"Professional" Parabolic and Hyperbolic Coordinates (Relates to Fig. 1.10.7)
 Curvilinear Coordinates (OCC) related by an analytic function $w=z^{2}$ or $(u+\mathrm{i} v)=(x+\mathrm{i} y)^{2}$. You can treat either one as Cartesian. (This is based on the analytic function $f(z)=2 z$ whose complex potential is $\phi=$ \qquad _)
(a) Plot $\left(q^{1}=u, q^{2}=v\right)$ coordinate curves in a Cartesian $\left(x^{\left.1=x, x^{2}=y\right) \text { graph. Derive the Jacobian, Kajobian, unitary }}\right.$ vectors \mathbf{E}_{k} and \mathbf{E}^{k} and metric tensors $g_{m n}$ and $g^{m n}$ for this GCC.
 vectors and metric tensors for this GCC.

Galaxy Grids

2. Consider the monopole field function $f(z)=e^{i \alpha} / z$ with complex source $e^{i \alpha}$ discussed in Lectures 12-13.
(a) Derive its $\left(q^{1}=\Phi, q^{2}=A\right)$ scalar and vector potential coordinate functions.
(b) Plot examples for angle $\alpha=30^{\circ}$ and $\alpha=45^{\circ}$.

Fun with Exponentials \& more from The Story of e
3. Consider a sequence of functions $, f_{1}(z)=z^{z}, f_{2}(z)=z^{f_{1}(z)}=z^{z^{z}}, f_{3}(z)=z^{f_{2}(z)}=z^{z^{z^{z}}}, \ldots$. The function $f_{N}(z)$ has a finite limit $f_{\infty}(z)$ for N approaching infinity if argument z is small enough . $(z=1$ works! But, so does $z=\sqrt{ }$.)
(a) Find $f_{\infty}(\sqrt{2})=$ \qquad ?
(b) Find an analytic expression for the limiting real $z_{\text {max }}$ that involves the Euler constant. $e=2.718281828 \ldots$

Fun in the bathtub (This has a peculiar connection to "Sophomore-Physics-Earth" potential.)
4. Derive surface shape of rotating fluid subject to constraints on curl function $\nabla \times \mathbf{v}$ for velocity field. From this you should be able to derive surface altitude $S=S(r)$ as a function of radius r by relating balanced forces to differential slope. (Objects floating on these surfaces would not move up or down their $S(r)$ surface.)
(a) $\nabla \times \mathbf{v}=0$ (Whirlpool or Vortex) Complex vortex field $f\left(z^{*}\right)=v_{x}(x, y)+i v_{y}(x, y)=i / z^{*}$ has zero z-derivative and zero divergence (flux derivative $\nabla \cdot \mathbf{v}=0$) and zero curl (circulation derivative $\nabla \times \mathbf{v}=\mathbf{0}$).
(b) $\nabla \times \mathbf{v}=$ const. (Rigid rotation) Complex vortex field $f(z)=v_{x}(x, y)+i v_{y}(x, y)=i \omega z$ has constant imaginary z-derivative and therefore zero divergence (flux derivative $\nabla \cdot \mathbf{v}=0$) and constant curl (circulation derivative $\nabla \times \mathbf{v}=\boldsymbol{\omega}$).

(c) How might the "Sophomore-Physics-Earth" potential be related to a surface whirlpool in deep water

