Lecture 28
 Thur. 12.07.2017
 Multi-particle and Rotational Dynamics

(Ch. 2-7 of Unit 6 12.07.17)
2-Particle orbits
Ptolemetric or LAB view and reduced mass Copernican or COM view and reduced coupling

2-Particle orbits and scattering: LAB-vs.-COM frame views
Ruler \& compass construction (or not)
Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$ How to make my boomerang come back
The gyrocompass and mechanical spin analogy
Rotational momentum and velocity tensor relations
Quadratic form geometry and duality (again)
angular velocity $\boldsymbol{\omega}$-ellipsoid vs. angular momentum \mathbf{L}-ellipsoid Lagrangian $\boldsymbol{\omega}$-equations vs. Hamiltonian momentum L-equation

Rotational Energy Surfaces (RES) and Constant Energy Surfaces (CES) Symmetric, asymmetric, and spherical-top dynamics (Constant \mathbf{L}) BOD-frame cone rolling on LAB frame cone

Deformable spherical rotor RES and semi-classical rotational states and spectra Cycloidal geometry of flying levers and Practical poolhall application

2-Particle orbits and center-of-mass (CM) coordinate frame

$$
\mathbf{r}_{\mathrm{CM}}=\frac{m_{1} \mathbf{r}_{\mathbf{1}}+m_{2} \mathbf{r}_{\mathbf{2}}}{m_{1}+m_{2}}
$$

Defining relative coordinate vector

$$
\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}
$$

and mass-weighted-average or center-of-mass coordinate vector $\boldsymbol{r}_{C M}$

$$
\overline{\mathbf{r}}=\mathbf{r}_{\mathbf{C M}}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}
$$

The inverse coordinate transformation.

$$
\mathbf{r}_{\mathbf{1}}=\mathbf{r}_{\mathbf{C M}}+\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}, \quad \mathbf{r}_{2}=\mathbf{r}_{\mathbf{C M}}-\frac{m_{1} \mathbf{r}}{m_{1}+m_{2}}
$$

2-Particle orbits
\rightarrow Ptolemetric or $L A B$ view and reduced mass Copernican or COM view and reduced coupling

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$

Re-scaled force: A Copernican view relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$

$$
\mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$

$$
\mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's 3rd -law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \dot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{2}=\mathbf{0}
$$

Re-scaled force: A Copernican view $\quad \mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}$
relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{1} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathrm{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21} \quad=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{l}-\mathbf{r}_{2}$

$$
\mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$

$$
\mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's 3rd -law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \dot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{2}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

Re-scaled force: A Copernican view $\quad \mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}$
relative radius vector relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathrm{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{l}-\mathbf{r}_{2}$

$$
\mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$

$$
\mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's 3rd -law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \dot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{2}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
m_{1} \ddot{\mathbf{r}}_{\mathbf{1}} &]-\left[\quad m_{2} \ddot{\mathbf{r}}_{2}\right. &]=\frac{2 F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
{\left[m_{1} \ddot{\mathbf{r}}_{\mathbf{C M}}+\frac{m_{1} m_{2} \ddot{\mathbf{r}}}{m_{1}+m_{2}}\right]-\left[m_{2} \ddot{\mathbf{r}}_{\mathbf{C M}}+\frac{m_{2} m_{1} \ddot{\mathbf{r}}}{m_{1}+m_{2}}\right]=\frac{1}{m_{2}}=\frac{2 F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)}
\end{array}\right.}
\end{aligned}
$$

$$
\mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r)
$$

Re-scaled force: A Copernican view $\quad \mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}$ relative radius vector

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathrm{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$

$$
\mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$

$$
\mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's 3rd -law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{\mathbf{2}}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
m_{1} \dot{\mathbf{r}}_{1} &]-\left[\quad m_{2} \dot{\mathbf{r}}_{2}\right. &]=\frac{2 F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
{\left[m_{1} \ddot{\mathbf{r}}_{\mathbf{C M}}+\frac{m_{1} m_{2} \ddot{\mathbf{r}}}{m_{1}+m_{2}}\right]-\left[m_{2} \dot{\mathbf{r}}_{\mathbf{C M}}+\frac{1}{m_{2} m_{\mathbf{1}} \ddot{\mathbf{r}}} m_{1}+\frac{1}{m_{2}}=\frac{2 F(r)}{m_{1}+m_{2}}\right)} & \mu=\frac{m_{2}}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) & 1+\frac{m_{2}}{m_{1}}=m_{2}\left(1-\frac{m_{2}}{m_{1}} \ldots\right)\left(m_{1} \gg m_{2}\right) \\
\mu=\frac{m_{1}}{1+\frac{m_{1}}{m_{2}}}=m_{1}\left(1-\frac{m_{1}}{m_{2}} \ldots\right)\left(m_{2} \gg m_{1}\right)
\end{array}\right.} \\
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r)
\end{aligned}
$$

Re-scaled force: A Copernican view

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathrm{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$

$$
\mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$

$$
\mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's 3rd -law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \dot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{2}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r) \\
& \mu=\frac{m_{1}}{1+\frac{m_{1}}{m_{2}}}=m_{1}\left(1-\frac{m_{1}}{m_{2}} \ldots\right)\left(m_{2} \gg m_{1}\right)
\end{aligned}
$$

Re-scaled force: A Copernican view

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

2-Particle orbits

Ptolemetric view and reduced mass
\rightarrow Copernican view and reduced coupling

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathbf{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21} \quad=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{l}-\mathbf{r}_{2}$

$$
\mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

$$
\mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's 3rd -law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{\mathbf{2}}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

Re-scaled force: A Copernican view

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

(Here we get "reduced" coupling constants)
each particle keeps it original mass m_{1} or m_{2}, but feels coordinate-re-scaled force field $F\left(m_{1} r_{1} / \mu\right)$ or $F\left(m_{2} r_{2} / \mu\right)$ field

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \dot{\mathbf{r}}_{1}=F\left(\frac{m_{1}}{\mu} r_{1}\right) \hat{\mathbf{r}}_{1}=-\mathbf{F}_{21} \\
& \mathbf{F}_{21}=m_{2} \dot{\mathbf{r}}_{2}=F\left(\frac{m_{2}}{\mu} r_{2}\right) \hat{\mathbf{r}}_{2}=-\mathbf{F}_{12}
\end{aligned}
$$

$$
\begin{aligned}
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r) \\
& \mu=\frac{m_{1}}{1+\frac{m_{1}}{m_{2}}}=m_{1}\left(1-\frac{m_{1}}{m_{2}} \ldots\right)\left(m_{2} \gg m_{1}\right)
\end{aligned}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{1}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathrm{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$
Depends only upon the relative distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's 3rd -law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \dot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{2}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r) \\
& \mu=\frac{m_{1}}{1+\frac{m_{1}}{m_{2}}}=m_{1}\left(1-\frac{m_{1}}{m_{2}} \ldots\right)\left(m_{2} \gg m_{1}\right)
\end{aligned}
$$

Re-scaled force: A Copernican view

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

(Here we get "reduced" coupling constants)
each particle keeps it original mass m_{1} or m_{2}, but feels
coordinate-re-scaled force field $F\left(m_{1} r_{1} / \mu\right)$ or $F\left(m_{2} r_{2} / \mu\right)$ field

$$
\begin{array}{l|l|}
\mathbf{F}_{12}=m_{1} \dot{\mathbf{r}}_{1}=F\left(\frac{m_{1}}{\mu} r_{1}\right) \hat{\mathbf{r}}_{1}=-\mathbf{F}_{21} \\
\mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=F\left(\frac{m_{2}}{\mu} r_{2}\right) \hat{\mathbf{r}}_{2}=-\mathbf{F}_{12} & \begin{aligned}
& F(r)=\frac{k}{r^{2}} \text { becomes: } F\left(\frac{m_{1}}{\mu} r_{1}\right)=\frac{\mu^{2}}{m_{1}^{2}} \frac{k}{r_{1}^{2}} \\
& k \rightarrow k_{1}=k \mu^{2} / m_{1}^{2}, \quad k \rightarrow k_{2}=k \mu^{2} / m_{2}^{2}
\end{aligned}
\end{array}
$$

Reduced mass: Ptolemetric views

Radial inter-particle force \mathbf{F}_{12} is on m_{l} due to m_{2} and $\mathbf{F}_{21}=-\mathbf{F}_{12}$ is on m_{2} due to m_{l}

$$
\mathbf{F}_{12}=\mathbf{F}(\mathrm{r}) \mathbf{e} \mathbf{r}=-\mathbf{F}_{21}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

\mathbf{F}_{12} acts along relative coordinate vector $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$
Depends only upon the relative distance $r=\left|\mathbf{r}_{l}-\mathbf{r}_{2}\right|$

$$
\begin{aligned}
& \mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F(r) \hat{\mathbf{r}}=F(r) \frac{\mathbf{r}}{r}=\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& \mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=-F(r) \hat{\mathbf{r}}=-F(r) \frac{\mathbf{r}}{r}=-\frac{F(r)}{r}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
\end{aligned}
$$

Sum $\mathbf{F}_{12}+\mathbf{F}_{21}$ yields zero because of Newton's 3rd -law action-reaction cancellation.

