Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates (GCC)
(Ch. 12 of Unit 1 and Ch. 1-5 of Unit 2 and Ch. 1-5 of Unit 3)

Quick Review of Lagrange Relations in Lectures 7-8

Using differential chain-rules for coordinate transformations
- Polar coordinate example of Generalized Curvilinear Coordinates (GCC)
- Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1
- Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

How to say Newton’s “F=ma” in Generalized Curvilinear Coords.
- Use Cartesian KE quadratic form \(KE = T = \frac{1}{2} v \cdot M \cdot v \) and \(F = M \cdot a \) to get GCC force
- Lagrange GCC trickery gives Lagrange force equations
- Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

GCC Cells, base vectors, and metric tensors
- Polar coordinate examples: \textbf{Covariant} \(E_m \) vs. \textbf{Contravariant} \(E^m \)
- \textbf{Covariant} \(g_{mn} \) vs. \textbf{In}variant \(\delta^m_n \) vs. \textbf{Contravariant} \(g^{mn} \)
- Lagrange prefers \textbf{Covariant} \(g_{mn} \) with \textbf{Contravariant} velocity

GCC Lagrangian definition
- GCC “canonical” momentum \(p_m \) definition
- GCC “canonical” force \(F_m \) definition
- Coriolis “fictitious” forces (… and weather effects)
Quick Review of Lagrange Relations in Lectures 7-8

0^{th} and 1^{st} equations of Lagrange and Hamilton
Quick Review of Lagrange Relations in Lectures 7-8
0th and 1st equations of Lagrange and Hamilton

Starts out with simple demands for explicit-dependence, “loyalty” or “fealty to the colors”

Lagrangian and Estrangian have no explicit dependence on momentum \(p \)

\[
\frac{\partial L}{\partial p_k} \equiv 0 \equiv \frac{\partial E}{\partial p_k}
\]

Hamiltonian and Estrangian have no explicit dependence on velocity \(v \)

\[
\frac{\partial H}{\partial v_k} \equiv 0 \equiv \frac{\partial E}{\partial v_k}
\]

Lagrangian and Hamiltonian have no explicit dependence on speedinum \(V \)

\[
\frac{\partial L}{\partial V_k} \equiv 0 \equiv \frac{\partial H}{\partial V_k}
\]

Such non-dependencies hold in spite of “under-the-table” matrix and partial-differential connections

\[
\nabla_v L = \frac{\partial L}{\partial v} = \frac{\partial}{\partial v} \frac{v \cdot M \cdot v}{2} = M \cdot v = p
\]

\[
\begin{pmatrix}
\frac{\partial L}{\partial v_1} \\
\frac{\partial L}{\partial v_2}
\end{pmatrix} = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}
\]

Lagrange’s 1st equation(s)

\[
\frac{\partial L}{\partial v_k} = p_k \quad \text{or:} \quad \frac{\partial L}{\partial v} = p
\]

\[
\nabla_p H = v = \frac{\partial H}{\partial p} = \frac{\partial}{\partial p} \frac{p \cdot M^{-1} \cdot p}{2} = M^{-1} \cdot p = v
\]

(Forget Estrangian for now)

\[
\begin{pmatrix}
\frac{\partial H}{\partial p_1} \\
\frac{\partial H}{\partial p_2}
\end{pmatrix} = \begin{pmatrix} m_1^{-1} & 0 \\ 0 & m_2^{-1} \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}
\]

Hamilton’s 1st equation(s)

\[
\frac{\partial H}{\partial p_k} = v_k \quad \text{or:} \quad \frac{\partial H}{\partial p} = v
\]
(a) **Lagrangian plot**
\[L(v) = \text{const.} = v \cdot M \cdot v / 2 \]

(b) **Hamiltonian plot**
\[H(p) = \text{const.} = p \cdot M^{-1} \cdot p / 2 \]

(c) **Overlapping plots**

\[v_2 = p_2 / m_2 \]
\[v_1 = p_1 / m_1 \]

\[H = \text{const} = E \]
\[a_1 = \sqrt{2Em_1} \]
\[b_1 = \sqrt{2Ep_1} \]

\[a_2 = \sqrt{2Em_2} \]
\[b_2 = \sqrt{2Ep_2} \]

(d) **Less mass**

(e) **More mass**

Lagrange tangent at velocity \(v \)

is normal to momentum \(p \)

\[p = \nabla_L L = M \cdot v \]

\[p = \nabla_p H = M^{-1} \cdot p \]

\[v = \nabla_p H \]

\[L = \text{const} = E \]

\[H = \text{const} = E \]
(a) Lagrangian plot
\[L(v) = \text{const.} = v \cdot M \cdot \frac{v}{2} \]

(b) Hamiltonian plot
\[H(p) = \text{const.} = p \cdot M^{-1} \cdot \frac{p}{2} \]

(c) Overlapping plots

1st equation of Lagrange
\[L = \text{const.} = E \]

1st equation of Hamilton
\[H = \text{const.} = E \]

(d) Less mass

(e) More mass

Hamiltonian tangent at momentum \(p \) is normal to velocity \(v \)

Lagrangian tangent at velocity \(v \) is normal to momentum \(p \)
Using differential chain-rules for coordinate transformations

Polar coordinate example of Generalized Curvilinear Coordinates (GCC)

Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1
Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2
Using differential chain-rules† for coordinate transformations

A pair of 2-variable functions $f(x, y)$ and $g(x, y)$ can define a coordinate system on (x, y)-space

\begin{align*}
df(x, y) &= \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \\
dg(x, y) &= \frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy
\end{align*}

for example: polar coordinates

\begin{align*}
r^2(x, y) &= x^2 + y^2 \\
\theta(x, y) &= \text{atan2}(y, x)
\end{align*}

\begin{align*}
\frac{\partial r}{\partial x} dx + \frac{\partial r}{\partial y} dy \\
\frac{\partial \theta}{\partial x} dx + \frac{\partial \theta}{\partial y} dy
\end{align*}

(Not in text. Recall Lecture 8 p. 15-19)†
Using differential chain-rules† for coordinate transformations

A pair of 2-variable functions \(f(x,y) \) and \(g(x,y) \) can define a coordinate system on \((x,y) \)-space for example: polar coordinates

\[
df(x,y) = \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy
\]

\[
dg(x,y) = \frac{\partial g}{\partial x} \, dx + \frac{\partial g}{\partial y} \, dy
\]

\(r^2(x,y) = x^2 + y^2 \) and \(\theta(x,y) = \text{atan2}(y,x) \)

\[
dr(x,y) = \frac{\partial r}{\partial x} \, dx + \frac{\partial r}{\partial y} \, dy
\]

\[
d\theta(x,y) = \frac{\partial \theta}{\partial x} \, dx + \frac{\partial \theta}{\partial y} \, dy
\]

Easy to invert differential chain relations (even if functions are not easily inverted)

\[
dx = \frac{\partial x}{\partial f} \, df + \frac{\partial y}{\partial g} \, dg
\]

\(x = r \cos \theta \)

\(y = r \sin \theta \)

\[
dy = \frac{\partial y}{\partial f} \, df + \frac{\partial y}{\partial g} \, dg
\]

\[
\begin{pmatrix}
dx \\
dy
\end{pmatrix} =
\begin{pmatrix}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{pmatrix}
\begin{pmatrix}
\frac{dx}{dr} \\
\frac{dx}{d\theta}
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{pmatrix}
\begin{pmatrix}
dr \\
d\theta
\end{pmatrix}
\]
Using differential chain-rules for coordinate transformations

A pair of 2-variable functions \(f(x,y) \) and \(g(x,y) \) can define a coordinate system on \((x,y)\)-space for example: polar coordinates

\[
df(x,y) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \\
\[
dg(x,y) = \frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy \\
\[
(\text{Not in text. Recall Lecture 8 p. 15-19})^\dagger
\]

\[
dr(x,y) = \frac{\partial r}{\partial x} dx + \frac{\partial r}{\partial y} dy \\
\[
d\theta(x,y) = \frac{\partial \theta}{\partial x} dx + \frac{\partial \theta}{\partial y} dy
\]

Easy to invert differential chain relations (even if functions are not easily inverted)

\[
dx = \frac{\partial x}{\partial f} df + \frac{\partial y}{\partial g} dg \\
\]

\[
dy = \frac{\partial y}{\partial f} df + \frac{\partial y}{\partial g} dg \\
\]

\[
x = r \cos \theta \\
y = r \sin \theta
\]

\[
\begin{pmatrix}
dx \\
dy
\end{pmatrix} = \begin{pmatrix}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{pmatrix} \begin{pmatrix}
dr \\
d\theta
\end{pmatrix} = \begin{pmatrix}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{pmatrix} \begin{pmatrix}
dx \\
dy
\end{pmatrix}
\]

Notation for differential GCC (Generalized Curvilinear Coordinates \(\{q^1, q^2, q^3, \ldots\}\))

\[
dx^j = \frac{\partial x^j}{\partial q^m} dq^m \quad \equiv \quad \sum_{m=1}^{N} \frac{\partial x^j}{\partial q^m} dq^m \quad \{\text{Defining a shorthand dummy-index } m\text{-sum}\}
\]

These \(x^j\) are plain old CC (Cartesian Coordinates \(\{dx^1=dx, dx^2=dy, dx^3=dx, dx^4=dt\}\))

What does “\(q\)” stand for? One guess: “Queer” And they do get pretty queer!
Using differential chain-rules for coordinate transformations

A pair of 2-variable functions \(f(x,y) \) and \(g(x,y) \) can define a coordinate system on \((x,y)\)-space for example: polar coordinates

\[
dr(x,y) = \frac{\partial r}{\partial x} dx + \frac{\partial r}{\partial y} dy
\]

\[
d\theta(x,y) = \frac{\partial \theta}{\partial x} dx + \frac{\partial \theta}{\partial y} dy
\]

(Not in text. Recall Lecture 8 p. 15-19)

Easy to invert differential chain relations (even if functions are not easily inverted)

\[
dx = \frac{\partial x}{\partial f} df + \frac{\partial y}{\partial g} dg
\]

\[
dy = \frac{\partial y}{\partial f} df + \frac{\partial y}{\partial g} dg
\]

\[
x = r \cos \theta
\]

\[
y = r \sin \theta
\]

Notation for differential GCC (Generalized Curvilinear Coordinates \(\{q^1, q^2, q^3, \ldots\} \))

\[
dx^j = \frac{\partial x^j}{\partial q^m} dq^m \equiv \sum_{m=1}^{N} \frac{\partial x^j}{\partial q^m} dq^m \quad \text{Defining a shorthand dummy-index } m \text{-sum}
\]

Connection lines may help to indicate summation (OK on scratch paper...Difficult in text)

These \(x' \) are plain old CC (Cartesian Coordinates \(\{dx^1=dx, \, dx^2=dy, \, dx^3=dx, \, dx^4=dt\} \))
Using differential chain-rules for coordinate transformations

