Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2 / 2}$ potential and $-k r^{1}$ force fields
Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity
Geometry of idealized "Sophomore-physics Earth"
Coulomb field outside Isotropic Harmonic Oscillator (IHO) field inside
Contact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
Introducing the "neutron starlet" and "Black-Hole-Earth"
Introducing 2D IHO orbits and phasor geometry
Phasor "clock" geometry

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields
Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity
Geometry of idealized "Sophomore-physics Earth"
Coulomb field outside Isotropic Harmonic Oscillator (IHO) field inside
Contact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter: Introducing the "neutron stantet" and "Black-Hole-Earth"
Introducing 2D IHO orbits and phasor geometry
Phasor "clock" geometry

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and -krl force fields
Coulomb geometry of -1/r-potential and -1/r2-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity
Geometry of idealized "Sophomore-physics Earth"
Coulomb field outside Isotropic Harmonic Oscillator (IHO) field inside
Contact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter: Introducing the "neutron stantet" and "Black-Hole-Earth
Introducing 2D IHO orbits
Phasor "clock" geometry

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields
Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity
Geometry of idealized "Sophomore-physics Earth"
Coulomb field outside Isotropic Harmonic Oscillator (IHO) field inside
Contact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter: Introducing the " neutron starlet" and "Black-Hole-Earth'
Introducing 2D IHO orbits
Phasor "clock" geometry

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2 / 2}$ potential and $-k r^{1}$ force fields
Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity
"Zig-Zag" geometry of a power sequence
Example: $s=1.5 \underbrace{4}$
"Zig-Zag" geometry of a power sequence
Example: $s=1.5 \underbrace{4}_{3} \quad y=s \cdot x /(s=1.5)$
"Zig-Zag" geometry of a power sequence

"Zig-Zag" geometry of a power sequence

"Zig-Zag" geometry of a power sequence

Example: $s=1.5$
"Zig-Zag" geometry of a power sequence

Example: $s=1.5$

The Weapons of Math Instruction

(a) Toolbox 1. Euclidian Geometry

(b) Toolbox 2. Navigational Geometry

parallel rule, ruler, and protractor
(c) Toolbox 3. Analytical geometry

Graph paper and calculator
Complex algebra and calculus $1 i^{\prime} z=r^{-1} e^{-i \theta}$

$$
\int 1 / z d z=\ln z
$$

$$
1_{i}^{\prime} z=r^{-1} e^{-i \theta}
$$

(d) Toolbox 4. Computer geometry...Anything goes!

Bouncelt
2

So far we mostly use Toolbox (a-b)

What follows uses Toolbox (c) ...

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
\rightarrow Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields
Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
\rightarrow Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields

Compare mks units of Coulomb Electrostatic vs. Gravity

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"

1. Pick an ($x=$?)-line
2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Each $y=x^{2}$ parabola pointofound by just one"Zig-Zag"

1. Pick an ($x=$?)-line
2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Unit 1
Fig. 9.1

Each $y=x^{2}$ parabola pointofound by just one"Zig-Zag"

1. Pick an ($x=$?)-line
2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Unit 1
Fig. 9.1

Each $y=x^{2}$ parabola pointofound by just one"Zig-Zag"

1. Pick an ($x=$?)-line
2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Unit 1
Fig. 9.1

Each $y=x^{2}$ parabola pointofound by just one"Zig-Zag"

1. Pick an ($x=$?)-line
2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Unit 1
Fig. 9.1

Each $y=x^{2}$ parabola pointofound by just one"Zig-Zag"

1. Pick an ($x=$?)-line
2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Each $y=x^{2}$ parabola pointofound by just one"Zig-Zag"

1. Pick an ($x=$?)-line
2. "Zig" from its $y=x$ intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Each $y=x^{2}$ parabola pointofound by just one"Zig-Zag"

1. Pick an ($x=$?)-line
2. "Zig" from its $y=x$
intersection to $x=1$ line

3. "Zag" from origin back to ($x=$?)-line

Unit 1
Fig. 9.1

Each $y=x^{2}$ parabola pointofound by just one "Zig-Zag"

1. Pick an ($x=$?)-line
2. "Zig" from its $y=x$ intersection to $x=1$ line
3. "Zag" from origin back to ($x=$?)-line

"Zag" line is $y=(?) \cdot x$ and hits ($x=$?)-line at $y=(?) \cdot(?)=(?)^{2}$
(a) Oscillator potential $U(x)=x^{2}$
(b) Hooke-Law Force $\mathbb{F}(x)=-2 x$

A more conventional parabolic geometry...(uses focal point)
(a) Parabolic Reflector $y=x^{2}$

Unit 1
Fig. 9.3

A more conventional parabolic geometry...
(a) Parabolic Reflector $y=x^{2}$

Better name for λ : latus radius

Unit 1
Fig. 9.3
\dagger Old term latus rectum is exclusive copyright of
...conventional parabolic geometry...carried to extremes...

Unit 1
Fig. 9.4

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2} / 2$ potential and $-k r^{1}$ force fields
\rightarrow Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
Compare mks units of Coulomb Electrostatic vs. Gravity

Geometry of common power-law potentials

Geometric (Power) series
"Zig-Zag" exponential geometry
Projective or perspective geometry
Parabolic geometry of harmonic oscillator $k r^{2 / 2}$ potential and $-k r^{1}$ force fields Coulomb geometry of $-1 / r$-potential and $-1 / r^{2}$-force fields
\rightarrow Compare mks units of Coulomb Electrostatic vs. Gravity

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and $Q(C)$.
$F^{\text {elee. } . ~}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong ? ? \cdot 10^{?} \quad \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
2. Electrostatic force between q (Coulombs) and $Q(C$.
$F^{\text {elec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and Q(C.) !!!!
$F^{\text {elec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / C^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and $Q(C$.$) !!!!$
$F^{\text {elec. } . ~}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$
Attractive $(+)(-)$ or $(-)(+)$
"Fingertip Physics" of Ch. 8 notes that $1(\mathrm{~cm})^{3}=1$ gm of water ($1 / 18$ Mole) has $(1 / 18) 6 \cdot 10^{23}$ molecules Avogodro's