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathbf{C M}}=m_{1} \ddot{\mathbf{r}}_{\mathbf{1}}+m_{2} \ddot{\mathbf{r}}_{\mathbf{2}}=\mathbf{0}
$$

Difference $\mathbf{F}_{12}-\mathbf{F}_{21}$ reduces to $\mu \ddot{\mathbf{r}}=\mathbf{F}(r) \quad$ using reduced mass: $\quad \mu=\frac{m_{2} m_{1}}{m_{1}+m_{2}} \quad \ddot{\mathbf{r}}_{\mathbf{C M}}=\mathbf{0}$

$$
\begin{aligned}
& \mu \ddot{\mathbf{r}}=F(r) \hat{\mathbf{r}}=F(r) \mathbf{e}_{\mathbf{r}}=\mathbf{F}(r) \\
& \mu=\frac{m_{1}}{1+\frac{m_{1}}{m_{2}}}=m_{1}\left(1-\frac{m_{1}}{m_{2}} \ldots\right)\left(m_{2} \gg m_{1}\right)
\end{aligned}
$$

Re-scaled force: A Copernican view

$$
\mathbf{r}_{1}=\frac{m_{2} \mathbf{r}}{m_{1}+m_{2}}=\frac{\mu}{m_{1}} \mathbf{r}, \quad \mathbf{r}_{2}=\frac{-m_{1} \mathbf{r}}{m_{1}+m_{2}}=\frac{-\mu}{m_{2}} \mathbf{r}
$$

$$
\frac{m_{1}}{\mu} \mathbf{r}_{1}=\mathbf{r}=\frac{-m_{2}}{\mu} \mathbf{r}_{2}
$$

(Here we get "reduced" coupling constants)
each particle keeps it original mass m_{1} or m_{2}, but feels coordinate-re-scaled force field $F\left(m_{1} r_{1} / \mu\right)$ or $F\left(m_{2} r_{2} / \mu\right)$ field

$$
\begin{array}{l|l||c|}
\mathbf{F}_{12}=m_{1} \ddot{\mathbf{r}}_{1}=F\left(\frac{m_{1}}{\mu} r_{1}\right) \hat{\mathbf{r}}_{1}=-\mathbf{F}_{21} & F(r)=\frac{k}{r^{2}} \text { becomes: } F\left(\frac{m_{1}}{\mu} r_{1}\right)=\frac{\mu^{2}}{m_{1}^{2}} \frac{k}{r_{1}^{2}} & F(r)=-k r \text { becomes: } F\left(\frac{m_{1}}{\mu} r_{1}\right)=-\frac{m_{1}}{\mu} k r_{1} \\
\mathbf{F}_{21}=m_{2} \ddot{\mathbf{r}}_{2}=F\left(\frac{m_{2}}{\mu} r_{2}\right) \hat{\mathbf{r}}_{2}=-\mathbf{F}_{12} & k \rightarrow k_{1}=k \mu^{2} / m_{1}^{2}, \quad k \rightarrow k_{2}=k \mu^{2} / m_{2}^{2} & k \rightarrow k_{1}=k m_{1} / \mu, k \rightarrow k_{2}=k m_{2} / \mu
\end{array}
$$

2-Particle orbits and scattering: LAB-vs.-COM frame views Ruler \& compass construction (or not)

Examples of Coulomb and harmonic oscillator 2-particle "Copernican" orbits in CM system.

CoulIt Web Simulations Hooke Orbit (CM Frame) Hooke Orbit (Lab Frame)

Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.

Examples of Coulomb and harmonic oscillator 2-particle "Copernican" orbits in CM system.

CoulIt Web Simulations Hooke Orbit (CM Frame)

Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.
Orbits differ in size of axes $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).

CoulIt Web Simulations Hooke Orbit (CM Frame)
Hooke Orbit (Lab Frame)
Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.
Orbits differ in size of axes $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions (a_{k}, b_{k}) and λ_{k} are in inverse proportion to mass values.
$a_{1} m_{1}=a_{2} m_{2}=a \mu$,
$b_{1} m_{1}=b_{2} m_{2}=b \mu$
$\lambda_{1} m_{1}=\lambda_{2} m_{2}=\lambda \mu$

CoulIt Web Simulations Hooke Orbit (CM Frame)

Hooke Orbit (Lab Frame)
Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.
Orbits differ in size of axes $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions $\left(a_{k}, b_{k}\right)$ and λ_{k} are in inverse proportion to mass values.

$$
a_{1} m_{1}=a_{2} m_{2}=a \mu, \quad b_{1} m_{1}=b_{2} m_{2}=b \mu \quad \lambda_{1} m_{1}=\lambda_{2} m_{2}=\lambda \mu
$$

Harmonic oscillator periods
$T_{I H O}=2 \pi \sqrt{\frac{\mu}{k}}=2 \pi \sqrt{\frac{m_{1}}{k_{1}}}=2 \pi \sqrt{\frac{m_{2}}{k_{2}}}$

$$
T_{\text {Coul }}=2 \pi \sqrt{\frac{\mu a^{3}}{k}}=2 \pi \sqrt{\frac{m_{1} a_{1}^{3}}{k_{1}}}=2 \pi \sqrt{\frac{m_{2} a_{2}^{3}}{k_{2}}}
$$

and eccentricity must match

$$
\varepsilon_{1}=\varepsilon_{2}=\varepsilon
$$

CoulIt Web Simulations
Coulombic Orbit (CM Frame)
Coulombic Orbit (Lab Frame)

CoulIt Web Simulations Hooke Orbit (CM Frame)

Hooke Orbit (Lab Frame)
Two particles are in synchronous motion around fixed CM origin.
Orbit periods are identical to each other.
Orbits are mass-scaled copies with equal aspect ratio (a / b), eccentricity, and orientation.
Orbits differ in size of axes $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$
Orbits differ in placement of center (for the Coulomb case) or foci (for the oscillator).
Orbit axial dimensions $\left(a_{k}, b_{k}\right)$ and λ_{k} are in inverse proportion to mass values.

$$
a_{1} m_{1}=a_{2} m_{2}=a \mu, \quad b_{1} m_{1}=b_{2} m_{2}=b \mu \quad \lambda_{1} m_{1}=\lambda_{2} m_{2}=\lambda \mu
$$

Harmonic oscillator periods
$T_{\text {IHO }}=2 \pi \sqrt{\frac{\mu}{k}}=2 \pi \sqrt{\frac{m_{1}}{k_{1}}}=2 \pi \sqrt{\frac{m_{2}}{k_{2}}}$
and eccentricity must match

$$
T_{\text {Coul }}=2 \pi \sqrt{\frac{\mu a^{3}}{k}}=2 \pi \sqrt{\frac{m_{1} a_{1}^{3}}{k_{1}}}=2 \pi \sqrt{\frac{m_{2} a_{2}^{3}}{k_{2}}}
$$

$$
\varepsilon_{1}=\varepsilon_{2}=\varepsilon
$$

Three Coulomb orbit energy values satisfy the same proportion relation as their axes

$$
E_{1} m_{1}=E_{2} m_{2}=E \mu \text {, where: }\left|E_{1}\right|=\frac{\left|k_{1}\right|}{2 a_{1}},\left|E_{2}\right|=\frac{\left|k_{2}\right|}{2 a_{2}},|E|=\frac{|k|}{2 a} \text {. }
$$

Energy values and axes satisfy similar sum relations

$$
E_{1}+E_{2}=\frac{m_{1}}{\mu} E+\frac{m_{2}}{\mu} E=E, \quad \text { and: } \quad a_{1}+a_{2}=\frac{m_{1}}{\mu} a+\frac{m_{2}}{\mu} a=a
$$

A common type of scattering

$$
\left(m_{1}=m_{2}\right)
$$

...that every pool shark should know

BounceIt Web Simulations Hard Collision (CM Frame) Hard Collision (Lab Frame)

CoulIt Web Simulation - Coulombic Collision (CM Frame)

CoulIt Web Simulation - Coulombic Collision (LAB Frame)

Fig. 4. Given the center of mass scattering angle θ^{CM} (from Fig. 3) and the mass ratio ($2: 1$ in this case) a vector addition construction produces angles $\theta_{1} \mathrm{LAB}$ and $\theta_{2} \mathrm{LAB}$ shown here.

From: Geometric aspects of classical Coulomb scattering
American Journal of Physics 40,1852-1856 (1972)
Class project when I taught Jr. CM at Georgia Tech
(Just 5 students)

Fig. 5. The laboratory picture of Fig. 3. The scattering begins with both particles infinitely far to the right. The heavier particle is at rest and the lighter particle is moving left about 0.3 mile per day in the scale of this drawing. When the heavier particle first appears on this picture, one or two years before the "collision," it is creeping extremely slowly leftward, while the lighter particle is still over a hundred miles off to the right. The heavier particle continues creeping until finally the lighter particle arrives in the picture and moves through in about 12 sec . Most of the momentum is transferred in 3 or 4 sec.

The trouble with the Coulomb field is...

$$
\int t^{-1} d t=\ln t+C
$$

$$
\begin{aligned}
v_{2}^{\mathrm{LAB}}(t) & =\int\left(|F| / m_{2}\right) d t \\
& \left.\cong \int k d t / m_{2}\left[v_{1}^{\mathrm{CM}} \text { (initial }\right) t\right]^{2} \\
& \left.\cong\left[-k / m_{2} v_{1}^{\mathrm{CM}} \text { (initial }\right)^{2}\right] t^{-1}
\end{aligned}
$$

1856 / December 1972

From: Geometric aspects of classical Coulomb scattering

Fig. 5. The laboratory picture of Fig. 3. The scattering begins with both particles infinitely far to the right. The heavier particle is at rest and the lighter particle is moving left about 0.3 mile per day in the scale of this drawing. When the heavier particle first appears on this picture, one or two years before the "collision," it is creeping extremely slowly leftward, while the lighter particle is still over a hundred miles off to the right. The heavier particle continues creeping until finally the lighter particle arrives in the picture and moves through in about 12 sec . Most of the momentum is transferred in 3 or 4 sec .