Polar coordinate example of Generalized Curvilinear Coordinates (GCC)

Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1
Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2
Getting the GCC ready for mechanics:

Generalized velocity relation follows from GCC chain rule

Same kind of linear relation exists between CC velocity \(\dot{v}^j \equiv \dot{x}^j \equiv \frac{dx^j}{dt} \) and GCC velocity \(\dot{v}^m \equiv \dot{q}^m \equiv \frac{dq^m}{dt} \)
Getting the GCC ready for mechanics:
Generalized velocity relation follows from GCC chain rule

Same kind of linear relation exists between CC velocity \(v^j \equiv \dot{x}^j \equiv \frac{dx^j}{dt} \) and GCC velocity \(v^m \equiv q^m \equiv \frac{dq^m}{dt} \)

\[
\dot{x}^j = \frac{\partial x^j}{\partial q^m} q^m \quad \text{or} \quad \frac{\partial \dot{x}^j}{\partial q^m} = \frac{\partial x^j}{\partial q^m} \quad \text{(lemma-1)}
\]

This is a key "lemma-1" for setting up mechanics:
Getting the GCC ready for mechanics:
Generalized velocity relation follows from GCC chain rule

\[dx^j = \frac{\partial x^j}{\partial q^m} dq^m \]

Same kind of linear relation exists between CC velocity \(v^j \equiv \dot{x}^j \equiv \frac{dx^j}{dt} \) and GCC velocity \(v^m \equiv \dot{q}^m \equiv \frac{dq^m}{dt} \)

This is a key “lemma-1” for setting up mechanics:

\[\dot{x}^j = \frac{\partial x^j}{\partial q^m} \dot{q}^m \]

or:

\[\frac{\partial \dot{x}^j}{\partial q^m} = \frac{\partial x^j}{\partial q^m} \]

Jacobian \(J^j_m \) matrix gives each CCC differential \(dx^j \) or velocity \(\dot{x}^j \) in terms of GCC \(dq^m \) or \(\dot{q}^m \).

\[J^j_m \equiv \frac{\partial x^j}{\partial q^m} = \frac{\partial \dot{x}^j}{\partial q^m} \]

Defining Jacobian matrix component

Recall polar coordinate transformation matrix:

\[\begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} \]
Getting the GCC ready for mechanics: Generalized velocity relation follows from GCC chain rule

\[dx^j = \frac{\partial x^j}{\partial q^m} dq^m \]

Same kind of linear relation exists between CC velocity \(v^j \equiv \dot{x}^j \equiv \frac{dx^j}{dt} \) and GCC velocity \(v^m \equiv \dot{q}^m \equiv \frac{dq^m}{dt} \).

This is a key "lemma-1" for setting up mechanics:

Jacobian \(J^j_m \) matrix gives each CCC differential \(dx^j \) or velocity \(\dot{x}^j \) in terms of GCC \(dq^m \) or \(\dot{q}^m \).

\[J^j_m = \frac{\partial x^j}{\partial q^m} = \frac{\partial \dot{x}^j}{\partial \dot{q}^m} \]

Defining Jacobian matrix component

Recall polar coordinate transformation matrix:

\[
\begin{pmatrix}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{pmatrix}
\]

Inverse (so-called) Kajobian \(K^m_j \) matrix is flipped partial derivatives of \(J^j_m \).

\[K^m_j = \frac{\partial q^m}{\partial x^j} = \frac{\partial q^m}{\partial \dot{x}^j} \]

Defining "Kajobian" (inverse to Jacobian)

Polar coordinate inverse transformation matrix:

\[
\begin{pmatrix}
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{pmatrix} =
\begin{pmatrix}
r \cos \theta & r \sin \theta \\
-sin \theta & \cos \theta
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{pmatrix}^{-1}
=\frac{1}{\det J} =
\begin{pmatrix}
\frac{\partial x}{\partial r} & -\frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & -\frac{\partial y}{\partial \theta}
\end{pmatrix}^{-1} =
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]

Defining 2x2 matrix inverse: (always test inverse matrices!)

\[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}^{-1} =
\begin{pmatrix}
D & -B \\
-C & A
\end{pmatrix}
\frac{1}{AD-BC}
\]

\[
\frac{\partial \dot{x}^j}{\partial \dot{q}^m} = \frac{\partial x^j}{\partial q^m}
\]

Lemma-1
Getting the GCC ready for mechanics:

Generalized velocity relation follows from GCC chain rule:

\[dx^j = \frac{\partial x^j}{\partial q^m} dq^m \]

Same kind of linear relation exists between CC velocity \(v^j = \dot{x}^j = \frac{dx^j}{dt} \) and GCC velocity \(\nu^m = \dot{q}^m = \frac{dq^m}{dt} \):

\[\dot{x}^j = \frac{\partial x^j}{\partial q^m} \dot{q}^m \]

This is a key “lemma-1” for setting up mechanics:

Jacobian \(J^j_m \) matrix gives each CCC differential \(dx^j \) or velocity \(\dot{x}^j \) in terms of GCC \(dq^m \) or \(\dot{q}^m \).

\[J^j_m \equiv \frac{\partial x^j}{\partial q^m} = \frac{\partial \dot{x}^j}{\partial \dot{q}^m} \] \[\text{Defining Jacobian matrix component} \]

Recall polar coordinate transformation matrix:

\[\begin{bmatrix}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{bmatrix} \]

Inverse (so-called) **Jacobian** \(K^m_j \) matrix is flipped partial derivatives of \(J^j_m \).

\[K^m_j \equiv \frac{\partial q^m}{\partial x^j} = \frac{\partial \dot{q}^m}{\partial \dot{x}^j} \] \[\text{Defining "Jacobian" (inverse to Jacobian)} \]

Polar coordinate inverse transformation matrix:

\[\begin{bmatrix}
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y}
\end{bmatrix}^{-1} = \begin{bmatrix}
\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\
\frac{\partial \theta}{\partial r} & \frac{\partial \theta}{\partial \theta}
\end{bmatrix} = \frac{1}{\det J} = \begin{bmatrix}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{bmatrix} \]

Defining 2x2 matrix inverse:

\[\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \frac{1}{\det(AD-BC)} \begin{pmatrix} D & -B \\ -C & A \end{pmatrix} = \begin{pmatrix} \frac{D}{AD-BC} & -B \\ \frac{-C}{AD-BC} & A \end{pmatrix} \]

Wednesday, September 21, 2016
Getting the GCC ready for mechanics:

Generalized velocity relation follows from GCC chain rule:

\[dx^j = \frac{\partial x^j}{\partial q^m} dq^m \]

This is a key "lemma-1" for setting up mechanics:

Same kind of linear relation exists between CC velocity \(v^j \equiv \dot{x}^j \equiv \frac{dx^j}{dt} \) and GCC velocity \(v^m \equiv \dot{q}^m \equiv \frac{dq^m}{dt} \).

\[\dot{x}^j = \frac{\partial x^j}{\partial q^m} \dot{q}^m \]

Jacobian \(J^m_j \) matrix gives each CCC differential \(dx^j \) or velocity \(\dot{x}^j \) in terms of GCC \(dq^m \) or \(\dot{q}^m \).

\[\frac{\partial x^j}{\partial q^m} = \frac{\partial x^i}{\partial q^j} \]

Recall polar coordinate transformation matrix:

\[
\begin{pmatrix}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{pmatrix}
\]

Inverse (so-called) Kajobian \(K^m_j \) matrix is flipped partial derivatives of \(J^m_j \).

\[
K^m_j = \frac{\partial q^m}{\partial x^j} = \frac{\partial q^m}{\partial \dot{x}^j} \quad \text{Defining "Kajobian"}
\]

(inverse to Jacobian)

Product of matrix \(J^m_j \) and \(K^m_j \) is a unit matrix by definition of partial derivatives:

\[K^m_j \cdot J^j_n = \frac{\partial q^m}{\partial x^j} \cdot \frac{\partial x^j}{\partial q^n} = \frac{\partial q^m}{\partial q^n} = \delta^m_n = \begin{cases} 1 \text{ if } m = n \\ 0 \text{ if } m \neq n \end{cases} \]

always test inverse matrices!
Using differential chain-rules for coordinate transformations

Polar coordinate example of Generalized Curvilinear Coordinates (GCC)

Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1

Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2
Getting the GCC ready for mechanics (2nd part)

Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

\[\ddot{x}^j \equiv \frac{d}{dt} \dot{x}^j = \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \dot{q}^m \right) = \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) \ddot{q}^m + \frac{\partial x^j}{\partial q^m} \dddot{q}^m \]

First apply \(\frac{d}{dt} \) to velocity \(\dot{x}^j \) and use product rule:

\[\frac{d}{dt} (u \cdot v) = \frac{du}{dt} \cdot v + u \cdot \frac{dv}{dt} \]
Getting the GCC ready for mechanics (2nd part)

Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

First apply $\frac{d}{dt}$ to velocity \dot{x}^j and use product rule:

$$\ddot{x}^j \equiv \frac{d}{dt} \dot{x}^j = \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \dot{q}^m \right) = \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) \ddot{q}^m + \frac{\partial x^j}{\partial q^m} \dddot{q}^m$$

Apply derivative chain sum to Jacobian.

$$\frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) = \frac{\partial}{\partial q^n} \left(\frac{\partial x^j}{\partial q^m} \right) dq^n \frac{dt}{dt} = \left(\frac{\partial^2 x^j}{\partial q^n \partial q^m} \right) dq^n$$
Getting the GCC ready for mechanics (2nd part)

Generalized acceleration relations are a little more complicated (It's curved coords, after all!)

