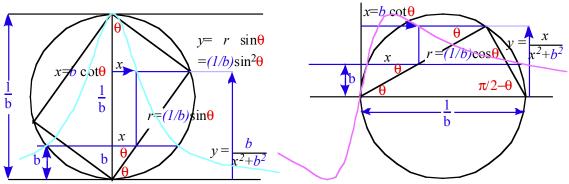
Assignment 12 - PHYS 5103-11/13/17-Due Mon. Nov. 21 CMwBang! Ch 4.1 thru Ch.4.4. and Lectures 20-24

Ex.1 The "standard" Lorentzian (Note: Review complex 2-pole potential $\phi(z)=1/z$ (10.42) in Unit 1-Ch. 10 Fig. 10.11.) In physics literature, a standard Lorentzian function generally means a form $L(\Delta) = A/(\Delta^2 + A^2)$ with constant A. In the Near-Resonant Approximation (NRA is (4.2.18)) the $L(\Delta)$ or its derivative is an approximation to exact G-equations (4.2.15).

- (a) Use NRA (4.2.18) to reduce (4.2.15a-d) and identify a standard Lorentzian function of the detuning parameter $\Delta = \omega_s \omega_0$.
- (b) Show that NRA for complex response G=Re G+iIm G gives circular arcs in the complex $\omega=|\omega|e^{\imath\theta}=\Delta+\text{i}\Gamma$ plane for constant decay rate Γ and variable detuning or beat rate Δ . How does this circle deviate from what is almost a circle in Fig. 4.2.6? (Consider higher Γ values for which NRA breaks down such as Fig. 4.2.14.) Fixed Δ and varying Γ give what curve?
- (c) Do ruler-&-compass construction of NRA Lorentz-Green functions as in figures below for b=1/2 and b=1/3.

$$\operatorname{Re} G_{\omega_0}(\omega_s) = y = \frac{b}{x^2 + b^2}$$
, $\operatorname{Im} G_{\omega_0}(\omega_s) = y = \frac{x}{x^2 + b^2}$, and $|G_{\omega_0}(\omega_s)|$. (See p. 60-62 of Lect. 20.)

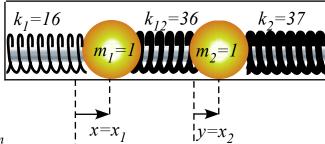


Ex.2 Max and min G-values (Part (b-c) involves some algebra!)

Derive equations for the extreme values for the response function or function related to G as asked below.

For part (a) only use Near-Resonant Approximation (NRA): See preceding Ex.1.

- (a1) Find values which give maxima for: $\operatorname{Re} G_{\omega_0}(\omega_s)$, $\operatorname{Im} G_{\omega_0}(\omega_s)$, and $|G_{\omega_0}(\omega_s)|$ assuming ω_0 is constant and ω_s varies. (a2) Find values which give maxima for: $\operatorname{Re} G_{\omega_0}(\omega_s)$, $\operatorname{Im} G_{\omega_0}(\omega_s)$, and $|G_{\omega_0}(\omega_s)|$ assuming ω_s is constant and ω_0 varies.
- **(b)** Do **(a)** for exact $G_{\omega_0}(\omega_s)$. Exact plots by calculator help check these answers.
- (c) Find exact value to maximize peak KE of responding oscillator. (1st show total $KE = \frac{1}{2} m\omega^2 A^2$ for oscillation of amplitude A.)



Ex.3 Coupled oscillation

Two identical mass M=1kg blocks slide friction-free on a rod and are connected by springs $k_1=16N \cdot m^{-1}$ and $k_2=37N \cdot m^{-1}$ to ends of a box and coupled to each other by spring $k_{12}=36N \cdot m^{-1}$.

- (a) Write Lagrangian equations of motion and derive a K-matrix form of them.
- (b) Solve for eigenmodes and eigenfrequencies of system and plot their directions on an X,Y-graph. Use spectral decomposition methods (Lect. 20 or Appendix 4.C) to derive eigensolution projectors and eigenvectors.
- (c) Given initial conditions $(X(\theta)=1,Y(\theta)=0)$, plot the resulting path in the XY-plane. Show algebraically that it is a parabola.
- (d) Use spectral decomposition (Lect. 20 or Appendix 4.C) to derive square-roots $H=\sqrt{K}$. (How many square-roots does K have?) **Ex.4** *U*(2) view of coupled oscillation
- (a) Rewrite the spring K-matrix for Ex.3 into an H-matrix where $K = H^2$ as in (4.4.8).
- (b) Give the resulting **H**-matrix as an (A,B,C,D) combination of 1, σ_A , σ_B , and σ_C as in (4.4.9). (++ root of **K** results for **H**.)
- (c) Sketch the resulting Ω -whirl vector or "crank" in real 3D (A,B,C)-space as in (4.4.10).
- (d) For (X(0)=1,Y(0)=0) find initial S-state ("spin") vector in (A,B,C)—space as in (4.4.16). Show its evolution by Ω as in Fig. 4.4.2.
- (e) Plot H-eigenvalues $(\varepsilon_1, \varepsilon_2)$ as though they were energy levels and indicate transition rate $\Omega = \varepsilon_1 \varepsilon_2$ and mean rate $\omega = (\varepsilon_1 \varepsilon_2)/2$.