Introduction to classical oscillation and resonance (Ch. 1 of Unit 4)

1D forced-damped-harmonic oscillator equations and Green's function solutions Linear harmonic oscillator equation of motion.
Linear damped-harmonic oscillator equation of motion.
Frequency retardation and amplitude damping
Figure of oscillator merit (the 5\% solution 3/ Гand other numbers)
Linear forced-damped-harmonic oscillator equation of motion.
Phase lag and amplitude resonance amplification
Figure of resonance merit: (angular) Quality factor $q=\omega_{0} / 2 \Gamma$

Properties of Green's function solutions and their mathematical/physical behavior Transient solutions vs. Steady State solutions

Complete Green's Solution for the FDHO (Forced-Damped-Harmonic Oscillator) Quality factors: Beat, lifetimes, and uncertainty

Approximate Lorentz-Green's Function for high quality FDHO (Quantum propagator)
Common Lorentzian (a.k.a. Witch of Agnesi)
Smith Charts

Paulinia, Brasil 1976
THE SPEED OF LIGHT IS 299,792,458 METERS PER SECOND!

-- The Purest Light and a Resonance Hero - Ken Evenson (1932-2002) --

Ken Evenson
When travelers punch up their GPS coordinates they owe a debt of gratitude to an under sung hero who, alongside his colleagues and students, often toiled 18 hour days deep inside a laser laboratory lit only by the purest light in the universe.

Ken was an "Indiana Jones" of modern physics. While he may never have been called "Montana Ken," such a name would describe a real life hero from Bozeman, Montana, whose extraordinary accomplishments in many ways surpass the fictional characters in cinematic thrillers like Raiders of the Lost Arc.

Indeed, there were some exciting real life moments shared by his wife Vera, one together with Ken in a canoe literally inches from the hundred-foot drop-off of Brazil's largest waterfall. But, such outdoor exploits, of which Ken had many, pale in the light of an in-the-lab brilliance and courage that profoundly enriched the world.

Ken is one of few researchers and perhaps the only physicist to be twice listed in the Guinness Book of Records. The listings are not for jungle exploits but for his lab's highest frequency measurement and for a speed of light determination that made c many times more precise due to his lab's pioneering work with John Hall in laser resonance and metrology ${ }^{\dagger}$.

The meter-kilogram-second (mks) system of units underwent a redefinition largely because of these efforts. Thereafter, the speed of light c was set to $299,792,458 \mathrm{~ms}^{-1}$. The meter was defined in terms of c, instead of the other way around since his time precision had so far trumped that for distance. Without such resonance precision, the Global Positioning System (GPS), the first large-scale wave space-time coordinate system, would not be possible.

Ken's courage and persistence at the Time and Frequency Division of the Boulder Laboratories in the National Bureau of Standards (now the National Institute of Standards and Technology or NIST) are legendary as are his railings against boneheaded administrators who seemed bent on thwarting his best efforts. Undaunted, Ken's lab painstakingly exploited the resonance properties of metalinsulator diodes, and succeeded in literally counting the waves of near-infrared radiation and eventually visible light itself.

Those who knew Ken miss him terribly. But, his indelible legacy resonates today as ultra-precise atomic and molecular wave and pulse quantum optics continue to advance and provide heretofore unimaginable capability. Our quality of life depends on their metrology through the Quality and Finesse of the resonant oscillators that are the heartbeats of our technology.

Before being taken by Lou Gehrig's disease, Ken began ultra-precise laser spectroscopy of unusual molecules such as HO_{2}, the radical cousin of the more common $\mathrm{H}_{2} \mathrm{O}$. Like Ken, such radical molecules affect us as much or more than better known ones. But also like Ken, they toil in obscurity, illuminated only by the purest light in the universe.

