Geometric Optimization Exercises

Fig. 1 Local friction-free subways on Sophomore Physics-Earth (SPE). Fig. 2 Global friction-free subways on SPE.

1. Assume *constant* gravity $g=9.8m/s^2$ for a friction-free local subway path *AMB* in Fig. 1 where turning vertex *M* is negotiated ideally with no loss of energy (or life). Derive depth D_V of point *M* and angle ϕ_{AMB} that gives the quickest trip from *A* to *B* (*AC*=1km=*CB*) thru *M* and derive the *AMB* time of travel τ_{AMB} .

2. Assume *Isotropic Harmonic Oscillator* IHO gravity in Fig. 2 with acceleration $g=9.8m/s^2$ at surface dropping to g=0 at Earth-center C_{\oplus} (bottom-center of Fig.2). The objective (as in Ex. 1) is to find path *AMB* and angle ϕ_{AMB} having least time of travel τ_{AMB} between Terminal points *A* and *B* separated by great circle longitude angle $\Delta \Phi_{AB}$.

Before solving main objective consider some alternative routes whose travel times should be easy to derive.

- a. Direct straight line route from A to B: $\tau_{A \text{ direct toB}} = \underline{min}$. Relate to SPE half-orbit period $\tau_{\odot}/2$
- b. Straight line segment routes A to C then C to B: $\tau_{AtoCtoB} = ____ min$. " "
- c. Direct A to Earth-center C_{\oplus} then C_{\oplus} back up to B: $\tau_{AtoC_{atoB}} = \underline{min}$. "

3. To solve main objective of Ex.2, imagine subway cars from terminal *A* or *B* leave their terminal at time $t_0=0$ and fall along straight tunnels (white lines) to positions at later time t_1 indicated by points on blue oval in Fig. 2. Ovals *A* and *B* expand equally until a touch-time t_T when they are tangent to each other and to vertical line *CM*.

- a. That touch-time t_T is related to total minimum travel time τ_{AMB} . How? (Recall τ_{AMB} for Ex. 1.)
- b. Derive polar $r(\Theta, t)$ equation for "ovals" relative to Terminal origin. What Thales geometric form is it?
- c. Relate optimizing angle ϕ_{AMB} to angle $\Delta \Phi_{AB}$ of longitudinal *A* to *B* separation. Plot geometry for $\Delta \Phi = \frac{\pi}{2}$. It helps to define a slope angle α between optimal subway path and terminal vertical radial line.
- d. A terminal-launched SPE circular orbit serves as a clock hand that quantifies growing "oval" size. Include this in your geometric plot to quantify optimal travel time τ_{AMB} and plot car positions vs. *t*. Show where cars are at fractions $\frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \dots$ of half-orbit period $\tau_{\odot}/2$ to help find travel time τ_{AMB} .
- e. Verify geometry c and d in extreme cases of distance that is small ($\Delta \Phi \ll \frac{\pi}{2}$ like Ex.1) or large ($\Delta \Phi = \pi$).