First apply $\frac{d}{dt}$ to velocity \dot{x}^j and use product rule: $\frac{d}{dt} (u \cdot v) = \frac{du}{dt} v + u \cdot \frac{dv}{dt}$

\[
\dot{x}^j \equiv \frac{d}{dt} x^j = \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \dot{q}^m \right) = \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) \dot{q}^m + \frac{\partial x^j}{\partial q^m} \ddot{q}^m
\]

(Not in text. Recall Lecture 9 p. 15-19)

Apply derivative chain sum to Jacobian. Partial derivatives are reversible. $\frac{\partial}{\partial q^m} \frac{\partial}{\partial q^n} = \frac{\partial}{\partial q^n} \frac{\partial}{\partial q^m}$

\[
\frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) = \frac{\partial}{\partial q^n} \left(\frac{\partial x^j}{\partial q^m} \right) \frac{dq^n}{dt} = \left(\frac{\partial^2 x^j}{\partial q^n \partial q^m} \right) \frac{dq^n}{dt} = \frac{\partial}{\partial q^m} \left(\frac{\partial x^j}{\partial q^n} \frac{dq^n}{dt} \right)
\]
Getting the GCC ready for mechanics (2nd part)

Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

First apply \(\frac{d}{dt} \) to velocity \(\dot{x}^j \) and use product rule: \(\frac{d}{dt}(u \cdot v) = \frac{du}{dt} \cdot v + u \cdot \frac{dv}{dt} \)

\[
\dot{x}^j \equiv \frac{d}{dt} \dot{x}^j = \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \dot{q}^m \right) = \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) \dot{q}^m + \frac{\partial x^j}{\partial q^m} \ddot{q}^m
\]

(Not in text. Recall Lecture 9 p. 15-19)†

Apply derivative chain sum to Jacobian. Partial derivatives are reversible. \(\partial_m \partial_n = \partial_n \partial_m \)

\[
\frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) \frac{dq^n}{dt} = \left(\frac{\partial^2 x^j}{\partial q^n \partial q^m} \right) \frac{dq^n}{dt} = \left(\frac{\partial^2 x^j}{\partial q^m \partial q^n} \right) \frac{dq^n}{dt} = \frac{\partial}{\partial q^m} \left(\frac{\partial x^j}{\partial q^n} \frac{dq^n}{dt} \right)
\]

By chain-rule def. of CC velocity:

\[
= \frac{\partial}{\partial q^m} \left(\dot{x}^j \right)
\]
Getting the GCC ready for mechanics (2nd part)

Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

First apply $\frac{d}{dt}$ to velocity \dot{x}^j and use product rule: $\frac{d}{dt}(u \cdot v) = \frac{du}{dt} \cdot v + u \cdot \frac{dv}{dt}$

$$\dot{x}^j \equiv \frac{d}{dt} \dot{x}^j = \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \dot{q}^m \right) = \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) \ddot{q}^m + \frac{\partial x^j}{\partial q^m} \dddot{q}^m$$

(Not in text. Recall Lecture 9 p. 15-19)†

Apply derivative chain sum to Jacobian. Partial derivatives are reversible. $\partial_m \partial_n = \partial_n \partial_m$

$$\frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) = \frac{\partial}{\partial q^n} \left(\frac{\partial x^j}{\partial q^m} \right) \frac{dq^n}{dt} = \left(\frac{\partial^2 x^j}{\partial q^n \partial q^m} \right) \frac{dq^n}{dt} = \frac{\partial}{\partial q^m} \left(\frac{\partial x^j}{\partial q^n} \frac{dq^n}{dt} \right)$$

By chain-rule def. of CC velocity:

$$= \frac{\partial}{\partial q^m} (\dot{x}^j)$$

This is the key “lemma-2” for setting up Lagrangian mechanics.

$$\frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) = \frac{\partial \dot{x}^j}{\partial q^m} \text{ lemma}^2$$

Getting the GCC ready for mechanics (2nd part)

Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

First apply \(\frac{d}{dt} \) to velocity \(\dot{x}^j \) and use product rule:

\[
\frac{d}{dt} (u \cdot v) = \frac{du}{dt} \cdot v + u \cdot \frac{dv}{dt}
\]

Apply derivative chain sum to Jacobian. Partial derivatives are reversible. \(\partial_m \partial_n = \partial_n \partial_m \)

\[
\frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) = \frac{\partial}{\partial q^n} \left(\frac{\partial x^j}{\partial q^m} \right) \frac{dq^n}{dt} = \frac{\partial}{\partial q^m} \left(\frac{\partial^2 x^j}{\partial q^n \partial q^m} \right) \frac{dq^n}{dt} = \frac{\partial}{\partial q^m} \left(\frac{\partial x^j}{\partial q^n} \frac{dq^n}{dt} \right)
\]

By chain-rule def. of CC velocity:

\[
= \frac{\partial}{\partial q^m} (\dot{x}^j)
\]

The “lemma-1” was in the GCC velocity analysis just before this one for acceleration.

This is the key “lemma-2” for setting up Lagrangian mechanics.

\[
\frac{\partial \dot{x}^j}{\partial \dot{q}^m} = \frac{\partial x^j}{\partial q^m} \quad \text{lemma 1}
\]

\[
\frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right) = \frac{\partial \dot{x}^j}{\partial q^m} \quad \text{lemma 2}
\]
How to say Newton’s “F=ma” in Generalized Curvilinear Coords.

Use Cartesian KE quadratic form $KE = T = \frac{1}{2}v \cdot M \cdot v$ and $F = M \cdot a$ to get GCC force.

Lagrange GCC trickery gives Lagrange force equations.

Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2).
Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II
Start with stuff we know...(sort of)

Multidimensional CC version of kinetic energy \(\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \)

\[
T = \frac{1}{2} M_{jk} v^j v^k = \frac{1}{2} M_{jk} \dot{x}^j \dot{x}^k \text{ where: } M_{jk} \text{ are CC inertia constants}
\]

Multidimensional CC version of Newt-II (\(\mathbf{F} = \mathbf{M} \cdot \mathbf{a} \)) using \(M_{jk} \) constants

\[
f_j = M_{jk} a^k = M_{jk} \ddot{x}^k
\]
Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II

Start with stuff we know...(sort of)

Multidimensional CC version of kinetic energy \(\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \)

\[
T = \frac{1}{2} M_{jk} v^j v^k = \frac{1}{2} M_{jk} \dot{x}^j \dot{x}^k \quad \text{where: } M_{jk} \text{ are inertia constants that are symmetric: } M_{jk} = M_{kj}
\]

Multidimensional CC version of Newt-II (\(\mathbf{F} = \mathbf{M} \cdot \mathbf{a} \)) using \(M_{jk} \) constants

\[
f_j = M_{jk} a^k = M_{jk} \ddot{x}^k
\]

Multidimensional CC version of work-energy differential (\(dW = \mathbf{F} \cdot d\mathbf{x} \)). Insert GCC differentials \(dq^m \)

\[
dW = f_j dx^j = f_j \left(\frac{\partial x^j}{\partial q^m} dq^m \right) = M_{jk} \ddot{x}^k \left(\frac{\partial x^j}{\partial q^m} dq^m \right)
\]

(It’s time to bring in the queer \(q^m \) !)
Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II

Start with stuff we know... (sort of)

Multidimensional CC version of kinetic energy $\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}$

$$T = \frac{1}{2} M_{jk} v^j v^k = \frac{1}{2} M_{jk} \dot{x}^j \dot{x}^k \quad \text{where: } M_{jk} \text{ are inertia constants that are symmetric: } M_{jk} = M_{kj}$$

Multidimensional CC version of Newt-II ($\mathbf{F} = \mathbf{M} \cdot \mathbf{a}$) using M_{jk} constants

$$f_j = M_{jk} a^k = M_{jk} \ddot{x}^k$$

Multidimensional CC version of work-energy differential ($dW = \mathbf{F} \cdot dx$). Insert GCC differentials dq^m

$$dW = f_j dx^j = f_j \left(\frac{\partial x^j}{\partial q^m} dq^m \right) = M_{jk} \ddot{x}^k \left(\frac{\partial x^j}{\partial q^m} dq^m \right)$$

(It’s time to bring in the queer q^m !)

dq^m are independent so dq^m-sum is true term-by-term.

$$dW = f_j dx^j = F_m dq^m = f_j \frac{\partial x^j}{\partial q^m} dq^m = M_{jk} \ddot{x}^k \frac{\partial x^j}{\partial q^m} dq^m$$
Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II

Start with stuff we know...(sort of)

Multidimensional CC version of kinetic energy \(\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \)

\[
T = \frac{1}{2} M_{jk} v^j v^k = \frac{1}{2} M_{jk} \dot{x}^j \dot{x}^k
\]

where: \(M_{jk} \) are inertia constants

Multidimensional CC version of Newt-II (\(\mathbf{F} = \mathbf{M} \cdot \mathbf{a} \)) using \(M_{jk} \) constants

\[
f_j = M_{jk} a^k = M_{jk} \ddot{x}^k
\]

Multidimensional CC version of work-energy differential (\(dW = \mathbf{F} \cdot d\mathbf{x} \)). Insert GCC differentials \(dq^m \)

\[
dW = f_j dx^j = f_j \left(\frac{\partial x^j}{\partial q^m} dq^m \right) = M_{jk} \ddot{x}^k \left(\frac{\partial x^j}{\partial q^m} dq^m \right)
\]

\(dq^m \) are independent so \(dq^m \)-sum is true term-by-term. (Still holds if all \(dq^m \) are zero but one.)

\[
dW = f_j dx^j = F_m dq^m = f_j \frac{\partial x^j}{\partial q^m} dq^m = M_{jk} \ddot{x}^k \frac{\partial x^j}{\partial q^m} dq^m \quad \Rightarrow \quad F_m = f_j \frac{\partial x^j}{\partial q^m} = M_{jk} \ddot{x}^k \frac{\partial x^j}{\partial q^m}
\]
Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-II

Start with stuff we know...(sort of)

Multidimensional CC version of kinetic energy \(\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} \)

\[
T = \frac{1}{2} M_{jk} v^j v^k = \frac{1}{2} M_{jk} \dot{x}^j \dot{x}^k
\]

where: \(M_{jk} \) are inertia constants

Multidimensional CC version of Newt-II (\(\mathbf{F} = \mathbf{M} \cdot \mathbf{a} \)) using \(M_{jk} \) constants

\[
f_j = M_{jk} a^k = M_{jk} \ddot{x}^k
\]

Multidimensional CC version of work-energy differential (\(dW = \mathbf{F} \cdot d\mathbf{x} \)). Insert GCC differentials \(dq^m \)

\[
dW = f_j dx^j = f_j \left(\frac{\partial x^j}{\partial q^m} dq^m \right) = M_{jk} \ddot{x}^k \left(\frac{\partial x^j}{\partial q^m} dq^m \right)
\]

\(dq^m \) are independent so \(dq^m \)-sum is true term-by-term. (Still holds if all \(dq^m \) are zero but one.)

\[
dW = f_j dx^j = F_m dq^m = f_j \frac{\partial x^j}{\partial q^m} dq^m = M_{jk} \ddot{x}^k \frac{\partial x^j}{\partial q^m} dq^m \quad \Rightarrow \quad F_m = f_j \frac{\partial x^j}{\partial q^m} = M_{jk} \ddot{x}^k \frac{\partial x^j}{\partial q^m}
\]

Here generalized GCC force component \(F_m \) is defined:

\[
F_m = f_j \frac{\partial x^j}{\partial q^m} = M_{jk} \ddot{x}^k \frac{\partial x^j}{\partial q^m}
\]

where: \(F_m = f_j \frac{\partial x^j}{\partial q^m} \)
How to say Newton’s “F=ma” in Generalized Curvilinear Coords.

Use Cartesian KE quadratic form \(KE = T = \frac{1}{2}v \cdot M \cdot v \) and \(F = M \cdot a \) to get GCC force

Lagrange GCC trickery gives Lagrange force equations
Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)
Now Lagrange GCC trickery begins

Obvious stuff... (sort of, if you’ve looked at it for a century!)

