
Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits 
(Ch. 9 and Ch. 11 of Unit 1)  

Constructing 2D IHO orbital phasor “clock” dynamics in uniform-body 
Constructing 2D IHO orbits using Kepler anomaly plots 

Mean-anomaly and eccentric-anomaly geometry 
Calculus and vector geometry of IHO orbits 
A confusing introduction to Coriolis-centrifugal force geometry            (Derived better in Ch. 12) 

Some Kepler’s “laws” for all central (isotropic) force F(r) fields 
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2                           (Derived here)    
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r   (Derived in Unit 5) 
Total energy E=KE+PE invariance of IHO: F(r)=-k·r                                            (Derived here) 
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2                                     (Derived in Unit 5) 

Introduction to dual matrix operator contact geometry (based on IHO orbits) 
Quadratic form ellipse r•Q•r=1 vs.inverse form ellipse p•Q -1•p=1  

Duality norm relations ( r•p=1) 
Q-Ellipse tangents r′ normal to dual Q -1-ellipse position p ( r′•p=0=r•p′)   

Operator geometric sequences and eigenvectors 
Alternative scaling of matrix operator geometry 

Vector calculus of tensor operation 
Q:Where is this headed? A: Lagrangian-Hamiltonian duality 

Lecture  7  
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Link → IHO orbital time rates of change 
Link → IHO Exegesis Plot

Link ⇒ BoxIt simulation of IHO orbits

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,0&semiMajor=1.0&semiMinor=0.125
https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,1&semiMajor=1.0&semiMinor=0.125
https://modphys.hosted.uark.edu/markup/BoxItWeb.html


2018 CMwBang! site         Class YouTube Channel         

A running collection of links to course-relevant sites and articles

AJP article on superball dynamics            AIP publications          AAPT summer reading            

You-Tube site displays related videos world-wide

These are hot off the presses.  Out in MISC for quick reference. 
https://modphys.hosted.uark.edu//ETC/MISC/Sorting_ultracold_atoms_in_a_three-dimensional_optical_lattice_in_a_realization_of_Maxwell%e2%80%99s_demon_-_Kumar-n-2018.pdf
https://modphys.hosted.uark.edu//ETC/MISC/Synthetic_three-dimensional_atomic_structures_assembled_atom_by_atom_-_Barredo-n-2018.pdf

Older ones:
https://modphys.hosted.uark.edu//ETC/MISC/Wave–particle_duality_of_C60_molecules_-_arndt-ltn-1999.pdf
https://modphys.hosted.uark.edu//ETC/MISC/Optical_Vortex_Knots_–_One_Photon__At_A_Time_-_Tempone-Wiltshire-Sr-2018.pdf

https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Velocity_Amplification_in_Collision_Experiments_Involving_Superballs-Harter-1971.pdf
https://modphys.hosted.uark.edu/pdfs/Journal_Pdfs/Velocity_Amplification_in_Collision_Experiments_Involving_Superballs-Harter-1971.pdf
https://www.scitation.org/
https://www.scitation.org/
https://aip-info.org/37VS-QW7L-1462CY2628/cr.aspx?v=1
https://aip-info.org/37VS-QW7L-1462CY2628/cr.aspx?v=1
https://modphys.hosted.uark.edu//ETC/MISC/Sorting_ultracold_atoms_in_a_three-dimensional_optical_lattice_in_a_realization_of_Maxwell%E2%80%99s_demon_-_Kumar-n-2018.pdf
https://modphys.hosted.uark.edu//ETC/MISC/Synthetic_three-dimensional_atomic_structures_assembled_atom_by_atom_-_Barredo-n-2018.pdf
https://modphys.hosted.uark.edu//ETC/MISC/Wave%E2%80%93particle_duality_of_C60_molecules_-_arndt-ltn-1999.pdf
https://modphys.hosted.uark.edu//ETC/MISC/Optical_Vortex_Knots_%E2%80%93_One_Photon__At_A_Time_-_Tempone-Wiltshire-Sr-2018.pdf


Introducing 2D IHO orbits and phasor geometry 
Phasor “clock” geometry  
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I.H.O. Force law 
F =-x     (1-Dimension) 
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Each dimension x, y, or z obeys the following:
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Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
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ideal isotropic case.

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.



Fx

v0
Fy

F=-r
(a) (b)

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.

1= mv
2

2E
+ kx

2

2E
= v

2E /m
⎛

⎝⎜
⎞

⎠⎟

2

+ x
2E /k

⎛

⎝⎜
⎞

⎠⎟

2

1= mv
2

2E
+ kx

2

2E
= cosθ( )2 + sinθ( )2

Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law 
F =-x     (1-Dimension) 
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of 
the old “scale-a-circle” 
trick...