In 2005 the Nobel Prize in physics was awarded to Glauber, Hall, and Hensch ${ }^{\dagger \dagger}$ for laser optics and metrology. \dagger K. M. Evenson, J.S. Wells, F.R. Peterson, B.L. Danielson, G.W. Day, R.L. Barger and J.L. Hall,
Phys. Rev. Letters 29, 1346(1972).
\dagger The Nobel Prize in Physics, 2005. http://nobelprize.org/

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear

harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=\quad F_{\text {restore }}
$$

Linear

harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=\quad \quad F_{\text {restore }} \text {. }
$$

held back by a harmonic (linear) restoring force $\longrightarrow F_{\text {restore }}=-k z,\left(k=\omega_{0}^{2} m\right)$,

Fig. 3.2.2 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0 \quad$ http://www.uark.edu/ua/modphys/markup/OscillitWeb.html

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Coordinate $z=z(t)$ is the response coordinate for a particle of mass m and charge e
> held back by a harmonic (linear) restoring force
> retarded by frictional damping force $\longrightarrow F_{\text {damping }}=-b \frac{d z}{d t}$

Trick:
Set: $z=z(t)=A e^{-i \omega t}$

$$
\begin{aligned}
{\left[(-i \omega)^{2}+2 \Gamma(-i \omega)+\omega_{0}^{2}\right] e^{-i \omega t} } & =0 \\
\omega^{2}+2 i \Gamma \omega-\omega_{0}^{2} & =0
\end{aligned}
$$

Solve for: $\omega=\omega_{ \pm}$

$$
\begin{aligned}
\omega_{ \pm} & =\frac{-2 i \Gamma \pm \sqrt{-4 \Gamma^{2}+4 \omega_{0}^{2}}}{2} \\
& =-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
z(t) & =e^{-i\left(-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{\left(-\Gamma \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{-\Gamma t} e^{ \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}} t} \\
& =e^{-\Gamma t} e^{ \pm i \omega_{\Gamma} t}
\end{aligned}
$$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

$$
\frac{d^{2} z}{d t^{2}}=\frac{F_{\text {damping }}}{m}+\frac{F_{\text {restore }}}{m}
$$

Trick:
Set: $z=z(t)=A e^{-i \omega t}$

Coordinate $z=z(t)$ is the response coordinate for a particle of mass m and charge e

$$
\begin{array}{r}
{\left[(-i \omega)^{2}+2 \Gamma(-i \omega)+\omega_{0}^{2}\right] e^{-i \omega t}=0} \\
\omega^{2}+2 i \Gamma \omega-\omega_{0}^{2}=0
\end{array}
$$

Solve for: $\omega=\omega_{ \pm}$

$\begin{aligned} \omega_{ \pm} & =\frac{-2 i \Gamma \pm \sqrt{-4 \Gamma^{2}+4 \omega_{0}^{2}}}{2} \\ & =-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\end{aligned}$
Solution:

$$
\begin{aligned}
z(t) & =e^{-i\left(-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{\left.-\Gamma \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{-\Gamma t} e^{ \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}} t} \\
& =e^{-\Gamma t} e^{ \pm i \omega_{\Gamma} t}
\end{aligned}
$$

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

$=A \cos (\omega t)$
$-i A \sin (\omega t)$
Phasor clocks
turn clockwise in time for positive ω

$$
\frac{d^{2} z}{d t^{2}}=\frac{F_{\text {damping }}}{m}+\frac{F_{\text {restore }}}{m}
$$

Coordinate $z=z(t)$ is the response coordinate for a particle of mass m and charge e

Solve for: $\omega=\omega_{ \pm}$ $\frac{d^{2} z}{d t^{2}}+2 \Gamma \frac{d z}{d t}+\omega_{0}^{2} z \underset{\sim}{\text { Set: } z=z(t)=A e^{-i \omega t}} \underset{\left[(-i \omega)^{2}+2 \Gamma(-i \omega)+\omega_{0}^{2}\right] e^{-i \omega t}=0}{ }$
$\omega^{2}+2 i \Gamma \omega-\omega_{0}^{2}=0$

$$
\begin{aligned}
\omega_{ \pm} & =\frac{-2 i \Gamma \pm \sqrt{-4 \Gamma^{2}+4 \omega_{0}^{2}}}{2} \\
& =-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}
\end{aligned}
$$

