Kepler Geometry of IHO IIsortopic Harmonic ossilluor) $^{\text {Elliptical Orbits }}$

 (Ch. 9 and Ch. 11 of Unit 1)Constructing 2D IHO orbital phasor "clock" dynamics in uniform-body
Constructing 2D IHO orbits using Kepler anomaly plots
Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry
(Derived better in Ch. 12)
Some Kepler's "laws" for all central (isotropic) force $F(r)$ fields
Angular momentum invariance of IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Derived here)
Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m / r \quad$ (Derived in Unit 5)
Total energy $E=K E+P E$ invariance of $I H O: F(r)=-k \cdot r$
(Derived here)
Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$
(Derived in Unit 5)
Introduction to dual matrix operator contact geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $\mathbf{p} \cdot Q^{-1} \bullet \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r}^{\bullet} \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
Q:Where is this headed? A: Lagrangian-Hamiltonian duality

Link \Rightarrow BoxIt simulation of IHO orbits Link \rightarrow IHO orbital time rates of change Link \rightarrow IHO Exegesis Plot
\longrightarrow Review of IHO orbital phasor "clock" dynamics in uniform-body with two "movie" examples

Review of IHO orbital phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3 -Dimensions)
Each dimension x, y, or z obeys the following:

Total $E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ const.

$1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}$
$1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2} \quad \begin{aligned} & \text { Another example of } \\ & \text { the old "scale-a-circle" } \\ & \text { trick }\end{aligned}$
velocity: position: angular velocity:
Let : (1) $v=\sqrt{2 E / m} \cos \theta, \quad$ and : $\begin{aligned} & \text { (2) } x=\sqrt{2 E / k} \sin \theta \quad \text { def. (3) } \omega=\frac{d \theta}{d t}, ~\end{aligned}$
by def. (3)
$\omega=\frac{d \theta}{d t}=\sqrt{\frac{k}{m}}$
divide this by (1)
by integration given constant ω.

$$
\theta=\int \omega \cdot d t=\omega \cdot t+\alpha
$$

Review of IHO orbital phase dynamics in uniform-body
(a) 1-D Oscillator Phasor Plot

RelaWavity Web Simulation
Ellipsometry
RelaWavity
ellipsometry
web-app

Geometry of Kepler anomalies for vectors $[\mathbf{r}(\phi), \mathbf{v}(\phi)]$ in coordinate (x, y) space rendered by animation web-apps BoxIt and RelaWavity described below after p.70.

Animate Erase $<$

RelaWavity ellipsometry web-app

RelaWavity Web Simulation
Ellipsometry

Geometry of Kepler anomalies for vectors $[\mathbf{r}(\phi), \mathbf{v}(\phi)]$ in coordinate (x, y) space rendered by animation web-apps BoxIt and RelaWavity described below after p. 7 and p.17.

Constructing 2D IHO orbits using Kepler anomaly plots
\longrightarrow Mean-anomaly and eccentric-anomaly geometry Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry (Derived better in Ch. 12)

Unit 1

Fig. 11.1

Constructing 2D IHO orbits using Kepler anomaly plots Mean-anomaly and eccentric-anomaly geometry
\longrightarrow Calculus and vector geometry of IHO orbits A confusing introduction to Coriolis-centrifugal force geometry (Derived better in Ch. 12)
(a) Orbits

Calculus of IHO orbits

radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}=\left(\begin{array}{c}a=\omega t \\ a \cos \phi \\ b \sin \phi\end{array}\right) \quad \begin{gathered}\text { (Mean Anomaly) }\end{gathered}$

Unit 1
Fig. 11.5

Calculus of IHO orbits

To make velocity vector \mathbf{v} just rotate by $\pi / 2$ or 90° the mean-anomaly ϕ of position vector

radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}=\binom{a \cos \phi}{b \sin \phi} \quad \begin{aligned} & \text { mean-anomaly } \phi \text { of position vector } \mathbf{r} \\ & \text { rotated by } \pi / 2 \text { or } 90^{\circ} \text { is } m . a \text {. of vector } \mathbf{v}\end{aligned}$
Unit 1
Fig. 11.5
velocity vector $: \mathbf{v}=\binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{b \omega \cos \omega t}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\binom{a \cos \left(\phi+\frac{\pi}{2}\right)}{b \sin \left(\phi+\frac{\pi}{2}\right)}($ for $\omega=1)$

Calculus of IHO orbits

To make velocity vector just rotate by $\pi / 2$ or 90° the mean-anomaly ϕ of position vector

radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}=\left(\begin{array}{c}\phi=\omega t \\ a \cos \phi \\ b \sin \phi\end{array}\right) \quad \begin{aligned} & \text { (Mean Anomaly) } \\ & \text { mean-anomaly } \phi \text { of position vector } \mathbf{r} \\ & \text { rotated by } \pi / 2 \text { or } 90^{\circ} \text { is } m . a \text { of vector } \mathbf{v}\end{aligned}$
Unit 1
velocity vector $: \mathbf{v}=\binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{b \omega \cos \omega t}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\binom{a \cos \left(\phi+\frac{\pi}{2}\right)}{b \sin \left(\phi+\frac{\pi}{2}\right)}($ for $\omega=1) \quad$ Fig. \quad another $\pi / 2$ is $m \cdot a$. of vector a

Calculus of IHO orbits

To make velocity vector \mathbf{v} just rotate by $\pi / 2$ or 90° the mean-anomaly ϕ of position vector

Time frame angle
radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}=\binom{a \cos \phi}{b \sin \phi} \quad \begin{aligned} & \left.\quad \begin{array}{l}\phi=\omega t \\ \text { mean-anomaly } \phi \text { of position vector } \mathbf{r} \\ \text { rotated by } \pi / 2 \text { or } 90^{\circ} \text { is } m\end{array}\right) \text {. of vector } \mathbf{v}\end{aligned}$

Unit 1
Fig. 11.5
velocity vector $: \mathbf{v}=\binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{b \omega \cos \omega t}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\binom{a \cos \left(\phi+\frac{\pi}{2}\right)}{b \sin \left(\phi+\frac{\pi}{2}\right)}($ for $\omega=1) \frac{\text { m. } \cdot \alpha \cdot \phi+\pi / 2 \text { of vector } \mathbf{v} \text { rotated by }}{\text { another } \pi / 2 \text { is } m . a \text {. of vector a }}$

jerk or change of acceleration $: \mathbf{j}=\binom{j_{x}}{j_{y}}=\binom{+a \omega^{3} \sin \omega t}{-b \omega^{3} \cos \omega t}=\frac{d \mathbf{a}}{d t}=\dot{\mathbf{a}}=\ddot{\mathbf{v}}=\dddot{\mathbf{r}}=\frac{d^{3} \mathbf{r}}{d t^{3}}=\binom{a \cos \left(\phi+\frac{3 \pi}{2}\right)}{b \sin \left(\phi+\frac{3 \pi}{2}\right)}$