$\mathrm{H}_{2} \mathrm{O}$ Molecular weight ~ 18

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and $Q(C)$.
$F^{\text {elec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / C^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$
Attractive $(+)(-)$ or $(-)(+)$
"Fingertip Physics" of Ch. 9 notes that $1(\mathrm{~cm})^{3}=1 \mathrm{gm}$ of water $\left(1 / 18\right.$ Mole) has (1/18) $6 \cdot 10^{23}$ molecules or $\sim 3 \cdot 10^{23}$ electrons
$\mathrm{H}_{2} \mathrm{O}$ Molecular weight ~ 18
Atomic number $=10$
10 electrons
10 protons

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and $Q(C)$.
$F^{\text {elec. } .}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / C^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$
...but 1 Ampere $=1$ Coulomb $/ \mathrm{sec}$.
Attractive $(+)(-)$ or $(-)(+)$
"Fingertip Physics" of Ch. 9 notes that $1(\mathrm{~cm})^{3}=1$ gm of water ($1 / 18$ Mole) has (1/18) $6 \cdot 10^{23}$ molecules or $\sim 3 \cdot 10^{23}$ electrons
$\mathrm{H}_{2} \mathrm{O}$ Molecular weight ~ 18

10 electrons That is $\sim-3 \cdot 10^{23} 1.6022 \cdot 10^{-19}$ Coulomb or about $-0.5 \cdot 10^{+5} \mathrm{C}$ or $-50,000$ Coulomb $16 \mathrm{O}_{8} 10$ protons plus $\sim+3 \cdot 10^{23} 1.6022 \cdot 10^{-19}$ Coulomb or about $+0.5 \cdot 10^{+5} \mathrm{C}$ or $+50,000$ Coulomb Equals zero total charge

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and $Q(C$.$) !!!!$
$F^{\text {elec. } . ~}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Newtons \cdot meter \cdot square per square Coulomb

Compare mks units for Coulomb fields

1. Electrostatic force between q (Coulombs) and Q(C.) !!!!

$$
F^{\text {elea. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}
$$

More precise value for electrostatic constant : $1 / 4 \pi \varepsilon_{0}=8.987,551 \cdot 10^{9} \mathrm{Nm}^{2} / C^{2} \sim 9 \cdot 10^{9} \sim 10^{10}$

Repulsive $(+)(+)$ or $(-)(-)$ Attractive $(+)(-)$ or $(-)(+)$
vs
Always Attractive (so far)
\downarrow
2. Gravitational force between m (kilograms) and M(kg.) !!!!
$F^{\text {grav. }}(r)=-G \frac{m M}{r^{2}}$ where $: G=0.000,000,000,067 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
More precise value for gravitational constant : $G=6.67384(80) \cdot 10^{-11} \mathrm{Nm}^{2} / C^{2} \sim(2 / 3) 10^{-10}$

Compare mks units for Coulomb fields

1. Electrostatic force between q (Coulombs) and $Q(C$.
$F^{\text {elec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$

1(a). Electrostatic potential energy between q (Coulombs) and Q(C.)

$$
U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,10^{10} \frac{\text { Joule }}{\sim 9},!!!
$$

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and $Q(C$.)
$F^{\text {eec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb
Repulsive $(+)(+)$ or $(-)(-)$ Attractive $(+)(-)$ or $(-)(+)$

Discussion of repulsive force and PE in Ch. 9...
1(a). Electrostatic potential energy between q (Coulombs) and $Q(C$.

$$
U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\sim 9 E 9 \sim 10^{10}}{\text { per square Coulomb }}
$$

©
Nuclear size $\sim 10^{-15} \mathrm{~m}=1$ femtometer $=1 \mathrm{fm}$
Atomic size ~ 1 Angstrom $=10^{-10} \mathrm{~m}$

Compare mks units for Coulomb fields

1. Electrostatic force between $q($ Coulombs) and $Q(C$.)
$F^{\text {eec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb
Repulsive $(+)(+)$ or $(-)(-)$ Attractive $(+)(-)$ or $(-)(+)$

Discussion of repulsive force and PE in Ch. 9...
1(a). Electrostatic potential energy between q (Coulombs) and $Q(C$.

$$
U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Joule }}{\text { per square Coulomb }}
$$

©
Nuclear size $\sim 10^{-15} \mathrm{~m}=1$ femtometer $=1 \mathrm{fm}$
Atomic size ~ 1 Angstrom $=10^{-10} \mathrm{~m}$
Big molecule ~ 10 Angstrom $=10^{-9} \mathrm{~m}=1$ nanometer $=1 \mathrm{~nm}$

Compare mks units for Coulomb fields

1. Electrostatic force between q (Coulombs) and $Q(C$.
$F^{\text {alec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$ Attractive $(+)(-)$ or $(-)(+)$

Discussion of repulsive force and PE in Ch. 9...
1 (a). Electrostatic potential energy between q (Coulombs) and $Q(C$.

$$
U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Joule }}{\text { per square Coulomb }}
$$

©

Compare mks units for Coulomb fields

1. Electrostatic force between q (Coulombs) and $Q(C$.
$F^{\text {alec. }}(r)= \pm \frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}}$ where $: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Newtons } \cdot \text { meter } \cdot \text { square }}{\text { per square Coulomb }}$
quantum of charge: $|e|=1.6022 \cdot 10^{-19}$ Coulomb

Repulsive $(+)(+)$ or $(-)(-)$ Attractive $(+)(-)$ or $(-)(+)$

Discussion of repulsive force and PE in Ch. 9...
1 (a). Electrostatic potential energy between q (Coulombs) and $Q(C$.