Fig. 6. Logarithmic recession of tangents demonstrates the nonexistence of asymptotes, for pure Coulomb scattering in laboratory system. At $t=10^{3}$ the slopes of the tangents are shy of $\theta_{1}^{\mathrm{LAB}}$ and $\theta_{2}^{\mathrm{LAB}}$ by only 0.02° and 0.04°, respectively.

From: Geometric aspects of classical Coulomb scattering American Journal of Physics 40,1852-1856 (1972) Class project when I taught Jr. CM at Georgia Tech (Just 5 students)

Fig. 5. The laboratory picture of Fig. 3. The scattering begins with both particles infinitely far to the right. The heavier particle is at rest and the lighter particle is moving left about 0.3 mile per day in the scale of this drawing. When the heavier particle first appears on this picture, one or two years before the "collision," it is creeping extremely slowly leftward, while the lighter particle is still over a hundred miles off to the right. The heavier particle continues creeping until finally the lighter particle arrives in the picture and moves through in about 12 sec . Most of the momentum is transferred in 3 or 4 sec.

> From: Geometric aspects of classical Coulomb scattering American Journal of Physics 40,1852-1856 (1972) Class project when I taught Jr. CM at Georgia Tech (Just 5 students)

Fig. 6. Logarithmic recession of tangents demonstrates the nonexistence of asymptotes, for pure Coulomb scattering in laboratory system. At $t=10^{3}$ the slopes of the tangents are shy of $\theta_{1}{ }^{\mathrm{LAB}}$ and $\theta_{2}{ }^{\mathrm{LAB}}$ by only 0.02° and 0.04°, respectively.

Fig. 7. Attractive Coulomb scattering in laboratory system. This has the same "anomalies" as the repulsive case.
$\boldsymbol{\lambda}$ Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$ How to make my boomerang come back
The gyrocompass and mechanical spin analogy

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p}$ /dt equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p}$ /dt equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathbf{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathrm{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L} / \mathrm{dt}$ gives a rotor Newton equation relating rotor momentum $\mathbf{~} \times \mathbf{p}$ to rotor force or torque $\mathbf{~} \mathbf{X F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathrm{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L}$ /dt gives a rotor Newton equation relating rotor momentum $\mathbf{~} \times \mathbf{p}$ to rotor force or torque $\mathbf{~} \times \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Internal constraint or coupling force terms appear at first to be a nuisance.

$$
\begin{gathered}
\sum_{j=1}^{3} \sum_{k=1(k \not k j)}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j k}^{\text {constraint }}=\mathbf{r}_{1} \times\left(\mathbf{F}_{12}+\mathbf{F}_{13}^{\text {constraint }}\right)+\mathbf{r}_{2} \times\left(\mathbf{F}_{21}+\mathbf{F}_{23}^{\text {constraint }}\right)+\mathbf{r}_{3} \times\left(\mathbf{F}_{31}+\mathbf{F}_{32}^{\text {constraint }}\right) \\
=\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \times \mathbf{F}_{12}^{\text {constraint }}+\left(\mathbf{r}_{1}-\mathbf{r}_{3}\right) \times \mathbf{F}_{13}^{\text {constraint }}+\left(\mathbf{r}_{2}-\mathbf{r}_{3}\right) \times \mathbf{F}_{23}^{\text {constraint }}=\mathbf{0}
\end{gathered}
$$

Fig. 6.4.2 Three-particle force vectors

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathrm{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L}$ /dt gives a rotor Newton equation relating rotor momentum $\mathbf{~} \times \mathbf{p}$ to rotor force or torque $\mathbf{~} \times \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Internal constraint or coupling force terms appear at first to be a nuisance.

$$
\begin{gathered}
\sum_{j=1}^{3} \sum_{k=1(k \neq j)}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j k}^{\text {constraint }}=\mathbf{r}_{1} \times\left(\mathbf{F}_{12}+\mathbf{F}_{13}^{\text {constraint }}\right)+\mathbf{r}_{2} \times\left(\mathbf{F}_{21}+\mathbf{F}_{23}^{\text {constraint }}\right)+\mathbf{r}_{3} \times\left(\mathbf{F}_{31}+\mathbf{F}_{32}^{\text {constraint }}\right) \\
=\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \times \mathbf{F}_{12}^{\text {constraint }}+\left(\mathbf{r}_{1}-\mathbf{r}_{3}\right) \times \mathbf{F}_{13}^{\text {constraint }}+\left(\mathbf{r}_{2}-\mathbf{r}_{3}\right) \times \mathbf{F}_{23}^{\text {constraint }}=\mathbf{0}
\end{gathered}
$$

However, they vanish if coupling forces act along lines connecting the masses.

Fig. 6.4.2 Three-particle force vectors

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathbf{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L} / \mathrm{dt}$ gives a rotor Newton equation relating rotor momentum $\mathbf{~} \mathbf{X p}$ to rotor force or torque $\mathbf{~} \mathbf{X F} \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Internal constraint or coupling force terms appear at first to be a nuisance.

Fig. 6.4.2 Three-particle force vectors

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathrm{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L} / \mathrm{dt}$ gives a rotor Newton equation relating rotor momentum $\mathbf{~} \times \mathbf{p}$ to rotor force or torque $\mathbf{~} \mathbf{X} \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Internal constraint or coupling force terms appear at first to be a nuisance.

Fig. 6.4.2 Three-particle force vectors

Taken together with translational Newton's equation the six equations describe rigid body mechanics.

$$
\frac{d \mathbf{P}}{d t}=\mathbf{F}, \text { where: } \mathbf{F}=\sum_{j=1}^{3} \mathbf{F}_{j}^{\text {applied }}
$$

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$

Angular momentum vector \mathbf{L}_{j} of a mass m_{j} is its linear momentum \mathbf{p}_{j} times its lever arm as given by the angular momentum cross-product relation $\mathbf{L}_{\mathrm{j}}=\mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j} \equiv \mathbf{r}_{j} \times \mathbf{p}_{j}$

The sum-total angular momentum is

$$
\mathbf{L}=\mathbf{L}^{\text {total }}=\sum_{j=1}^{3} \mathbf{L}_{\mathrm{j}}=\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}
$$

$\mathrm{d} \mathbf{L} / \mathrm{dt}$ gives a rotor Newton equation relating rotor momentum $\mathbf{~} \times \mathbf{p}$ to rotor force or torque $\mathbf{~} \mathbf{X} \mathbf{F}$.

$$
\begin{aligned}
\frac{d \mathbf{L}}{d t} & =\sum_{j=1}^{3} \mathbf{r}_{j} \times m_{j} \ddot{\mathbf{r}}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {total }} \\
& =\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}+\sum_{j=1}^{3} \mathbf{r}_{j} \times\left(\sum_{k=1(k \neq j)}^{3} \mathbf{F}_{j k}^{\text {constraint }}\right)
\end{aligned}
$$

Internal constraint or coupling force terms appear at first to be a nuisance.

Fig. 6.4.2 Three-particle force vectors

However, they vanish if coupling forces act along lines connecting the masses. The results are the rotational Newton's equation.

$$
\frac{d \mathbf{L}}{d t}=\mathbf{N} \text {, where: } \mathbf{N}=\sum_{j=1}^{3} \mathbf{N}_{j} \quad \text { and: } \mathbf{N}_{j}=\sum_{j=1}^{3} \mathbf{r}_{j} \times \mathbf{F}_{j}^{\text {applied }}
$$

Taken together with translational Newton's equation the six equations describe rigid body mechanics.

$$
\frac{d \mathbf{P}}{d t}=\mathbf{F}, \text { where: } \mathbf{F}=\sum_{j=1}^{3} \mathbf{F}_{j}^{\text {applied }}
$$

Remaining 3N-6 equations consist of normal mode or GCC equations of some kind.

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$ \Rightarrow How to make my boomerang come back
 The gyrocompass and mechanical spin analogy

The Australian Boomerang (that comes back!)

The Australian Boomerang (that comes back and hovers down!)

The Australian Boomerang (that comes back and hovers down!)

Charlie Drake's famous 1961 song:

Small lifting torque due to "bad-air of leading blade hitting trailing one left-to-right may cause boomerang to level and hover. Stronger effect in 3-blade boomers causes figure-8 paths.

Rotational equivalent of Newton's $\mathbf{F}=d \mathbf{p} / d t$ equations: $\mathbf{N}=d \mathbf{L} / d t$
How to make my boomerang come back
\Rightarrow The gyrocompass and mechanical spin analogy

The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand rotation with angular momentum \mathbb{L}

The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand rotation with angular momentum \mathbf{L} If the α-dial for z-rotation is turning left-to-right this applies righthand "thumbs-up" torque \mathbf{N}

The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand rotation with angular momentum \mathbb{L} If the α-dial for z-rotation is turning left-to-right this applies righthand "thumbs-up" torque \mathbf{N}

Then the ball tends to line-up with z-axis (and may go past z, then come back, etc. in a precessional or "hunting" motion)

The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand rotation with angular momentum \mathbb{L} If the α-dial for z-rotation is turning left-to-right this applies righthand "thumbs-up" torque \mathbf{N}

A very high speed ball in a gyro-compass will similarly seek true North due to Earth rotation.