Calculus of IHO orbits

To make velocity vector \mathbf{v} just rotate by $\pi / 2$ or 90° the mean-anomaly ϕ of position vector

Time frame angle

$$
\phi=\omega t
$$

radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}=\binom{a \cos \phi}{b \sin \phi} \quad \begin{aligned} & \text { mean-anomaly } \phi \text { of position vector } \mathbf{r} \\ & \text { rotated by } \pi / 2 \text { or } 90^{\circ} \text { is } m . a . \text { of vector } \mathbf{v}\end{aligned}$
velocity vector $: \mathbf{v}=\binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{b \omega \cos \omega t}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\binom{a \cos \left(\phi+\frac{\pi}{2}\right)}{b \sin \left(\phi+\frac{\pi}{2}\right)}($ for $\omega=1) \quad$ Fig. \quad m.a. $\phi+\pi / 2$ of vector \mathbf{v} rotated by

jerk or change of acceleration $: \mathbf{j}=\binom{j_{x}}{j_{y}}=\binom{+a \omega^{3} \sin \omega t}{-b \omega^{3} \cos \omega t}=\frac{d \mathbf{a}}{d t}=\dot{\mathbf{a}}=\ddot{\mathbf{v}}=\dddot{\mathbf{r}}=\frac{d^{3} \mathbf{r}}{d t^{3}}=\binom{a \cos \left(\phi+\frac{3 \pi}{2}\right)}{b \sin \left(\phi+\frac{3 \pi}{2}\right)} \ldots$ and so forth\ldots
inauguration or change of jerk $: \mathbf{i}=\binom{i_{x}}{i_{y}}=\binom{+a \omega^{4} \cos \omega t}{+b \omega^{4} \sin \omega t}=\frac{d \mathbf{j}}{d t}=\dot{\mathbf{j}}=\ddot{\mathbf{a}}=\dddot{\mathbf{v}}=\dddot{\mathbf{r}}=\frac{d^{4} \mathbf{r}}{d t^{4}}=\binom{a \cos \left(\phi+\frac{4 \pi}{2}\right)}{b \sin \left(\phi+\frac{4 \pi}{2}\right)} \begin{aligned} & \ldots \text { and so on... } \\ & \text { repeats after } 4 \\ & t \text {-derivatives }\end{aligned}$

Calculus of IHO orbits

To make velocity vector \mathbf{v} just rotate by $\pi / 2$ or 90° the mean-anomaly ϕ of position vector

(b) Tangents

Link \Rightarrow BoxIt simulation of IHO orbits
Time frame angle
radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{\phi \cos \omega t}{b \sin \omega t}=\left(\begin{array}{l}\phi=\omega t \\ a \cos \phi \\ b \sin \phi\end{array}\right) \quad \begin{aligned} & \text { mean-anomaly } \phi \text { of position vector } \mathbf{r} \\ & \text { rotated by } \pi / 2 \text { or } 90^{\circ} \text { is } m \text {.a. of vector } \mathbf{v}\end{aligned}$
radius vector $: \mathbf{r}=\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}=\left(\begin{array}{l}\phi=\omega t \\ a \cos \phi \\ b \sin \phi\end{array}\right) \quad \begin{aligned} & \text { mean-anomaly } \phi \text { of position vector } \mathbf{r} \\ & \text { rotated by } \pi / 2 \text { or } 90^{\circ} \text { is } m \text {. } a \text {. of vector } \mathbf{v}\end{aligned}$
Unit 1
Fig. 11.5
Link \rightarrow IHO Exegesis Plot
Link \rightarrow IHO orbital time rates of change m.a. $\phi+\pi / 2$ of vector \mathbf{v} rotated by

jerk or change of acceleration $: \mathbf{j}=\binom{j_{x}}{j_{y}}=\binom{+a \omega^{3} \sin \omega t}{-b \omega^{3} \cos \omega t}=\frac{d \mathbf{a}}{d t}=\dot{\mathbf{a}}=\ddot{\mathbf{v}}=\dddot{\mathbf{r}}=\frac{d^{3} \mathbf{r}}{d t^{3}}=\binom{a \cos \left(\phi+\frac{3 \pi}{2}\right)}{b \sin \left(\phi+\frac{3 \pi}{2}\right)} \ldots$ and so forth...
inauguration or change of jerk $: \mathbf{i}=\binom{i_{x}}{i_{y}}=\binom{+a \omega^{4} \cos \omega t}{+b \omega^{4} \sin \omega t}=\frac{d \mathbf{j}}{d t}=\dot{\mathbf{j}}=\ddot{\mathbf{a}}=\dddot{\mathbf{v}}=\dddot{\mathbf{r}}=\frac{d^{4} \mathbf{r}}{d t^{4}}=\binom{a \cos \left(\phi+\frac{4 \pi}{2}\right)}{b \sin \left(\phi+\frac{4 \pi}{2}\right)} \begin{aligned} & \ldots \text { and so on... } \\ & \text { repeats after } 4 \\ & t \text {-derivatives }\end{aligned}$

RelaWavity orbit web-app

Geometry of Kepler anomalies for vectors $[\mathbf{r}(\phi), \mathbf{v}(\phi), \mathbf{a}(\phi), \mathbf{j}(\phi)$,] in coordinate (x, y) space rendered by animation web-apps BoxIt and RelaWavity.

Geometry of Kepler anomalies for vectors $[\mathbf{r}(\phi)]$ in coordinate (x, y) space BoxIt Web Stokes Simulation and 2-particle $\left(x_{1}, x_{2}\right)$ space rendered by animation web-apps BoxIt.

Geometry of Kepler anomalies for vectors $[\mathbf{r}(\phi), \mathbf{v}(\phi), \mathbf{a}(\phi), \mathbf{j}(\phi)$,] in coordinate (x, y) space and 2-particle $\left(x_{1}, x_{2}\right)$ space rendered by animation web-apps BoxIt.

BoxIt minimal detail
BoxIt more detail

Geometry of vectors $[\mathbf{r}(\phi), \mathbf{p}(\phi)]$ and quantum spin S-space BoxIt Web Simulation - B-Type Motion and 2-particle $\left(x_{1}, x_{2}\right)$ space rendered by animation web-apps BoxIt.