$$
U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r} \text { where }: \frac{1}{4 \pi \varepsilon_{0}} \cong 9,000,000,000 \frac{\text { Joule }}{\text { per square Coulomb }}
$$

©
Nuclear size $\sim 10^{-15} \mathrm{~m}=1$ femtometer $=1 \mathrm{fm} \begin{gathered}\text { Atomic size } \sim 1 \text { Angstrom }=10^{-10} \mathrm{~m} \\ \text { Big molecule } \sim 10 \text { Angstrom }=10^{-9} \mathrm{~m}=1 \text { nanometer }=1 \mathrm{~nm}\end{gathered}$

$$
\text { also: } \begin{aligned}
1 \mathrm{fm} & =10^{-13} \mathrm{~cm}=1 \mathrm{Fermi} \\
& =1 \mathrm{Fm}
\end{aligned}
$$

nuclear radii are 100,000 to 1,000,000 times smaller than atomic/chemical radii
...so nuclear qQ/r energy 100,000 to $1,000,000$ times bigger that of atomic/chenical...

Geometry of idealized "Sophomore-physics Earth"

 \longrightarrow Coulomb field outside Isotropic Harmonic Oscillator (IHO) field insideContact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
Introducing the "neutron starlet" and "Black-Hole-Earth"

Coulomb force vanishes inside-spherical shell (Gauss-law)

Coulomb force inside-spherical body due to stuff below you, only.

Coulomb force vanishes inside-spherical shell (Gauss-law)

Coulomb force inside-spherical body due to stuff below you, only.

Coulomb force vanishes inside-spherical shell (Gauss-law)

Coulomb force inside-spherical body due to stuff below you, only.

Note:

Hooke's (linear) force law for $r<$ inside uniform body

$$
F^{\text {inside }}\left(r_{<}\right)=G \frac{m M_{<}}{r_{<}^{2}}=G m \frac{4 \pi}{3} \frac{M_{<}}{4 \pi} r_{<}^{3} r_{<}=G m \frac{4 \pi}{3} \rho_{\oplus} r_{<}=m g \frac{r_{<}}{R_{\oplus}} \equiv m g \cdot x
$$

$\begin{aligned} & \text { Earth surface grdvity acceleration: } g=G \frac{M_{\oplus}}{R_{\oplus}^{2}}=G .67384(80) \cdot 10^{-l l} M_{\oplus}^{2} / C^{2} \sim(2 / 3) 10^{-10} \\ & R_{\oplus}^{3}\end{aligned} R_{\oplus}=G \frac{4 \pi}{3} \frac{M_{\oplus}}{\frac{4 \pi}{3}} R_{\oplus}^{3} R_{\oplus}=G \frac{4 \pi}{3} \rho_{\oplus} R_{\oplus}=9.8 \mathrm{~m} / \mathrm{s}$

Coulomb force vanishes inside-spherical shell (Gauss-law)

Coulomb force inside-spherical body due to stuff below you, only.

Note:

Hooke's (linear) force law for $r<$ inside uniform body
$M_{<}$

$$
F^{\text {inside }}\left(r_{<}\right)=G \frac{m M_{<}}{r_{<}^{2}}=G m \frac{4 \pi}{3} \frac{M_{<}}{\frac{4 \pi}{3} r_{<}^{3}} r_{<}=G m \frac{4 \pi}{3} \rho_{\oplus} r_{<}=m g \frac{r_{<}}{R_{\oplus}} \equiv m g \cdot x
$$

Earth surface grdvity acceleration: $g=G \frac{M_{\oplus}}{R_{\oplus}^{2}}=G \frac{M_{\oplus}}{R_{\oplus}^{3}} R_{\oplus}=G \frac{4 \pi^{3}}{3} \frac{M_{\oplus}}{\frac{4 \pi}{3} R_{\oplus}^{3}} R_{\oplus}=G \frac{4 \pi}{3} \rho_{\oplus} R_{\oplus}=9.8 \mathrm{~m} / \mathrm{s}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$
Earth mass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$.

Solar radius : $R_{\odot}=6.955 \times 10^{8} \mathrm{~m} . \simeq 7.0 \cdot 10^{8} \mathrm{~m}$. Solar mass : $M_{\odot}=1.9889 \times 10^{30} \mathrm{~kg} . \simeq 2.0 \cdot 10^{30} \mathrm{~kg}$.

Geometry of idealized "Sophomore-physics Earth"

 Coulomb field outsideIsotropic Harmonic Oscillator (IHO) field inside
\rightarrow Contact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
Introducing the "neutron starlet" and "Black-Hole-Earth"

The ideal "Sophomore-Physics-Earth" model of geo-gravity

...conventional parabolic geometry...carried to extremes...
(From p.18)

Unit 1
Fig. 9.4

Geometry of idealized "Sophomore-physics Earth"

 Coulomb field outsideIsotropic Harmonic Oscillator (IHO) field inside Contact-geometry of potential curve(s)
\longrightarrow "Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels" Earth matter vs nuclear matter:

Introducing the "neutron starlet" and "Black-Hole-Earth"

outside

Geometric (x, y) (Dimensionless)	Scaling relations	mks variables (meter-kg-sec)
space coord.: x	$r=R_{\oplus} x$	$x=r / R_{\oplus}$
$P E$ for $\|x\| \geq 1:$	$P E^{m k s}(r)$	$P E^{m k s}(r)=-\frac{G M \mu}{r}$
$y^{P E}=\frac{-1}{x}$	$=\frac{G M \mu}{R_{\oplus}} y^{P E}$	$=-\frac{G M \mu}{R_{\oplus}} \frac{1}{x}$