1-D

Unit 1 
Fig. 9.10

Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
[y(t) and vy=v(t)] and  
[z(t) and vz=v(t)] in the 
ideal isotropic case.

2-D or 3-D 
(Paths are always 2-D 
ellipses if viewed 
right!)

velocity: position:



Fx

v0
Fy

F=-r
(a) (b)

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.

1= mv
2

2E
+ kx

2

2E
= v

2E /m
⎛

⎝⎜
⎞

⎠⎟

2

+ x
2E /k

⎛

⎝⎜
⎞

⎠⎟

2

1= mv
2

2E
+ kx

2

2E
= cosθ( )2 + sinθ( )2

Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law 
F =-x     (1-Dimension) 
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of 
the old “scale-a-circle” 
trick...

1-D

Unit 1 
Fig. 9.10

Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
[y(t) and vy=v(t)] and  
[z(t) and vz=v(t)] in the 
ideal isotropic case.

2-D or 3-D 
(Paths are always 2-D 
ellipses if viewed 
right!)

ω = dθ
dt

def. (3)
velocity: position: angular velocity:



Fx

v0
Fy

F=-r
(a) (b)

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.

1= mv
2

2E
+ kx

2

2E
= v

2E /m
⎛

⎝⎜
⎞

⎠⎟

2

+ x
2E /k

⎛

⎝⎜
⎞

⎠⎟

2

1= mv
2

2E
+ kx

2

2E
= cosθ( )2 + sinθ( )2

2E
m
cosθ = v= dx

dt

Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

by (1)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law 
F =-x     (1-Dimension) 
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of 
the old “scale-a-circle” 
trick...

1-D

Unit 1 
Fig. 9.10

Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
[y(t) and vy=v(t)] and  
[z(t) and vz=v(t)] in the 
ideal isotropic case.

2-D or 3-D 
(Paths are always 2-D 
ellipses if viewed 
right!)

ω = dθ
dt

def. (3)
velocity: position: angular velocity:



Fx

v0
Fy

F=-r
(a) (b)

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.

1= mv
2

2E
+ kx

2

2E
= v

2E /m
⎛

⎝⎜
⎞

⎠⎟

2

+ x
2E /k

⎛

⎝⎜
⎞

⎠⎟

2

1= mv
2

2E
+ kx

2

2E
= cosθ( )2 + sinθ( )2

2E
m
cosθ = v= dx

dt
= dθ
dt

dx
dθ

Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

by (1)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law 
F =-x     (1-Dimension) 
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of 
the old “scale-a-circle” 
trick...

1-D

Unit 1 
Fig. 9.10

Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
[y(t) and vy=v(t)] and  
[z(t) and vz=v(t)] in the 
ideal isotropic case.

2-D or 3-D 
(Paths are always 2-D 
ellipses if viewed 
right!)

ω = dθ
dt

def. (3)
velocity: position: angular velocity:

simple calculus



Fx

v0
Fy

F=-r
(a) (b)

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.

1= mv
2

2E
+ kx

2

2E
= v

2E /m
⎛

⎝⎜
⎞

⎠⎟

2

+ x
2E /k

⎛

⎝⎜
⎞

⎠⎟

2

1= mv
2

2E
+ kx

2

2E
= cosθ( )2 + sinθ( )2

2E
m
cosθ = v= dx

dt
= dθ
dt

dx
dθ
=ω dx

dθ

Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

by (1)
by def. (3)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law 
F =-x     (1-Dimension) 
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of 
the old “scale-a-circle” 
trick...

1-D

Unit 1 
Fig. 9.10

Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
[y(t) and vy=v(t)] and  
[z(t) and vz=v(t)] in the 
ideal isotropic case.

2-D or 3-D 
(Paths are always 2-D 
ellipses if viewed 
right!)

ω = dθ
dt

def. (3)
velocity: position: angular velocity:



Fx

v0
Fy

F=-r
(a) (b)

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.

1= mv
2

2E
+ kx

2

2E
= v

2E /m
⎛

⎝⎜
⎞

⎠⎟

2

+ x
2E /k

⎛

⎝⎜
⎞

⎠⎟

2

1= mv
2

2E
+ kx

2

2E
= cosθ( )2 + sinθ( )2

2E
m
cosθ = v= dx

dt
= dθ
dt

dx
dθ
=ω dx

dθ
=ω 2E

k
cosθ

Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

by (1)
by def. (3) by (2)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law 
F =-x     (1-Dimension) 
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of 
the old “scale-a-circle” 
trick...

1-D

Unit 1 
Fig. 9.10

Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
[y(t) and vy=v(t)] and  
[z(t) and vz=v(t)] in the 
ideal isotropic case.

2-D or 3-D 
(Paths are always 2-D 
ellipses if viewed 
right!)