Solution:
OscillIt Web Simulation

$$
\begin{aligned}
z(t) & =e^{-i\left(-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{\left.-\Gamma \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{-\Gamma t} e^{ \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}} t} \\
& =e^{-\Gamma t} e^{ \pm i \omega_{\Gamma} t}
\end{aligned}
$$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }} .
$$

Oscillator
 Figures of Merit:

Time required to to reduce amplitude to 5%

Easy-to-recall 5% approximation:

$$
\begin{array}{r}
e^{-3} \cong 0.05 \\
t_{5 \%}=\frac{3}{\Gamma}=\frac{3}{0.2}=15
\end{array}
$$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Oscillator
 Figures of Merit:

Time required to to reduce amplitude to 5% (or 4.321%)

Easy-to-recall 5% approximation: More precise one:

$$
\begin{aligned}
e^{-3} \cong 0.05 & e^{-\pi} \cong 0.04321 \\
t_{5 \%}=\frac{3}{\Gamma}=\frac{3}{0.2}=15 & t_{4.321 \%}=\frac{\pi}{\Gamma}=\frac{\pi}{0.2}=15.708
\end{aligned}
$$

$$
z(t)=e^{-\Gamma t} e^{ \pm i \omega_{\Gamma} t}
$$

Time

Linear

damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Oscillator
 Figures of Merit:

Number N of oscillations to reduce amplitude to $5 \% \quad$ (or 4.321%)

Easy-to-recall 5% approximation: More precise one:

$$
\begin{gathered}
e^{-3} \cong 0.05 \quad e^{-\pi} \cong 0.04321 \\
N_{5 \%}=\frac{\omega_{\Gamma} \cdot t_{5 \%}}{2 \pi}=\frac{3 \omega_{\Gamma}}{2 \pi \Gamma} \sim \frac{\omega_{\Gamma}}{2 \Gamma} \\
t_{4.321 \%}=\frac{\pi}{\Gamma}=\frac{\pi}{0.2}=15.708
\end{gathered}
$$

OscillIt Web Simulation

Fig. 4.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$
http://www.uark.edu/ua/modphys/markup/OscillItWeb.html

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Solving for $z_{\text {stimumus }}(t)$ given $a_{\text {stimulus }}$:

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

$$
\frac{d^{2} z}{d t^{2}}=\frac{F_{\text {damping }}}{m}+\frac{F_{\text {restore }}}{m}+\frac{F_{\text {stimulus }}}{m}
$$

$$
\frac{d^{2} z}{d t^{2}}+2 \Gamma \frac{d z}{d t}+\omega_{0}^{2} z=a_{\text {stimulus }}=\frac{e}{m} E(t)
$$

Solving for $z_{\text {stimuluss }}(t)$ given $a_{\text {stimulus }}: \quad\left(\frac{d^{2}}{d t^{2}}+2 \Gamma \frac{d}{d t}+\omega_{0}^{2}\right) z=a_{\text {stimulus }}$
Pretty crazy? But not so crazy if $a_{\text {sitimusus }}(\mathrm{t})=\left|a_{\text {sitimusus }}\right| \mathrm{s}^{-i \omega_{s \text { stimulust }}}=\left|a_{s}\right| \mathrm{e}^{-i \omega_{s} t}$

$$
\begin{aligned}
z_{\text {stimulus }} & =\frac{1}{-\omega_{s}^{2}-i 2 \Gamma \omega_{s}+\omega_{0}^{2}} a_{s} e^{-i \omega_{s} t} \\
z_{s} e^{-i \omega_{s} t} & =\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} a_{s} e^{-i \omega_{s} t} \\
z_{s} & =a_{s}\left(\omega_{s}\right)
\end{aligned}
$$

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 4.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)
$$

Real and imaginary parts of the rectangular form of G :

Hendrik A. Lorentz

July 18, 1853.- February 4, 1928

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 4.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)
$$

Real and imaginary parts of the rectangular form of $G: \frac{1}{x-i y}=\frac{1}{x-i y} \frac{x+i y}{x+i y}=\frac{x+i y}{x^{2}+y^{2}}$

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 4.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)
$$

Real and imaginary parts of the rectangular form of $G: \frac{1}{x-i y}=\frac{1}{x-i y} \frac{x+i y}{x+i y}=\frac{x+i y}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}+i \frac{y}{x^{2}+y^{2}}$

