Assignment 12 - PHYS 5103-11/13/17-Due Mon. Nov. 21 CMwBang! Ch 4.1 thru Ch.4.4. and Lectures 20-24
Ex. 1 The "standard" Lorentzian (Note: Review complex 2-pole potential $\phi(z)=1 / z$ (10.42) in Unit 1-Ch. 10 Fig. 10.11.)
In physics literature, a standard Lorentzian function generally means a form $L(\Delta)=A /\left(\Delta^{2}+A^{2}\right)$ with constant A. In the Near-Resonant Approximation (NRA is (4.2.18)) the $L(\Delta)$ or its derivative is an approximation to exact G-equations (4.2.15).
(a) Use NRA (4.2.18) to reduce (4.2.15a-d) and identify a standard Lorentzian function of the detuning parameter $\Delta=\omega_{s}-\omega_{0}$.
(b) Show that NRA for complex response $G=\operatorname{Re} G+\operatorname{iIm} G$ gives circular arcs in the complex $\omega=|\omega| \mathrm{e}^{1 \theta}=\Delta+\mathrm{i} \Gamma$ plane for constant decay rate Γ and variable detuning or beat rate Δ. How does this circle deviate from what is almost a circle in Fig. 4.2.6? (Consider higher Γ values for which NRA breaks down such as Fig. 4.2.14.) Fixed Δ and varying Γ give what curve?
(c) Do ruler-\&-compass construction of NRA Lorentz-Green functions as in figures below for $b=1 / 2$ and $b=1 / 3$.
$\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=y=\frac{b}{x^{2}+b^{2}}, \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=y=\frac{x}{x^{2}+b^{2}}$, and $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$.(See p. 60-62 of Lect. 20.)

Ex. 2 Max and min G-values (Part (b-c) involves some algebra!)
Derive equations for the extreme values for the response function or function related to G as asked below.
For part (a) only use Near-Resonant Approximation (NRA): See preceding Ex.1.
(\mathbf{a}_{1}) Find values which give maxima for: $\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right), \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)$, and $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ assuming ω_{0} is constant and ω_{s} varies.
(\mathbf{a}_{2}) Find values which give maxima for: $\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right), \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)$, and $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ assuming ω_{s} is constant and ω_{0} varies.
(b) Do (a) for exact $G_{\omega_{0}}\left(\omega_{s}\right)$. Exact plots by calculator help check these answers.
(c) Find exact value to maximize peak KE of responding oscillator.(1st show total $K E=\frac{1}{2} m \omega^{2} A^{2}$ for oscillation of amplitude A.)

Ex. 3 Coupled oscillation

Two identical mass $M=1 \mathrm{~kg}$ blocks slide friction-free on a rod and are connected by springs $k_{1}=16 \mathrm{~N} \cdot \mathrm{~m}^{-1}$ and $k_{2}=37 \mathrm{~N} \cdot \mathrm{~m}^{-1}$ to ends of a box and coupled to each other by spring $k_{12}=36 \mathrm{~N} \cdot \mathrm{~m}^{-1}$.
(a) Write Lagrangian equations of motion and derive a \mathbf{K}-matrix form of them.
(b) Solve for eigenmodes and eigenfrequencies of system and plot their directions on an X,Y-graph. Use spectral decomposition methods (Lect. 20 or Appendix 4.C) to derive eigensolution projectors and eigenvectors.
(c) Given initial conditions $(X(0)=1, Y(0)=0)$, plot the resulting path in the XY-plane. Show algebraically that it is a parabola.
(d) Use spectral decomposition (Lect. 20 or Appendix 4.C) to derive square-roots $\mathbf{H}=\sqrt{ } \mathbf{K}$. (How many square-roots does \mathbf{K} have?)

Ex. 4 U(2) view of coupled oscillation
(a) Rewrite the spring K-matrix for Ex. $\mathbf{3}$ into an \mathbf{H}-matrix where $\mathbf{K}=\mathbf{H}^{2}$ as in (4.4.8).
(b) Give the resulting \mathbf{H}-matrix as an (A, B, C, D) combination of $\mathbf{1}, \sigma_{\mathrm{A}}, \sigma_{\mathrm{B}}$, and σ_{C} as in (4.4.9). (++ root of \mathbf{K} results for \mathbf{H}.)
(c) Sketch the resulting Ω-whirl vector or "crank" in real 3D (A, B, C)-space as in (4.4.10).
(d) For $(X(0)=1, Y(0)=0)$ find initial \mathbf{S}-state ("spin") vector in (A, B, C)-space as in (4.4.16). Show its evolution by Ω as in Fig. 4.4.2.
(e) Plot \mathbf{H}-eigenvalues $\left(\varepsilon_{1}, \varepsilon_{2}\right)$ as though they were energy levels and indicate transition rate $\Omega=\varepsilon_{1}-\varepsilon_{2}$ and mean rate $\omega=\left(\varepsilon_{1}-\varepsilon_{2}\right) / 2$.