ω = dθ
dt

def. (3)
velocity: position: angular velocity:



Fx

v0
Fy

F=-r
(a) (b)

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.

1= mv
2

2E
+ kx

2

2E
= v

2E /m
⎛

⎝⎜
⎞

⎠⎟

2

+ x
2E /k

⎛

⎝⎜
⎞

⎠⎟

2

1= mv
2

2E
+ kx

2

2E
= cosθ( )2 + sinθ( )2

2E
m
cosθ = v= dx

dt
= dθ
dt

dx
dθ
=ω dx

dθ
=ω 2E

k
cosθ ω = dθ

dt

Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

by (1)
by def. (3) by (2)

by def. (3)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law 
F =-x     (1-Dimension) 
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of 
the old “scale-a-circle” 
trick...

1-D

Unit 1 
Fig. 9.10

Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
[y(t) and vy=v(t)] and  
[z(t) and vz=v(t)] in the 
ideal isotropic case.

2-D or 3-D 
(Paths are always 2-D 
ellipses if viewed 
right!)

ω = dθ
dt

def. (3)



Fx

v0
Fy

F=-r
(a) (b)

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.

1= mv
2

2E
+ kx

2

2E
= v

2E /m
⎛

⎝⎜
⎞

⎠⎟

2

+ x
2E /k

⎛

⎝⎜
⎞

⎠⎟

2

1= mv
2

2E
+ kx

2

2E
= cosθ( )2 + sinθ( )2

2E
m
cosθ = v= dx

dt
= dθ
dt

dx
dθ
=ω dx

dθ
=ω 2E

k
cosθ ω = dθ

dt
=

2E
m
cosθ

2E
k
cosθ

Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

by (1)
by def. (3) by (2)

by def. (3)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law 
F =-x     (1-Dimension) 
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of 
the old “scale-a-circle” 
trick...

1-D

Unit 1 
Fig. 9.10

Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
[y(t) and vy=v(t)] and  
[z(t) and vz=v(t)] in the 
ideal isotropic case.

2-D or 3-D 
(Paths are always 2-D 
ellipses if viewed 
right!)

ω = dθ
dt

def. (3)

by (2) derivative

divide (1)



Fx

v0
Fy

F=-r
(a) (b)

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.

1= mv
2

2E
+ kx

2

2E
= v

2E /m
⎛

⎝⎜
⎞

⎠⎟

2

+ x
2E /k

⎛

⎝⎜
⎞

⎠⎟

2

1= mv
2

2E
+ kx

2

2E
= cosθ( )2 + sinθ( )2

2E
m
cosθ = v= dx

dt
= dθ
dt

dx
dθ
=ω dx

dθ
=ω 2E

k
cosθ ω = dθ

dt
=

2E
m
cosθ

2E
k
cosθ

= k
m

Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

by (1)
by def. (3) by (2)

by def. (3)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law 
F =-x     (1-Dimension) 
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of 
the old “scale-a-circle” 
trick...

1-D

Unit 1 
Fig. 9.10

Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
[y(t) and vy=v(t)] and  
[z(t) and vz=v(t)] in the 
ideal isotropic case.

2-D or 3-D 
(Paths are always 2-D 
ellipses if viewed 
right!)

ω = dθ
dt

def. (3)

by (2) derivative

divide (1)



Fx

v0
Fy

F=-r
(a) (b)

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.

1= mv
2

2E
+ kx

2

2E
= v

2E /m
⎛

⎝⎜
⎞

⎠⎟

2

+ x
2E /k

⎛

⎝⎜
⎞

⎠⎟

2

1= mv
2

2E
+ kx

2

2E
= cosθ( )2 + sinθ( )2

2E
m
cosθ = v= dx

dt
= dθ
dt

dx
dθ
=ω dx

dθ
=ω 2E

k
cosθ ω = dθ

dt
= k

m

Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

by (1)
by def. (3) by (2)

by def. (3)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law 
F =-x     (1-Dimension) 
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of 
the old “scale-a-circle” 
trick...

1-D

Unit 1 
Fig. 9.10

Equations for x-motion 
[x(t) and vx=v(t)] are  
given first. They apply 
as well to dimensions 
[y(t) and vy=v(t)] and  
[z(t) and vz=v(t)] in the 
ideal isotropic case.

by integration given constant ω:

θ = ω⋅dt∫ =ω⋅t +α

2-D or 3-D 
(Paths are always 2-D 
ellipses if viewed 
right!)