Then the ball tends to line-up with z-axis (and may go past z, then come back, etc. in a precessional or "hunting" motion)

The gyrocompass and mechanical spin analogy

Suppose Euler ball has right-hand rotation with angular momentum \mathbf{L} If the α-dial for z-rotation is turning left-to-right this applies righthand "thumbs-up" torque \mathbf{N}

A very high speed ball in a gyro-compass will similarly seek true North due to Earth rotation.

Then the ball tends to line-up with z-axis (and may go past z, then come back, etc. in a precessional or "hunting" motion)

This is analogous to the tendency for spin magnetic moments to allign (or precess about) the B-direction of a magnetic field Recall S-precession discussion in CMwB Unit 4 Ch. 4 and Lect. 26

The gyrocompass and mechanical spin analogy
Suppose Euler ball has right-hand rotation with angular momentum L If the α-dial for z-rotation is turning left-to-right th̄̈і" applies righthand "thumbs-up" torque \mathbf{N}

A very high speed ball in a gyro-compass will similarly seek true North due to Earth rotation.

General Rule: Gyros tend to "line-up" so they are rotating with whatever is most closely coupled to them.

This is analogous to the tendency for spin magnetic moments to allign (or precess about) the B-direction of a magnetic field Recall S-precession discussion in CMwB Unit 4 Ch. 4 and Lect. 26

Rotational momentum and velocity tensor relations
Quadratic form geometry and duality (again) angular velocity $\boldsymbol{\omega}$-ellipsoid vs. angular momentum L-ellipsoid Lagrangian $\boldsymbol{\omega}$-equations vs. Hamiltonian momentum L-equation

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C}
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, 0\right)$ on a bent axle rotating in a fixed bearing:

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\begin{aligned}
& \dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \bullet \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C} \\
& \text { This produces the rotational inertia tensor } \mathbf{I}: \quad \quad \stackrel{\mathbf{I}}{\mathbf{I}}=\sum_{j=1}^{N} \overrightarrow{\mathbf{I}}_{j}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right] \\
& \text { in the } \omega \text {-to-L relation: } \\
&
\end{aligned}
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\sqrt{\sqrt{2}}, \frac{1}{2}, 0\right)$ on a bent axle rotating in a fixed bearing:

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}
$$

This produces the rotational inertia tensor I:

$$
\overrightarrow{\mathbf{I}}=\sum_{j=1}^{N} \overrightarrow{\mathbf{I}}_{j}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right]
$$

in the ω-to-L relation:

$$
\mathbf{L}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \omega-\left(\mathbf{r}_{j} \bullet \omega\right) \mathbf{r}_{j}\right]=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right] \bullet \omega=\overrightarrow{\mathbf{I}} \bullet \omega
$$

Matrix form of the ω-to- L relation using the inertia matrix $\langle\mathbf{I}\rangle$

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \quad\langle\overrightarrow{\mathbf{I}}\rangle=\sum_{j=1}^{N}\left\langle\overrightarrow{\mathbf{I}}_{j}\right\rangle=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\sqrt{2}, \frac{1}{\sqrt{2}}, 0\right)$ on a bent axle rotating in a fixed bearing:

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C}
$$

This produces the rotational inertia tensor I:

$$
\overrightarrow{\mathbf{I}}=\sum_{j=1}^{N} \ddot{\mathbf{I}}_{j}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right]
$$

in the ω-to-L relation:

$$
\mathbf{L}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \omega-\left(\mathbf{r}_{j} \bullet \omega\right) \mathbf{r}_{j}\right]=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) 1-\mathbf{r}_{j} \mathbf{r}_{j}\right] \bullet \omega=\ddot{I} \bullet \omega
$$

Matrix form of the ω-to-L relation using the inertia matrix $\langle\mathbf{I}\rangle$

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \quad\langle\overrightarrow{\mathbf{I}}\rangle=\sum_{j=1}^{N}\left\langle\overrightarrow{\mathbf{I}}_{j}\right\rangle=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, 0\right)$ on a bent axle rotating in a fixed bearing:

$$
\begin{aligned}
& \text { Instantaneous matrix }\langle\mathbf{I}\rangle \text { of inertia is: } \\
& \langle\overline{\mathbf{I}}\rangle=m r^{2}\left(\begin{array}{ccc}
(1 \sqrt{2})^{2}+0 & -(1 \sqrt{2})(1 \sqrt{2}) & -(1 / \sqrt{2}) 0 \\
-(1 \sqrt{2})(1 \sqrt{2}) & (1 \sqrt{2})^{2}+0 & -(1 \sqrt{2}) 0 \\
-0(1 / \sqrt{2}) & -0(1 / \sqrt{2}) & (1 / \sqrt{2})^{2}+(1 / \sqrt{2})^{2}
\end{array}\right)=m r^{2}\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right.
\end{aligned}
$$

Matrix $\langle\mathbf{I}\rangle$ operates on angular velocity ω to give angular momentum \mathbf{L}

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C}
$$

This produces the rotational inertia tensor I:

$$
\overrightarrow{\mathbf{I}}=\sum_{j=1}^{N} \ddot{\mathbf{I}}_{j}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right]
$$

in the ω-to-L relation:

$$
\mathbf{L}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \omega-\left(\mathbf{r}_{j} \bullet \omega\right) \mathbf{r}_{j}\right]=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right] \bullet \omega=\overrightarrow{\mathbf{I}} \bullet \omega
$$

Matrix form of the ω-to-L relation using the inertia matrix $\langle\mathbf{I}\rangle$

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \quad\langle\overrightarrow{\mathbf{I}}\rangle=\sum_{j=1}^{N}\left\langle\overrightarrow{\mathbf{I}}_{j}\right\rangle=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, 0\right)$ on a bent axle rotating in a fixed bearing:

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

Instantaneous matrix $\langle\mathbb{I}\rangle$ of inertia is:

$$
\langle i ̈\rangle=m r^{2}\left(\begin{array}{ccc}
(11 \sqrt{2})^{2}+0 & -(11 \sqrt{2})(1 \sqrt{2}) & -(1 / \sqrt{2}) 0 \\
-(1 / \sqrt{2})(1 \sqrt{2}) & (1 \sqrt{2})^{2}+0 & -(1 / \sqrt{2}) 0 \\
-0(1 / \sqrt{2}) & -0(11 \sqrt{2}) & (1 \sqrt{2})^{2}+(1 / \sqrt{2})^{2}
\end{array}\right)=m r^{2}\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right.
$$

Matrix $\langle\mathrm{I}\rangle$ operates on angular velocity ω to give angular momentum \mathbf{L}

$$
\left(\begin{array}{l}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=m r^{2}\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
\omega \\
0
\end{array}\right)=m r^{2}\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
0
\end{array}\right) \omega
$$

Inertia tensors

Consider N-body angular velocity ω and angular momentum \mathbf{L} relations with Levi-Civita analysis

$$
\dot{\mathbf{r}}_{j}=\omega \times \mathbf{r}_{j} \quad \text { and } \quad \mathbf{L}=\sum_{j=1}^{N} \mathbf{r}_{j} \times m_{j} \dot{\mathbf{r}}_{j}=\sum_{j=1}^{N} m_{j} \mathbf{r}_{j} \times\left(\omega \times \mathbf{r}_{j}\right) \quad \text { with } \quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{C}) \mathbf{B}-(\mathbf{A} \bullet \mathbf{B}) \mathbf{C}
$$

This produces the rotational inertia tensor I:

$$
\overrightarrow{\mathbf{I}}=\sum_{j=1}^{N} \ddot{\mathbf{I}}_{j}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right]
$$

in the ω-to-L relation:

$$
\mathbf{L}=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \omega-\left(\mathbf{r}_{j} \bullet \omega\right) \mathbf{r}_{j}\right]=\sum_{j=1}^{N} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\mathbf{r}_{j} \mathbf{r}_{j}\right] \bullet \omega=\overrightarrow{\mathbf{I}} \bullet \omega
$$

Matrix form of the ω-to-L relation using the inertia matrix $\langle\mathbf{I}\rangle$

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \quad\langle\overrightarrow{\mathbf{I}}\rangle=\sum_{j=1}^{N}\left\langle\overrightarrow{\mathbf{I}}_{j}\right\rangle=\sum_{j=1}^{N} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)
$$

Consider mass m instantaneously at $\mathbf{r}_{m}=\left(x_{m}, y_{m}, z_{m}\right)=r\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, 0\right)$ on a bent axle rotating in a fixed bearing:

Fig. 6.5.1 Angular momentum for mass rotating on bent axle.