 $K E=P E$ relation:
$\frac{1}{2} \mu \nu_{\text {escape }}^{2}=G \frac{\mu M_{\oplus}}{R_{\oplus}}$
R_{\oplus}-escape-velocity

$$
\mathrm{v}_{\text {escape }}=\sqrt{2 G \frac{M_{\oplus}}{R_{\oplus}}}
$$

Sophomore-physics-Earîh inside and out: "3-steps out of (or into) Hell" \ldots and surface orbit at $r=R_{\theta}$

Centifugal force $=$ surface gravity:

$$
\frac{\mu \mathrm{v}_{\odot}^{2}}{R_{\oplus}}=\mu g=G \frac{\mu M_{\oplus}}{R_{\oplus}^{2}}
$$

Orbit $\mathrm{KE}=\frac{1}{2} \mu \mathrm{v}_{\odot}^{2}=G \frac{\mu M_{\oplus}}{2 R_{\oplus}}\left(E_{\odot}^{\text {Total }}=\frac{1}{2} \mu \mathrm{v}_{\odot}^{2}-G \frac{\mu M_{\oplus}}{R_{\oplus}}=G \frac{\mu M_{\oplus}}{2 R_{\oplus}}\right.$ $\left(r=R_{\oplus}\right)$-orbit angular frequency: $\omega_{\odot}^{2} R_{\oplus}=G \frac{M_{\oplus}}{R_{\oplus}^{2}} \Rightarrow \omega_{\odot}=\sqrt{G \frac{M_{\oplus}}{R_{\oplus}^{3}}}$

Geometric $(x, y){ }^{\uparrow}$ Scaling
(Dimensionless) relations \quad (meter-kg-sec)

$(r=0)$-escape-velocity
$\mathrm{V}_{\text {bottom }}=\sqrt{3 G .7 \mathrm{~km} / \mathrm{sec}} \mathrm{M}_{\oplus} R_{\oplus}$

Sophomore-physics-Earîh inside and out: "3-steps out of (or into) Hell" ... and surface orbit at $\forall r=R_{\otimes}$

Centifugal force $=$ surface gravity:

$$
\frac{\mu \mathrm{v}_{\odot}^{2}}{R_{\oplus}}=\mu g=G \frac{\mu M_{\oplus}}{R_{\oplus}^{2}}
$$

Orbit $K E=\frac{1}{2} \mu \mathrm{v}_{\odot}^{2}=G \frac{\mu M_{\oplus}}{2 R_{\oplus}}\left(E_{\oplus}^{\text {Total }}=\frac{1}{2} \mu \mathrm{v}_{\odot}^{2}-G \frac{\mu M_{\oplus}}{R_{\oplus}}=G \frac{\mu M_{\oplus}}{2 R_{\oplus}}\right.$ $\left(r=R_{\oplus}\right)$-orbit angular frequency: $\omega_{\odot}^{2} R_{\oplus}=G \frac{M_{\oplus}}{R_{\oplus}^{2}} \Rightarrow \omega_{\odot}=\sqrt{G \frac{M_{\oplus}}{R_{\oplus}^{3}}}$

Geometric $(x, y){ }^{\uparrow}$ Scaling
(Dimensionless) relations \quad (meter-kg-sec)

space coord.: x	$r=R_{\oplus} x$	$x=r / R_{\oplus}$

$P E$ for $|x| \geq 1$:

$$
P E^{m k s}(r)
$$

$$
y^{P E}=\frac{-1}{x}
$$

$$
=\frac{G M \mu}{R_{\oplus}} y^{P E}
$$

Force for $|x| \geq 1$:

$$
F^{m k s}(r)
$$

$$
y^{\text {Force }}=\frac{-1}{x^{2}}
$$

$$
=\frac{G M \mu}{R_{\oplus}^{2}} y^{\text {Force }}
$$

$$
\left.\begin{gathered}
x=r / R_{\oplus} \\
P E^{m k s}(r)=-\frac{G M \mu}{r} \\
=-\frac{G M \mu}{R_{\oplus}} \frac{1}{x} \\
\hdashline=-\frac{G M \mu}{R_{\oplus}^{2}} \frac{1}{x^{2}}
\end{gathered} \right\rvert\,
$$

$$
P E \text { for }|x|<1 \text { : }
$$

$$
y^{P E}=\frac{x^{2}}{2}-\frac{3}{2}
$$

$$
\text { Force for }|x|<1 \text { : }
$$

$$
\text { orbiting mass }=\mu
$$

Bottom potential: $P E=-G \frac{3 \mu M_{\oplus}}{2 R_{\oplus}}$ $K E=P E$ relation: $\frac{1}{2} \mu \mathrm{v}_{\text {bottom }}^{2}=G \frac{3 \mu M_{\oplus}}{2 R_{\oplus}}$
($r=0$)-escape-velocity
$\underset{\substack{\text { bottom } / \text { sec }}}{13.7 \mathrm{~km}}=\sqrt{3 G \frac{M_{\oplus}}{R_{\oplus}}}$
($r=R_{\oplus}$)-orbit speed:
$F^{m l s}(r)=-\frac{G M \mu}{R_{\oplus}^{3}} r$

Sophomore-physics-Earîh inside and out: "3-steps out of (or into) Hell" ... and surface orbit at $\stackrel{r}{r}=R_{\star}$

Centifugal force $=$ surface gravity:

$$
\frac{\mu \mathrm{v}_{\odot}^{2}}{R_{\oplus}}=\mu g=G \frac{\mu M_{\oplus}}{R_{\oplus}^{2}}
$$

Orbit $K E=\frac{1}{2} \mu \mathrm{v}_{\odot}^{2}=G \frac{\mu M_{\oplus}}{2 R_{\oplus}}\left(E_{\oplus}^{\text {Total }}=\frac{1}{2} \mu \mathrm{v}_{\odot}^{2}-G \frac{\mu M_{\oplus}}{R_{\oplus}}=G \frac{\mu M_{\oplus}}{2 R_{\oplus}}\right.$ $\left(r=R_{\oplus}\right)$-orbit angular frequency: $\omega_{\odot}^{2} R_{\oplus}=G \frac{M_{\oplus}}{R_{\oplus}^{2}} \Rightarrow \omega_{\odot}=\sqrt{G \frac{M_{\oplus}}{R_{\oplus}^{3}}}$