Constructing 2D IHO orbits using Kepler anomaly plots Mean-anomaly and eccentric-anomaly geometry Calculus and vector geometry of IHO orbits
$\longrightarrow A$ confusing introduction to Coriolis-centrifugal force geometry (Derived better in Ch. 12)

(a) "Earthronaut" orbiting tunnel inside Earth

Unit 1
Fig. 11.3
Negative power ($\mathbf{F} \cdot \mathbf{V}=|\mathbf{F}||\mathbf{V}| \cos \theta<0$)
mass losing speed as it rises Radius r increasing

(a) Centrifugal and Coriolis Forces on Merry-Go-Round

(a) Centrifugal and Coriolis Forces on Merry-Go-Round

(b) Centrifugal and Coriolis Forces on Oscillator Orbit centrifugal force

(a) Centrifugal and Coriolis Forces on Merry-Go-Round

(b) Centrifugal and Coriolis Forces on Oscillator Orbit centrifugal force

(a) Centrifugal and Coriolis Forces on Merry-Go-Round

(c) Centrifugal and Coriolis

Forces on Oscillator Orbit

Some Kepler's "laws" for all central (isotropic) force F(r) fields
\longrightarrow Angular momentum invariance of IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ (Derived here)
Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m / r \quad$ (Derived in Unit 5) Total energy $E=K E+P E$ invariance of $I H O: F(r)=-k \cdot r$
(Derived here)
Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$

Some Kepler's "laws" for central (isotropic) force F(r)
... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Recall from Lecture 6: $k=\operatorname{Gm} \frac{4 \pi}{3} \rho_{\oplus}$)
Unit 1

Fig. 11.8

1. Area of triangle $\measuredangle_{\mathrm{r}}^{\mathrm{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-b \sin \omega t \cdot(-a \omega \sin \omega t)=a b \cdot \omega\left(\cos ^{2} \omega t+\sin ^{2} \operatorname{lot}^{t}\right)$ IHO $\binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t \ldots} \cdots \cdots \cdots \cdots \cdots \cdots\binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{\ddots \omega \cos \omega t}$

Some Kepler's "laws" that apply to any central (isotropic) force F(r) ... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Recall from Lecture 6: $k=G m \frac{4 \pi}{3} \rho_{\oplus}$)
Unit 1

Fig. 11.8

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathrm{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega$
for IHO
2. Angular momentum $\mathbf{L}=m \mathbf{r} \times \mathbf{v}$ is conserved
$L=m|\mathbf{r} \times \mathbf{v}|=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega$
\checkmark for IHO

Some Kepler's "laws" that apply to any central (isotropic) force F(r) ... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Recall from Lecture 6: $k=G m \frac{4 \pi}{3} \rho_{\oplus}$) Unit 1

Fig. 11.8

1. Area of triangle $\zeta_{\mathbf{r}}^{v}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega$
for IHO
2. Angular momentum $\mathbf{L}=m \mathbf{r} \times \mathbf{v}$ is conserved

$$
L=m|\mathbf{r} \times \mathbf{v}|=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega
$$

\checkmark for IHO
3. Equal area is swept by radius vector in each equal time interval T

$$
A_{T}=\int_{0}^{T} \frac{\mathbf{r} \times d \mathbf{r}}{2}=\int_{0}^{T} \frac{\mathbf{r} \times \frac{d \mathbf{r}}{d t}}{2} d t=\int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} d t=\frac{L}{2 m} \int_{\left\lfloor\mathrm{by}_{2}\right]^{0}}^{T} d t=\frac{L}{2 m} T
$$

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Recall from Lecture 6: $k=G m \frac{4 \pi}{3} \rho_{\oplus}$) Unit 1

Fig. 11.8

1. Area of triangle $\zeta_{\mathbf{r}}^{v}=\mathbf{r} \times \mathbf{v} / 2$ is constant

$$
\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega
$$

\checkmark for IHO
2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved

$$
L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega=m \cdot a b \cdot \frac{2 \pi}{\tau}
$$

\checkmark for IHO
3. Equal area is swept by radius vector in each equal time interval T

$$
A_{T}=\int_{0}^{T} \frac{\mathbf{r} \times d \mathbf{r}}{2}=\int_{0}^{T} \frac{\mathbf{r} \times \frac{d \mathbf{r}}{d t}}{2} d t=\int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} d t=\frac{L}{2 m} \int_{0}^{T} d t=\frac{L}{2 m} T
$$

In one period: $\tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L}$ the area is: $A_{\tau}=\frac{L \tau}{2 m}(=a b \cdot \pi$ for ellipse orbit $)$

Some Kepler's "laws" that apply to any central (isotropic) force F(r) ... and certainly apply to the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Recall from Lecture 6: $k=G m \frac{4 \pi}{3} \rho_{\oplus}$) Unit 1

Fig. 11.8

1. Area of triangle $\zeta_{\mathbf{r}}^{v}=\mathbf{r} \times \mathbf{v} / 2$ is constant

$$
\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=a \cos \omega t \cdot(b \omega \cos \omega t)-a \sin \omega t \cdot(-b \omega \sin \omega t)=a b \cdot \omega
$$

\checkmark for IHO
2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved

$$
L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=m \cdot a b \cdot \omega=m \cdot a b \cdot \frac{2 \pi}{\tau}
$$

\checkmark for IHO
3. Equal area is swept by radius vector in each equal time interval T

$$
A_{T}=\int_{0}^{T} \frac{\mathbf{r} \times d \mathbf{r}}{2}=\int_{0}^{T} \frac{\mathbf{r} \times \frac{d \mathbf{r}}{d t}}{2} d t=\int_{0}^{T} \frac{\mathbf{r} \times \mathbf{v}}{2} d t=\frac{L}{2 m} \int_{0}^{T} d t=\frac{L}{2 m} T
$$

In one period: $\tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L}$ the area is: $A_{\tau}=\frac{L \tau}{2 m}(=a b \cdot \pi$ for ellipse orbit $)$

Some Kepler's "laws" for all central (isotropic) force F(r) fields Angular momentum invariance of $I H O: F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Derived here)
\longrightarrow Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m / r \quad$ (Derived in Unit 5) Total energy $E=K E+P E$ invariance of $I H O$: $F(r)=-k \cdot r$ (Derived here) Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$ (Derived in Unit 5)

Some Kepler's "laws" that apply to any central (isotropic) force F(r) Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$

1. Area of triangle $\measuredangle_{r}^{v}=\mathbf{r} \times \mathbf{v} / 2$ is constant
\checkmark for IHO
(Derived in Unit 5) for Coul.