Instantaneous matrix $\langle\mathbb{I}\rangle$ of inertia is:

$$
\langle i ̈\rangle=m r^{2}\left(\begin{array}{ccc}
(11 \sqrt{2})^{2}+0 & -(11 \sqrt{2})(1 \sqrt{2}) & -(1 / \sqrt{2}) 0 \\
-(1 / \sqrt{2})(1 \sqrt{2}) & (1 \sqrt{2})^{2}+0 & -(1 / \sqrt{2}) 0 \\
-0(1 / \sqrt{2}) & -0(11 \sqrt{2}) & (1 \sqrt{2})^{2}+(1 / \sqrt{2})^{2}
\end{array}\right)=m r^{2}\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right.
$$

Matrix $\langle\mathbb{I}\rangle$ operates on angular velocity ω to give angular momentum \mathbf{L}

$$
\left.\begin{array}{l}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=m r^{2}\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
\omega \\
0
\end{array}\right)=m r^{2}\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
0
\end{array}\right) \omega
$$

Kinetic energy in terms of velocity ω and rotational Lagrangian

Kinetic energy T of a rotating rigid body can be expressed in terms of the inertia matrix I

$$
\begin{aligned}
T= & \frac{1}{2} \sum_{j=1}^{3} m_{j} \dot{\mathbf{r}}_{j} \bullet \dot{\mathbf{r}}_{j}=\frac{1}{2} \sum_{j=1}^{3} m_{j}\left(\boldsymbol{\omega} \times \mathbf{r}_{j}\right) \bullet\left(\boldsymbol{\omega} \times \mathbf{r}_{j}\right) \\
T & =\frac{1}{2} \sum_{j=1}^{3} m_{j}\left[(\boldsymbol{\omega} \bullet \boldsymbol{\omega})\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right)-\left(\boldsymbol{\omega} \bullet \mathbf{r}_{j}\right)\left(\mathbf{r}_{j} \bullet \boldsymbol{\omega}\right)\right] \\
& =\frac{1}{2} \boldsymbol{\omega} \bullet \sum_{j=1}^{3} m_{j}\left[\left(\mathbf{r}_{j} \bullet \mathbf{r}_{j}\right) \mathbf{1}-\left(\mathbf{r}_{j}\right)\left(\mathbf{r}_{j}\right)\right] \bullet \boldsymbol{\omega} \\
& =\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{I} \bullet \boldsymbol{\omega}
\end{aligned}
$$

Levi-Civita identity

$$
(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D})=(\mathbf{A} \bullet \mathbf{C})(\mathbf{B} \bullet \mathbf{D})-(\mathbf{A} \bullet \mathbf{D})(\mathbf{B} \bullet \mathbf{C})
$$

Kinetic energy is a quadratic form

$$
\begin{aligned}
& T=\quad \frac{1}{2}\left(\begin{array}{lll}
\omega_{x} & \omega_{y} & \omega_{y}
\end{array}\right)\left(\begin{array}{ccc}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
\langle\omega \mid x\rangle & \langle\omega \mid y\rangle & \langle\omega \mid z\rangle
\end{array}\right)\left(\begin{array}{ll}
\langle x| \mathbf{I}|x\rangle & \langle x| \mathbf{I}|y\rangle \\
\langle y| \mathbf{I}|\mathbf{I}| z\rangle \\
\langle y| \mathbf{I}|x\rangle & \langle y| \mathbf{I}|y\rangle \\
\langle z| \mathbf{I}|x\rangle & \langle z| \mathbf{I}|z\rangle \\
\langle z \mid y\rangle & \langle z| \mathbf{I}|z\rangle
\end{array}\right)\left(\begin{array}{c}
\langle x \mid \omega\rangle \\
\langle y \mid \omega\rangle \\
\langle z \mid \omega\rangle
\end{array}\right) \text { (Dirac notation) } \\
& =\frac{1}{2}\left(\begin{array}{lll}
\omega_{x} & \omega_{y} & \omega_{y}
\end{array}\right) \sum_{j=1}^{3} m_{j}\left(\begin{array}{ccc}
y_{j}^{2}+z_{j}^{2} & -x_{j} y_{j} & -x_{j} z_{j} \\
-y_{j} x_{j} & x_{j}^{2}+z_{j}^{2} & -y_{j} z_{j} \\
-z_{j} x_{j} & -z_{j} y_{j} & x_{j}^{2}+y_{j}^{2}
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
\end{aligned}
$$

Simplifies in principle inertial axes $\{X, Y, Z\}$ or body eigen-axes

$$
\begin{aligned}
T & =\frac{1}{2}\left(\begin{array}{lll}
\omega_{X} & \omega_{Y} & \omega_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
\omega_{X} \\
\omega_{Y} \\
\omega_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
\omega_{X} & \omega_{Y} & \omega_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & 0 & 0 \\
0 & I_{Y Y} & 0 \\
0 & 0 & I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
\omega_{X} \\
\omega_{Y} \\
\omega_{Z}
\end{array}\right)=\frac{I_{X X} \omega_{X}^{2}}{2}+\frac{I_{Y Y} \omega_{Y}^{2}}{2}+\frac{I_{Z Z} \omega_{Z}^{2}}{2}
\end{aligned}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
T=\frac{1}{2} \omega \bullet \overrightarrow{\mathrm{I}} \bullet \omega=\frac{1}{2} \omega \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \omega=\frac{1}{2} \mathrm{~L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathrm{~L}
$$

$$
T=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)
$$

$$
=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\mathbf{I} \bullet \omega$, generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \stackrel{\mathbf{I}}{ } \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{L}=\frac{1}{2} \mathbf{L} \bullet \omega=\frac{1}{2} \mathbf{L} \bullet \stackrel{\mathbf{I}}{ }^{-1} \bullet \mathbf{L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid Lagrangian form is the equation of the angular velocity or ω-ellipsoid

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\mathbf{I} \bullet \omega$, generally implies: $\boldsymbol{\omega}=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L , or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \boldsymbol{\mathrm { I }} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \omega=\frac{1}{2} \mathbf{L} \bullet \mathbf{I}^{-1} \bullet \mathrm{~L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{l}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{l}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid Lagrangian form is the equation of the angular velocity or ω-ellipsoid

Unit 1
Fig. 12.2
(a)
Lagrangian plot
$L(\mathbf{v})=$ const. $=\mathbf{v} \cdot \mathbf{M} \bullet \mathbf{v} / 2$
(b)
plot

(c) Overlapping plots

Lagrangian tangent at velocity \mathbf{v}

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L, or both at once. once

$$
\begin{aligned}
& T=\frac{1}{2} \omega \bullet \overrightarrow{\mathbf{I}} \bullet \omega=\frac{1}{2} \omega \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \omega=\frac{1}{2} \mathrm{~L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathrm{~L} \\
& T=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum L, or both at once. once

$$
\begin{aligned}
& T=\frac{1}{2} \omega \bullet \overrightarrow{\mathrm{I}} \bullet \omega=\frac{1}{2} \omega \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \omega=\frac{1}{2} \mathrm{~L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathrm{~L} \\
& T=\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid is aligned to L or body has symmetry

$$
\begin{aligned}
& \text { Canonical momentum: } \quad p_{\mu}=\frac{\partial L}{\partial \dot{q}^{\mu}}(\text { where: } L=T) \\
& L=\frac{\partial T}{\partial \omega}=\nabla_{\omega} T=\frac{\partial}{\partial \omega} \frac{\omega \bullet \mathrm{I} \bullet \omega}{2}=\mathrm{I} \bullet \omega
\end{aligned}
$$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum \mathbf{L}, or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \overrightarrow{\mathrm{I}} \bullet \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \bullet \mathrm{~L}=\frac{1}{2} \mathrm{~L} \bullet \boldsymbol{\omega}=\frac{1}{2} \mathbf{L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathrm{~L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{cc}
1 / I_{X X} & 0 \\
0 \\
0 & 1 / I_{Y Y} \\
0 & 0 \\
1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid
is not dissipated internally
$\boldsymbol{\omega}$ is generally not conserved unless it is aligned to L or body has symmetry

$$
\begin{aligned}
& \text { Canonical momentum: } \quad p_{\mu}=\frac{\partial L}{\partial \dot{q}^{\mu}}(\text { where: } L=T) \\
& \mathbf{L}=\frac{\partial T}{\partial \omega}=\nabla_{\omega} T=\frac{\partial}{\partial \omega} \frac{\omega \bullet \mathrm{I} \bullet \omega}{2}=\mathrm{I} \bullet \omega
\end{aligned}
$$

Hamilton's 1st equations : $\dot{q}^{\mu}=\frac{\partial H}{\partial p_{\mu}}$ (where: $H=T$) $\boldsymbol{\omega}=\frac{\partial H}{\partial \mathbf{L}}=\nabla_{\mathbf{L}} H=\frac{\partial}{\partial \mathbf{L}} \frac{\mathbf{L} \bullet \mathbf{I}^{-1} \bullet \mathbf{L}^{\mu}}{2}=\mathbf{I}^{-1} \bullet \mathbf{L}$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum \mathbf{L}, or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \boldsymbol{\omega} \bullet \overrightarrow{\mathbf{I}} \bullet \omega=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{L}=\frac{1}{2} \mathbf{L} \bullet \omega=\frac{1}{2} \mathbf{L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or \mathbf{L}-ellipsoid is not dissipated internally

Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid

Hamilton's 1st equations : $\dot{q}^{\mu}=\frac{\partial H}{\partial p_{\mu}}$ (where: $H=T$) $\boldsymbol{\omega}=\frac{\partial H}{\partial \mathbf{L}}=\nabla_{\mathbf{L}} H=\frac{\partial}{\partial \mathbf{L}} \frac{\mathbf{L} \bullet \mathbf{I}^{-1} \bullet \mathbf{L}^{\mu}}{2}=\mathbf{I}^{-1} \bullet \mathbf{L}$

