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Assignment 12 - PHYS 5103-11/13/17-Due Mon. Nov. 21 CMwBang! Ch 4.1 thru Ch.4.4. and Lectures 20-24

Ex.1 The “standard” Lorentzian (Note: Review complex 2-pole potential &(z)=1/z (10.42) in Unit 1-Ch. 10 Fig. 10.11.)

In physics literature, a standard Lorentzian function generally means a form [ ( A) =A/ (A2 + Az) with constant 4. In the Near-Resonant
Approximation (NRA is (4.2.18)) the L(A) or its derivative is an approximation to exact G-equations (4.2.15).

(a) Use NRA (4.2.18) to reduce (4.2.15a-d) and identify a standard Lorentzian function of the detuning parameter A=s-to.

(b) Show that NRA for complex response G=Re G +ilm G gives circular arcs in the complex w=|® |e'® =A+I plane for constant decay rate
I" and variable detuning or beat rate A. How does this circle deviate from what is almost a circle in Fig. 4.2.6? (Consider higher I" values
for which NRA breaks down such as Fig. 4.2.14.) Fixed A and varying I" give what curve?

(¢) Do ruler-&-compass construction of NRA Lorentz-Green functions as in figures below for b=1/2 and b=1/3.
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Rer0 ()=y= m, Im Gw0 (0)=y= m, and | G“’o (@,)].(See p. 60-62 of Lect. 20.)
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Ex.2 Max and min G-values (Part (b-c) involves some algebra!)

Derive equations for the extreme values for the response function or function related to G as asked below.

For part (a) only use Near-Resonant Approximation (NRA): See preceding Ex.1.

(a1) Find values which give maxima for: Re G“’o (@,), Im G“’o (@), and | G“’o (@) ] assuming @, is constant and @, varies.
(a2) Find values which give maxima for: Re Gwo (0,), Im G“’o (@), and | Gwo (o) ] assuming @), is constant and @, varies.
(b) Do (a) for exact G 0 (w,) . Exact plots by calculator help check these answers.

(¢) Find exact value to maximize peak KE of responding oscillator.(1st show total KE=+ mw? 42 for oscillation of amplitude 4.)
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Ex.3 Coupled oscillation ! 1 1V =X

Two identical mass M=1kg blocks slide friction-free on a rod and are connected by springs k;=16N'm-! and k>=37N-m-! to ends of a box
and coupled to each other by spring k;2=36N-m-..

(a) Write Lagrangian equations of motion and derive a K-matrix form of them.

(b) Solve for eigenmodes and eigenfrequencies of system and plot their directions on an X,Y-graph. Use spectral decomposition methods
(Lect. 20 or Appendix 4.C) to derive eigensolution projectors and eigenvectors.

(¢) Given initial conditions (X(0)=1,Y(0)=0), plot the resulting path in the XY-plane. Show algebraically that it is a parabola.

(d) Use spectral decomposition (Lect. 20 or Appendix 4.C) to derive square-roots H=VK. (How many square-roots does K have?)

Ex.4 U(2) view of coupled oscillation

(a) Rewrite the spring K-matrix for Ex.3 into an H-matrix where K= H2 as in (4.4.8).

(b) Give the resulting H-matrix as an (4,B,C,D) combination of 1, 6a, 05, and Gc as in (4.4.9). (++ root of K results for H.)

(c) Sketch the resulting Q-whirl vector or “crank™ in real 3D (4, B,C)—space as in (4.4.10).

(d) For (X(0)=1,Y(0)=0) find initial S-state (“spin”)vector in (4,B,C)—space as in (4.4.16). Show its evolution by Q as in Fig. 4.4.2.
(e) Plot H-eigenvalues (€1, €2) as though they were energy levels and indicate transition rate Q=¢;-¢€2 and mean rate w=(€1-€2)/2.