Lagrange’s clever end game: First set \(A = M_{jk} \dot{x}^k \) and \(B = \frac{\partial x^j}{\partial q^m} \) with calc. formula:

\[
\ddot{A}B = \frac{d}{dt}(\dot{A}B) - \dot{A} \dot{B}
\]

\[
F_m = f_j \frac{\partial x^j}{\partial q^m} = M_{jk} \dot{x}^k \frac{\partial x^j}{\partial q^m} = \frac{d}{dt} \left(M_{jk} \dot{x}^k \frac{\partial x^j}{\partial q^m} \right) - M_{jk} \dot{x}^k \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right)
\]
Now Lagrange GCC trickery begins

Obvious stuff...(sort of, if you’ve looked at it for a century!)

Lagrange’s clever end game: First set \(A = M_{jk} \dot{x}^k \) and \(B = \frac{\partial x^j}{\partial q^m} \) with calc. formula:

\[
\ddot{A}B = \frac{d}{dt}(\dot{A}B) - \dot{A}\dot{B}
\]

\[
F_m = f_j \frac{\partial x^j}{\partial q^m} = M_{jk} \dot{x}^k \frac{\partial x^j}{\partial q^m} = \frac{d}{dt}\left(M_{jk} \dot{x}^k \frac{\partial x^j}{\partial q^m}\right) - M_{jk} \dot{x}^k \frac{d}{dt}\left(\frac{\partial x^j}{\partial q^m}\right)
\]

Cartesian \(M_{jk} \)

must be constant

for this to work

(Bye, Bye relativistic mechanics or QM!)
Now Lagrange GCC trickery begins

Obvious stuff...(sort of, if you’ve looked at it for a century!)

Lagrange’s clever end game: First set $A = M_{jk} \dot{x}^k$ and $B = \frac{\partial x^j}{\partial q^m}$ with calc. formula: $\ddot{A}B = \frac{d}{dt}(\dot{A}B) - \dot{A}\dot{B}$

$F_m = f_j \frac{\partial x^j}{\partial q^m} = M_{jk} \dot{x}^k \frac{\partial x^j}{\partial q^m} = \frac{d}{dt} \left(M_{jk} \dot{x}^k \frac{\partial x^j}{\partial q^m} \right) - M_{jk} \dot{x}^k \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right)$

Then convert ∂x^j to \dot{x}^j by Lemma 1 and Lemma 2 on 2nd term.

$F_m = \frac{d}{dt} \left(M_{jk} \dot{x}^k \frac{\partial \dot{x}^j}{\partial q^m} \right) - M_{jk} \dot{x}^k \left(\frac{\partial \dot{x}^j}{\partial q^m} \right)$

Cartesian M_{jk} must be constant for this to work

(Bye, Bye relativistic mechanics or QM!)
Now Lagrange GCC trickery begins

Obvious stuff...(sort of, if you’ve looked at it for a century!)

Lagrange’s clever end game: First set \(A = M_{jk} \dot{x}^k \) and \(B = \frac{\partial x^j}{\partial q^m} \) with calc. formula:

\[
\ddot{AB} = \frac{d}{dt}(\dot{AB}) - \dot{A}\dot{B}
\]

\[
F_m = f_j \frac{\partial x^j}{\partial q^m} = M_{jk} \dot{x}^k \frac{\partial x^j}{\partial q^m} = \frac{d}{dt} \left(M_{jk} \dot{x}^k \frac{\partial x^j}{\partial q^m} \right) - M_{jk} \dot{x}^k \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right)
\]

Then convert \(\partial x^j \) to \(\partial \dot{x}^j \) by Lemma 1 and Lemma 2 on 2nd term.

\[
F_m = \frac{d}{dt} \left(M_{jk} \dot{x}^k \frac{\partial \dot{x}^j}{\partial q^m} \right) - M_{jk} \dot{x}^k \frac{\partial \dot{x}^j}{\partial q^m}
\]

Simplify using:

\[
[M_{ij} v^i \frac{\partial v^j}{\partial q} = M_{ij} \frac{\partial v^i v^j}{2}]
\]

where \(q \) may be \(q^m \) or \(q^m \)

\[
F_m = \frac{d}{dt} \frac{\partial}{\partial \dot{q}^m} \left(\frac{M_{jk} \dot{x}^k \dot{x}^j}{2} \right) - \frac{\partial}{\partial q^m} \left(\frac{M_{jk} \dot{x}^k \dot{x}^j}{2} \right)
\]
Now Lagrange GCC trickery begins
Obvious stuff...(sort of, if you’ve looked at it for a century!)

Lagrange’s clever end game: First set \(A = M_{jk} \ddot{x}^k \) and \(B = \frac{\partial x^j}{\partial q^m} \) with calc. formula:

\[
\ddot{AB} = \frac{d}{dt} (\dot{AB}) - \dot{AB}
\]

Then convert \(\partial x^j \) to \(\partial \dot{x}^j \) by Lemma 1 and Lemma 2 on 2\(^{nd} \) term.

\[
F_m = f_j \frac{\partial x^j}{\partial q^m} = M_{jk} \ddot{x}^k \frac{\partial x^j}{\partial q^m} = \frac{d}{dt} \left(M_{jk} \ddot{x}^k \frac{\partial x^j}{\partial q^m} \right) - M_{jk} \ddot{x}^k \frac{d}{dt} \left(\frac{\partial x^j}{\partial q^m} \right)
\]

Simplify using:

\[
[M_{ij} v^i \frac{\partial v^j}{\partial q} = M_{ij} \frac{\partial}{\partial q} \frac{v^i v^j}{2}]
\]

where \(q \) may be \(q^m \) or \(q^m \)

\[
F_m = \frac{d}{dt} \frac{\partial}{\partial q^m} \left(M_{jk} \ddot{x}^k \dot{x}^j \right) - \frac{\partial}{\partial q^m} \left(\frac{M_{jk} \ddot{x}^k \dot{x}^j}{2} \right)
\]

The result is Lagrange’s GCC force equation in terms of kinetic energy

\[
T = \frac{1}{2} M_{jk} \dot{x}^j \dot{x}^k
\]

\[
F_m = \frac{d}{dt} \frac{\partial T}{\partial \dot{q}^m} - \frac{\partial T}{\partial q^m} \quad \text{or:} \quad F = \frac{d}{dt} \frac{\partial T}{\partial \mathbf{v}} - \frac{\partial T}{\partial \mathbf{r}}
\]
How to say Newton’s “$F=ma$” in Generalized Curvilinear Coords.

Use Cartesian KE quadratic form $KE=T=1/2v \cdot M \cdot v$ and $F=M \cdot a$ to get GCC force

Lagrange GCC trickery gives Lagrange force equations

Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)
But, Lagrange GCC trickery is not yet done...
(Still another trick-up-the-sleeve!)

If the force is conservative it’s a gradient \(\mathbf{F} = -\nabla U \)

In GCC: \(F_m = -\frac{\partial U}{\partial q^m} \)

\[
F_m = -\frac{\partial U}{\partial q^m} = \frac{d}{dt} \frac{\partial T}{\partial q^m} - \frac{\partial T}{\partial q^m}
\]
But, Lagrange GCC trickery is not yet done...
(Still another trick-up-the-sleeve!)

If the force is conservative it’s a gradient \(\mathbf{F} = -\nabla U \)

In GCC: \(F_m = -\frac{\partial U}{\partial q^m} \)

\[
F_m = -\frac{\partial U}{\partial q^m} = \frac{d}{dt} \frac{\partial T}{\partial \dot{q}^m} - \frac{\partial T}{\partial q^m}
\]

Becomes \textit{Lagrange’s GCC potential equation} with a new definition for the \textit{Lagrangian}: \(L = T-U \).

\[
0 = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^m} - \frac{\partial L}{\partial q^m}
\]

\(L(\dot{q}^m, q^m) = T(\dot{q}^m, q^m) - U(q^m) \)

This trick requires: \(\frac{\partial U}{\partial \dot{q}^m} \equiv 0 \)

\(U(r) \) has \textit{NO explicit velocity dependence}!
But, Lagrange GCC trickery is not yet done...
(Still another trick-up-the-sleeve!)
If the force is conservative it’s a gradient \(F = -\nabla U \)
In GCC: \(F_m = -\frac{\partial U}{\partial q^m} \)

\[
F_m = -\frac{\partial U}{\partial q^m} = \frac{d}{dt} \frac{\partial T}{\partial \dot{q}^m} - \frac{\partial T}{\partial q^m}
\]

Becomes *Lagrange’s GCC potential equation* with a new definition for the *Lagrangian*: \(L = T - U \).

\[
0 = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}^m} - \frac{\partial L}{\partial q^m}
\]

\[
L(\dot{q}^m, q^m) = T(\dot{q}^m, q^m) - U(q^m)
\]

This trick requires: \(\frac{\partial U}{\partial \dot{q}^m} \equiv 0 \)

\(U(r) \) has **NO** explicit velocity dependence!

Lagrange’s 1st GCC equation
(Defining GCC momentum)

\[
p_m = \frac{\partial L}{\partial \dot{q}^m}
\]

Recall:

\[
p = \frac{\partial L}{\partial v}
\]

Lagrange’s 2nd GCC equation
(Change of GCC momentum)

\[
\frac{dp_m}{dt} \equiv \dot{p}_m = \frac{\partial L}{\partial q^m}
\]
GCC Cells, base vectors, and metric tensors

Polar coordinate examples:
- **Covariant** E_m vs. **Contravariant** E^m
- **Covariant** g_{mn} vs. **Invariant** δ^m_n vs. **Contravariant** g^{mn}
A dual set of quasi-unit vectors show up in Jacobian J and Kajobian K. J-Columns are covariant vectors \{E_1=E_r, \ E_2=E_\phi\} K-Rows are contravariant vectors \{E^1=E^r, \ E^2=E^\phi\}.

\[
\langle J \rangle = \begin{pmatrix}
 \frac{\partial x^1}{\partial q^1} & \frac{\partial x^1}{\partial q^2} \\
 \frac{\partial x^2}{\partial q^1} & \frac{\partial x^2}{\partial q^2}
\end{pmatrix} = \begin{pmatrix}
 \frac{\partial x}{\partial r} = \cos \phi & \frac{\partial x}{\partial \phi} = -r \sin \phi \\
 \frac{\partial y}{\partial r} = \sin \phi & \frac{\partial y}{\partial \phi} = r \cos \phi
\end{pmatrix}
\]

\[
\langle K \rangle = \langle J^{-1} \rangle = \begin{pmatrix}
 \frac{\partial r}{\partial x} = \cos \phi & \frac{\partial r}{\partial y} = \sin \phi \\
 \frac{\partial \phi}{\partial x} = -\sin \phi & \frac{\partial \phi}{\partial y} = \frac{\cos \phi}{r}
\end{pmatrix}
\]

\[E^r = E_1, \quad E^\phi = E_2\]

Inverse polar definition:
\[r^2 = x^2 + y^2 \text{ and } \phi = \text{atan2}(y,x)\]