Kinetic energy in terms of momentum L and rotational Hamiltonian

$\mathbf{L}=\overrightarrow{\mathbf{I}} \bullet \omega, \quad$ generally implies: $\quad \omega=\overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L}$
Express kinetic energy T in terms of angular velocity $\boldsymbol{\omega}$, momentum \mathbf{L}, or both at once. once

$$
\begin{aligned}
T & =\frac{1}{2} \omega \bullet \overrightarrow{\mathrm{I}} \bullet \omega=\frac{1}{2} \boldsymbol{\omega} \bullet \mathbf{L}=\frac{1}{2} \mathbf{L} \bullet \omega=\frac{1}{2} \mathbf{L} \bullet \overrightarrow{\mathbf{I}}^{-1} \bullet \mathbf{L} \\
T & =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
I_{X X} & I_{X Y} & I_{X Z} \\
I_{Y X} & I_{Y Y} & I_{Y Z} \\
I_{Z X} & I_{Z Y} & I_{Z Z}
\end{array}\right)^{-1}\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{lll}
L_{X} & L_{Y} & L_{Z}
\end{array}\right)\left(\begin{array}{ccc}
1 / I_{X X} & 0 & 0 \\
0 & 1 / I_{Y Y} & 0 \\
0 & 0 & 1 / I_{Z Z}
\end{array}\right)\left(\begin{array}{c}
L_{X} \\
L_{Y} \\
L_{Z}
\end{array}\right)=\frac{L_{X}^{2}}{2 I_{X X}}+\frac{L_{Y}^{2}}{2 I_{Y Y}}+\frac{L_{Z}^{2}}{2 I_{Z Z}}
\end{aligned}
$$

Hamiltonian form is the equation of the angular momentum or L-ellipsoid is not dissipated internally Lagrangian form is the equation of the angular velocity or $\boldsymbol{\omega}$-ellipsoid $\boldsymbol{\omega}$ is generally not conserved unless it is aligned to L or body has symmetry

$$
\begin{aligned}
& \text { Canonical momentum: } \quad p_{\mu}=\frac{\partial L}{\partial \dot{q}^{\mu}}(\text { where: } L=T) \\
& L=\frac{\partial T}{\partial \omega}=\nabla_{\omega} T=\frac{\partial}{\partial \omega} \frac{\omega \bullet \mathrm{I} \bullet \omega}{2}=\mathrm{I} \bullet \omega
\end{aligned}
$$

$$
\text { Hamilton's 1st equations : } \left.\dot{q}^{\mu}=\frac{\partial H}{\partial p_{\mu}} \text { (where: } H=T\right)
$$

In body frame momentum L moves along intersection of L -ellipsoid and L -sphere (Length $|\mathrm{L}|$ is constant in any classical frame.)

Rotational Energy Surfaces (RES)

\longrightarrow Symmetric, asymmetric, and spherical-top dynamics (Constant \mathbf{L}) BOD-frame cone rolling on LAB frame cone

Singular Motion of Asymetric Rotators AJP (44) p1080

Asymmetric-top dynamics (Constant \mathbf{L})

1. NASA Space station video

https://youtu.be/1n-HMSCDYtM
For those physist who are brave of heart, make note the video's comments

3. NASA-Rotating Solid Bodies in Microgravity (2008)

https://www.youtube.com/watch?v=BPMjcN-sBJ4
2. UAF lab air-supported asymmetric top video

https://youtu.be/HWjGvCaqx5g

4. Early NASA-JPL satellite blunder (1958)

To be Continued \Rightarrow several pages ahead

Asym. Rotor AJP
44.11 1976

Comments following Space Lab video of asymmetric rotation show that it is not a widely understood phenomenon

Bagnon DuJour - 3 months ago

As the handles spins out it dips down a bit before becoming detached and that linear momentum travels through the angular momentum until the equilibrium requires the flip to maintain the path of least resistance. If they could spin it perfectly without the dip, it would not turn like that.
$\wedge \mid \vee$. Reply • Share ,

Bill Aldridge \rightarrow Bagnon DuJour - 3 months ago
So you are saying, when they put their hands on the tip, i dip, you dip, we dip.
$\wedge \mid \vee$. Reply • Share ,

EVERYONE is born an atheist \rightarrow Bagnon DuJour - 3 months ago
Exactly. Not sure why this was even posted. Maybe it was just going to b used as a basic physics example for schools.
^ \| . Reply • Share ,

Tim Johnson \rightarrow Bagnon DuJour - 3 months ago
It sounds like you have a handle on what's going on here.
$1 \wedge \mid \vee$ • Reply * Share ,

Bocce-Ball Asymmetric Top we built at USC (donated to Cal. Museum of Science \& Industry)

Fig. 3. Polhodes. A family of constraint curves for the vector ω in the body system, or "polhodes," are separated into two distinct groups by a curve called the singular polhode.

HE SINGULAR

 POLHODE1081 Am. J. Phys. Vol. 44, No. 11, November 1976

Fig. 4. Model of rotational motion near the singular polhode.

Bocce-Ball Asymmetric Top Motion solved by Euler's equation and elliptic integrals

$$
\begin{equation*}
\dot{\mathbf{L}}=\omega \times \mathbf{L} \tag{9}
\end{equation*}
$$

which takes the following form for the 2 component:

$$
\begin{equation*}
\dot{\omega}_{2}+\omega_{1} \omega_{3}\left(I_{1}-I_{3}\right) / I_{2}=0 . \tag{10}
\end{equation*}
$$

Solving Eq. (10) for $\omega \equiv \omega_{2}$ using Eqs. (5) and (6), we obtain the following:

$$
\begin{equation*}
\dot{\omega}=\left(a-b \omega^{2}\right)^{1 / 2}\left(c-d \omega^{2}\right)^{1 / 2} / I_{2}\left(I_{1} I_{3}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

where the constants $a-d$ [Eq. (12)] depend on initial conditions and the inertial moments as follows:

$$
\begin{gather*}
a=2 E I_{3}-L^{2}, \quad b=I_{2}\left(I_{3}-I_{2}\right), \\
c=L^{2}-2 E I_{1}, \quad d=I_{2}\left(I_{2}-I_{1}\right), \\
a=I_{2}\left(I_{3}-I_{2}\right) W^{2} \cos ^{2} \epsilon, \\
c=\left[I_{2}\left(I_{2}-I_{1}\right) \cos ^{2} \epsilon+I_{3}\left(I_{3}-I_{1}\right) \sin ^{2} \epsilon\right) W^{2}, \tag{12}
\end{gather*}
$$

where we have assumed initial conditions
$\omega_{1}(0)=0, \quad \omega_{2}(0)=W \cos \epsilon, \quad \omega_{3}(0)=W \sin \epsilon$.

Fig. 6. Exact solutions. The motion of the ω vector for an asymmetric and a not-so-asymmetric body are compared. Various polhodes are shown on the left-hand side while the corresponding time behavior is plotted on the right-hand side.

Bocce-Ball Asymmetric Top Motion solved by Euler's equation and elliptic integrals

$$
\begin{equation*}
\dot{\mathbf{L}}=\omega \times \mathbf{L} \tag{9}
\end{equation*}
$$

which takes the following form for the 2 component:

$$
\begin{equation*}
\dot{\omega}_{2}+\omega_{1} \omega_{3}\left(I_{1}-I_{3}\right) / I_{2}=0 . \tag{10}
\end{equation*}
$$

Solving Eq. (10) for $\omega \equiv \omega_{2}$ using Eqs. (5) and (6), we obtain the following:

$$
\begin{equation*}
\dot{\omega}=\left(a-b \omega^{2}\right)^{1 / 2}\left(c-d \omega^{2}\right)^{1 / 2} / I_{2}\left(I_{1} I_{3}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

where the constants $a-d$ [Eq. (12)] depend on initial conditions and the inertial moments as follows:

$$
\begin{gather*}
a=2 E I_{3}-L^{2}, \quad b=I_{2}\left(I_{3}-I_{2}\right), \\
c=L^{2}-2 E I_{1}, \quad d=I_{2}\left(I_{2}-I_{1}\right), \\
a=I_{2}\left(I_{3}-I_{2}\right) W^{2} \cos ^{2} \epsilon, \\
c=\left[I_{2}\left(I_{2}-I_{1}\right) \cos ^{2} \epsilon+I_{3}\left(I_{3}-I_{1}\right) \sin ^{2} \epsilon\right) W^{2}, \tag{12}
\end{gather*}
$$

where we have assumed initial conditions

$$
\begin{equation*}
\omega_{1}(0)=0, \quad \omega_{2}(0)=W \cos \epsilon, \quad \omega_{3}(0)=W \sin \epsilon \tag{13}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
t=\left(\frac{I_{1} I_{2} I_{3}}{\left(I_{3}-I_{2}\right)}\left(L^{2}-2 E I_{1}\right)\right.
\end{array}\right)^{1 / 2}, \quad \int_{0}^{\Omega^{\prime}} \frac{d \Omega}{\left(1-\Omega^{2}\right)^{1 / 2}\left(1-k^{2} \Omega^{2}\right)^{1 / 2}},
$$

where the following substitutions were made:

$$
\begin{equation*}
k=(a d / b c)^{1 / 2}, \quad \omega=(a / b)^{1 / 2} \Omega=\Omega W \cos \epsilon \tag{15}
\end{equation*}
$$

A further substitution $\Omega=\sin \phi$ reduces the integral

$$
\begin{align*}
\int_{0}^{\Omega^{\prime}} & \frac{d \Omega}{\left(1-\Omega^{2}\right)^{1 / 2}\left(1-k^{2} \Omega^{2}\right)^{1 / 2}} \\
& =\int_{0}^{\phi^{\prime}} \frac{d \phi}{\left(1-k^{2} \sin ^{2} \phi\right)^{1 / 2}} \equiv \operatorname{sn}^{-1}\left(\phi^{\prime}, k\right) \tag{16}
\end{align*}
$$

Fig. 6. Exact solutions. The motion of the ω vector for an asymmetric and a not-so-asymmetric body are compared. Various polhodes are shown on the left-hand side while the corresponding time behavior is plotted on the right-hand side.