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$ Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$

1. Area of triangle $\measuredangle_{\mathbf{r}}^{v}=\mathbf{r} \times \mathbf{v} / 2$ is constant
$\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=\left\{\begin{array}{cc}a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\ a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. }\end{array}\right.$
\checkmark for IHO
(Derived in Unit 5) for Coul.
2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved
$L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=\left\{\begin{array}{cl}m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\ m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. } . . . \text { in Unit } 5) \text { for IHO } \\ \text { for Coul. }\end{array}\right.$

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$ Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$

Coulomb: ${ }^{t}$

IHO:

1. Area of triangle $\zeta_{\mathbf{r}}^{v}=\mathbf{r} \times \mathbf{v} / 2$ is constant

$$
\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=\left\{\begin{array}{cc}
a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\
a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul } .
\end{array}\right.
$$

\checkmark for IHO
(Derived in Unit 5) \downarrow for Coul.
2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved
$L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=\left\{\begin{array}{cl}m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\ m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. } . . . \text { in Unit } 5) \text { for IHO } \\ \text { for Coul. }\end{array}\right.$
3. Equal area is swept by radius vector in each equal time interval T
$\tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L}=\frac{2 m \cdot a b \cdot \pi}{L}=\left\{\begin{array}{c}\frac{2 m \cdot a b \cdot \pi}{m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3}} \\ \frac{2 m \cdot a b \cdot \pi}{m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}}} \\ \begin{array}{c}\text { Applisesto } \\ \text { any central } \\ \text { F(r) }\end{array}\end{array}\right.$

Some Kepler's "laws" that apply to any central (isotropic) force $F(r)$ Apply to IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ and Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r$

Coulomb: ${ }^{t}$

1. Area of triangle $\measuredangle_{\mathbf{r}}^{\mathbf{v}}=\mathbf{r} \times \mathbf{v} / 2$ is constant

$$
\mathbf{r} \times \mathbf{v}=r_{x} v_{y}-r_{y} v_{x}=\left\{\begin{array}{cc}
a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\
a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul } .
\end{array}\right.
$$

- for IHO
(Derived in Unit 5) for Coul.

2. Angular momentum $L=m \mathbf{r} \times \mathbf{v}$ is conserved
$L=m \mathbf{r} \times \mathbf{v}=m\left(r_{x} v_{y}-r_{y} v_{x}\right)=\left\{\begin{array}{cl}m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3} & \text { for IHO } \\ m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}} & \text { for Coul. }(\ldots \text { in Unit } 5)\end{array}\right.$ for Coul.
3. Equal area is swept by radius vector in each equal time interval T

$$
\begin{aligned}
& \text { In one period: } \\
& \tau=\frac{1}{v}=\frac{2 \pi}{\omega}=\frac{2 m A_{\tau}}{L}=\frac{2 m \cdot a b \cdot \pi}{L}=\left\{\begin{array}{c}
L \\
\begin{array}{c}
\text { Applies to } \\
\text { any central } \\
\text { F(r) }
\end{array}
\end{array} \begin{array}{c}
\text { Applies to } \\
\text { IHO and } \\
\text { Coulomb }
\end{array},\right. \\
& \begin{aligned}
\frac{2 m \cdot a b \cdot \pi}{m \cdot a b \cdot \sqrt{G \rho_{\oplus} 4 \pi / 3}} & =\frac{2 \pi \text { (not afuction of a or b) }^{\sqrt{G \rho_{\oplus} 4 \pi / 3}} \text { for IHO }}{} \\
\frac{2 m \cdot a b \cdot \pi}{m \cdot a^{-1 / 2} b \sqrt{G M_{\oplus}}} & =\frac{2 \pi}{a^{-3 / 2} \sqrt{G M_{\oplus}}} \text { for Coul. }
\end{aligned}
\end{aligned}
$$

Some Kepler's "laws" for all central (isotropic) force $F(r)$ fields Angular momentum invariance of $I H O: F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$ (Derived here) Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m / r \quad$ (Derived in Unit 5)

\longrightarrow Total energy $E=K E+P E$ invariance of $I H O$: $F(r)=-k \cdot r$

(Derived here) Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2} \quad$ (Derived in Unit 5)

Kepler laws involve Ł-momentum conservation in isotropic force $F(r)$
Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total energy $=K E+P E$ is constant

$$
\begin{aligned}
& K E+P E=\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2} \quad+\quad \frac{1}{2} k r_{x}^{2}+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \binom{v_{x}}{v_{y}}=\binom{-a \omega \sin \omega t}{b \omega \cos \omega t} \\
& \binom{r_{x}}{r_{y}}=\binom{x}{y}=\binom{a \cos \omega t}{b \sin \omega t}
\end{aligned}
$$

Kepler laws involve Ł-momentum conservation in isotropic force $F(r)$
Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total $I H O$ energy $=K E+P E$ is constant

$$
\begin{aligned}
& K E+P E=\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2} \quad+\quad \frac{1}{2} k r_{x}^{2}+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \begin{array}{lll}
=\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
& =\quad & \text { Given }: k=m \omega^{2}
\end{array}
\end{aligned}
$$

Kepler laws involve Ł-momentum conservation in isotropic force $F(r)$
Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total $I H O$ energy $=K E+P E$ is constant

$$
\begin{aligned}
& K E+P E=\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}+\frac{1}{2} k r_{x}^{2}+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \begin{array}{lll}
=\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
& =\quad \begin{array}{l}
\text { Given }: k=m \omega^{2}
\end{array}
\end{array}
\end{aligned}
$$

$E=K E+P E=\frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right)=\frac{1}{2} k\left(a^{2}+b^{2}\right)$ since: $\omega=\sqrt{\frac{k}{m}}=\sqrt{G \rho_{\oplus} 4 \pi / 3}$ or: $m \omega^{2}=k$

Some Kepler's "laws" for all central (isotropic) force F(r) fields Angular momentum invariance of $I H O: F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
(Derived here) Angular momentum invariance of Coulomb: $F(r)=-G M m / r^{2}$ with $U(r)=-G M m \cdot / r \quad$ (Derived in Unit 5) Total energy $E=K E+P E$ invariance of $I H O$: $F(r)=-k \cdot r$
(Derived here)
\longrightarrow Total energy $E=K E+P E$ invariance of Coulomb: $F(r)=-G M m / r^{2}$

Kepler laws involve \measuredangle-momentum conservation in isotropic force $F(r)$

Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total $I H O$ energy $=K E+P E$ is constant

$$
E=K E+P E=\frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right)=\frac{1}{2} k\left(a^{2}+b^{2}\right) \text { since: } \omega=\sqrt{\frac{k}{m}}=\sqrt{G \rho_{\oplus} 4 \pi / 3} \quad \text { or: } m \omega^{2}=k
$$

