + (2Tw) [(w? —w*)’ + (2Tw)’

0

0 = —20[(w? — W)} + (2Tw)] — (W} — w?)[2e? — w*)(=2w) + 2(2Tw)2T]

0

0= —2u[(w} — w*) + 4% ] + 2w(w? — w)2Aw) — w?) — 2w(w? — w?)4I?

0
0=—(w! —w’) —4I"w’ + 2w} — w*)* — (W] — w)4I*
0=(w —w’) —wldl” = w' — 200w’ + w, —w?4T*  has solutions: w = \Jw? + 2w, ' 2w +T...

Real G versus oscillator natural frequency wo:

OziReGl,(wD,w): : 222;0 _( , — W FJ[ 20 —w ) +(2Fw) ]
0w, (wy —w) + (2Tw)? [(w, — Y + (2Tw)’J
0= —2w0[(w§ — W) + (2Tw)’] — (wj —w?)[2 (w — w2)2w |=—(w 3 W)+ 4T

T

0= wé — (2w§ +4T*)w? + w'  has solutions: w, = w2l Zw+T

Imaginary G versus stimulus frequency ®:

0= iImG (w,0) = or ~ 2Fw§w¥'[(w§ — w2)2 n (2Fw)2]
Ow (W =) + (2lw)’ [(w? —w?)® + (2Tw)’ P

0 =2l (w? — w’)* 4 (2Tw)*] — 2lw[2(w] — w*)(—2w) + 2(2Tw)21]

w[Q) -’ + 2\/w5(w5 - +1

0=3w"— (2w —4I")w’ —w, has solutions: w = \/

3
Imaginary G versus oscillator natural frequency mo:
p 2 2
9 2w [(w[f - w2) + (ZFw) ]
O:a_ImGr(wo’w):_ P 2\2 272
w, [(wo —w’) 4+ (2Tw)?]
0= —2lw[2(w} — w’)2w, has solutions: w, = w
Magnitude |Gl versus stimulus frequency :
0=216.(w,w) = 1 __13(“’ W) +(2rw)]
Ow M l(wp =W+ LT P [(w) — W)+ (2Lw)
2
0 = 2w, — w’)2w+ 2(2Tw)2l"] or: 0 = w? — w” 4 2I"* has solutions: w = 4w} —2I" 2w — i—
0
Interesting case (not assigned) E~ mw?|GI? versus stimulus frequency w:
9 ¢ 2 2
) ) s WP 2w w2 [(wz - w2) + (2l"w) ]
O:_‘WGF(UJO w) Tow 2 22 2 2 242 2 2 212 2
Ow (W, —w ) +(2lw)” (v, —w) +(2Tw) (w, —w’)” +(2lw)

0=—2w’ —w’)w® has solutions: w = w,
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Assignment 10 — Solutions to Ex.3: Normal mode and coupled oscillators

k=16 o k=36 k=37
A
L f —

B Y
Lagrangian: L=T-V =, (MX* + MY*)=} (k X> + kY’ +k,(X-Y)?) Hamiltonian: H=T+V.
ik L gives:
. . + - .
:é X. M 0 -X—% Xe 1 12 12 X MX = —K-X
0 M —k, k,+k,

. . . . k +k —k _ _
Find eigenbase vectors that diagonalize K= ' woo || 164360 =36 | 52 36
—k, k +k, -36  37+36 36 73

12
Eigenvalue secular equation: A° —(traceK)A + (detK) =0 = 2% — (125)4 + 2500 = (1 — 25)(A — 100)

K-100-1_, [ 52-100 -36 _K-251_,( 52-25 36
25-100 36  73-100 | ' 36  73-25

©100-25 7
p 1| 436 |_i[ 16 12 P - 27 =36 | 9 -12
» P36 27 ) L1209 0T 36 48 1 -12 16

Lo-K-eigenvalue:i =25 eigenfrequency: w1=VA =5. Hi-K-eigenvalue: A1=100 eigenfrequency: mr=\A =10.

3

. 12 00 i 12 1 1 9 11 9 1| s
Keewvectors: [25)4( 2 J=b[ 2 o L] poo=s( 9 Jab 2 e
(e-vector norm lies on P-diagonal of chosen column, here 2nd column of P2s and 15t column of Pigo.)

52 =36
=36 73

E-vector projectors: P, =

a
Q

[CNI* RNV RS

Decomposition of K: K= ] =25P,  +100P,,

Square root of K: VK = ( 52 36 ]=\/ng5 +~/100P,,
73

-36
_1| 16 12 42 9 12 |_i| 34 -12 -H i =34 12
12 9 )L -12 16 ) -12 41 12 41
:é 1612 —§ o -2 =§ —2 36 ...the 2nd (of 4) square roots é 2 36 (the other 2)
12 9 -12 16 36 23 -36 23

2 2
Note also that square of general (C=0)-matrix H is K=H’ = A B A B_| A+B AB+BD |
B D) BD AB+BD D*+B’

This will be an important part of relating Classical coupled oscillators to Quantum coupled oscillators and two-level
systems like spin-'2 . (Next Lecture 22.)