Bocce-Ball Asymmetric Top Motion solved by Euler's equation and elliptic integrals

$$
\begin{equation*}
\dot{\mathbf{L}}=\omega \times \mathbf{L} \tag{9}
\end{equation*}
$$

which takes the following form for the 2 component:

$$
\begin{equation*}
\dot{\omega}_{2}+\omega_{1} \omega_{3}\left(I_{1}-I_{3}\right) / I_{2}=0 . \tag{10}
\end{equation*}
$$

Solving Eq. (10) for $\omega \equiv \omega_{2}$ using Eqs. (5) and.(6), we obtain the following:

$$
\begin{equation*}
\dot{\omega}=\left(a-b \omega^{2}\right)^{1 / 2}\left(c-d \omega^{2}\right)^{1 / 2} / I_{2}\left(I_{1} I_{3}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

where the constants $a-d$ [Eq. (12)] depend on initial conditions and the inertial moments as follows:

$$
\begin{gather*}
a=2 E I_{3}-L^{2}, \quad b=I_{2}\left(I_{3}-I_{2}\right), \\
c=L^{2}-2 E I_{1}, \quad d=I_{2}\left(I_{2}-I_{1}\right), \\
a=I_{2}\left(I_{3}-I_{2}\right) W^{2} \cos ^{2} \epsilon, \\
c=\left[I_{2}\left(I_{2}-I_{1}\right) \cos ^{2} \epsilon+I_{3}\left(I_{3}-I_{1}\right) \sin ^{2} \epsilon\right) W^{2}, \tag{12}
\end{gather*}
$$

where we have assumed initial conditions

$$
\begin{equation*}
\omega_{1}(0)=0, \quad \omega_{2}(0)=W \cos \epsilon, \quad \omega_{3}(0)=W \sin \epsilon \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& t=\left(\frac{I_{1} I_{2} I_{3}}{\left(I_{3}-I_{2}\right)\left(L^{2}-2 E I_{1}\right)}\right)^{1 / 2} \\
& \times \int_{0}^{\Omega^{\prime}} \frac{d \Omega}{\left(1-\Omega^{2}\right)^{1 / 2}\left(1-k^{2} \Omega^{2}\right)^{1 / 2}}, \tag{14}
\end{align*}
$$

where the following substitutions were made:

$$
\begin{equation*}
k=(a d / b c)^{1 / 2}, \quad \omega=(a / b)^{1 / 2} \Omega=\Omega W \cos \epsilon \tag{15}
\end{equation*}
$$

A further substitution $\Omega=\sin \phi$ reduces the integral

$$
\begin{align*}
\int_{0}^{\Omega^{\prime}} & \frac{d \Omega}{\left(1-\Omega^{2}\right)^{1 / 2}\left(1-k^{2} \Omega^{2}\right)^{1 / 2}} \\
& =\int_{0}^{\phi^{\prime}} \frac{d \phi}{\left(1-k^{2} \sin ^{2} \phi\right)^{1 / 2}} \equiv \operatorname{sn}^{-1}\left(\phi^{\prime}, k\right) \tag{16}
\end{align*}
$$

Fig. 6. Exact solutions. The motion of the ω vector for an asymmetric and a not-so-asymmetric body are compared. Various polhodes are shown on the left-hand side while the corresponding time behavior is plotted on the right-hand side.

$$
\begin{align*}
& t=\frac{2}{W} \\
& \times\left(\frac{I_{1} I_{2} I_{3}}{\left(I_{3}-I_{2}\right)\left[I_{2}\left(I_{2}-I_{1}\right) \cos ^{2} \epsilon+I_{3}\left(I_{3}-I_{1}\right) \sin ^{2} \epsilon\right]}\right)^{1 / 2} \\
& \times \mathrm{sn}^{-1}\left(\frac{\pi}{2}, k\right), \tag{17a}\\
& t \rightarrow \frac{2}{W}\left(\frac{I_{1} I_{2}}{\left(I_{3}-I_{2}\right)\left(I_{2}-I_{1}\right)}\right)^{1 / 2} \mathrm{sn}^{-1}\left(\frac{\pi}{2}, k\right), \tag{17b}
\end{align*}
$$

where

$$
\begin{gather*}
k=\left(\frac{I_{2}\left(I_{2}-I_{1}\right)}{I_{2}\left(I_{2}-I_{1}\right) \cos ^{2} \epsilon+I_{3}\left(I_{3}-I_{1}\right) \sin ^{2} \epsilon}\right)^{1 / 2} \cos \epsilon, \\
 \tag{18a}\\
k \rightarrow 1-\left(I_{3} / I_{2}\right)\left[\left(I_{3}-I_{1}\right) /\left(I_{2}-I_{1}\right)\right]\left(\epsilon^{2} / 2\right)
\end{gather*}
$$

Bocce-Ball Asymmetric Top Motion solved by Euler's equation and elliptic integrals

$$
\begin{equation*}
\dot{\mathbf{L}}=\omega \times \mathbf{L} \tag{9}
\end{equation*}
$$

which takes the following form for the 2 component:

$$
\begin{equation*}
\dot{\omega}_{2}+\omega_{1} \omega_{3}\left(I_{1}-I_{3}\right) / I_{2}=0 . \tag{10}
\end{equation*}
$$

Solving Eq. (10) for $\omega \equiv \omega_{2}$ using Eqs. (5) and. (6), we obtain the following:

$$
\begin{equation*}
\dot{\omega}=\left(a-b \omega^{2}\right)^{1 / 2}\left(c-d \omega^{2}\right)^{1 / 2} / I_{2}\left(I_{1} I_{3}\right)^{1 / 2}, \tag{11}
\end{equation*}
$$

where the constants $a-d$ [Eq. (12)] depend on initial conditions and the inertial moments as follows:

$$
\begin{gather*}
a=2 E I_{3}-L^{2}, \quad b=I_{2}\left(I_{3}-I_{2}\right), \\
c=L^{2}-2 E I_{1}, \quad d=I_{2}\left(I_{2}-I_{1}\right), \\
a=I_{2}\left(I_{3}-I_{2}\right) W^{2} \cos ^{2} \epsilon, \\
c=\left[I_{2}\left(I_{2}-I_{1}\right) \cos ^{2} \epsilon+I_{3}\left(I_{3}-I_{1}\right) \sin ^{2} \epsilon\right) W^{2}, \tag{12}
\end{gather*}
$$

where we have assumed initial conditions

$$
\begin{equation*}
\omega_{1}(0)=0, \quad \omega_{2}(0)=W \cos \epsilon, \quad \omega_{3}(0)=W \sin \epsilon \tag{13}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
t=\left(\frac{I_{1} I_{2} I_{3}}{\left(I_{3}-I_{2}\right)(} L^{2}-2 E I_{1}\right)
\end{array}\right)^{1 / 2},
$$

where the following substitutions were made:

$$
\begin{equation*}
k=(a d / b c)^{1 / 2}, \quad \omega=(a / b)^{1 / 2} \Omega=\Omega W \cos \epsilon . \tag{15}
\end{equation*}
$$

A further substitution $\Omega=\sin \phi$ reduces the integral

$$
\begin{align*}
\int_{0}^{\Omega^{\prime}} & \frac{d \Omega}{\left(1-\Omega^{2}\right)^{1 / 2}\left(1-k^{2} \Omega^{2}\right)^{1 / 2}} \\
& =\int_{0}^{\phi^{\prime}} \frac{d \phi}{\left(1-k^{2} \sin ^{2} \phi\right)^{1 / 2}} \equiv \operatorname{sn}^{-1}\left(\phi^{\prime}, k\right) \tag{16}
\end{align*}
$$

Fig. 6. Exact solutions. The motion of the ω vector for an asymmetric and a not-so-asymmetric body are compared. Various polhodes are shown on the left-hand side while the corresponding time behavior is plotted on the right-hand side.

The limiting forms [Eqs. (17) and (18b)] become good approximations for $\epsilon<10^{\circ}$. The approximate number of revolutions accomplished by a body before it overturns is given by the product of $W / 2 \pi$, the number of revolutions per second, and the right-hand side of Eq. (17b). Exact solutions for various I_{j} and ϵ are displayed in Fig. 6 .

If one desires to increase the reversal time, it should be done through the first factor in Eq. (17b). The integral in the second factor is usually only as large as 7 or 8 in our experiments ($\epsilon=10^{\circ}$ gives $3.1, \epsilon=1^{\circ}$ gives 5.4, and $\epsilon=0^{\circ}$ 1^{\prime} gives 9.5). This is a good demonstration of the behavior of an elliptic function near its singularity.

