Aprox. constants for exam purposes: $M_{\oplus}=6 \cdot 10^{24} \mathrm{~kg}, R_{\oplus}=6 \cdot 10^{6} \mathrm{~m}, \quad G=\frac{2}{3} \cdot 10^{-10} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}, \quad c=3 \cdot 10^{8} \mathrm{~ms}^{-1}$
Plotting graph copies provided. Use multiple copies if necessary. Most problems are solved more easily by geometry.
EXAM SHEET 1:First do this exam with closed book in 2 hours. EXAM SHEET 2:Re-do this exam open source no time limit. Both parts of this Assignment 15 due by Thursday Dec. 14
Io returns (With a vengeance!)

1. Suppose Io volcano \mathbf{L} ejects lava at such a speed $v_{I N 45^{\circ}}^{\text {hit } 90^{\circ}}$ that ejecta with initial angle $\alpha=45^{\circ}$ have range $\rho=90^{\circ}$ to hit equatorial target $\mathbf{T}_{90^{\circ}}$. (On graph of Io assume mass $M_{\oplus}=6 \cdot 10^{24} \mathrm{~kg}$ and radius $R_{\oplus}=6 \cdot 10^{6} \mathrm{~m}$ near to that of Earth. Use R_{\oplus} as a geometric unit. This Io has an R_{\oplus}-circular-orbit of period $t_{\oplus}=$ \qquad min.)
a. First find and label "focus-locus" line for fixed $\alpha=45^{\circ}$ and varying $v_{I N}$ and locate $2^{\text {nd }}$ focal point (or points) corresponding to pole-to-equator flight.
b. Construct this $\mathbf{T}_{90^{\circ}}$ orbit while indicating major \& minor axes, foci, and enough points to show its shape. Plot $K E / P E$ ratio R-scale and show eccentricity vector ε and give its magnitude $|\varepsilon|=\varepsilon=$ \qquad .
c. From this estimate its initial $K E / P E$ ratio $R=$ \qquad and initial $v_{I N 45^{\circ}}^{H i t 90^{\circ}}=$ \qquad km / s.
d. Estimate the time to impact $t_{\text {L-to- } 90^{\circ}}\left(\alpha=45^{\circ}\right)=$ minutes. (Derive and discuss geometrically using Kepler laws.) e. Construct and label the "focus-locus" circle for fixed $v_{0}=v_{I N 45^{\circ}}^{H i t i o}$ and varying α. Does another initial path with the same $v_{0}=v_{I N ? ?^{\circ}}^{H i t 90^{\circ}}$ but different angle $\alpha=\ldots \quad$? also hit $\mathbf{T}_{90^{\circ}}$? If so find or construct its orbital geometry (major \& minor axes, foci, and ε), value of $K E / P E$ ratio $R=$ \qquad , and time to impact $t_{\text {L-to-T900 }}=$ \qquad . f. What v_{0}-trajectory has minimum time to impact $t_{\text {MIN-L-to-T90 }}$ (Give $\alpha_{\text {MIN }}=$ \qquad ${ }^{\circ}$ and $t_{\text {MIN-L-to- } 90^{\circ}}=$ \qquad min.) More difficult problems:
g. Construct an envelope contacting all trajectories with the same initial speed v_{0} but various launch angles α.
Indicate the contact points of the envelope with ellipse(s) drawn so far.
h. Tell if targets $\mathbf{T}_{30^{\circ}} _$?, $\mathbf{T}_{60^{\circ}} \ldots$?, $\mathbf{T}_{120^{\circ}} \quad$?, $\mathbf{T}_{150^{\circ} _ \text {? }}, \mathbf{T}_{180^{\circ}} \ldots$?, are also within range. (Yes, No, or maybe)
i. Can missiles launched at $\alpha=45^{\circ}$ with higher $v_{I N}>v_{0}$ reach beyond $\mathbf{T}_{90^{\circ}}$ to $\mathbf{T}_{120^{\circ}}$? ?, to $\mathbf{T}_{180^{\circ}}=$?, beyond $\mathbf{T}_{180^{\circ}}=$?
j. Discuss what ellipse, parabola, or hyperbola limits $\alpha=45^{\circ}$-path(s) to a maximum range $\left(\rho_{\max }\right)^{\circ}=$ \qquad (what?)
k. Construct points of that maximal trajectory visible on the graph (include path below- $R_{\oplus}=6 \cdot 10^{6} \mathrm{~m}$) while we now imagine actual mass of $I o$ has been compressed to a Schwarzchild black hole of radius $r_{\oplus S}$ at \mathbf{C}.
(Xtra cred: If instead it is a neutron starlet plowing thru Io, would it deviate above or below the compressed Io-path? Discuss)
l. About how big is a Schwarzchild-limited Earth radius? $r_{\oplus S}=$ \qquad cm . Plot $r_{\oplus S}$ if possible. Still more difficult problems:

Sketch or construct orbit. Derive algebraic formulae if possible.
n. Give radius r_{R} of circular fixed- R "focus-locus" in terms of initial radius r_{o} and ratio $R . r_{R}=$ \qquad

Aprox. constants for exam purposes: $M_{\oplus}=6 \cdot 10^{24} \mathrm{~kg}, R_{\oplus}=6 \cdot 10^{6} \mathrm{~m}, \quad G=\frac{2}{3} \cdot 10^{-10} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}, \quad c=3 \cdot 10^{8} \mathrm{~ms}^{-1}$
Plotting graph copies provided. Use multiple copies if necessary. Most problems are solved more easily by geometry.
EXAM SHEET 1:First do this exam with closed book in 2 hours. EXAM SHEET 2:Re-do this exam open source no time limit.
Io returns (With a vengeance!)