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 4.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| e^{i \rho}
$$

Real and imaginary parts of the rectangular form of G :

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

Magnitude $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ and polar angle ρ of the polar form of G :

$$
\begin{aligned}
& \left|G_{\omega_{0}}\left(\omega_{s}\right)\right|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}} \\
& \rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right)
\end{aligned}
$$

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 4.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| e^{i \rho}
$$

Real and imaginary parts of the rectangular form of G :
Magnitude $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ and polar angle ρ of the polar form of G :

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

$$
\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}}
$$

$$
\rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right)
$$

Initial time $t=0$
Imaginary
Axis
Ae

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 4.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| e^{i \rho}
$$

Real and imaginary parts of the rectangular form of G :
Magnitude $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ and polar angle ρ of the polar form of G :

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

$$
\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}}
$$

$$
\rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right)
$$

Initial time $t=0$
Imaginary
Axis

Fig. 4.2.5 Oscillator response and stimulus phasors rotate rigidly at angular rate $\omega_{\text {s }}$.

$$
\text { Lorentz-Green's function for } v_{0}=0.5 \mathrm{~Hz} \text { or }: \omega_{0}=\pi \frac{(\text { radian })}{\text { second }}
$$

Fig. 4.2.6 Anatomy of oscillator Green-Lorentz response function plots

$$
\begin{aligned}
& \quad \rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right) \quad \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

$$
\left.A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor }\right)
$$

Fig. 4.2.6 Anatomy of oscillator Green-Lorentz response function plots

$$
\begin{aligned}
& \quad \text { Phase lag angle } \\
& \rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right) \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned} \quad \begin{aligned}
& \text { Real pax } \\
& \left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}
\end{aligned} \quad \text { Imaginary part }
$$

$A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad$ (angular quality factor)

Fig. 4.2.7 Comparing Lorentz-Green resonance region for (a) $\Gamma=0.2$ and (b) $\Gamma=0.1$.
Maximum and minimum points of $\operatorname{Re} G(\omega)$ and inflection points of $\operatorname{Im} G(\omega)$ are near region boundaries $\omega^{F W H M}(\pm)=\omega_{0} \pm \Gamma$.

Complete Green's Solution for the FDHO (Forced-Damped-Harmonic Oscillator)

$$
\begin{aligned}
& z(t)=z_{\text {transient }}(t)+z_{\text {response }}(t) \equiv z_{\text {decaying }}(t)+z_{\text {steady state }}(t) \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+G_{\omega_{0}}\left(\omega_{s}\right) a(0) e^{-i \omega_{s} t} \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| a(0) e^{-i\left(\omega_{s} t-\rho\right)} \\
& \text { Let's you set initial values or boundary conditions } \\
& \text { Known as "inhomogeneous" solution } \\
& \text { Not function of initial values. Marches to stimulus only. }
\end{aligned}
$$

Complete Green's Solution for the FDHO (Forced-Damped-Harmonic Oscillator)

$$
\begin{aligned}
z(t) & =z_{\text {transient }}(t)+z_{\text {response }}(t) \equiv z_{\text {decaying }}(t)+z_{\text {steady state }}(t) \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+G_{\omega_{0}}\left(\omega_{s}\right) a(0) e^{-i \omega_{s} t} \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| a(0) e^{-i\left(\omega_{s} t-\rho\right)}
\end{aligned}
$$

Known as "homogeneous" solution (no force)
Let's you set initial values or boundary conditions
Known as Transient solution since it dies-off as time advances past initial conditions

Known as "inhomogeneous" solution
Not function of initial values. Marches to stimulus only.
Known as Steady State solution since it is present as long as stimulus is.