Derived from polar definition: \(x = r \cos \phi\) and \(y = r \sin \phi\)

(a) Polar coordinate bases

Unit 1
Fig. 12.10
A dual set of quasi-unit vectors show up in Jacobian J and Kajobian K. J-Columns are covariant vectors \(\{ \mathbf{E}_1 = \mathbf{E}_r, \mathbf{E}_2 = \mathbf{E}_\phi \} \) and K-Rows are contravariant vectors \(\{ \mathbf{E}^1 = \mathbf{E}^r, \mathbf{E}^2 = \mathbf{E}^\phi \} \).

\[
\begin{bmatrix}
\frac{\partial x^1}{\partial q^1} & \frac{\partial x^1}{\partial q^2} \\
\frac{\partial x^2}{\partial q^1} & \frac{\partial x^2}{\partial q^2} \\
\frac{\partial y^1}{\partial q^1} & \frac{\partial y^1}{\partial q^2} \\
\frac{\partial y^2}{\partial q^1} & \frac{\partial y^2}{\partial q^2}
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial x}{\partial r} = \cos \phi & \frac{\partial x}{\partial \phi} = -r \sin \phi \\
\frac{\partial y}{\partial r} = \sin \phi & \frac{\partial y}{\partial \phi} = r \cos \phi
\end{bmatrix}
\]

\[
\langle J \rangle = \langle J^{-1} \rangle = \begin{bmatrix}
\frac{\partial r}{\partial x} = \cos \phi & \frac{\partial r}{\partial y} = \sin \phi \\
\frac{\partial \phi}{\partial x} = -\sin \phi & \frac{\partial \phi}{\partial y} = \frac{\cos \phi}{r}
\end{bmatrix}
\leftarrow \mathbf{E}^r = \mathbf{E}^1
\]

\[
\langle K \rangle = \begin{bmatrix}
\frac{\partial r}{\partial x} = \cos \phi \quad & \frac{\partial r}{\partial \phi} = \sin \phi \\
\frac{\partial \phi}{\partial x} = -\sin \phi \quad & \frac{\partial \phi}{\partial y} = \frac{\cos \phi}{r}
\end{bmatrix}
\leftarrow \mathbf{E}^\phi = \mathbf{E}^2
\]

\[\text{Inverse polar definition: } r^2 = x^2 + y^2 \text{ and } \phi = \text{atan2}(y, x)\]

Derived from polar definition: \(x = r \cos \phi \) and \(y = r \sin \phi \)

(a) Polar coordinate bases

(b) Covariant bases \(\{ \mathbf{E}_1 \mathbf{E}_2 \} \) (Tangent)

\[
d\mathbf{r} = \mathbf{E}_1 dq^1 + \mathbf{E}_2 dq^2
\]

(c) Contravariant bases \(\{ \mathbf{E}^1 \mathbf{E}^2 \} \) (Normal)

\[
\mathbf{F} = F_1 \mathbf{E}^1 + F_2 \mathbf{E}^2
\]

Unit 1

Fig. 12.10
Comparison: **Covariant** $E_m = \frac{\partial r}{\partial q^m}$ vs. **Contravariant** $E^m = \frac{\partial q^m}{\partial r} = \nabla q^m$

Covariant bases $\{E_1, E_2\}$ match cell walls

(Tangent)

$\Delta r = E_1 \Delta q^1 + E_2 \Delta q^2$

is based on chain rule:

$$dr = \frac{\partial r}{\partial q^1} dq^1 + \frac{\partial r}{\partial q^2} dq^2 = E_1 dq^1 + E_2 dq^2$$

$\Delta q^1 = 1.0$

$\Delta q^2 = 1.0$

$E_1 = \frac{\partial r}{\partial q^1}$

E_2

$q^1 = 100$

$q^2 = 200$

$q^2 = 201$

$q^1 = 101$

$\frac{\partial r}{\partial q^2}$

NOTE: These are 2D drawings!

No 3D perspective
Comparison: **Covariant** \(E_m = \frac{\partial r}{\partial q^m} \) vs. **Contravariant** \(E^m = \frac{\partial q^m}{\partial r} = \nabla q^m \)

Covariant bases \(\{E_1, E_2\} \)** match cell walls

\[\Delta r = E_1 \Delta q^1 + E_2 \Delta q^2 \]

is based on chain rule: \[dr = \frac{\partial r}{\partial q^1} dq^1 + \frac{\partial r}{\partial q^2} dq^2 = E_1 dq^1 + E_2 dq^2 \]

\(E_1 \) follows tangent to \(q^2 = \text{const.} \) ... since only \(q^1 \) varies in \(\frac{\partial r}{\partial q^1} \) while \(q^2, q^3, \ldots \) remain constant

NOTE: These are 2D drawings! **No 3D perspective**
Comparison: **Covariant** \(\mathbf{E}_m = \frac{\partial \mathbf{r}}{\partial q^m} \) vs. **Contravariant** \(\mathbf{E}^m = \frac{\partial q^m}{\partial \mathbf{r}} = \nabla q^m \)

Covariant bases \(\{ \mathbf{E}_1, \mathbf{E}_2 \} \) match cell walls

\[\Delta \mathbf{r} = \mathbf{E}_1 \Delta q^1 + \mathbf{E}_2 \Delta q^2 \]

is based on chain rule:

\[d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial q^1} dq^1 + \frac{\partial \mathbf{r}}{\partial q^2} dq^2 = \mathbf{E}_1 dq^1 + \mathbf{E}_2 dq^2 \]

\(E_1 \) follows tangent to \(q^2 = \text{const.} \) ... since only \(q^1 \) varies in \(\frac{\partial \mathbf{r}}{\partial q^1} \) while \(q^2, q^3, \ldots \) remain constant

\(\mathbf{E}_m \) are convenient bases for extensive quantities like distance and velocity.

\[\mathbf{V} = V^1 \mathbf{E}_1 + V^2 \mathbf{E}_2 = V^1 \frac{\partial \mathbf{r}}{\partial q^1} + V^2 \frac{\partial \mathbf{r}}{\partial q^2} \]

NOTE: These are 2D drawings!

No 3D perspective
Comparison: **Covariant** \(\mathbf{E}_m = \frac{\partial \mathbf{r}}{\partial q^m} \) vs. **Contravariant** \(\mathbf{E}^m = \frac{\partial q^m}{\partial \mathbf{r}} = \nabla q^m \)

Covariant bases \(\{ \mathbf{E}_1 \mathbf{E}_2 \} \) match cell walls

\[\mathbf{\Delta r} = \mathbf{E}_1 \Delta q^1 + \mathbf{E}_2 \Delta q^2 \]

is based on chain rule:

\[d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial q^1} dq^1 + \frac{\partial \mathbf{r}}{\partial q^2} dq^2 = \mathbf{E}_1 dq^1 + \mathbf{E}_2 dq^2 \]

\(\mathbf{E}_1 \) follows tangent to \(q^2 = \text{const.} \) ...

since only \(q^1 \) varies in \(\frac{\partial \mathbf{r}}{\partial q^1} \)

while \(q^2, q^3, ... \) remain constant

\(\mathbf{E}_m \) are convenient bases for extensive quantities like distance and velocity.

\[\mathbf{V} = V^1 \mathbf{E}_1 + V^2 \mathbf{E}_2 = V^1 \frac{\partial \mathbf{r}}{\partial q^1} + V^2 \frac{\partial \mathbf{r}}{\partial q^2} \]

Contravariant \(\{ \mathbf{E}^1 \mathbf{E}^2 \} \) match reciprocal cells

\[\frac{\partial q^2}{\partial \mathbf{r}} = \nabla q^2 = \mathbf{E}^2 \]

\[\mathbf{F} = F^1 \mathbf{E}^1 + F^2 \mathbf{E}^2 \]

\(\mathbf{E}^1 \) is normal to \(q^1 = \text{const.} \) since

gradient of \(q^1 \) is vector sum

\[\nabla q^1 = \begin{pmatrix} \frac{\partial q^1}{\partial x} \\ \frac{\partial q^1}{\partial y} \end{pmatrix} \]

NOTE: These are 2D drawings!

No 3D perspective
Comparison: Covariant \(E_m = \frac{\partial r}{\partial q^m} \) vs. Contravariant \(E^m = \frac{\partial q^m}{\partial r} = \nabla q^m \)

Covariant bases \(\{E_1, E_2\} \) match cell walls

\[\Delta r = E_1 \Delta q^1 + E_2 \Delta q^2 \]

is based on chain rule:

\[dr = \frac{\partial r}{\partial q^1} dq^1 + \frac{\partial r}{\partial q^2} dq^2 = E_1 dq^1 + E_2 dq^2 \]

\(E_1 \) follows tangent to \(q^2 = \text{const.} \) ...

since only \(q^1 \) varies in \(\frac{\partial r}{\partial q^1} \)

while \(q^2, q^3, \ldots \) remain constant

\(E_m \) are convenient bases for extensive quantities like distance and velocity.

\[\mathbf{v} = v^1 E_1 + v^2 E_2 = v^1 \frac{\partial r}{\partial q^1} + v^2 \frac{\partial r}{\partial q^2} \]

Contravariant \(\{E^1, E^2\} \) match reciprocal cells

\(\frac{\partial q^2}{\partial r} = \nabla q^2 = E^2 \)

\[\mathbf{F} = F_1 E^1 + F_2 E^2 \]

\(E^1 \) is normal to \(q^1 = \text{const.} \) since gradient of \(q^1 \) is vector sum \(\nabla q^1 = \left(\frac{\partial q^1}{\partial x}, \frac{\partial q^1}{\partial y} \right) \)

\(E^m \) are convenient bases for intensive quantities like force and momentum.

\[\mathbf{F} = F_1 E^1 + F_2 E^2 = F_1 \frac{\partial q^1}{\partial r} + F_2 \frac{\partial q^2}{\partial r} = F_1 \nabla q^1 + F_2 \nabla q^2 \]

NOTE: These are 2D drawings! No 3D perspective
Comparison: **Covariant** $\mathbf{E}_m = -\frac{\partial \mathbf{r}}{\partial q^m}$ vs. **Contravariant** $\mathbf{E}^n = \frac{\partial q^n}{\partial \mathbf{r}} = \nabla q^n$

Covariant bases $\{\mathbf{E}_1, \mathbf{E}_2\}$ match cell walls

$$\Delta \mathbf{r} = \mathbf{E}_1 \Delta q^1 + \mathbf{E}_2 \Delta q^2$$

is based on chain rule: $d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial q^1} dq^1 + \frac{\partial \mathbf{r}}{\partial q^2} dq^2 = \mathbf{E}_1 dq^1 + \mathbf{E}_2 dq^2$

\mathbf{E}_1 follows **tangent** to $q^2 = \text{const.}$...

