Assignment Set 1 - 8.20.18 Read Unit 1 Chapters 1 thru Ch.3- Exercises due Mon. August 27

Exercise 1 Class exercise continued...

Complete VW(10mph) vs. SUV(60mph) collision analysis and plot of IN and FIN velocity states done in class.

Extra ±80 by ±120 graphpaper attached is same as used in class

- (a) For a totally inelastic 'ka-runch' case derive final velocities $V^{FIN} = (V^{FIN}_1, V^{FIN}_2)$ from plot
- (b) Derive and plot IN and FIN KE ellipses[†] and velocity vectors. (Tensor algebra preferred.)
- (c) For a totally elastic 'ka-bong' case do the same. Compare IN and FIN KE values and ellipses† for the two cases.
- (d) On the same plot draw ellipse(s) and velocity vectors as seen in the COM frame for both cases.

† At the end of Ch.1 is shown an easy ellipse construction given ellipse radii a and b. This should not be necessary for Exercise 2 but will come in handy for Exercise 1 and 3. Both use attached graph paper.

Exercise 2 Basic pool-shot kinetics

Use blank ± 0.5 by ± 1.0 graph paper (attached and available on-line).

Consider V_1 vs V_2 graphs for 1D-collisions between masses M_1 and M_2 described in Ch. 2 and Ch. 3.

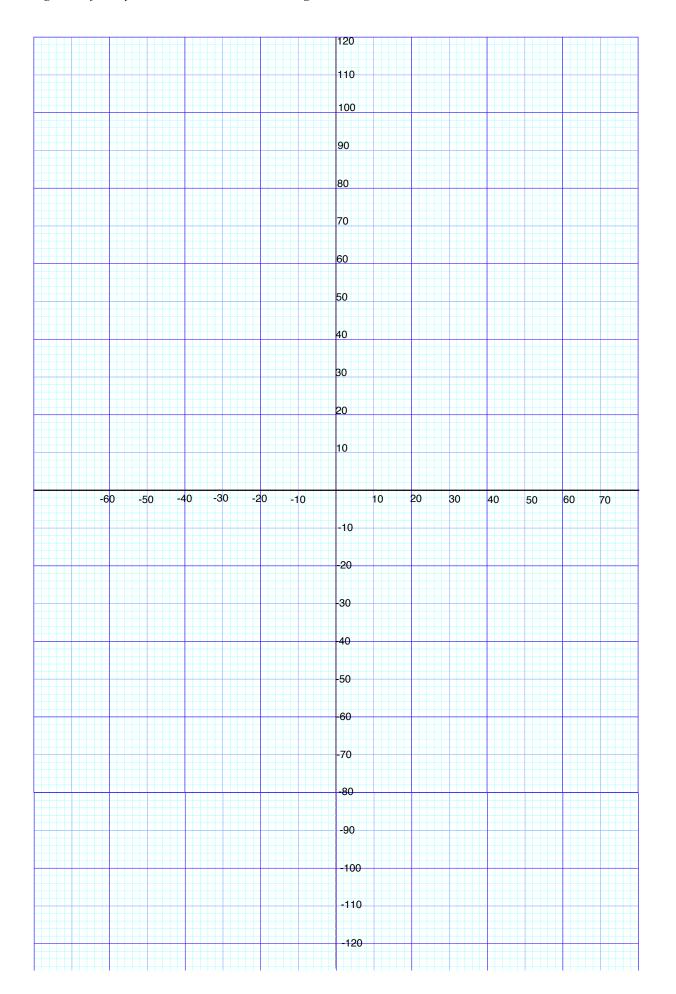
- (a) Draw a graph of a collision with initial velocities $V^{IN} = (V^{IN}_1, V^{IN}_2) = (0.5, 0)$ for equal masses $(M_1 = I = M_2)$.
- (b) For a totally inelastic 'ka-runch' case find final velocities $\mathbf{V}^{\text{FIN}} = (V^{\text{FIN}}_1, V^{\text{FIN}}_2)$ from graph and plot KE ellipse[†].
- (c) For a totally elastic 'ka-bong' case do the same. Compare final kinetic energy KE values for the two cases.
- (d) On the same plot draw ellipse(s) and velocity vectors as seen in the COM frame for both cases.

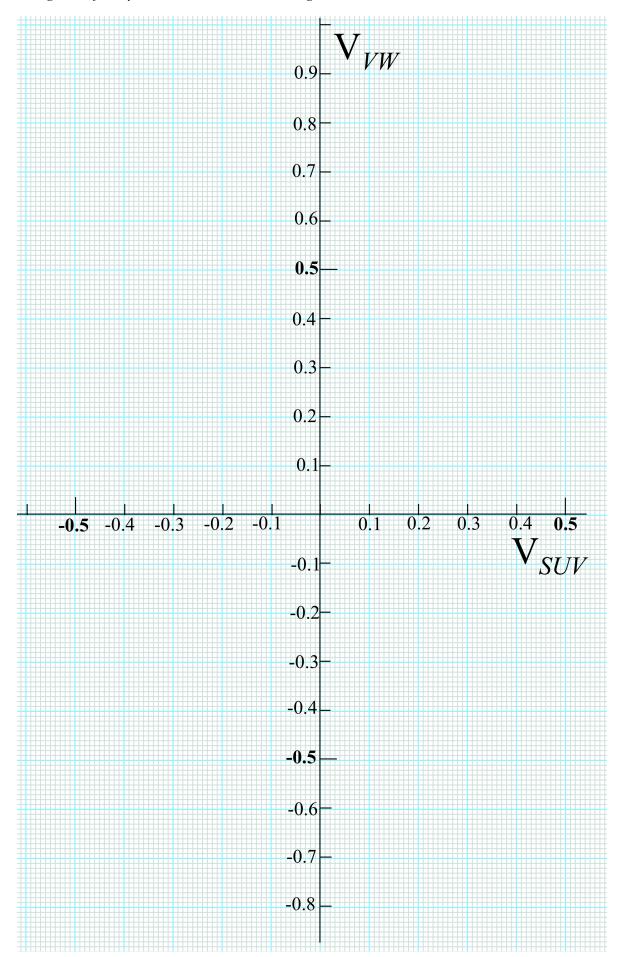
Exercise 3 Head-on collision kinetics

Solve using tensor algebraic methods and compare geometric solution on ± 0.5 by ± 1.0 graph paper.

Analyze collisions for initial velocities $\mathbf{V}^{\text{IN}} = (V^{IN}_{1}, V^{IN}_{2}) = (0.4, -0.2)$ for masses $M_{1} = 5$ and $M_{2} = 1$.

Derive final velocities $\mathbf{V}^{\text{FIN}} = (V^{\text{FIN}}_{1}, V^{\text{FIN}}_{2}) = \mathbf{V}^{\text{COM}}$ for a totally inelastic 'ka-runch' case.


Derive final velocities $\mathbf{V}^{\text{FIN}} = (V^{\text{FIN}}_{1}, V^{\text{FIN}}_{2})$ for totally elastic 'ka-bong' case.


Derive KE =_______, KE-ellipse radii $a_{1} = a$ ______, $a_{2} = b =$ _______ for ka-runch case and construct its ellipse†.

Derive KE =______, KE-ellipse radii $a_{1} = a$ ______, $a_{2} = b =$ _______ for ka-bong case as viewed in COM frame.

Derive KE =______, KE-ellipse radii $a_{1} = a$ _____, $a_{2} = b =$ _______ for ka-bong case as viewed in COM frame.

Construct resulting ellipse† for each case (if it exists).