Complete Green's Solution for the FDHO (Forced-Damped-Harmonic Oscillator)

$$
\begin{aligned}
z(t) & =z_{\text {transient }}(t)+z_{\text {response }}(t) \equiv z_{\text {decaying }}(t)+z_{\text {steady state }}(t) \\
& =A e^{-\Gamma t} e^{-i \omega_{\mathrm{r}} t}+G_{\omega_{0}}\left(\omega_{s}\right) a(0) e^{-i \omega_{s} t} \\
& =A e^{-\Gamma t} e^{-i \omega_{\mathrm{r}} t}+\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| a(0) e^{-i\left(\omega_{s} t-\rho\right)}
\end{aligned}
$$

Known as "homogeneous" solution (no force) Let's you set initial values or boundary conditions
Known as Transient solution since it dies-off as time advances past initial conditions

Known as "inhomogeneous" solution
Not function of initial values. Marches to stimulus only.
Known as Steady State solution since it is present as long as stimulus is.

Stimulus: $A s=0.5000 \propto=6.2832$
Response: $R=0.1989 \beta=1.5708$

(c)

OscillIt (On Resonance) Simulation

Fig. 4.2.8 On Resonance (a)Response z-phasor lags $\rho=90^{\circ}$ behind stimulus F-phasor. $\left(\omega_{\mathrm{S}}=\omega_{0}=2 \pi, \omega_{0}=2 \pi\right.$, and $\left.\Gamma=0.2\right)$. (b) Time plots of $\operatorname{Re} z(t)$ and $\operatorname{Re} F(t)$

Fig. 4.2.8 Below Resonance (c)Response z-phasor lags $\rho=8.05^{\circ}$ behind stimulus F-phasor. $\left(\omega_{\mathrm{S}}=5.03, \omega_{0}=2 \pi\right.$, and $\left.\Gamma=0.2\right) . \quad$ (d) Time plots of $\operatorname{Re} z(t)$ and $\operatorname{Re} F(t)$. Beats are barely visible.

OscillIt (Way Below Resonance) Simulation

Stimulus: As $=1.0000 \omega=7.5265$

Response: $\mathrm{R}=0.0574 \rho=2.9680$

Stimulus: As $=1.0000 \omega=5.0265$
Response: $\mathrm{R}=0.0697 \rho=0.1405$

$\Gamma \sim 0$

OscillIt (Beating) Simulation

Beat Period $\tau_{\text {beat }}=\infty$

Oscillator figures of merit: quality factors Q and $\mathrm{q}=2 \pi \mathrm{Q}$

$$
A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor } \text {) }
$$

Amplification factor $q=\omega_{0} / 2 \Gamma$
Natural oscillation frequency is approximately $v_{0}=\omega_{0} / 2 \pi$ (for $\omega_{0} \gg \Gamma$ we have $\omega_{0} \sim \omega_{\Gamma}$).

Oscillator figures of merit: quality factors Q and $\mathrm{q}=2 \pi \mathrm{Q}$

$$
A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor } \text {) }
$$

Amplification factor $q=\omega_{0} / 2 \Gamma$
Natural oscillation frequency is approximately $v_{0}=\omega_{0} / 2 \pi$ (for $\omega_{0} \gg \Gamma$ we have $\omega_{0} \sim \omega_{\Gamma}$).
$\left(\begin{array}{c}t_{5 \%}=3 / \Gamma=\text { Lifetime } \\ \text { for decaying oscillator } \\ \text { to lose 95\% of } \\ \text { amplitude }\end{array}\right) ~\left(v_{0}=\frac{\omega_{0}}{2 \pi}\right)=\begin{gathered}\text { number } n_{5 \%} \\ \text { of oscillations } \\ \text { in a } t_{5 \%} \text { Lifetime }\end{gathered}$ amplitude

Oscillator figures of merit: quality factors Q and $\mathrm{q}=2 \pi \mathrm{Q}$

$$
A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor } \text {) }
$$

Amplification factor $q=\omega_{0} / 2 \Gamma$
Natural oscillation frequency is approximately $v_{0}=\omega_{0} / 2 \pi$ (for $\omega_{0} \gg \Gamma$ we have $\omega_{0} \sim \omega_{\Gamma}$).
$\left(\begin{array}{c}t_{5 \%}=3 / \Gamma=\text { Lifetime } \\ \text { for decaying oscillator } \\ \text { to lose } 95 \% \text { of }\end{array}\right)$ times $\left(v_{0}=\frac{\omega_{0}}{2 \pi}\right)=\begin{gathered}\text { number } n_{5 \%} \\ \text { of oscillations } \\ \text { in a } t_{5 \%} \text { Lifetime }\end{gathered}$ amplitude

$$
\mathrm{n}_{5 \%}=t_{5 \%} v_{0}=\frac{3}{\Gamma} \cdot \frac{\omega_{0}}{2 \pi} \cong \frac{\omega_{0}}{2 \Gamma}=q
$$