since only q^1 varies in $\frac{\partial \mathbf{r}}{\partial q^1}$

while q^2, q^3, ... remain constant

\mathbf{E}_m are convenient bases for **extensive** quantities like distance and velocity.

$$\mathbf{v} = V^1 \mathbf{E}_1 + V^2 \mathbf{E}_2 = V^1 \frac{\partial \mathbf{r}}{\partial q^1} + V^2 \frac{\partial \mathbf{r}}{\partial q^2}$$

Contravariant $\{\mathbf{E}^1, \mathbf{E}^2\}$ match reciprocal cells

$$\frac{\partial q^2}{\partial \mathbf{r}} = \nabla q^2 = \mathbf{E}^2$$

$$\mathbf{F} = F_1 \mathbf{E}^1 + F_2 \mathbf{E}^2$$

\mathbf{E}^1 is **normal** to $q^1 = \text{const.}$ since

gradient of q^1 is vector sum $\nabla q^1 = \left(\frac{\partial q^1}{\partial x}, \frac{\partial q^1}{\partial y}\right)$

\mathbf{E}^m are convenient bases for **intensive** quantities like force and momentum.

$$\mathbf{F} = F_1 \mathbf{E}^1 + F_2 \mathbf{E}^2 = F_1 \frac{\partial q^1}{\partial \mathbf{r}} + F_2 \frac{\partial q^2}{\partial \mathbf{r}} = F_1 \nabla q^1 + F_2 \nabla q^2$$

Co-Contra dot products $\mathbf{E}_m \cdot \mathbf{E}^n$ are **orthonormal**: $\mathbf{E}_m \cdot \mathbf{E}^n = \frac{\partial \mathbf{r}}{\partial q^m} \cdot \frac{\partial \mathbf{q}^n}{\partial \mathbf{r}} = \delta^m_n$
GCC Cells, base vectors, and metric tensors

Polar coordinate examples: Covariant E_m vs. Contravariant E^m
Covariant g_{mn} vs. Invariant δ_{mn} vs. Contravariant g^{mn}
Covariant g_{mn} **vs.** **Invariant** δ_{m}^{n} **vs.** **Contravariant** $g^{mn}

\begin{align*}
E_{m} \cdot E_{n} &= \frac{\partial r}{\partial q^{m}} \cdot \frac{\partial r}{\partial q^{n}} \equiv g_{mn} \\
E_{m} \cdot E^{n} &= \frac{\partial r}{\partial q^{m}} \cdot \frac{\partial q^{n}}{\partial r} = \delta^{n}_{m} \\
E^{m} \cdot E^{n} &= \frac{\partial q^{m}}{\partial r} \cdot \frac{\partial q^{n}}{\partial r} \equiv g^{mn}
\end{align*}

Covariant metric tensor g_{mn}
Invariant Kronecker unit tensor δ_{m}^{n}
Contravariant metric tensor g^{mn}

\[
\delta^{n}_{m} \equiv \begin{cases}
1 & \text{if } m = n \\
0 & \text{if } m \neq n
\end{cases}
\]
Covariant g_{mn} **vs.** **Invariant** δ^m_n **vs.** **Contravariant** g^{mn}

$E_m \cdot E_n = \frac{\partial r}{\partial q^m} \cdot \frac{\partial r}{\partial q^n} = g_{mn}$

$E^m \cdot E^n = \frac{\partial r}{\partial q^m} \cdot \frac{\partial q^n}{\partial r} = \delta^m_n$

$E^m \cdot E^n = \frac{\partial q^m}{\partial r} \cdot \frac{\partial q^n}{\partial r} = g^{mn}$

Covariant metric tensor g_{mn}

Invariant Kroneker unit tensor δ^m_n

$\delta^m_n \equiv \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$

Contravariant metric tensor g^{mn}

Polar coordinate examples (again):

$\langle J \rangle = \begin{pmatrix} \frac{\partial x^1}{\partial q^1} & \frac{\partial x^1}{\partial q^2} \\ \frac{\partial x^2}{\partial q^1} & \frac{\partial x^2}{\partial q^2} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial r} = \cos \phi & \frac{\partial x}{\partial \phi} = -r \sin \phi \\ \frac{\partial y}{\partial r} = \sin \phi & \frac{\partial y}{\partial \phi} = r \cos \phi \end{pmatrix}$

$\langle K \rangle = \langle J^{-1} \rangle = \begin{pmatrix} \frac{\partial r}{\partial x} = \cos \phi & \frac{\partial r}{\partial y} = \sin \phi \\ \frac{\partial \phi}{\partial x} = -\frac{\sin \phi}{r} & \frac{\partial \phi}{\partial y} = \frac{\cos \phi}{r} \end{pmatrix} \leftarrow E^r = E^1$

$\uparrow E_1 \uparrow E_2 \uparrow E_r \uparrow E_\phi$
Covariant g_{mn} vs. **Invariant** δ^m_n vs. **Contravariant** g^{mn}

\[
E_m \cdot E_n = \frac{\partial r}{\partial q^m} \cdot \frac{\partial r}{\partial q^n} \equiv g_{mn}
\]

\[
E^m \cdot E^n = \frac{\partial r}{\partial q^m} \cdot \frac{\partial q^n}{\partial r} = \delta^m_n
\]

\[
E^m \cdot E^n = \frac{\partial q^m}{\partial r} \cdot \frac{\partial q^n}{\partial r} \equiv g^{mn}
\]

Covariant metric tensor

\[g_{mn}\]

Invariant Kroneker unit tensor

\[\delta^m_n \equiv \begin{cases}
1 & \text{if } m = n \\
0 & \text{if } m \neq n
\end{cases}\]

Contravariant metric tensor

\[g^{mn}\]

Polar coordinate examples (again):

\[
\left\langle J \right\rangle = \begin{pmatrix}
\frac{\partial x^1}{\partial q^1} & \frac{\partial x^1}{\partial q^2} \\
\frac{\partial x^2}{\partial q^1} & \frac{\partial x^2}{\partial q^2}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial x}{\partial r} = \cos \phi & \frac{\partial x}{\partial \phi} = -r \sin \phi \\
\frac{\partial y}{\partial r} = \sin \phi & \frac{\partial y}{\partial \phi} = r \cos \phi
\end{pmatrix}
\]

\[
\left\langle K \right\rangle = \left\langle J^{-1} \right\rangle = \begin{pmatrix}
\frac{\partial r}{\partial x} = \cos \phi & \frac{\partial r}{\partial y} = \sin \phi \\
\frac{\partial \phi}{\partial x} = -\frac{\sin \phi}{r} & \frac{\partial \phi}{\partial y} = \frac{\cos \phi}{r}
\end{pmatrix}
\]

\[
\begin{pmatrix}
E_r \cdot E_r & E_r \cdot E_\phi \\
E_\phi \cdot E_r & E_\phi \cdot E_\phi
\end{pmatrix} = \begin{pmatrix}
\begin{pmatrix}
1 \\
0
\end{pmatrix}
& \begin{pmatrix}
r^2
\end{pmatrix}
\end{pmatrix}
\]

\[
\begin{pmatrix}
E_r \cdot E_r & E_r \cdot E_\phi \\
E_\phi \cdot E_r & E_\phi \cdot E_\phi
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
E^r \cdot E^r & E^r \cdot E^\phi \\
E^\phi \cdot E^r & E^\phi \cdot E^\phi
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1/r^2
\end{pmatrix}
\]
Lagrange prefers **Covariant** g_{mn} with **Contra**variant velocity \dot{q}^m

GCC Lagrangian definition
GCC “canonical” momentum p_m definition
GCC “canonical” force F_m definition
Coriolis “fictitious” forces (... and weather effects)
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity.

Lagrangian $L=KE-U$ is supposed to be explicit function of velocity.

\[L(v) = \frac{1}{2} M v \cdot v - U = \frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}} - U = \frac{1}{2} M (E_m \dot{q}^m) \cdot (E_n \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q}) \]
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity.

Lagrangian KE-U is supposed to be explicit function of velocity.

$$L(v) = \frac{1}{2} M v \cdot v - U = \frac{1}{2} M \dot{r} \cdot \dot{r} - U = \frac{1}{2} M (E_m \dot{q}^m) \cdot (E_n \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q})$$

Use polar coordinate **Covariant** g_{mn} metric (page 53)

$$\begin{pmatrix} g_{rr} & g_{r\phi} \\ g_{\phi r} & g_{\phi\phi} \end{pmatrix} = \begin{pmatrix} E_r \cdot E_r & E_r \cdot E_\phi \\ E_\phi \cdot E_r & E_\phi \cdot E_\phi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$$
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity.

Lagrangian KE-U is supposed to be explicit function of velocity.

$$L(v) = \frac{1}{2} M v \cdot v - U = \frac{1}{2} M \dot{r} \cdot \dot{r} - U = \frac{1}{2} M (E_m \dot{q}^m) \cdot (E_n \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q})$$

Use polar coordinate **Covariant** g_{mn} metric (page 53)

$$\begin{pmatrix} g_{rr} & g_{r\phi} \\ g_{\phi r} & g_{\phi \phi} \end{pmatrix} = \begin{pmatrix} E_r \cdot E_r & E_r \cdot E_\phi \\ E_\phi \cdot E_r & E_\phi \cdot E_\phi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$$

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

$$L(\dot{r}, \dot{\phi}) = \frac{1}{2} M (g_{rr} \dot{r}^2 + g_{\phi \phi} \dot{\phi}^2) - U(r, \phi) = \frac{1}{2} M (1 \cdot \dot{r}^2 + r^2 \dot{\phi^2}) - U(r, \phi)$$
Lagrange prefers \textbf{Covariant} \(g_{mn} \) with \textbf{Contra}variant velocity \(q^m \)

- GCC Lagrangian definition
- GCC “canonical” momentum \(p_m \) definition
- GCC “canonical” force \(F_m \) definition
- Coriolis “fictitious” forces (... and weather effects)
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity.