1. Suppose Io volcano \mathbf{L} ejects lava at such a speed $v_{I N 45^{\circ}}^{\text {hit90}}$ that ejecta with initial angle $\alpha=45^{\circ}$ have range $\rho=90^{\circ}$ to hit equatorial target $\mathbf{T}_{90^{\circ}}$. (On graph of Io assume mass $M_{\oplus}=6 \cdot 10^{24} \mathrm{~kg}$ and radius $R_{\oplus}=6 \cdot 10^{6} \mathrm{~m}$ near to that of Earth. Use R_{\oplus} as a geometric unit. This Io has an R_{\oplus}-circular-orbit of period $t_{\oplus}=$ \qquad min.)
a. First find and label "focus-locus" line for fixed $\alpha=45^{\circ}$ and varying $v_{I N}$ and locate $2^{\text {nd }}$ focal point (or points) corresponding to pole-to-equator flight.
b. Construct this $\mathbf{T}_{90^{\circ}}$ orbit while indicating major \& minor axes, foci, and enough points to show its shape. Plot $K E / P E$ ratio R-scale and show eccentricity vector ε and give its magnitude $|\varepsilon|=\varepsilon=$ \qquad .
c. From this estimate its initial $K E / P E$ ratio $R=$ \qquad and initial $v_{I N 45^{\circ}}^{\text {Hit } 90^{\circ}}=$ \qquad km / s.
d. Estimate the time to impact $t_{\mathbf{L}-\mathrm{to}-\mathrm{T} 90^{\circ}}\left(\alpha=45^{\circ}\right)=$ ___minutes. (Derive and discuss geometrically using Kepler laws.)
e. Construct and label the "focus-locus" circle for fixed $v_{0}=v_{I N 45^{\circ}}^{H i 90^{\circ}}$ and varying α. Does another initial path with the same $v_{0}=v_{I N}^{H i t} ?^{\circ}$ b but different angle $\alpha=_$? also hit $\mathbf{T}_{90^{\circ}}$? If so find or construct its orbital geometry (major \& minor axes, foci, and ε), value of $K E / P E$ ratio $R=$ \qquad , and time to impact $t_{\text {L-to-T90 }}=$ \qquad . f. What v_{0}-trajectory has minimum time to impact $t_{\text {MIN-L-to-T } 90^{\circ}}$ (Give $\alpha_{\text {MIN }}=$ \qquad ${ }^{\circ}$ and $\left.t_{\text {MIN-L-to-T90 }}=\ldots \min .\right)$

More difficult problems:

g. Construct an envelope contacting all trajectories with the same initial speed v_{0} but various launch angles α.
Indicate the contact points of the envelope with ellipse(s) drawn so far.
h. Tell if targets $\mathbf{T}_{30^{\circ}} \ldots$?, $\mathbf{T}_{60^{\circ} \ldots}$?, $\mathbf{T}_{120^{\circ} _ \text {? }} \mathbf{T}_{150^{\circ} \ldots}$?, $\mathbf{T}_{180^{\circ}} \ldots$?, are also within range. (Yes, No, or maybe)
i. Can missiles launched at $\alpha=45^{\circ}$ with higher $v_{I N}>v_{0}$ reach beyond $\mathbf{T}_{90^{\circ}}$ to $\mathbf{T}_{120^{\circ}} _$?, to $\mathbf{T}_{180^{\circ}} \quad$?, beyond $\mathbf{T}_{180^{\circ}} _$?
j. Discuss what ellipse, parabola, or hyperbola limits $\alpha=45^{\circ}$-path(s) to a maximum range $\left(\rho_{\max }\right)^{\circ}=$ \qquad (what?)
k. Construct points of that maximal trajectory visible on the graph (include path below- $R_{\oplus}=6 \cdot 10^{6} \mathrm{~m}$) while we now imagine actual mass of $I o$ has been compressed to a Schwarzchild black hole of radius $r_{\oplus S}$ at \mathbf{C}.
(Xtra cred: If instead it is a neutron starlet plowing thru Io, would it deviate above or below the compressed Io-path? Discuss)
l. About how big is a Schwarzchild-limited Earth radius? $r_{\oplus S}=$ \qquad cm . Plot $r_{\oplus S}$ if possible.

Still more difficult problems:

Sketch or construct orbit. Derive algebraic formulae if possible.
n. Give radius r_{R} of circular fixed- R "focus-locus" in terms of initial radius r_{o} and ratio $R . r_{R}=$ \qquad