Geometric $(x, y){ }^{\uparrow}$ Scaling
(Dimensionless) relations \quad (meter-kg-sec)

space coord.: x	$r=R_{\oplus} x$	$x=r / R_{\oplus}$

$P E$ for $|x| \geq 1$:

$$
P E^{m k s}(r)
$$

$$
y^{P E}=\frac{-1}{x}
$$

$$
=\frac{G M \mu}{R_{\oplus}} y^{P E}
$$

Force for $|x| \geq 1$:

$$
F^{m k s}(r)
$$

$$
y^{\text {Force }}=\frac{-1}{x^{2}}
$$

$$
=\frac{G M \mu}{R_{\oplus}^{2}} y^{\text {Force }}
$$

$$
\begin{gathered}
x=r / R_{\oplus} \\
=-\frac{G M \mu}{R_{\oplus}} \frac{1}{x} \\
P E^{m k s}(r)=-\frac{G M \mu}{r} \\
F^{m k s}(r)=-\frac{G M \mu}{r^{2}} \\
=-\frac{G M \mu}{R_{\oplus}^{2}} \frac{1}{x^{2}}
\end{gathered} .
$$

$$
P E \text { for }|x|<1
$$

$$
y^{P E}=\frac{x^{2}}{2}-\frac{3}{2}
$$

$$
\text { Force for }|x|<1 \text { : }
$$

$$
y^{\text {Force }}=-x
$$

$$
\text { orbiting mass }=\mu
$$

Bottom potential: $P E=-G \frac{3 \mu M_{\oplus}}{2 R_{\oplus}}$ $K E=P E$ relation: $\frac{1}{2} \mu \mathrm{v}_{\text {bottom }}^{2}=G \frac{3 \mu M_{\oplus}}{2 R_{\oplus}}$
inside

$$
(r=0) \text {-escape-velocity }
$$

$$
P E^{m k s}(r)=\frac{G M \mu}{R_{\oplus}}\left(\frac{r^{2}}{2 R_{\oplus}^{2}}-\frac{3}{2}\right)
$$

$$
\mathrm{V}_{\text {bottom }}=\sqrt{3 G \frac{M_{\oplus}}{R_{\oplus}}}
$$

$$
\left(\begin{array}{l}
\left(r=R_{\oplus}\right) \text {-escape velocity } \\
\mathrm{V}_{\text {escape }}=\sqrt{2 G \frac{M_{\oplus}}{R_{\oplus}}}
\end{array}\right.
$$

Suppose Earth 个radius \measuredangle crushed to $1 / 2:\left(R_{\oplus}=6.4 \cdot 10^{6} m\right.$ crushed to $\left.R_{\oplus} / 2=3.2 \cdot 10^{6} \mathrm{~m}\right)$

Geometry of idealized "Sophomore-physics Earth"

 Coulomb field outsideIsotropic Harmonic Oscillator (IHO) field inside
Contact-geometry of potential curve(s)
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
Introducing the "neutron starlet" and "Black-Hole-Earth

Examples of "crushed" matter

Earth matter Earth mass: $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus}=$??
Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} m \simeq 6.4 \cdot 10^{6} m$ Earth volume $:(4 \pi / 3) R_{\oplus}{ }^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$

$$
(6.4)^{3} \sim 262 \text { and }(4 \pi / 3) 260=1098 \sim 10^{3}
$$

Examples of "crushed" matter
Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} m \simeq 6.4 \cdot 10^{6} m \quad$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} m^{3}$

$$
(6.4)^{3} \sim 262 \text { and }(4 \pi / 3) 260=1089 \sim 10^{3}
$$

Examples of "crushed" matter

 $\rho_{\oplus}=\frac{M_{\oplus}}{(4 \pi / 3) R_{\oplus}{ }^{3}}$Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Earth matter Earthmass: $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}$
Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} m \simeq 6.4 \cdot 10^{6} m \quad$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$

$$
(6.4)^{3} \sim 262 \text { and }(4 \pi / 3) 260=1089 \sim 10^{3}
$$

Density of solid $\mathrm{Fe}=7.9 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Density of liquid $\mathrm{Fe}=6.9 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

Examples of "crushed" matter

Earth matter Earthmass: $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Earthradius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$
Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} . \sim 2 \cdot 10^{-27} \mathrm{~kg}$. ("fingertip physics")
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.

Examples of "crushed" matter
Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m} \quad$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$
Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} . \sim 2 \cdot 10^{-27} \mathrm{~kg}$. ("fingertip physics")
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{-43} \mathrm{~m}^{3}$.

$$
36 \pi=113 \sim 10^{2}
$$

Examples of "crushed" matter

$$
\rho_{\oplus}=\frac{M_{\oplus}}{(4 \pi / 3) R_{\oplus}{ }^{3}} .
$$

Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus \sim} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earthradius : $R_{\oplus}=6.371 \cdot 10^{6} m \simeq 6.4 \cdot 10^{6} m$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} m^{3}$

Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} . \sim 2 \cdot 10^{-27} \mathrm{~kg}$. ("fingertip physics")
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{-43} \mathrm{~m}^{3}$.
Nuclear density is $10^{-25+43}=10^{18} \mathrm{~kg} / \mathrm{m}^{3}$ or a trillion $\left(10^{12}\right)$ kilograms in a fingertip $(1 \mathrm{~cm})^{3}$.

$$
(1 \mathrm{~cm})^{3}=\left(10^{-2} \mathrm{~m}\right)^{3}=10^{-6} \mathrm{~m}^{3}
$$