We'll see that the Coul. orbits are simpler:

$$
\begin{aligned}
& K E+P E=\quad \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2} \quad+\frac{1}{2} k r_{x}^{2}+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \begin{array}{lll}
=\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
= & \frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right) & \text { Given }: k=m \omega^{2}
\end{array}
\end{aligned}
$$

Kepler laws involve \measuredangle-momentum conservation in isotropic force $F(r)$

Now consider orbital energy conservation of the IHO: $F(r)=-k \cdot r$ with $U(r)=k \cdot r^{2} / 2$
Total $I H O$ energy $=K E+P E$ is constant

$$
E=K E+P E=\frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right)=\frac{1}{2} k\left(a^{2}+b^{2}\right) \text { since: } \omega=\sqrt{\frac{k}{m}}=\sqrt{G \rho_{\oplus} 4 \pi / 3} \quad \text { or: } m \omega^{2}=k
$$

We'll see that the Coul. orbits are simpler:
(like the period...not a function of b)
$E=K E+P E=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}-\frac{k}{r}=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}-\frac{G M_{\oplus} m}{r}=-\frac{G M_{\oplus} m}{a}$

$$
\begin{aligned}
& K E+P E=\quad \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \quad+\quad \frac{1}{2} \mathbf{r} \cdot \mathbf{K} \cdot \mathbf{r} \\
& =\frac{1}{2}\left(\begin{array}{ll}
v_{x} & v_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \bullet\binom{v_{x}}{v_{y}}+\left(\begin{array}{ll}
r_{x} & r_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right) \bullet\binom{r_{x}}{r_{y}} \\
& =\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}+\frac{1}{2} k r_{x}^{2}+\frac{1}{2} k r_{y}^{2} \\
& =\frac{1}{2} m(-a \omega \sin \omega t)^{2}+\frac{1}{2} m(b \omega \cos \omega t)^{2}+\frac{1}{2} k(a \cos \omega t)^{2}+\frac{1}{2} k(b \sin \omega t)^{2} \\
& \begin{array}{lll}
=\frac{1}{2} m a^{2} \omega^{2}\left(\sin ^{2} \omega t\right)+\frac{1}{2} m b^{2} \omega^{2}\left(\cos ^{2} \omega t\right)^{2}+\frac{1}{2} k a^{2}\left(\cos ^{2} \omega t\right)+\frac{1}{2} k b^{2}\left(\sin ^{2} \omega t\right) \\
= & \frac{1}{2} m \omega^{2}\left(a^{2}+b^{2}\right) & \text { Given }: k=m \omega^{2}
\end{array}
\end{aligned}
$$

\longrightarrow Introduction to dual matrix operator contact geometry (based on IHO orbits) Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $\mathbf{p}^{\bullet} Q^{-1} \cdot \mathbf{p}=1$

Duality norm relations ($\mathbf{r} \cdot \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \circ \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \bullet Q \bullet \mathbf{r}=1$ is called positive-definite (if $\mathbf{r} \bullet Q \cdot \mathbf{r}$ always >0)

$$
\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot \overbrace{\left(\begin{array}{cc}
\frac{1}{a^{2}} & 0 \\
0 & \frac{1}{b^{2}}
\end{array}\right)}^{\mathbf{r} \bullet \mathbf{Q} \cdot \mathbf{r}} \cdot\binom{x}{y}=1=\left(\sim_{\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot\binom{\frac{x}{a^{2}}}{\frac{y}{b^{2}}}}^{\mathbf{Q} \cdot \mathbf{r}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right.
$$

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p}^{\bullet} Q^{-1} \mathbf{p}=1$ called inverse or dual ellipse:

$$
\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \cdot \overbrace{\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right)}^{\mathbf{p} \bullet \mathbf{Q}^{-1} \bullet \mathbf{p}} \cdot\binom{p_{x}}{p_{y}}=1=(\overbrace{\left(\begin{array}{cc}
p_{x} & p_{y}
\end{array}\right) \cdot(\overbrace{\binom{a^{2} p_{x}}{b^{2} p_{y}}}^{\mathbf{p}})=a^{2} p_{x}^{2}+b^{2} p_{y}^{2} . \mathbf{Q}^{-1} \cdot \mathbf{p}}^{=1}
$$

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ is called positive-definite (if $\mathbf{r} \bullet Q \cdot \mathbf{r}$ always >0)

$$
\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot \overbrace{\left(\begin{array}{cc}
\frac{1}{a^{2}} & 0 \\
0 & \frac{1}{b^{2}}
\end{array}\right)}^{\mathbf{r} \bullet \mathbf{Q} \cdot \mathbf{r}} \cdot\binom{x}{y}=1=\left(\sim_{\left(\begin{array}{c}
x \\
x
\end{array}\right.}^{y}\right)) \cdot\binom{\frac{x}{a^{2}}}{\frac{y}{b^{2}}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Defined mapping between ellipses

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p}^{\bullet} Q^{-1} \cdot \mathbf{p}=1$ called inverse or dual ellipse:

$$
\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \cdot \overbrace{\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right)}^{\mathbf{p} \bullet \mathbf{Q}^{-1} \bullet \mathbf{p}} \cdot\binom{p_{x}}{p_{y}}=1=(\overbrace{\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \bullet\binom{a^{2} p_{x}}{b^{2} p_{y}}=a^{2} p_{x}^{2}+b^{2} p_{y}^{2}}^{\mathbf{p}} \mathbf{Q}^{-1} \bullet \mathbf{p}=\mathbf{r}
$$

Introduction to dual matrix operator contact geometry (based on IHO orbits)
\longrightarrow Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $\mathbf{p}^{\bullet} Q^{-1} \cdot \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \circ \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
(a) Quadratic form ellipse and Inverse quadratic form ellipse

(a) Quadratic form ellipse and Inverse quadratic form ellipse

Here plot of p-ellipse is re-scaled by scalefactor $S=a \cdot b$ p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b(=1$ for $a=2, b=1)$ p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=a(=2$ for $a=2, b=1)$

Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p^{\bullet} Q^{-1} \bullet \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \cdot \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \circ \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
(a) Quadratic form ellipse and Inverse quadratic form ellipse

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has muatraal duality relations with inverse form $\mathbf{p}^{\cdot} \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$

Here plot of p-ellipse is re-scaled by scalefactor $S=a \cdot b$ p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b(=1$ for $a=2, b=1)$ p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=a(=2$ for $a=2, b=1)$

$$
\mathbf{p} \cdot \mathbf{Q}^{-1} \bullet \mathbf{p}=\mathbf{p} \bullet \mathbf{r}=1
$$