ω = dθ
dt

def. (3)
angular velocity:



Review of IHO orbital phasor “clock” dynamics in uniform-body with two “movie” examples
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Review of IHO orbital phase dynamics in uniform-body

Introduction to Phasors at our Pirelli Relativity Site
BoxIt web simulation  - With y-Phasor is on other side of xy plot

RelaWavity web simulation - 
Contact ellipsometry

https://pirelli.hosted.uark.edu/html/phasors_single_anim.html
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?AU2=1.0&BU2=0.0&CU2=0.0&DU2=1.0&xInitial=0.707107&yInitial=0.707107&pxInitial=0.353553&pyInitial=-0.353553&wantBoxLines=1&wantPELevels=0&timeMax=30.0&wantStokes=0&wantPhasorsModal=0&wantBallsNItsPhi2=0
https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,2


Geometry of Kepler anomalies for vectors [r(φ), v(φ)] in coordinate (x,y) space 
 rendered by animation web-apps BoxIt and RelaWavity described below after p.70.

RelaWavity web simulation - Contact ellipsometry (User Mouse Input allowed for setting phasor values)

RelaWavity Web Simulation 
Ellipsometry

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,2
https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,2


Geometry of Kepler anomalies for vectors [r(φ), v(φ)] in coordinate (x,y) space 
 rendered by animation web-apps BoxIt and RelaWavity described below after p.7 and p.17.

RelaWavity web simulation - Contact ellipsometry (User Mouse Input allowed for setting phasor values)

RelaWavity Web Simulation 
Ellipsometry

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,2
https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,2
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Constructing 2D IHO orbits using Kepler anomaly plots 
Mean-anomaly and eccentric-anomaly geometry 
Calculus and vector geometry of IHO orbits 
A confusing introduction to Coriolis-centrifugal force geometry     (Derived better in Ch. 12)  
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Constructing 2D IHO orbits using Kepler anomaly plots 
Mean-anomaly and eccentric-anomaly geometry 
Calculus and vector geometry of IHO orbits 
A confusing introduction to Coriolis-centrifugal force geometry     (Derived better in Ch. 12)  
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Calculus of IHO orbits

mean-anomaly φ of position vector r
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Calculus of IHO orbits
To make velocity vector v  
just rotate by π/2 or 90° 
the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r 
rotated by π/2 or 90° is m.a. of vector v 
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 or changeof velocity

Calculus of IHO orbits
To make velocity vector v  
just rotate by π/2 or 90° 
the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r 
rotated by π/2 or 90° is m.a. of vector v 

 m.a. φ+π/2 of vector v rotated by 
another π/2 is m.a. of vector a 
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 or changeof velocity or changeof velocity

Calculus of IHO orbits
To make velocity vector v  
just rotate by π/2 or 90° 
the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r 
rotated by π/2 or 90° is m.a. of vector v 

 m.a. φ+π/2 of vector v rotated by 
another π/2 is m.a. of vector a 

...and so forth...
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 or changeof velocity or changeof velocity or changeof velocity

Calculus of IHO orbits
To make velocity vector v  
just rotate by π/2 or 90° 
the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r 
rotated by π/2 or 90° is m.a. of vector v 

 m.a. φ+π/2 of vector v rotated by 
another π/2 is m.a. of vector a 

...and so forth...

...and so on...
...But, now it 
repeats after 4 
t-derivatives
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 or changeof velocity or changeof velocity or changeof velocity

Calculus of IHO orbits
To make velocity vector v  
just rotate by π/2 or 90° 
the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r 
rotated by π/2 or 90° is m.a. of vector v 

 m.a. φ+π/2 of vector v rotated by 
another π/2 is m.a. of vector a 

...and so forth...

...and so on...
...But, now it 
repeats after 4 
t-derivatives

Link → IHO orbital time rates of change 
Link → IHO Exegesis Plot

Link ⇒ BoxIt simulation of IHO orbits

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,0&semiMajor=1.0&semiMinor=0.7
https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,1&semiMajor=1.0&semiMinor=0.7
https://modphys.hosted.uark.edu/markup/BoxItWeb.html


Geometry of Kepler anomalies for vectors [r(φ), v(φ), a(φ), j(φ),] in coordinate (x,y) space 
 rendered by animation web-apps BoxIt and RelaWavity.

RelaWavity orbit web-app

Link 

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,0&semiMajor=1.0&semiMinor=0.5&velocity=0.85


https://modphys.hosted.uark.edu/markup/BoxItWeb.html

Geometry of Kepler anomalies for vectors [r(φ)] in coordinate (x,y) space 
 and 2-particle (x1,x2) space rendered by animation web-apps BoxIt.