Lagrangian $KE-U$ is supposed to be explicit function of velocity.

$$L(v) = \frac{1}{2} M v \cdot v - U = \frac{1}{2} M \dot{r} \cdot \dot{r} - U = \frac{1}{2} M (E_m \dot{q}^m) \cdot (E_n \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q})$$

Use polar coordinate **Covariant** g_{mn} metric (page 53)

$$\begin{pmatrix} g_{rr} & g_{r\phi} \\ g_{\phi r} & g_{\phi \phi} \end{pmatrix} = \begin{pmatrix} E_r \cdot E_r & E_r \cdot E_\phi \\ E_\phi \cdot E_r & E_\phi \cdot E_\phi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$$

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

$$L(\dot{r}, \dot{\phi}) = \frac{1}{2} M (g_{rr} \dot{r}^2 + g_{\phi \phi} \dot{\phi}^2) - U(r, \phi) = \frac{1}{2} M (1 \cdot \dot{r}^2 + r^2 \dot{\phi}^2) - U(r, \phi)$$

(From preceding page)
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity

Lagrangian KE-U is supposed to be explicit function of velocity.

$$L(v) = \frac{1}{2} M v \cdot v - U = \frac{1}{2} M \dot{r} \cdot \dot{r} - U = \frac{1}{2} M (E_m \dot{q}^m) \cdot (E_n \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q})$$

Use polar coordinate **Covariant** g_{mn} metric (page 53)

$$\begin{pmatrix}
g_{rr} & g_{r\phi} \\
g_{\phi r} & g_{\phi\phi}
\end{pmatrix} = \begin{pmatrix}
E_r \cdot E_r & E_r \cdot E_\phi \\
E_\phi \cdot E_r & E_\phi \cdot E_\phi
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & r^2
\end{pmatrix}$$

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

$$L(\dot{r}, \dot{\phi}) = \frac{1}{2} M (g_{rr} \dot{r}^2 + g_{\phi\phi} \dot{\phi}^2) - U(r, \phi) = \frac{1}{2} M (1 \cdot \dot{r}^2 + r^2 \dot{\phi}^2) - U(r, \phi)$$

GCC Lagrange equations follow. **1st** L-equation is momentum p_m definition for each coordinate q^m:

$$p_r = \frac{\partial L}{\partial \dot{r}^r} = M \ g_{rr} \dot{r} = M \ \dot{r}$$

Nothing too surprising; radial momentum p_r has the usual linear $M \cdot v$ form
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity.

Lagrangian KE-U is supposed to be explicit function of velocity.

$$ L(\mathbf{v}) = \frac{1}{2} M \mathbf{v} \cdot \mathbf{v} - U = \frac{1}{2} M \mathbf{\dot{r}} \cdot \mathbf{\dot{r}} - U = \frac{1}{2} M (E_m \mathbf{q}^m) \cdot (E_n \mathbf{\dot{q}}^n) - U = \frac{1}{2} M (g_{mn} \mathbf{\dot{q}}^m \mathbf{\dot{q}}^n) - U = L(\mathbf{\dot{q}}) $$

Use polar coordinate **Covariant** g_{mn} metric (page 53)

$$
\begin{pmatrix}
 g_{rr} & g_{r\phi} \\
 g_{\phi r} & g_{\phi\phi}
\end{pmatrix} =
\begin{pmatrix}
 E_r \cdot E_r & E_r \cdot E_\phi \\
 E_\phi \cdot E_r & E_\phi \cdot E_\phi
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 \\
 0 & r^2
\end{pmatrix}
$$

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

$$ L(\mathbf{\dot{r}}, \mathbf{\dot{\phi}}) = \frac{1}{2} M (g_{rr} \mathbf{\dot{r}}^2 + g_{\phi\phi} \mathbf{\dot{\phi}}^2) - U(r, \phi) = \frac{1}{2} M (1 \cdot \mathbf{\dot{r}}^2 + r^2 \mathbf{\dot{\phi}}^2) - U(r, \phi) $$

GCC Lagrange equations follow. 1st L-equation is momentum p_m definition for each coordinate q^m:

$$ p_r = \frac{\partial L}{\partial \mathbf{\dot{r}}} = M g_{rr} \mathbf{\dot{r}} = M \mathbf{\dot{r}} \quad \text{Nothing too surprising; radial momentum } p_r \text{ has the usual linear } M \cdot \mathbf{v} \text{ form} $$

$$ p_\phi = \frac{\partial L}{\partial \mathbf{\dot{\phi}}} = Mg_{\phi\phi} \mathbf{\dot{\phi}} = Mr^2 \mathbf{\dot{\phi}} \quad \text{Wow! } g_{\phi\phi} \text{ gives moment-of-inertia factor } Mr^2 \text{ automatically for the angular momentum } p_\phi = Mr^2 \mathbf{\omega}. $$
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity q^m

GCC Lagrangian definition
GCC “canonical” momentum p_m definition
GCC “canonical” force F_m definition
Coriolis “fictitious” forces (… and weather effects)
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity.

Lagrangian KE-U is supposed to be explicit function of velocity.

$$L(v) = \frac{1}{2} M v \cdot v - U = \frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}} - U = \frac{1}{2} M (\mathbf{E}_m \dot{q}^m) \cdot (\mathbf{E}_n \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q})$$

Use polar coordinate **Covariant** g_{mn} metric (page 53)

$$\begin{pmatrix} g_{rr} & g_{r\phi} \\ g_{\phi r} & g_{\phi\phi} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_r \cdot \mathbf{E}_r & \mathbf{E}_r \cdot \mathbf{E}_\phi \\ \mathbf{E}_\phi \cdot \mathbf{E}_r & \mathbf{E}_\phi \cdot \mathbf{E}_\phi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$$

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

$$L(\dot{r}, \dot{\phi}) = \frac{1}{2} M (g_{rr} \dot{r}^2 + g_{\phi\phi} \dot{\phi}^2) - U(r, \phi) = \frac{1}{2} M (1 \cdot \dot{r}^2 + r^2 \dot{\phi}^2) - U(r, \phi)$$

GCC Lagrange equations follow. 1st L-equation is momentum p_m definition for each coordinate q^m:

$$p_r = \frac{\partial L}{\partial \dot{r}} = M g_{rr} \dot{r} = M \ddot{r}$$

Nothing too surprising; radial momentum p_r has the usual linear $M \cdot v$ form

$$p_\phi = \frac{\partial L}{\partial \dot{\phi}} = M g_{\phi\phi} \dot{\phi} = \dot{M} r^2 \dot{\phi}$$

Wow! $g_{\phi\phi}$ gives moment-of-inertia factor Mr^2 automatically for the angular momentum $p_\phi = Mr^2 \omega$.

(From preceding page)
Lagrange prefers **Covariant** \(g_{mn} \) with **Contravariant** velocity

Lagrangian KE-U is supposed to be explicit function of velocity.

\[
L(v) = \frac{1}{2} M v \cdot v - U = \frac{1}{2} M \dot{r} \cdot \dot{r} - U = \frac{1}{2} M (E_m \dot{q}^m) \cdot (E_n \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q})
\]

Use polar coordinate **Covariant** \(g_{mn} \) metric (page 53)

\[
\begin{pmatrix}
g_{rr} & g_{r\phi} \\
g_{\phi r} & g_{\phi \phi}
\end{pmatrix} =
\begin{pmatrix}
E_r \cdot E_r & E_r \cdot E_\phi \\
E_\phi \cdot E_r & E_\phi \cdot E_\phi
\end{pmatrix} =
\begin{pmatrix}
1 & 0 \\
0 & r^2
\end{pmatrix}
\]

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

\[
L(\dot{r}, \dot{\phi}) = \frac{1}{2} M (g_{rr} \dot{r}^2 + g_{\phi \phi} \dot{\phi}^2) - U(r, \phi) = \frac{1}{2} M (1 \cdot \dot{r}^2 + r^2 \dot{\phi}^2) - U(r, \phi)
\]

GCC Lagrange equations follow. **1st** \(L \)-equation is momentum \(p_m \) definition for each coordinate \(q^m \):

\[
p_r = \frac{\partial L}{\partial \dot{r}^r} = M g_{rr} \dot{r} = M \dot{r}
\]

Nothing too surprising; radial momentum \(p_r \) has the usual linear \(M \cdot v \) form

\[
p_\phi = \frac{\partial L}{\partial \dot{\phi}^\phi} = M g_{\phi \phi} \dot{\phi} = Mr^2 \dot{\phi}
\]

Wow! \(g_{\phi \phi} \) gives moment-of-inertia factor \(Mr^2 \) automatically for the angular momentum \(p_\phi = Mr^2 \omega \).

2nd \(L \)-equation involves total time derivative \(\dot{p}_m \) for each momentum \(p_m \):

\[
\dot{p}_r = \frac{\partial L}{\partial r} = \frac{1}{2} \frac{\partial g_{\phi \phi}}{\partial r} \dot{\phi}^2 - \frac{\partial U}{\partial r} = M r \dot{\phi}^2 - \frac{\partial U}{\partial r}
\]

Centrifugal force \(M r \omega^2 \)

\[
\dot{p}_\phi = \frac{\partial L}{\partial \phi} = 0 - \frac{\partial U}{\partial \phi}
\]

Angular momentum \(p_\phi \) is conserved if potential \(U \) has no explicit \(\phi \)-dependence

\[
\frac{d}{dt} \frac{\partial L}{\partial q^m} = \frac{\partial L}{\partial q^m}
\]

Recall:

\[
p_m = \frac{\partial L}{\partial \dot{q}^m}
\]

\[
p = \frac{\partial L}{\partial v}
\]

Lagrange’s **1st** GCC equation
(Defining GCC momentum)

\[
p_m = \frac{\partial L}{\partial \dot{q}^m}
\]

Lagrange’s **2nd** GCC equation
(Change of GCC momentum)

\[
\frac{dp_m}{dt} \equiv \dot{p}_m = \frac{\partial L}{\partial q^m}
\]
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity.

Lagrangian KE-U is supposed to be explicit function of velocity.

$$L(v) = \frac{1}{2} M v \cdot v - U = \frac{1}{2} M \ddot{r} \cdot \dot{r} - U = \frac{1}{2} M (E_m \dot{q}^m) \cdot (E_n \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q})$$

Use polar coordinate **Covariant** g_{mn} metric (page 53)

$$\begin{pmatrix}
g_{rr} & g_{r\phi} \\
g_{\phi r} & g_{\phi\phi}
\end{pmatrix} = \begin{pmatrix}
E_r \cdot E_r & E_r \cdot E_{\phi} \\
E_{\phi} \cdot E_r & E_{\phi} \cdot E_{\phi}
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & r^2
\end{pmatrix}$$

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

$$L(\dot{r}, \dot{\phi}) = \frac{1}{2} M (g_{rr} \dot{r}^2 + g_{\phi\phi} \dot{\phi}^2) - U(r, \phi) = \frac{1}{2} M (1 \cdot \dot{r}^2 + r^2 \dot{\phi}^2) - U(r, \phi)$$

GCC Lagrange equations follow. **1st** L-equation is momentum p_m definition for each coordinate q^m:

$$p_r = \frac{\partial L}{\partial \dot{r}} = M g_{rr} \dot{r} = M \dot{r}$$

Nothing too surprising; radial momentum p_r has the usual linear $M \cdot v$ form

$$p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = M g_{\phi\phi} \dot{\phi} = M r^2 \dot{\phi}$$

Wow! $g_{\phi\phi}$ gives moment-of-inertia factor $M r^2$ automatically for the angular momentum $p_{\phi} = M r^2 \omega$.