Oscillator figures of merit: quality factors Q and $\mathrm{q}=2 \pi \mathrm{Q}$

$$
\left.A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor }\right)
$$

Amplification factor $q=\omega_{0} / 2 \Gamma$

Natural oscillation frequency is approximately $v_{0}=\omega_{0} / 2 \pi$ (for $\omega_{0} \gg \Gamma$ we have $\omega_{0} \sim \omega_{\Gamma}$).

Energy decay
(proportional to the square of oscillator amplitude): $\quad\left(e^{\Gamma t}\right)^{2}=e^{-2 \Gamma t} \quad d E=-2 \Gamma E$

Oscillator figures of merit: quality factors Q and $\mathrm{q}=2 \pi \mathrm{Q}$

$$
A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor) }
$$

Amplification factor $q=\omega_{0} / 2 \Gamma$

Natural oscillation frequency is approximately $v_{0}=\omega_{0} / 2 \pi$ (for $\omega_{0} \gg \Gamma$ we have $\omega_{0} \sim \omega_{\Gamma}$).

Energy decay
(proportional to the square of oscillator amplitude): $\quad\left(e^{\Gamma t}\right)^{2}=e^{-2 \Gamma t} \quad d E=-2 \Gamma E$
Relative amount
$\begin{aligned} & \text { of energy lost } \\ & \text { each cycle period }\end{aligned}=\tau_{0}\left(\frac{-d E}{E}\right)=\frac{2 \Gamma}{v_{0}} \equiv \frac{1}{Q}=\frac{2 \pi}{q} \quad Q=($ Standard angular quality factor $)=\frac{q}{2 \pi}$

$$
\left(\tau_{0}=\frac{1}{v_{0}}\right)
$$

Oscillator figures of merit: Uncertainty $1 / \mathbf{q}$

To see a beat we need $\tau_{\text {half-beat }}$ to be less than $\tau_{5 \%}$ or $3 / \Gamma$. (Here we approximate $\pi \sim 3.0$, again.)

$$
\pi /\left|\omega_{s}-\omega_{0}\right|<3 / \Gamma \quad\left|\omega_{s}-\omega_{0}\right|>\Gamma
$$

This means ω-detuning error is greater than or equal to the decay rate Γ.

Any detuning less than Γ is virtually undetectable. Total ω uncertainty is $\pm \Gamma$ or twice Γ (that is: FWHM $\Delta \omega=2 \Gamma$). Linear frequency uncertainty is:

The relative frequency uncertainty $\quad \frac{2 \Gamma}{\omega_{0}}=\frac{\Delta \omega}{\omega_{0}}=\frac{1}{q}=\frac{\Delta v}{v_{0}}$

$$
\Delta v=\Delta \omega / 2 \pi=\Gamma / \pi
$$

is the inverse of the angular quality factor q.

If we think of the 5% or 4.321% lifetime of a musical note as its time uncertainty $\Delta \mathrm{t}$, then:

$$
\Delta t \Delta v=3 / \pi \approx 1
$$

$$
\Delta t=t_{5 \%}=3 / \Gamma
$$

$$
\Delta t=t_{4.321 \%}=\pi / \Gamma
$$

Approximate Lorentz-Green's Function for high quality FDHO (Quantum propagator)
$G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{ } \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)$
Complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{s}$

Approximate Lorentz-Green's Function for high quality FDHO
(Quantum propagator)
$G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{ } \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)$
Complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{S}$

$$
L(\Delta-i \Gamma)=\frac{1}{\Delta-i \Gamma}=\operatorname{Re} L \quad+i \operatorname{Im} L \quad=\frac{\Delta}{\Delta^{2}+\Gamma^{2}}+i \frac{\Gamma}{\Delta^{2}+\Gamma^{2}}=|L|^{2} \Delta+i|L|^{2} \Gamma
$$