4. Early NASA-JPL satellite blunder (1958)

From text in preparation by Rick Heller on semiclassical dynamics of polyatomic molecules

Figure 10.3: NASA-JPL early blunder. Rockets are not rigid bodies, especially with floppy whip antennas attached. The Explorer 1 satellite was the first one launched successfully by the United States. Seen in the left panel are James van Allen (center), William Pickering (left), and Werner von Braun, with a full-size model of the satellite, just after it was successfully orbited in 1958. As this press conference took place, the satellite was busily tumbling out of control. Van Allen soon realized that the intermittent signal from the satellite was due to tumbling. Fortunately, enough antennas were bristling from the satellite that it still gave much useful data, resulting in discovery of the van Allen radiation belts. The tumbling took place because friction due to slight wobbling is converted to heat, lowering the rotational energy, but not changing the angular momentum. The only way for this to happen is for the satellite to start rotating around a lower energy axis, until it bottoms out in end and over and tumbling at the lowest possible rotational energy for the given angular momentum. The author thanks Prof. William Harter for pointing out the existence and the physics of this story.

Rotational Energy Surfaces (RES) and Constant Energy Surfaces (CES) replace Lagrange Poinsot $\frac{1}{2} \omega \cdot I \cdot \omega$

Rotational Energy Surface (RES) is quadratic multipole function plotted radially
$E=\frac{\mathbf{J}_{x}^{2}}{2 I_{x}}+\frac{\mathbf{J}_{y}^{2}}{2 I_{y}}+\frac{\mathbf{J}_{z}^{2}}{2 I_{z}} \quad$ with $J=$ const.
$=J^{2}\left(\frac{\sin ^{2} \theta \cos ^{2} \phi}{2 I_{x}}+\frac{\sin ^{2} \theta \sin ^{2} \phi}{2 I_{y}}+\frac{\cos ^{2} \theta}{2 I_{z}}\right)$

Constant Energy Surface (CES) is asymmetric ellipsoid of constant E

$$
\begin{aligned}
E=\frac{\mathbf{J}_{x}^{2}}{2 I_{x}}+\frac{\mathbf{J}_{y}^{2}}{2 I_{y}}+\frac{\mathbf{J}_{z}^{2}}{2 I_{z}}=\text { const. } & \text { Here notation } L \text { or } \mathbf{L} \\
\text { or: } \quad & \frac{\mathbf{J}_{x}^{2}}{2 E I_{x}}+\frac{\mathbf{J}_{y}^{2}}{2 E I_{y}}+\frac{\mathbf{J}_{z}^{2}}{2 E I_{z}}=1
\end{aligned} \quad \text { is replaced by } \boldsymbol{J} \text { or } \mathbf{J} \text {. }
$$

(b) CE surface $I_{\overline{1}}=6 \quad I_{\overline{2}}=4 \quad I_{\overline{3}}=3$

$$
3
$$

(c) RES intersecting CES

RES and CES for nearly-symmetric prolate rotors and nearly-symmetric oblate rotors

Fig. 6.8.2 Fixed-J-RES with CES at separatrix $E=J^{2} / 2 I_{2}$ as I_{2} varies. (a) $I_{2}=5.6$ and $\gamma_{B}=75.5^{\circ}$ (Nearly prolate low-E CES), (b) $I_{2}=5.0$ and $\gamma_{B}=63.4^{\circ}$, (c) $I_{2}=3.2$ and $\gamma_{B}=20.7^{\circ}$ (Nearly oblate high-E CES).

RES for symmetric prolate rotor locates $J=10$ quantum $(-J<K<J)$ levels (at RES-quantum cone intersections)

Link to pdf of: W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013) Fig. 1-5 p. 730

RES for symmetric and asymmetric rotor approximates $J=10(-J<K<J)$ levels (near $R E S$-quantum cone levels)

Link to pdf of: W. G. Harter and J C. Mitchell .International Jbtrnal of Molecular Science, 14, 714-806 (2013) Fig. 1-5 p. 730
$R E S$ for symmetric prolate rotor locates $J=10$ quantum $(-J<K<J)$ levels (at RES-quantum cone intersections)

$$
E=A \mathbf{J}_{x}^{2}+B \mathbf{J}_{y}^{2}+C \mathbf{J}_{z}^{2} \text { with } J=\text { const }
$$

Spectra varies as symmetric prolate RES changes through a range of asymmetric RES to oblate RES

Link to pdf of: W. G. Harter and J C. Mitchell ,International Journal of Molecular Science, 14, 714-806 (2013) Fig. 1-5 p. 730

RES for spherical rotor approximates $J=88(-J<K<J)$ levels of S_{6}
$<\mathrm{H}>\sim \mathrm{v}_{\text {vib }}+\mathrm{B} J(J+1)+<\mathrm{H}^{\text {Scalar Coriolis }}>+<\mathrm{H}^{\text {Tensor Centrifugal }}>+<\mathrm{H}^{\text {Tensor Coriolis }}>+<\mathrm{H}^{\text {Nuclear Spin }}>+\ldots$
$S F_{6}$ Spectra of O_{h} Ro-vibronic Hamiltonian described by RE Tensor Topography
and J-cone intersection

$$
\begin{aligned}
\mathbf{H} & =B\left(\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}+\mathbf{J}_{z}^{2}\right)+t_{440}\left(\mathbf{J}_{x}^{4}+\mathbf{J}_{y}^{4}+\mathbf{J}_{z}^{4}-\frac{3}{5} J^{4}\right)+\cdots \\
& =B \mathbf{J}^{2} \quad+t_{440}\left(\mathbf{T}_{0}^{4}+\sqrt{\frac{5}{14}}\left[\mathbf{T}_{4}^{4}+\mathbf{T}_{-4}^{4}\right]\right)+
\end{aligned}
$$

Rovibronic Energy (RE) Tensor Surface

Rotational Energy Surfaces (RES)

Symmetric, asymmetric, and spherical-top dynamics (Constant J) $\longrightarrow B O D$-frame cone rolling on LAB frame cone

Fig. 6.7.1 Elementary ω-constrained rotor and angular velocity-momentum geometry.
(a) Constrained rotor:LAB-fixed ω, moving \mathbf{J} (b) Free rotor:LAB-fixed \mathbf{J}, moving ω

Fig. 6.7.2 Free rotor cut loose from LAB-constraining ω-axis changes dynamics accordingly.

Blue BOD-frame cones roll (around $\boldsymbol{\omega}$-sticking axis)without slipping on red LAB-frame cone
Fig. 6.7.3 Symmetric top ω-cones for $\beta=30^{\circ}$ and inertial ratios: (a) ${ }_{I_{I I}}^{I_{3}}=3$, (b) 1 , (c) $\frac{1}{2}$, (d) 0 , (e) $-\frac{1}{2}$.

Blue BOD-frame cones roll without slipping on red LAB-frame cone

Fig. 6.7.4 Detailed geometry of symmetric top kinetics. (a) Prolate case. (b) Most-oblate case

Fig. 6.7.5 Extreme cases (Oblate vs. Prolate) of symmetric-top geometry.
\longrightarrow Cycloidal geometry of flying levers Practical poolhall application

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left.=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left.=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left.=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.
$\Pi / M=V_{\text {Center }}=|p \omega|=p \cdot h \Pi / I$

Fig. 2.A.l Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.
$\Pi / M=V_{\text {Center }}=|p \omega|=p \cdot h \Pi / I$
$I / M=\quad=\quad=p \cdot h$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left.=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
\Pi / M & =V_{\text {Center }}
\end{aligned}=|p \omega|=p \cdot h \Pi / I, \quad=\quad=p \cdot h \quad \text { or: } p=I /(M h)
$$

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
& \Pi / M=V_{\text {Center }}=|p \omega|=p \cdot h \Pi / I \\
& I / M=\quad=\quad=p \cdot h \quad \text { or: } p=I /(M h)
\end{aligned}
$$

P follows a normal cycloid made by a circle of radius $p=I /(M h)$ rolling on an imaginary road

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick. thru point P in direction of Π.

If you hammer a stick at a point h meters from its center you give it some linear momentum Π and some angular momentum $\Lambda=h \cdot \Pi$

Resulting angular velocity ω about the center is angular momentum Λ divided by moment of inertia $I=M \ell^{2} / 3$ of the stick.

$$
\begin{aligned}
\omega & =\Lambda / I & & \left(=3 \Lambda /\left(M \ell^{2}\right) \text { for stick }\right) \\
& =h \Pi / I & & \left(=3 h \Pi /\left(M \ell^{2}\right) \text { for stick }\right)
\end{aligned}
$$

One point P , or center of percussion (CoP), is on the wheel where speed $p \omega$ due to rotation just cancels translational speed $V_{\text {Center }}$ of stick.

$$
\begin{aligned}
\Pi / M & =V_{\text {Center }}
\end{aligned}=|p \omega|=p \cdot h \Pi / I, ~=\quad=p \cdot h \quad \text { or: } p=I /(M h)
$$ P follows a normal cycloid made by a circle of radius $p=I /(M h)$ rolling on an imaginary road

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick. thru point P in direction of Π.

The percussion radius $p=\ell^{2} / 3 h$ is of the CoP point that has no velocity just after hammer hits at h.

Cycloidal geometry of flying levers
\longrightarrow Practical poolhall application

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

Practical poolhall application of center of percussion formula $I / M=p \cdot h$

$$
\begin{aligned}
& I / M=p \cdot h \\
& \begin{aligned}
h=I / M p & =I / M R \quad(\text { For } \mathrm{R}=p) \\
& =2 / 5 M R^{2} / M R \\
& =2 / 5 R
\end{aligned}
\end{aligned}
$$

For: $\mathrm{H}=R+h=7 / 10(2 R)$ ball does not skid.

The Zamboni-Ice-Shot problem

(Assumes frictionless ice rink)

Where on a meter-stick do you hit it so as to not disturb marbles A or B and...
...knock marble C down as shown.