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has muatraal duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$

Here plot of p-ellipse is re-scaled by scalefactor $S=a \cdot b$ p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b(=1$ for $a=2, b=1)$ p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=a(=2$ for $a=2, b=1)$

Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p^{\bullet} Q^{-1} \cdot \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \cdot \mathbf{p}=1$)
$\longrightarrow Q$-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \cdot \mathbf{p}=0=\mathbf{r} \bullet \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
(a) Quadratic form ellipse and Inverse quadratic form ellipse

(b) Ellipse tangents

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has mutrad duality relations with inverse form $\mathbf{p}^{\cdot} \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$

$$
\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right) \cdot\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi} \text { where: } \begin{gathered}
x=r_{x}=a \cos \phi=a \cos \omega t \\
y=r_{y}=b \sin \phi=b \sin \omega t
\end{gathered} \quad \text { so: } \mathbf{p} \cdot \mathbf{r}=1
$$

Here plot of p-ellipse is re-scaled by scalefactor $S=a \cdot b$
p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b(=1$ for $a=2, b=1)$
p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=a(=2$ for $a=2, b=1)$
(a) Quadratic form ellipse and

Inverse quadratic form ellipse
(b) Ellipse tangents

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has muatral duallity relations with inverse form $\mathbf{p}^{\bullet} \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$
$\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right) \bullet\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi}$ where: $\begin{gathered}x=r_{x}=a \cos \phi=a \cos \omega t \\ y=r_{y}=b \sin \phi=b \sin \omega t\end{gathered} \quad$ so: $\mathbf{p} \cdot \mathbf{r}=1$
p is perpendicular to velocity $\mathbf{v}=\dot{\mathrm{r}}, a$ matrual orthogomality
$\stackrel{\mathrm{r}}{ } \bullet \mathrm{p}=0=\left(\begin{array}{ll}\dot{r}_{x} & \dot{r}_{y}\end{array}\right) \bullet\binom{p_{x}}{p_{y}}=\left(\begin{array}{ll}-a \sin \phi & b \cos \phi\end{array}\right) \bullet\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi}$ where: $\begin{aligned} & \dot{r}_{x}=-a \sin \phi \\ & \dot{r}_{y}=b \cos \phi\end{aligned}$ and: $\begin{aligned} & p_{x}=(1 / a) \cos \phi \\ & p_{y}=(1 / b) \sin \phi\end{aligned}$
(a) Quadratic form ellipse and Inverse quadratic form ellipse

$\mathbf{p} \cdot \mathbf{Q}^{-1} \bullet \mathbf{p}=\mathbf{p} \cdot \mathbf{r}=1$
(b) Ellipse tangents

Unit 1
Fig. 11.6

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has mutual l duality relations with inverse form $\mathbf{p}^{\bullet} \mathbf{Q}^{-1} \cdot \mathbf{p}=1$

$$
\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right) \bullet\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi} \text { where: } \begin{gathered}
x=r_{x}=a \cos \phi=a \cos \omega t \\
y=r_{y}=b \sin \phi=b \sin \omega t
\end{gathered}
$$

$$
\text { so: } \mathbf{p} \cdot \mathbf{r}=1
$$

p is perpendicular to velocity $\mathbf{v}=\dot{\mathrm{r}}$, a mutual orthogonality. So is \mathbf{r} perpendicular to $\dot{\mathbf{p}}$:

$\dot{\mathrm{r}} \bullet \mathrm{p}=0=\left(\begin{array}{ll}\dot{r}_{x} & \dot{r}_{y}\end{array}\right) \bullet\binom{p_{x}}{p_{y}}=\left(\begin{array}{ll}-a \sin \phi & b \cos \phi\end{array}\right) \bullet\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi}$ where: | $\dot{r}_{x}=-a \sin \phi$ |
| :--- |
| $\dot{r}_{y}=b \cos \phi$ | and: | $p_{x}=(1 / a) \cos \phi$ |
| :--- |
| $p_{y}=(1 / b) \sin \phi$ |

RelaWavity exegeis web-app

RelaWavity Web Simulation
Ellipse/Exegesis

Geometry of dual ellipse Kepler anomalies for vectors $[\mathbf{r}(\phi), \mathbf{p}(\phi)]$ and ${ }^{d} d d[\mathbf{r}(\phi), \mathbf{p}(\phi)$,$] in coordinate$ (x, y) space rendered by animation web-app in RelaWavity and described in Lect. 12-advanced.

Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p^{\bullet} Q^{-1} \cdot \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \bullet \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \circ \mathbf{p}^{\prime}\right)$
\longrightarrow Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation
based on
Fig. 11.7
in Unit
Here $b / a=1 / 2$

Diagonal R-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor
Action of "sqrt-"matrix $R=\sqrt{ } Q$
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(Slope increases if $a>b$.)
based on
Fig. 11.7 in Unit
Here $b / a=1 / 2$
Action of "squrt ${ }^{1-}$ " matrix $R^{-1}=\sqrt{ } Q^{-1}$ Diagonal \mathbf{R}^{-1}-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor b / a.
$\mathbf{R}^{-1} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\binom{x}{y}=\binom{x \cdot a}{y \cdot b}$
(Slope decreases if $b<a$. .)

Diagonal \mathbf{R}-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a / b-2 . \quad a^{2} / b^{2}$
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(It increases if $a>b$.)

Diagonal $\left(\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2} / b^{2}=4$.
$\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$
(It increases if $a>b$.)

Resulting vector has slope changed by factor $b / a=1 / 2$.
$\mathbf{R}^{-1} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\binom{x}{y}=\binom{x \cdot a}{y \cdot b}$

Diagonal $\left(\mathbf{R}^{-2}=\mathbf{Q}^{-1}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2} / a^{2}=1 / 4$.
based on
Fig. 11.7
in Unit/
Here $b / a=1 / 2$

$$
\mathbf{Q}^{-1} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right)\binom{x}{y}=\binom{x \cdot a^{2}}{y \cdot b^{2}}
$$

Diagonal \mathbf{R}-matrix acts on vector $\mathbf{v}^{x / y}$.

Resulting vector has slope changed by factor $a / b=2 . a^{3} / b^{3} a^{2} / b^{2}$
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(It increases if $a>b$.)

Diagonal $\left(\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2} / b^{2}=4$.
$\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$
(It increases if $a>b$.)