Approximate Lorentz-Green's Function for high quality FDHO
(Quantum propagator)

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{ } \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)
$$

Complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{S}$

$$
\begin{aligned}
L(\Delta-i \Gamma) & =\frac{1}{\Delta-i \Gamma}=\operatorname{Re} L \quad+i \operatorname{Im} L \quad=\frac{\Delta}{\Delta^{2}+\Gamma^{2}}+i \frac{\Gamma}{\Delta^{2}+\Gamma^{2}}=|L|^{2} \Delta+i|L|^{2} \Gamma \\
& =|L| e^{i \rho}=|L| \cos \rho+i|L| \sin \rho=\frac{\cos \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}}+i \frac{\sin \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}} \text { where: }|L|=\frac{1}{\sqrt{\Delta^{2}+\Gamma^{2}}}
\end{aligned}
$$

Approximate Lorentz-Green's Function for high quality FDHO (Quantum propagator)
$G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{ } \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)$
Complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{s}$

$$
\begin{aligned}
L(\Delta-i \Gamma) & =\frac{1}{\Delta-i \Gamma}=\operatorname{Re} L \quad+i \operatorname{Im} L \quad=\frac{\Delta}{\Delta^{2}+\Gamma^{2}}+i \frac{\Gamma}{\Delta^{2}+\Gamma^{2}}=|L|^{2} \Delta+i|L|^{2} \Gamma \\
& =|L| e^{i \rho}=|L| \cos \rho+i|L| \sin \rho=\frac{\cos \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}}+i \frac{\sin \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}} \text { where: }|L|=\frac{1}{\sqrt{\Delta^{2}+\Gamma^{2}}}
\end{aligned}
$$

Approximate Lorentz-Green's Function for high quality FDHO (Quantum propagator)

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{\longrightarrow} \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)
$$

Complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{s}$

$$
\begin{aligned}
L(\Delta-i \Gamma) & =\frac{1}{\Delta-i \Gamma}=\operatorname{Re} L \quad+i \operatorname{Im} L \quad=\frac{\Delta}{\Delta^{2}+\Gamma^{2}}+i \frac{\Gamma}{\Delta^{2}+\Gamma^{2}}=|L|^{2} \Delta+i|L|^{2} \Gamma \\
& =|L| e^{i \rho}=|L| \cos \rho+i|L| \sin \rho=\frac{\cos \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}}+i \frac{\sin \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}} \text { where: }|L|=\frac{1}{\sqrt{\Delta^{2}+\Gamma^{2}}}
\end{aligned}
$$

$|L|=\frac{1}{\Gamma} \sin \rho$
$|L|=\frac{1}{\Delta} \cos \rho$
Ideal Lorentz-Green's functions

Fig. 4.2.13 Ideal Lorentzian in inverse rate space. (Smith life-time $1 / \Gamma$ vs. beat-period $1 / \Delta$ coordinates)

[^0]SMITH CHART (Invented by Phillip H. Smith 1905-1987)

An FDHO Green's Function Slide rule

A plot of $f(z)=1 / z$

For wavy
"Ohm's Laws"
$V=I \cdot Z$
$I=V / Z$

Smith plot: Graph paper

The Common Lorentzian (a.k.a. The OWitch of Olgnesi)

$x^{2}=b^{2} \cot ^{2} \theta=b^{2} \quad \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \quad \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2}$
$x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{gathered}y=\frac{b}{x^{2}+b^{2}} \\ \begin{array}{c}\text { Common Lorentzian function I. } \\ \text { (imaginary" "absorbtive" part) }\end{array}\end{gathered}$

The Common Lorentzian (a.k.a. The OUtch of Ofynesi)

$x^{2}=b^{2} \cot ^{2} \theta=b^{2} \quad \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \quad \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2}$