Examples of "crushed" matter

$$
\rho_{\oplus}=\frac{M_{\oplus}}{(4 \pi / 3) R_{\oplus}{ }^{3}}
$$

Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} m \simeq 6.4 \cdot 10^{6} m \quad$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} m^{3}$

Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} . \sim 2 \cdot 10^{-27} \mathrm{~kg} . \quad$ ("fingertip physics")

Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{4 \pi} 0^{-43} \mathrm{~m}^{3}$.
Nuclear density is $10^{-25+43}=10^{18} \mathrm{~kg} / \mathrm{m}^{3}$ or a trillion (10^{12}) kilograms in a fingertip $(1 \mathrm{~cm})^{3}$.
Earth radius crushed by a factor of $0.5 \cdot 10^{-5} \mathrm{toR} \quad \approx 300 \mathrm{~m}$ would approach $(1 \mathrm{~cm})^{3}=\left(10^{-2} \mathrm{~m}\right)^{3}=10^{-6} \mathrm{~m}^{3}$
Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{\text {cruss } \oplus} \simeq 300 \mathrm{~m}$ would approach neutron-star density.

Geometry and algebra of idealized "Sophomore-physics Earth" fields
Coulomb field outside Isotropic Harmonic Oscillator (IHO) field inside
Contact-geometry of potential curve(s) and "kite" geometry
"Ordinary-Earth" models: 3 key energy "steps" and 4 key energy "levels"
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
\longrightarrow Introducing the "neutron starlet"
Fantasizing a "Black-Hole-Earth

$$
\rho_{\oplus}=\frac{M_{\oplus}}{(4 \pi / 3) R_{\oplus}{ }^{3}}
$$

Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus \sim} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$
Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} \cdot \sim 2 \cdot 10^{-27} \mathrm{~kg}$.
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{-43} \mathrm{~m}^{3}$.
Nuclear density is $10^{-25+43}=10^{18} \mathrm{~kg} / \mathrm{m}^{3}$ or a trillion (10^{12}) kilograms in the size of a fingertip.
Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{\text {cruss } \oplus} \simeq 300 \mathrm{~m}$ would approach neutron-star density.

Introducing the "Neutron starlet" $1 \mathrm{~cm}^{3}$ of nuclear matter: mass $=10{ }^{12} \mathrm{~kg}$.

Geometry and algebra of idealized "Sophomore-physics Earth" fields
Coulomb field outside Isotropic Harmonic Oscillator (IHO) field inside
Contact-geometry of potential curve(s) and "kite" geometry
"Ordinary-Earth" models: 3 key energy "steps" and 4 key energy "levels"
"Crushed-Earth" models: 3 key energy "steps" and 4 key energy "levels"
Earth matter vs nuclear matter:
Introducing the "neutron starlet"
\longrightarrow Fantasizing a "Black-Hole-Earth

Examples of "crushed" matter

Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$
Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} . \sim 2 \cdot 10^{-27} \mathrm{~kg}$.
Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{-43} \mathrm{~m}^{3}$.

Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{\text {cruss } \oplus} \simeq 300 \mathrm{~m}$ would approach neutron-star density.

Introducing the "Neutron starlet" $1 \mathrm{~cm}^{3}$ of nuclear matter: mass $=10^{12} \mathrm{~kg}$.

Fantasizing the "Black Hole Earth" Suppose Earth is crushed so that its
surface escape velocity is the speed of light $c \cong 3.0 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$.
$V_{\text {escape }}=\sqrt{\left(2 G M / R_{\otimes}\right)}$
(from p. 65, 66,.., 82)
$c \equiv 299,792,458 \mathrm{~m} / \mathrm{s}$ (EXACTLY)
Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$
Earth mass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$.

Examples of "crushed" matter

$$
\rho_{\oplus}=\frac{M_{\oplus}}{(4 \pi / 3) R_{\oplus}{ }^{3}} .
$$

Earth matter Earthmass : $M_{\oplus}=5.9722 \times 10^{24} \mathrm{~kg} . \simeq 6.0 \cdot 10^{24} \mathrm{~kg}$. Density $\rho_{\oplus \sim} \sim 6.0 \cdot 10^{24-21} \sim 6 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$ Earth volume $:(4 \pi / 3) R_{\oplus}^{3} \simeq 4 \cdot 260 \cdot 10^{18} \sim 10^{21} \mathrm{~m}^{3}$

Nuclear matter Nucleon mass $=1.67 \cdot 10^{-27} \mathrm{~kg} . \sim 2 \cdot 10^{-27} \mathrm{~kg}$. ("fingertip physics")

Say a nucleus of atomic weight 50 has a radius of 3 fm , or 50 nucleons each with a mass $2 \cdot 10^{-27} \mathrm{~kg}$.
$4 \pi / 33^{3}=36 \pi=113 \sim 10^{2}$
That's $100 \cdot 10^{-27}=10^{-25} \mathrm{~kg}$ packed into a volume of $4 \pi / 3 r^{3}=4 \pi / 3\left(3 \cdot 10^{-15}\right)^{3} \mathrm{~m}^{3}$ or about $10^{-43} \mathrm{~m}^{3}$.
Nuclear density is $10^{-25+43}=10^{18} \mathrm{~kg} / \mathrm{m}^{3}$ or a trillion (10^{12}) kilograms in the size of a fingertip.
Earth radius crushed by a factor of $0.5 \cdot 10^{-5}$ to $R_{\text {crush }} \simeq 300 \mathrm{~m}$ would approach neutron-star density.

Introducing the "Neutron starlet" $1 \mathrm{~cm}^{3}$ of nuclear matter: mass $=10^{12} \mathrm{~kg}$.