Either process can go on forever...
Either process can go on forever...
Diagonal $\left(\mathbf{R}^{2 n}=\mathbf{Q}^{n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2 n} / b^{2 n}=4^{n}$.
Diagonal $\left(\mathbf{R}^{-2 n}=\mathbf{Q}^{-n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2 n} / a^{2 n}=4^{-n}$. based on Fig. 11.7 in Unit 1
Here $b / a=1 / 2$
\rightarrow

$$
\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / b
\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}
$$

(It increases if $a>b$.)

Diagonal $\left(\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2} / b^{2}=$ $\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$

EIGENVECTOR

$|y\rangle$

Either process can go on forever...
Diagonal $\left(\mathbf{R}^{2 n}=\mathbf{Q}^{n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2 n} / b^{2 n}=4^{n}$.
...Finally, the result approaches EIGENVECTOR $|y\rangle=\binom{0}{1}$ of ∞-slope which is "immune" to \mathbf{R}, \mathbf{Q} or \mathbf{Q}^{n} :

$$
\mathbf{R}|y\rangle=(1 / b)|y\rangle \quad \mathbf{Q}^{n}|y\rangle=\left(1 / b^{2}\right)^{n}|y\rangle
$$

Here $b / a=1 / 2$

Either process can go on forever...
Diagonal $\left(\mathbf{R}^{-2 n}=\mathbf{Q}^{-n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2 n} / a^{2 n}=4^{-n}$. ...Finally, the result approaches EIGENVECTOR $|x\rangle=\left(\begin{array}{l}1 \\ 0\end{array}\right.$ of 0 -slope which is "immune" to $\mathbf{R}^{-1}, \mathbf{Q}^{-1}$ or \mathbf{Q}^{-n} :

$$
\mathbf{R}^{-1}|x\rangle=(a)|x\rangle \quad \mathbf{Q}^{-n}|x\rangle=\left(a^{2}\right)^{n}|x\rangle
$$

Diagonal R-matrix acts on vector $\mathbf{v}^{x / y}$

Resulting vector has slope changed by factor $a / b=2$.
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(It increases if $a>b$.)

EIGENVECTOR

$|y\rangle$

Diagonal ($\left.\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2} / b^{2}=$ $\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$ (It increases if $a>b$.)

Either process can go on forever...
Diagonal $\left(\mathbf{R}^{2 n}=\mathbf{Q}^{n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2 n} / b^{2 n}=4^{n}$.
...Finally, the result approaches EIGENVECTOR $|y\rangle=\binom{0}{1}$
of ∞-slope which is "immune" to \mathbf{R}, \mathbf{Q} or \mathbf{Q}^{n} :

Either process can go on forever...
Diagonal $\left(\mathbf{R}^{-2 n}=\mathbf{Q}^{-n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2 n} / a^{2 n}=4^{-n}$. ...Finally, the result approaches EIGENVECTOR $|x\rangle=\binom{1}{0}$ of 0 -slope which is "immune" to $\mathbf{R}^{-1}, \mathbf{Q}^{-1}$ or \mathbf{Q}^{-n} :
$\mathbf{R}|y\rangle=(1 / b)|y\rangle \quad \mathbf{Q}^{n}|y\rangle=\left(1 / b^{2}\right)^{n}|y\rangle$ Eigensolution
Eigenvalues
$\mathbf{R}^{-1}|x\rangle=(a)|x\rangle \quad \mathbf{Q}^{-n}|x\rangle=\left(a^{2}\right)^{n}|x\rangle$
Relations

Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p \cdot Q^{-1} \bullet \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \cdot \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \circ \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
\longrightarrow
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation

You may rescale p-plot by scale factor $S=(a \cdot b)$ so $\mathbf{r} \cdot Q \cdot \mathbf{r}$ and $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p}$ ellipses are to be same size

..or else rescale p-plot by scale factor $S=b$ to separate $\mathbf{r} \cdot Q \cdot \mathbf{r}$ and $\mathbf{p} \cdot Q \dagger^{1} \cdot \mathbf{p}$ ellipses into different yegions

Here plot of p-ellipse is re-scaled by scalefactor $S=b$
p-ellipse x-radius $=1 / a$ plotted at: $S(1 / a)=b / a(=1 / 2$ for $a=2, b=1)$ p-ellipse y-radius $=1 / b$ plotted at: $S(1 / b)=1$

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \bullet \mathbf{r}=1)$
on a single \mathbf{r}-vector $\mathbf{r}(\phi-1) \ldots$ is to rotate it to a new vector \mathbf{p} on the \mathbf{p}-ellipse $\left(\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p}=1\right)$, that is, $Q \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{p}\left(\phi_{+1}\right)$

$$
\mathbf{p}\left(\phi_{1}\right)=\mathbf{Q} \cdot \mathbf{r}\left(\phi_{-1}\right)
$$

$$
=\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right)\binom{a \cos \phi_{0}}{b \sin \phi_{0}}
$$

$$
=\left(\frac{1}{a} \cos \phi_{0}\right)
$$

Variation of
Fig. 11.7
in Unit 1

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \bullet \mathbf{r}=1)$
on a single \mathbf{r}-vector $\mathbf{r}\left(\phi_{-1}\right) \ldots$ is to rotate it to a new vector \mathbf{p} on the \mathbf{p}-ellipse $\left(\mathbf{p} \cdot Q^{-1 /} \cdot \mathbf{p}=1\right)$, that is, $Q \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{p}\left(\phi_{+1}\right)$

Key points
of matrix geometry:

Matrix Q maps any vector \mathbf{r} to a new $b / a=12$ vector \mathbf{p} normal to the tangent $\dot{\mathbf{r}}$ to its r-Q.r-ellipse.

Variation of
Fig. 11.7 in Unit 1

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \bullet \mathbf{r}=1)$
on a single \mathbf{r}-vector $\mathbf{r}(\mathbf{p}-1) \ldots$ is to rotate it to a new vector \mathbf{p} on the \mathbf{p}-ellipse $\left(\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p}=1\right)$, that is, $Q \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{p}\left(\phi_{+1}\right)$

Matrix Q^{-1} maps \mathbf{p} back to \mathbf{r} that is normal to the tangent \mathbf{p} to its $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p}$-ellipse.
Key points
of matrix geometry:

Matrix Q maps any vector \mathbf{r} to a new vector \mathbf{p} normal to the tangent $\dot{\mathbf{r}}$ to its r-Q.r-ellipse.