BoxIt Web Stokes Simulation

BoxIt minimal detail
BoxIt more detail
BoxIt still more detail

https://modphys.hosted.uark.edu/markup/BoxItWeb.html
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?wantStokes=1
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?wantPhasorsModal=0&wantStokes=0&wantCosinePlot=0&wantBoxLines=0&wantBallsNItsPhi2=0&wantBallsNItsPhi2=0&wantPELevels=0
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?wantPhasorsModal=0&wantStokes=0&wantCosinePlot=0&wantBoxLines=0
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?numberOfVAJLines=3


Geometry of Kepler anomalies for vectors [r(φ), v(φ), a(φ), j(φ),] in coordinate (x,y) space 
 and 2-particle (x1,x2) space rendered by animation web-apps BoxIt. BoxIt Web Simulation - w/Derivatives

BoxIt minimal detail
BoxIt more detail
BoxIt still more detail

https://modphys.hosted.uark.edu/markup/BoxItWeb.html?numberOfVAJLines=3&wantPhasorsModal=0&wantStokes=0&wantCosinePlot=0
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?wantPhasorsModal=0&wantStokes=0&wantCosinePlot=0&wantBoxLines=0&wantBallsNItsPhi2=0&wantBallsNItsPhi2=0&wantPELevels=0
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?wantPhasorsModal=0&wantStokes=0&wantCosinePlot=0&wantBoxLines=0
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?numberOfVAJLines=3


Geometry of vectors [r(φ), p(φ)] and quantum spin S-space 
 and 2-particle (x1,x2) space rendered by animation web-apps BoxIt.

BoxIt Web Simulation - B-Type Motion

BoxIt minimal detail
BoxIt more detail
BoxIt still more detail

https://modphys.hosted.uark.edu/markup/BoxItWeb.html?&AU2=1.0&BU2=-0.05&CU2=0.0&DU2=1.0
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?wantPhasorsModal=0&wantStokes=0&wantCosinePlot=0&wantBoxLines=0&wantBallsNItsPhi2=0&wantBallsNItsPhi2=0&wantPELevels=0
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?wantPhasorsModal=0&wantStokes=0&wantCosinePlot=0&wantBoxLines=0
https://modphys.hosted.uark.edu/markup/BoxItWeb.html?numberOfVAJLines=3


Constructing 2D IHO orbits using Kepler anomaly plots 
Mean-anomaly and eccentric-anomaly geometry 
Calculus and vector geometry of IHO orbits 
A confusing introduction to Coriolis-centrifugal force geometry     (Derived better in Ch. 12)  



F = -kr

orbital velocity=V

(b) “Carnival kid” orbiting in
space attached to a spring

centrifugal
force=+kr
=+mω2r

ω t

centripetal
force=

(due to spring)

Carnival kid
says:

“This is awful!
I can hardly
hold onto
this darn
spring.”

F = -kr

orbital velocity=V

(a) “Earthronaut” orbiting
tunnel inside Earth

centrifugal
force=+kr
=+mω2r

ω t

centripetal
force=

(due to gravity)

Earthronaut
says:

“This is great!
I’m weightless.”

apogee
(x=a, y=0)aphelion=a

perigee
(x=0,y=b)

θperhelion=b
mass gaining speed

as it falls

Velocity
V

θVelocity
V centripetal force F=-kr

Negative power
( F•V=|F||V|cos θ <0)

Positive power
( F•V=|F||V|cos θ >0)

mass losing speed
as it rises

Unit 1 
Fig. 11.2

Unit 1 
Fig. 11.3

(Radius r decreasing)(Radius r increasing)
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a-d

Quite confusing?  
Discussion of Coriolis 
forces will be done more elegantly 
and made more physically intuitive  
in Ch. 12 of Unit1 and in Unit 6.

Physicist Force  
(where m wants to go)

Mathematician Force  
(to hold m back)

Constraint force  
keeps m in radial slot



Some Kepler’s “laws” for all central (isotropic) force F(r) fields 
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2                           (Derived here)    
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r   (Derived in Unit 5) 
Total energy E=KE+PE invariance of IHO: F(r)=-k·r                                            (Derived here) 
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2                                     (Derived in Unit 5) 



 

1. Area of triangle ! r
v = r × v/2 is constant
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Fig. 11.8 

Some Kepler’s “laws” for central (isotropic) force F(r) 
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2   

    for IHO
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r) 
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r) 
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r) 
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO

3. Equal area is swept by radius vector in each equal time interval T
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0
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3
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r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω
2. Angular momentum  L = mr × v  is conserved
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r) 
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO

3. Equal area is swept by radius vector in each equal time interval T

 AT =
r × dr
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∫ =
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2

dt
0
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0
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T     for IHO
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 (Recall from Lecture 6:  k = Gm 4π

3
ρ⊕ )

https://modphys.hosted.uark.edu/pdfs/CMwBang_Pdfs/CMwBang_Lectures_2018/CMwithBang_Lect.6_9.10.18.pdf#page=70


Some Kepler’s “laws” for all central (isotropic) force F(r) fields 
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2                           (Derived here)    
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r   (Derived in Unit 5) 
Total energy E=KE+PE invariance of IHO: F(r)=-k·r                                            (Derived here) 
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2                                     (Derived in Unit 5) 



 

1. Area of triangle ! r
v = r × v/2 is constant

r × v = rxvy − ryvx =
ab ⋅ Gρ⊕4π / 3 for IHO
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r) 
Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

    for IHO
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(G IHO formulas from Lect. 6 p.70-79)
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r) 
Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

    for IHO

    for IHO

t = 0 v
v

r r
rba

v

v
rCoulomb:

IHO:

    for Coul.

    for Coul.