Fantasizing the "Black Hole Earth" Suppose Earth is crushed so that its
surface escape velocity is the speed of light $c \cong 3.0 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$.
$V_{\text {escape }}=\sqrt{\left(2 G M / R_{\otimes}\right)}$
(from p. 65, 66,.,.82)
$G=6.67384(80) \cdot 10^{-11} \mathrm{Nm}^{2} / C^{2} \sim(2 / 3) 10^{-10}$ (from p. 61)

$$
c=\sqrt{\left(2 G M / R_{\bullet}\right)}
$$

$$
R \oslash=2 G M / \mathrm{c}^{2}=8.9 \mathrm{~mm} \sim 1 \mathrm{~cm}
$$

$c \equiv 299,792,458 \mathrm{~m} / \mathrm{s}($ EXACTLY $) \sim 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$ Earth radius : $R_{\oplus}=6.371 \cdot 10^{6} \mathrm{~m} \simeq 6.4 \cdot 10^{6} \mathrm{~m}$
\longrightarrow Introducing 2D IHO orbits and phasor geometry
Phasor "clock" geometry

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law
 $F=-x \quad$ (1-Dimension)
 $\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)
 Each dimension x, y, or z obeys the following:
 $$
\text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const. }
$$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law
 $F=-x \quad$ (1-Dimension)
 $\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

Each dimension x, y, or z obeys the following:
Total $E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ const.
tions for x-motion
Equations for x-motion

$\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions
$\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and
$\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the
ideal isotropic case.

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

Equations for x-motion $\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case. Each dimension x, y, or z obeys the following:
Total $E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ const.

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2} \quad \begin{aligned}
& \text { Another example of } \\
& \text { the old "scale-a-circle" } \\
& \text { trick... }
\end{aligned}
$$

velocity: position:

$$
\text { Let : (1) } v=\sqrt{2 E / m} \cos \theta, \text { and : (2) } x=\sqrt{2 E / k} \sin \theta
$$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

(b)

Equations for x-motion
[$x(t)$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case. Each dimension x, y, or z obeys the following:
Total $E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ const.

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2} \quad \begin{aligned}
& \text { Another example of } \\
& \text { the old "scale-a-circle" } \\
& \text { trick... }
\end{aligned}
$$

velocity: position: angular velocity:

$$
\text { Let : (1) } v=\sqrt{2 E / m} \cos \theta, \quad \text { and }: \begin{aligned}
& \text { position: } \\
& \text { (2) } x=\sqrt{2 E / k} \sin \theta \quad \text { def. (3) } \quad \omega=\frac{d \theta}{d t}
\end{aligned}
$$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)
(b)

Equations for x-motion
$\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.

Each dimension x, y, or z obeys the following:

$$
\text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const }
$$

$$
\begin{aligned}
& 1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2} \\
& 1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2} \quad \begin{array}{l}
\text { Another example of } \\
\text { the old "scale-a-circle" } \\
\text { trick... }
\end{array}
\end{aligned}
$$

velocity: position: angular velocity:

$$
\begin{aligned}
& \text { velocity: } \\
& \text { Let }:(1) ~ \\
& (1) \\
& 2 E / m \\
& \cos \theta, \quad \text { and }: \begin{array}{l}
\text { position: } \\
\text { (2) }) \\
\text { angular velocity: } \\
2 E / k \\
\sin \theta
\end{array} \quad \text { def. (3) } \omega=\frac{d \theta}{d t}
\end{aligned}
$$

$\sqrt{\frac{2 E}{m}} \cos \theta=v=\frac{d x}{d t}$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3 -Dimensions)

(b)

Equations for x-motion
$\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.
Each dimension x, y, or z obeys the following:

$$
\text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const }
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2}
$$

Another example of the old "scale-a-circle" trick...
velocity: position: angular velocity:
Let : (1) $v=\sqrt{2 E / m} \cos \theta$, and: (2) $x=\sqrt{2 E / k} \sin \theta \quad$ def. (3) $\omega=\frac{d \theta}{d t}$
$\sqrt{\frac{2 E}{m}} \cos \theta=v=\frac{d x}{d t}=\frac{d \theta}{d t} \frac{d x}{d \theta}$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

Each dimension x, y, or z obeys the following:
Total $E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ const
Equations for x-motion
(b)

Equations for x-motion
$\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and [$z(t)$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.

$$
\begin{aligned}
& 1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2} \\
& 1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2} \quad \begin{array}{l}
\text { Another example of } \\
\text { the old "scale-a-circle" } \\
\text { trick... }
\end{array}
\end{aligned}
$$

velocity: position: angular velocity:

Let : (1) $v=\sqrt{2 E / m} \cos \theta$, and: (2) $x=\sqrt{2 E / k} \sin \theta \quad$ def. (3) $\omega=\frac{d \theta}{d t}$
$\sqrt{\sqrt{\frac{2 E}{m}} \cos \theta=v=\frac{d x}{d t}=\frac{d \theta}{d t} \frac{d x}{d \theta}=\omega \frac{d x}{d \theta}} \underset{\text { by def. (3) }}{ }$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)
$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

(b)

Each dimension x, y, or z obeys the following:
Total $E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=$ const.
Equations for x-motion

Equations for x-motion
$\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.

$$
\begin{aligned}
& 1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2} \\
& 1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2} \quad \begin{array}{l}
\text { Another example of } \\
\text { the old "scale-a-circle" } \\
\text { trick... }
\end{array}
\end{aligned}
$$

velocity: position: angular velocity:
Let : (1) $v=\sqrt{2 E / m} \cos \theta$, and: (2) $x=\sqrt{2 E / k} \sin \theta \quad$ def. (3) $\omega=\frac{d \theta}{d t}$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)

$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

Equations for x-motion $\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.

$$
\begin{aligned}
& \text { dimension } x, y \text {, or } z \text { obeys the following: } \\
& \text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const } \\
& \text { tions for } x \text {-motion }
\end{aligned}
$$