$x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{gathered}y=\frac{b}{x^{2}+b^{2}} \\ \begin{array}{c}\text { Common Lorentzian function I. } \\ \text { (imaginary "absorbtive" part) }\end{array}\end{gathered}$

$$
x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{x}{y} \begin{gathered}
y=\frac{x}{x^{2}+b^{2}} \\
\begin{array}{c}
\text { Common Lorentzian function II. } \\
\text { (real "refractory" part) }
\end{array} \\
\hline
\end{gathered}
$$

Born
Died
Residence
Nationality
Fields
May 16, 1718 January 9, 1799 (aged 80)
Italy
Italy
Mathematics

The Common Lorentzian (a.k.a. The ()Wich of Otgmesi)

$x^{2}=b^{2} \cot ^{2} \theta=b^{2} \quad \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \quad \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2}$

$x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{gathered}y=\frac{b}{x^{2}+b^{2}} \\ \begin{array}{l}\text { Common Lorentzian function I. } \\ \text { (imaginary "absorbtive" part) }\end{array}\end{gathered}$

$$
x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{x}{y} \begin{gathered}
y=\frac{x}{x^{2}+b^{2}} \\
\begin{array}{c}
\text { Common Lorentzian function II. } \\
\text { (real "refractory" part) }
\end{array} \\
\hline
\end{gathered}
$$

The Common Lorentzian (a.k.a. The OWitch of Olgnesi)

$x^{2}=b^{2} \cot ^{2} \theta=b^{2} \quad \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \quad \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2}$

$x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{gathered}y=\frac{b}{x^{2}+b^{2}} \\ \begin{array}{c}\text { Common Lorentzian function } I \text {. } \\ \text { (imaginary "absorbtive" part) }\end{array}\end{gathered}$

$$
x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{x}{y} \begin{gathered}
y=\frac{x}{x^{2}+b^{2}} \\
\begin{array}{c}
\text { Common Lorentzian function II. } \\
\text { (real "refractory" part) }
\end{array} \\
\hline
\end{gathered}
$$

Maria Gaetana Agnesi

Born
Died January 9, 1799 (aged 80)
Residence
Nationality Italy
Fields Mathematics

Compare ideal Lorentzians ($\Gamma=0.2$)
with a very non-ideal one $(\Gamma=2)$

OscillIt Web Simulation - Lorentz Response Function ($\Gamma=0.2$)

The Common Lorentzian (a.k.a. The OWitch of Olgnesi)

$x^{2}=b^{2} \cot ^{2} \theta=b^{2} \quad \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \quad \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2}$
$x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{gathered}y=\frac{b}{x^{2}+b^{2}} \\ \begin{array}{c}\text { Common Lorentzian function I. } \\ \text { (imaginary "absorbtive" part) }\end{array}\end{gathered}$

$$
x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{x}{y} \begin{gathered}
y=\frac{x}{x^{2}+b^{2}} \\
\begin{array}{c}
\text { Common Lorentzian function II. } \\
\text { (real "refractory" part) }
\end{array} \\
\hline
\end{gathered}
$$

Born
May 16,1718
Died
January 9, 1799 (aged 80) Italy

Nationality Italy
Fields Mathematics

Fig. 10.11 Dipole F -field $f(z)=1 / z^{2}$ and scalar potential $(\Phi=$ const. $)$-circles orthogonal to $(\mathrm{A}=$ const.)-circles.

From: Fig. 1.10.12

From: Fig. 1.10.12

From: Fig. 1.10.12

$$
\begin{aligned}
& x^{2}=b^{2} \cot ^{2} \theta=b^{2} \frac{\cos ^{2} \theta}{\sin ^{2} \theta}=b^{2} \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{b^{2}}{\sin ^{2} \theta} b^{2} \\
& x^{2}+b^{2}=\frac{b^{2}}{\sin ^{2} \theta}=\frac{b}{y} \begin{array}{c}
y=\frac{b}{x^{2}+b^{2}} \\
\begin{array}{l}
\text { Common Lorentzian function I. } \\
\text { (imaginary "absorbtive" part) }
\end{array}
\end{array}
\end{aligned}
$$

[^0]: Constant Δ and Γ curves in Fig. 4.2.13 are orthogonal circles of $1 / z$ - dipolar coordinates. Recall Fig. 1.10.11.