(Derived in Unit 5)

(... in Unit 5)

(G IHO formulas from Lect. 6 p.70-79)
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r) 
Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r
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Some Kepler’s “laws” that apply to any central (isotropic) force F(r) 
Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

    for IHO
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Some Kepler’s “laws” for all central (isotropic) force F(r) fields 
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2                           (Derived here)    
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r   (Derived in Unit 5) 
Total energy E=KE+PE invariance of IHO: F(r)=-k·r                                            (Derived here) 
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2                                     (Derived in Unit 5) 



Kepler laws involve !-momentum conservation in isotropic force F(r) 
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2
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Kepler laws involve !-momentum conservation in isotropic force F(r) 
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2
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Kepler laws involve !-momentum conservation in isotropic force F(r) 
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2
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Some Kepler’s “laws” for all central (isotropic) force F(r) fields 
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2                           (Derived here)    
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r   (Derived in Unit 5) 
Total energy E=KE+PE invariance of IHO: F(r)=-k·r                                            (Derived here) 
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2                                     (Derived in Unit 5) 



Kepler laws involve !-momentum conservation in isotropic force F(r) 
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2

We'll see that the Coul. orbits are simpler:                 (like the period...not a function of b)
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Kepler laws involve !-momentum conservation in isotropic force F(r) 
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Quadratic forms and tangent contact geometry of their ellipses
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A inverse matrix Q-1 generates an ellipse by p•Q -1•p=1 called inverse or dual ellipse:
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A matrix Q that generates an ellipse by r•Q•r=1 is called positive-definite (if r•Q•r always >0)



Quadratic forms and tangent contact geometry of their ellipses
A matrix Q that generates an ellipse by r•Q•r=1 is called positive-definite (if r•Q•r always >0)
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Here plot of p-ellipse is re-scaled by scalefactor S=a ·b
p-ellipse x-radius=1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)
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r pQ

Here plot of p-ellipse is re-scaled by scalefactor S=a ·b
p-ellipse x-radius=1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)

Link → IHO orbital time rates of change 
Link → IHO Exegesis Plot

Link ⇒ BoxIt simulation of IHO orbits

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,0&semiMajor=1.0&semiMinor=0.125
https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,1&semiMajor=1.0&semiMinor=0.125
https://modphys.hosted.uark.edu/markup/BoxItWeb.html
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Geometry of dual ellipse Kepler anomalies for vectors [r(φ), p(φ)] and d/dt[r(φ), p(φ),] in coordinate 
(x,y) space rendered by animation web-app in RelaWavity and described in Lect. 12-advanced.

RelaWavity Web Simulation 
Ellipse/Exegesis

https://modphys.hosted.uark.edu/markup/RelaWavityWeb.html?plotType=1,1&semiMajor=1.0&semiMinor=0.5
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Resulting vector has slope changed by factor a2n /b2n = 4n.

...Finally, the result approaches EIGENVECTOR y = 0
1

⎛
⎝⎜

⎞
⎠⎟

of ∞-slope which is "immune" to R , Q or Qn :
         R y = (1/b) y         Qn y = (1/b2 )n y

Either process can go on forever... 
Diagonal (R−2n=Q−n )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b2n /a2n = 4−n.

...Finally, the result approaches EIGENVECTOR x = 1
0

⎛
⎝⎜

⎞
⎠⎟

of 0-slope which is "immune" to R−1  , Q−1  or Q−n :
         R−1 x = (a) x         Q−n x = (a2 )n x

EIGENVECTOR
             y

EIGENVECTOR
             x

Here b/a=1/2



slope
1/1

slope
a/b

slope
b/a
slope
b2/a2

slope
a2/b2

slope
b3/a3

slope
a3/b3

 

Diagonal (R2=Q)-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2 /b2 = 4.

Q i v x/y =
1/a2 0

0 1/b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a2

y/b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(It increases if a >b.)

 

Diagonal R-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a /b = 2.

R i v x/y =
1/a 0
0 1/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a
y/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(It increases if a >b.)

Either process can go on forever... 
Diagonal (R2n=Qn )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2n /b2n = 4n.

...Finally, the result approaches EIGENVECTOR y = 0
1

⎛
⎝⎜

⎞
⎠⎟

of ∞-slope which is "immune" to R , Q or Qn :
         R y = (1/b) y         Qn y = (1/b2 )n y

Either process can go on forever... 
Diagonal (R−2n=Q−n )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b2n /a2n = 4−n.