Variation of
Fig. 11.7 in Unit 1

Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p^{\bullet} Q^{-1} \cdot \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \cdot \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \circ \mathbf{p}^{\prime}\right)$
Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
$\longrightarrow \quad$ Vector calculus of tensor operation

Derive matrix "normal-to-ellipse"geometry by vector calculus:

Let matrix $Q=\left(\begin{array}{cc}A & B \\ B & D\end{array}\right)$
define the ellipse $1=\mathbf{r} \cdot Q \cdot \mathbf{r}=\left(\begin{array}{cc}x & y\end{array}\right) \cdot\left(\begin{array}{ll}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}=A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}=1$

$B \neq 0$

Derive matrix "normal-to-ellipse"geometry by vector calculus:

Let matrix $Q=\left(\begin{array}{cc}A & B \\ B & D\end{array}\right)$
define the ellipse $1=\mathbf{r} \cdot Q \cdot \mathbf{r}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\left(\begin{array}{ll}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}=A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}=1$
Compare operation by Q on vector \mathbf{r} with vector derivative or gradient of $\mathbf{r} \cdot Q \cdot \mathbf{r}$

$$
\frac{\partial}{\partial \mathbf{r}}(\mathbf{r} \cdot Q \cdot \mathbf{r})=\nabla(\mathbf{r} \cdot Q \cdot \mathbf{r})
$$

$\left(\begin{array}{cc}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}$

$$
\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}\left(A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}\right)=\binom{2 A \cdot x+2 B \cdot y}{2 B \cdot x+2 D \cdot y}
$$

Derive matrix "normal-to-ellipse"geometry by vector calculus:

Let matrix $Q=\left(\begin{array}{ll}A & B \\ B & D\end{array}\right)$
define the ellipse $I=\mathbf{r} \cdot Q \cdot \mathbf{r}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\left(\begin{array}{ll}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}=A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}=1$

Compare operation by Q on vector \mathbf{r} with vector derivative or gradient of $\mathbf{r} \cdot Q \cdot \mathbf{r}$

$$
\frac{\partial}{\partial \mathbf{r}}(\mathbf{r} \cdot Q \cdot \mathbf{r})=\nabla(\mathbf{r} \cdot Q \cdot \mathbf{r})
$$

$\left(\begin{array}{ll}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}$

$$
\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}\left(A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}\right)=\binom{2 A \cdot x+2 B \cdot y}{2 B \cdot x+2 D \cdot y}
$$

Very simple result:

$$
\frac{\partial}{\partial \mathbf{r}}\left(\frac{\mathbf{r} \cdot Q \cdot \mathbf{r}}{2}\right)=\nabla\left(\frac{\mathbf{r} \cdot Q \cdot \mathbf{r}}{2}\right)=Q \cdot \mathbf{r}
$$

Introduction to dual matrix operator geometry (based on IHO orbits)
Quadratic form ellipse $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ vs.inverse form ellipse $p^{\bullet} Q^{-1} \cdot \mathbf{p}=1$
Duality norm relations ($\mathbf{r} \cdot \mathbf{p}=1$)
Q-Ellipse tangents \mathbf{r}^{\prime} normal to dual Q^{-1}-ellipse position $\mathbf{p}\left(\mathbf{r}^{\prime} \bullet \mathbf{p}=0=\mathbf{r} \circ \mathbf{p}^{\prime}\right)$
(Still more) Operator geometric sequences and eigenvectors
Alternative scaling of matrix operator geometry
Vector calculus of tensor operation

Action of "sqrt-" matrix $R=\sqrt{ } Q$ (R generates another ellipse $\mathbf{r} \cdot R \cdot \mathbf{r}=1$ not shown) on a single \mathbf{r}-vector $\mathbf{r}\left(\phi_{-1}\right) \ldots$ is to rotate it to \mathbf{u}-circle $(\mathbf{u} \cdot \mathbf{u}=1)$, that is, $R \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{u}=($ const. $) \mathbf{r}\left(\phi_{0}\right)$

$$
\mathbf{u}=\sqrt{\mathbf{Q}} \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{R} \cdot \mathbf{r}\left(\phi_{-1}\right)
$$

$$
=\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / b
\end{array}\right)\binom{a \cos \phi_{0}}{b \sin \phi_{0}}
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / b
\end{array}\right)\left[\begin{array}{c}
a \cos \phi_{0} \\
b \sin \phi_{0}
\end{array}\right) \\
& =\binom{\frac{1}{a} a \cos \phi_{0}}{\frac{1}{b} b \sin \phi_{0}}=\binom{\cos \phi_{0}}{\sin \phi_{0}}
\end{aligned}
$$

$$
=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
$$

Variation of
Fig. 11.7 in Unit 1

$Q:$ Where is this headed?
A: Lagrangian-Hamiltonian duality
Preview of Lecture 8

The R and Q matrix transformations are like the mechanics rescaling matrices $\sqrt{ } \mathbf{M}$ and \mathbf{m} :
Like $Q=R^{2}: ~ \mathbf{M}=\left(\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right)=\mathbf{R}^{2}$ Like $\sqrt{ } Q=R: \sqrt{\mathbf{M}}=\left(\begin{array}{cc}\sqrt{m_{1}} & 0 \\ 0 & \sqrt{m_{2}}\end{array}\right)=\mathbf{R} \quad$ Like $Q^{-1}=R^{-2}: \quad \mathbf{M}^{-1}=\left(\begin{array}{cc}1 / m_{1} & 0 \\ 0 & 1 / m_{2}\end{array}\right)=\mathbf{R}^{-2}$
(a) Lagrangian $L=L\left(v_{1}, v_{2}\right)$

Collision line and COM tangent slope
$=-m_{I} / m_{2}=-16$

COM Bisector slope $=1 / 1$

$$
\begin{aligned}
& \text { COM Bisector slope } \\
& =\sqrt{ } m_{2} \wedge{ }^{2} m_{1}=1 / 4
\end{aligned}
$$

(b) Estrangian $E=E\left(V_{1}, V_{2}\right)$

Fig. 12.1 $\quad V_{2}=\sqrt{m_{2}} v_{2} \quad$ Collision line and
Collision line and $\forall=-\sqrt{m_{1}} / V_{m_{2}}=-4$

$$
\text { (c) Hamiltonian } H=H\left(p_{1}, p_{2}\right)
$$

COM Bisector slope

$$
=m_{2} / m_{1}=1 / 16 \quad p_{2}=m_{2} v_{2}
$$

Collision line and
COM tangent slope
$\gamma=-1 / 1$

Unit 1
Fig. 12.2
(a) $\begin{aligned} & \text { Lagrangian plot } \\ & L(\mathbf{v})=\text { const. }=\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} / 2\end{aligned}$
(b) $H(\mathrm{p})=$ const. $=\cdot \mathbf{M}^{-1} \cdot / 2 \quad p_{2}=m_{2} v_{2}$