Each dimension x, y, or z obeys the following:

$$
\text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const } .
$$

Equations for x-motion

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2}
$$

Another example of the old "scale-a-circle" trick...
Let : (1) $v=\sqrt{2 E / m} \cos \theta$, and :
(2) $x=\sqrt{2 E / k} \sin \theta$
def. (3) $\omega=\frac{d \theta}{d t}$

$$
\begin{array}{r}
\sqrt{\frac{2 E}{m}} \cos \theta=v=\frac{d x}{d t}=\frac{d \theta}{d t} \frac{d x}{d \theta}=\omega \frac{d x}{d \theta}=\omega \sqrt{\frac{2 E}{k}} \cos \theta \\
\text { by def. (3) }
\end{array}
$$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)

$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

(a)

Each dimension x, y, or z obeys the following:

$$
\text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const } .
$$

(b)

Equations for x-motion $\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.

$$
\begin{aligned}
& 1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2} \\
& 1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2}
\end{aligned}
$$

Another example of the old "scale-a-circle" trick...
Let : (1) $v=\sqrt{2 E / m} \cos \theta$, and :

$$
\left(\begin{array}{r}
\sqrt{\frac{2 E}{m}} \cos \theta=v=\frac{d x}{d t}=\frac{d \theta}{d t} \frac{d x}{d \theta}=\omega \frac{d x}{d \theta}=\omega \sqrt{\frac{2 E}{k}} \cos \theta \\
\text { by (1) def. (3) }
\end{array}\right.
$$

(2) $x=\sqrt{2 E / k} \sin \theta$
def. (3) $\omega=\frac{d \theta}{d t}$

$$
\omega=\frac{d \theta}{d t}=\frac{\sqrt{\frac{2 E}{m}} \cos \theta}{\sqrt{\frac{\text { divide (1) (1) }}{\frac{2 E}{k}} \cos (2) \text { derivative }}}
$$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)

$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

(a)

Each dimension x, y, or z obeys the following:

$$
\text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const } .
$$

(b)

Equations for x-motion $\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2}
$$

Another example of the old "scale-a-circle" trick...

Let : (1) $v=\sqrt{2 E / m} \cos \theta, \quad$ and $:$

$$
\begin{array}{r}
\sqrt{\frac{2 E}{m}} \cos \theta=v=\frac{d x}{d t}=\frac{d \theta}{d t} \frac{d x}{d \theta}=\omega \frac{d x}{d \theta}=\omega \sqrt{\frac{2 E}{k}} \cos \theta \\
\text { by def. (3) }
\end{array}
$$

(2) $x=\sqrt{2 E / k} \sin \theta$
def. (3) $\omega=\frac{d \theta}{d t}$

$$
\omega=\frac{d \theta}{d t}=\frac{\sqrt{\frac{2 E}{m}} \cos \theta}{\sqrt{\frac{2 E}{k}} \cos \theta}=\sqrt{\frac{k}{m}}
$$

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law

$F=-x \quad$ (1-Dimension)

$\mathbf{F}=-\mathbf{r}$ (2 or 3-Dimensions)

Each dimension x, y, or z obeys the following:

$$
\begin{aligned}
& \text { Total } E=K E+P E=\frac{1}{2} m v^{2}+U(x)=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\text { const }
\end{aligned}
$$

(b)

Unit 1
Fig. 9.10

Equations for x-motion

$\left[x(t)\right.$ and $\left.v_{x}=v(t)\right]$ are

 given first. They apply as well to dimensions $\left[y(t)\right.$ and $\left.v_{y}=v(t)\right]$ and $\left[z(t)\right.$ and $\left.v_{z}=v(t)\right]$ in the ideal isotropic case.$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=\left(\frac{v}{\sqrt{2 E / m}}\right)^{2}+\left(\frac{x}{\sqrt{2 E / k}}\right)^{2}
$$

$$
1=\frac{m v^{2}}{2 E}+\frac{k x^{2}}{2 E}=(\cos \theta)^{2}+(\sin \theta)^{2}
$$

Another example of the old "scale-a-circle" trick...
Let : (1) $v=\sqrt{2 E / m} \cos \theta$, and :
(2) $x=\sqrt{2 E / k} \sin \theta$
def. (3) $\quad \omega=\frac{d \theta}{d t}$

$$
\begin{array}{r}
\sqrt{\frac{2 E}{m}} \cos \theta=v=\frac{d x}{d t}=\frac{d \theta}{d t} \frac{d x}{d \theta}=\omega \frac{d x}{d \theta}=\omega \sqrt{\frac{2 E}{k}} \cos \theta \\
\\
\text { by def. (3) }
\end{array}
$$

$$
\begin{aligned}
& \text { by def. (3) } \\
& \omega=\frac{d \theta}{d t}=\sqrt{\frac{k}{m}}
\end{aligned}
$$

by integration given constant ω.

$$
\theta=\int \omega \cdot d t=\omega \cdot t+\alpha
$$

\rightarrow Introducing 2D IHO orbits and phasor geometry
Phasor "clock" geometry

$I_{\text {sotropic }} H_{\text {armonic }} O_{\text {scillator }}$ makes balls in parallel tunnel track each other

$I_{\text {sotropic }} H_{\text {armonic }} O_{\text {scillator }}$ makes balls in parallel tunnels track each other...

$$
d \sim \frac{1}{2 R}
$$

...even if track length is just $g=1 m$ so $d \sim(1 / 12)$ micron
They all take about 84 minutes to go from right to left and back, again.
$I_{\text {sotropic }} H_{\text {armonic }} O_{\text {scillator }}$ makes balls in parallel tunnels track each other...

...even if track length is just $g=1 m$ so $d=(1 / 12)$ micron
The all take about 84 minutes to go from right to left and back, again.
Most neutron starlet $\stackrel{\sim}{\square}$) orbits are centered ellipses

Isotropic Harmonic Oscillator phase dynamics in uniform-body
(a) 1-D Oscillator Phasor Plot

Unit 1
Fig. 9.12

These are more generic examples with radius of x-phasor differing from that of the y-phasor.

RelaWavity web simulation - Contact ellipsometry (User Mouse Input allowed for setting phasor values)