...Finally, the result approaches EIGENVECTOR x = 1
0

⎛
⎝⎜

⎞
⎠⎟

of 0-slope which is "immune" to R−1  , Q−1  or Q−n :
         R−1 x = (a) x         Q−n x = (a2 )n x

EIGENVECTOR
             y

EIGENVECTOR
             x

Eigensolution 
RelationsEigenvalues Eigenvalues

Here b/a=1/2
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Duality norm relations ( r•p=1) 
Q-Ellipse tangents r′ normal to dual Q -1-ellipse position p ( r′•p=0=r•p′)   

Operator geometric sequences and eigenvectors 
Alternative scaling of matrix operator geometry 

Vector calculus of tensor operation 



Start with 45° unit vector v x/y = x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

1/ 2

1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

You may rescale p-plot by scale factor  S=(a·b)  
so r•Q•r and p•Q-1•p ellipses are to be same size

 

riQir − ellipse

r2x
a2

+
r2y
b2

= 1

(a = 2, b = 1)

 

piQ−1ip − ellipse
a2p2x + b

2p2y = 1
(a = 2, b = 1)

Here b/a=1/2

Here plot of p-ellipse is re-scaled by scalefactor S=a·b
p-ellipse x-radius=1/a plotted at: S(1/a)=b (=1 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=a (=2 for a=2, b=1)



Start with 45° unit vector v x/y = x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

1/ 2

1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

 

riQir − ellipse

r2x
a2

+
r2y
b2

= 1

(a = 2, b = 1)

 

piQ−1ip − ellipse
a2p2x + b

2p2y = 1
(a = 2, b = 1)

1/a = 1/ 2

2

b = 1

a = 2

1/b = 1

Here b/a=1/2..or else rescale p-plot by scale factor  S=b  
to separate r•Q•r and p•Q-1•p ellipses into different regions

Here plot of p-ellipse is re-scaled by scalefactor S=b
p-ellipse x-radius=1/a plotted at: S(1/a)=b/a (=1/2 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=1

|r|≥1 and |p|≤1



slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0

bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Action of matrix Q that generates an r-ellipse (r•Q• r =1) 
on a single r-vector r(φ-1)...

acosφ0

bsinφ0

r(φ-1)φ0

φ-1

a

b

Variation of 
Fig. 11.7  
in Unit 1

Here plot of p-ellipse is re-scaled by scalefactor S=b
p-ellipse x-radius=1/a plotted at: S(1/a)=b/a (=1/2 for a=2, b=1)
p-ellipse y-radius=1/b plotted at: S(1/b)=1



slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0

bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

cosφ0

1
b

sinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
2

1

2
1
1

1

2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of matrix Q that generates an r-ellipse (r•Q•r =1) 
on a single r-vector r(φ-1)... is to rotate it to a new vector p on the  p-ellipse (p•Q-1• p =1), 
 that is,  Q•r(φ-1) = p(φ+1)

Variation of 
Fig. 11.7  
in Unit 1



slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0

bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

cosφ0

1
b

sinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
2

1

2
1
1

1

2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of matrix Q that generates an r-ellipse (r•Q•r =1) 
on a single r-vector r(φ-1)... is to rotate it to a new vector p on the  p-ellipse (p•Q-1• p =1), 
 that is,  Q•r(φ-1) = p(φ+1)

Key points 
of 

matrix 
geometry: 

Matrix Q maps any 
vector r to a new 
vector p normal to 
the tangent    to its 
r•Q•r-ellipse. 

r
p

  !r

  !r

Variation of 
Fig. 11.7  
in Unit 1



slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0

bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

cosφ0

1
b

sinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
2

1

2
1
1

1

2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of matrix Q that generates an r-ellipse (r•Q•r =1) 
on a single r-vector r(φ-1)... is to rotate it to a new vector p on the  p-ellipse (p•Q-1• p =1), 
 that is,  Q•r(φ-1) = p(φ+1)

Key points 
of 

matrix 
geometry: 

Matrix Q maps any 
vector r to a new 
vector p normal to 
the tangent    to its 
r•Q•r-ellipse. 

r
p

  !r

  !r

Matrix Q-1 maps p 
back to r that is 
normal to the 
tangent    to its 
p• Q-1• p-ellipse. 

  !p

  !p

  !p

Variation of 
Fig. 11.7  
in Unit 1
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Derive matrix “normal-to-ellipse”geometry by vector calculus: 
Let matrix Q =               

define the ellipse 1=r•Q•r = 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

 

x y( ) i A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ = x y( ) i A ⋅ x + B ⋅ y

B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟ = A ⋅ x2 + 2B ⋅ xy + D ⋅ y2 = 1

r
p

  !r
rp

  !r

B = 0 B ≠ 0



Derive matrix “normal-to-ellipse”geometry by vector calculus: 
Let matrix Q =               

define the ellipse 1=r•Q•r = 

Compare operation by Q on vector r       with      vector derivative  or gradient of r•Q•r 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

 

x y( ) i A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ = x y( ) i A ⋅ x + B ⋅ y

B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟ = A ⋅ x2 + 2B ⋅ xy + D ⋅ y2 = 1

r
p

  !r
rp

  !r

 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

A ⋅ x + B ⋅ y
B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

 

∂
∂r
r iQ i r( ) = ∇ r iQ i r( )

∂
∂x
∂
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

A ⋅ x2 + 2B ⋅ xy + D ⋅ y2( ) = 2A ⋅ x + 2B ⋅ y
2B ⋅ x + 2D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

B = 0 B ≠ 0



Derive matrix “normal-to-ellipse”geometry by vector calculus: 
Let matrix Q =               

define the ellipse 1=r•Q•r = 

Compare operation by Q on vector r       with      vector derivative  or gradient of r•Q•r 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

 

x y( ) i A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ = x y( ) i A ⋅ x + B ⋅ y

B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟ = A ⋅ x2 + 2B ⋅ xy + D ⋅ y2 = 1

r
p

  !r
rp

  !r

Very simple result:

 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

A ⋅ x + B ⋅ y
B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

 

∂
∂r
r iQ i r( ) = ∇ r iQ i r( )

∂
∂x
∂
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

A ⋅ x2 + 2B ⋅ xy + D ⋅ y2( ) = 2A ⋅ x + 2B ⋅ y
2B ⋅ x + 2D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

 

∂
∂r

r iQ i r
2

⎛
⎝⎜

⎞
⎠⎟ = ∇ r iQ i r

2
⎛
⎝⎜

⎞
⎠⎟ =Q i r

B = 0 B ≠ 0
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slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

u = Q i r(φ−1) = R i r(φ−1)

= 1/ a 0
0 1/ b

⎛

⎝⎜
⎞

⎠⎟
acosφ0

bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

acosφ0

1
b

bsinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
cosφ0

sinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of “sqrt-”matrix R=√Q                          (R generates another ellipse r•R•r =1 not shown) 
on a single r-vector r(φ-1)... is to rotate it to  u-circle (u•u =1), that is,  R•r(φ-1) = u =(const.)r(φ0)

a unit vector 
on  unit-circle

u

Variation of 
Fig. 11.7  
in Unit 1



slope
b2/a2

As before, these processes may be  
continued indefinitely.

Variation of 
Fig. 11.7  
in Unit 1



slope
b2/a2

...And includes a cool way to  
construct those tangents             ...           etc.  
(see exercises!)

 !r(φ−2 )

 !r(φ−2 )

 !p(φ1)

 !p(φ1)

Variation of 
Fig. 11.7  
in Unit 1



Q:Where is this headed?         A: Lagrangian-Hamiltonian duality 
Preview of Lecture 8 



(a) Lagrangian L = L(v1,v2)

v1

v2
(b) Estrangian E = E(V1,V2)

V1=√m1v1

(c) Hamiltonian H = H(p1,p2)

p1=m1v1

p2=m2v2

V2=√m2v2

COM Bisector
slope = 1/1

Collision line and
COM tangent slope
= -m1/m2 =-16

Collision line and
COM tangent slope
=-√m1/√m2=-4

COM Bisector slope
= √m2/√m1 =1/4

Collision line and
COM tangent slope

= -1/1

COM Bisector slope
= m2/m1 =1/16

slope
√m1
√m2

=4

slope=1

The R and Q matrix transformations are like the mechanics rescaling matrices √M and M: 
Like Q=R2:                               Like √Q=R:                                 Like Q-1=R-2:

M =
m1 0
0 m2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= R2

M =
m1 0

0 m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= R M−1 =

1/m1 0
0 1 /m2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= R−2

Unit 1 
Fig. 12.1 



p2=m2v2

p1
=m1v1

Hamiltonian plot
H(p)=const.=p•M-1•p/2(b)Lagrangian plot

L(v)=const.=v•M•v/2

v2=p2 /m2

L=const = E

v1=
p1 /m1

(a)

v v = ∇∇pH
=M-1•p

p = ∇∇vL
=M•v

p

Lagrangian tangent at velocity v
is normal to momentum p

Hamiltonian tangent at momentum p
is normal to velocity v

(c) Overlapping plots
v

p

v

p

p

v (d) Less mass

(e) More mass

H=const = E

L=const = E

H=const = E

Unit 1 
Fig. 12.2 