2nd L-equation involves total time derivative \dot{p}_m for each momentum p_m:

$$\dot{p}_r = \frac{\partial L}{\partial r} = \frac{M}{2} \frac{\partial g_{\phi\phi}}{\partial r} \dot{\phi}^2 - \frac{\partial U}{\partial r} = M r \dot{\phi}^2 - \frac{\partial U}{\partial r}$$

Centrifugal force $M r \omega^2$

$$\dot{p}_{\phi} = \frac{\partial L}{\partial \phi} = 0 - \frac{\partial U}{\partial \phi}$$

Angular momentum p_{ϕ} is conserved if potential U has no explicit ϕ-dependence

Find \dot{p}_m directly from **1st** L-equation: $\dot{p}_m \equiv \frac{dp_m}{dt} = \frac{d}{dt} M (g_{mn} \dot{q}^n) = M (g_{mn} \dot{q}^n + g_{nm} \ddot{q}^n)$ Equate it to \dot{p}_m in **2nd** L-equation:
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity q^m

GCC Lagrangian definition
GCC “canonical” momentum p_m definition
GCC “canonical” force F_m definition
Coriolis “fictitious” forces (... and weather effects)
Lagrange prefers **Covariant** g_{mn} with **Contravariant** velocity.

Lagrangian KE-U is supposed to be explicit function of velocity.

$L(\mathbf{v}) = \frac{1}{2} M \mathbf{v} \cdot \mathbf{v} - U = \frac{1}{2} M \dot{\mathbf{r}} \cdot \dot{\mathbf{r}} - U = \frac{1}{2} M (E_n \dot{q}^n) (E_n \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q})$

Use polar coordinate **Covariant** g_{mn} metric (page 53)

$$
\begin{pmatrix}
g_{rr} & g_{r\phi} \\
g_{\phi r} & g_{\phi\phi}
\end{pmatrix} =
\begin{pmatrix}
E_r \cdot E_r & E_r \cdot E_\phi \\
E_\phi \cdot E_r & E_\phi \cdot E_\phi
\end{pmatrix} =
\begin{pmatrix}
1 & 0 \\
0 & r^2
\end{pmatrix}
$$

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

$$
L(\dot{r}, \dot{\phi}) = \frac{1}{2} M (g_{rr} \dot{r}^2 + g_{\phi\phi} \dot{\phi}^2) - U(r, \phi) = \frac{1}{2} M (1 \cdot \dot{r}^2 + r^2 \dot{\phi}^2) - U(r, \phi)
$$

GCC Lagrange equations follow. **1st** L-equation is momentum p_m definition for each coordinate q^m:

$p_r = \frac{\partial L}{\partial \dot{r}} = M g_{rr} \dot{r} = M \dot{r}$

Nothing too surprising; radial momentum p_r has the usual linear $M \cdot v$ form

$p_\phi = \frac{\partial L}{\partial \dot{\phi}} = M g_{\phi\phi} \dot{\phi} = Mr^2 \dot{\phi}$

Wow! $g_{\phi\phi}$ gives moment-of-inertia factor Mr^2 automatically for the angular momentum $p_\phi = Mr^2 \omega$.

2nd L-equation involves total time derivative \dot{p}_m for each momentum p_m:

$$
\dot{p}_r = \frac{\partial L}{\partial r} = M \frac{\partial g_{\phi\phi}}{\partial r} \dot{\phi}^2 - \frac{\partial U}{\partial r} = M r \dot{\phi}^2 - \frac{\partial U}{\partial r}
$$

Centrifugal force $Mr \omega^2$

$$
\dot{p}_\phi = \frac{\partial L}{\partial \phi} = 0 - \frac{\partial U}{\partial \phi}
$$

Angular momentum p_ϕ is conserved if potential U has no explicit ϕ-dependence

Find \dot{p}_m directly from **1st** L-equation: $\dot{p}_m \equiv \frac{dp_m}{dt} = \frac{d}{dt} M (g_{mn} \dot{q}^n) = M (g_{mn} \dot{q}^n + g_{mn} \ddot{q}^n)$ Equate it to \dot{p}_m in **2nd** L-equation:

(From preceding page)
Lagrange prefers **Covariant** g_{mn} with **Contravariant velocity**

Lagrangian KE-U is supposed to be explicit function of velocity.

$$L(v) = \frac{1}{2} M \dot{v} \cdot v - U = \frac{1}{2} M (\dot{r} \cdot \dot{r}) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q})$$

Use polar coordinate **Covariant** g_{mn} metric (page 53)

$$\begin{pmatrix}
 g_{rr} & g_{r\phi} \\
 g_{\phi r} & g_{\phi \phi}
\end{pmatrix} = \begin{pmatrix}
 E_r \cdot E_r & E_r \cdot E_\phi \\
 E_\phi \cdot E_r & E_\phi \cdot E_\phi
\end{pmatrix} = \begin{pmatrix}
 1 & 0 \\
 0 & r^2
\end{pmatrix}$$

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

$$L(\dot{r}, \dot{\phi}) = \frac{1}{2} M (g_{rr} \dot{r}^2 + g_{\phi \phi} \dot{\phi}^2) - U(r, \phi) = \frac{1}{2} M (1 \cdot \dot{r}^2 + r^2 \dot{\phi}^2) - U(r, \phi)$$

GCC Lagrange equations follow. 1st L-equation is momentum p_m definition for each coordinate q^m:

$$p_r = \frac{\partial L}{\partial \dot{r}} = M g_{rr} \dot{r} = M \dot{r}$$

Nothing too surprising; radial momentum p_r has the usual linear $M \cdot v$ form

$$p_\phi = \frac{\partial L}{\partial \dot{\phi}} = M g_{\phi \phi} \dot{\phi} = Mr^2 \dot{\phi}$$

Wow! $g_{\phi \phi}$ gives moment-of-inertia factor Mr^2 automatically for the angular momentum $p_\phi = Mr^2 \omega$.

2nd L-equation involves total time derivative \dot{p}_m for each momentum p_m:

$$\dot{p}_r = \frac{\partial L}{\partial r} = \frac{M}{2} \frac{\partial g_{\phi \phi}}{\partial r} \dot{\phi}^2 - \frac{\partial U}{\partial r} = M r \dot{\phi}^2 - \frac{\partial U}{\partial r}$$

Centrifugal force $Mr \omega^2$

$$\dot{p}_\phi = \frac{\partial L}{\partial \phi} = 0 - \frac{\partial U}{\partial \phi}$$

Angular momentum p_ϕ is conserved if potential U has no explicit ϕ-dependence

Find \dot{p}_m directly from 1st L-equation:

$$\dot{p}_m \equiv \frac{dp_m}{dt} = \frac{d}{dt} M (g_{mn} \dot{q}^n) = M (g_{mn} \dot{q}^m + g_{mn} \ddot{q}^n)$$

Equate it to \dot{p}_m in 2nd L-equation:

$$\dot{p}_r = \frac{dp_r}{dt} = M \dot{r}$$

Centrifugal (center-fleeing) force

equals total

Centripetal (center-pulling) force
Lagrange prefers **Covariant** g_{mn} with **Contravariant** *velocity*

Lagrangian KE-U is supposed to be explicit function of *velocity*.

$L(v)=\frac{1}{2} M v \cdot v - U = \frac{1}{2} M \hat{r} \cdot \hat{r} - U = \frac{1}{2} M (E_m \dot{q}^m) \cdot (E_n \dot{q}^n) - U = \frac{1}{2} M (g_{mn} \dot{q}^m \dot{q}^n) - U = L(\dot{q})$

Use polar coordinate **Covariant** g_{mn} metric (page 53)

\[
\begin{bmatrix}
g_{rr} & g_{r\phi} \\
g_{\phi r} & g_{\phi\phi}
\end{bmatrix} = \begin{bmatrix} E_r \cdot E_r & E_r \cdot E_\phi \\
E_\phi \cdot E_r & E_\phi \cdot E_\phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\
0 & r^2 \end{bmatrix}
\]

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

$L(\hat{r}, \dot{\phi}) = \frac{1}{2} M (g_{rr} \hat{r}^2 + g_{\phi\phi} \dot{\phi}^2) - U(r, \phi) = \frac{1}{2} M (1 \cdot \hat{r}^2 + r^2 \dot{\phi}^2) - U(r, \phi)$

GCC Lagrange equations follow. *1st* L-equation is momentum p_m definition for each coordinate q^m:

\[p_r = \frac{\partial L}{\partial \dot{r}} = M g_{rr} \dot{r} = M \dot{r}\]

Nothing too surprising; radial momentum p_r has the usual linear $M-v$ form

\[p_\phi = \frac{\partial L}{\partial \dot{\phi}} = M g_{\phi\phi} \dot{\phi} = M r^2 \dot{\phi}\]

Wow! $g_{\phi\phi}$ gives moment-of-inertia factor $M r^2$ automatically for the angular momentum $p_\phi = M r^2 \omega$.

2nd L-equation involves total time derivative \dot{p}_m for each momentum p_m:

\[\dot{p}_r = \frac{\partial L}{\partial r} = \frac{M}{2} \frac{\partial g_{\phi\phi}}{\partial r} \dot{\phi}^2 - \frac{\partial U}{\partial r} = M r \dot{\phi}^2 - \frac{\partial U}{\partial r}\]

Centrifugal force $M r \dot{\phi}^2 - \frac{\partial U}{\partial r}$

\[\dot{p}_\phi = \frac{\partial L}{\partial \phi} = 0 - \frac{\partial U}{\partial \phi}\]

Angular momentum p_ϕ is conserved if potential U has no explicit ϕ-dependence

Find \dot{p}_m directly from *1st* L-equation:

\[\dot{p}_r \equiv \frac{dp_r}{dt} = M \dot{r}\]

Centrifugal (center-fleeing) force equals total Centripetal (center-pulling) force

\[\dot{p}_\phi \equiv \frac{dp_\phi}{dt} = 2 M r \dot{\phi} + M r^2 \ddot{\phi}\]

Torque relates to two distinct parts: Coriolis and angular acceleration

\[\dot{p}_\phi \equiv \frac{dp_\phi}{dt} = 0 - \frac{\partial U}{\partial \phi}\]

Angular momentum p_ϕ is conserved if potential U has no explicit ϕ-dependence
Rewriting GCC Lagrange equations:

\[\dot{p}_r = \frac{dp_r}{dt} = M \ddot{r} \]

Centrifugal (center-fleeing) force equals total
Centripetal (center-pulling) force

\[= Mr\dot{\phi}^2 - \frac{\partial U}{\partial r} \]

Conventional forms
radial force: \[M \ddot{r} = Mr\dot{\phi}^2 - \frac{\partial U}{\partial r} \]
Field-free (U=0)
radial acceleration: \[\ddot{r} = r\dot{\phi}^2 \]

\[\dot{p}_\phi = \frac{dp_\phi}{dt} = 2Mr\dot{\phi} + Mr^2\ddot{\phi} \]
Torque relates to two distinct parts:
Coriolis and angular acceleration
\[= 0 - \frac{\partial U}{\partial \phi} \]
Angular momentum \(p_\phi\) is conserved if
potential \(U\) has no explicit \(\phi\)-dependence

\[\ddot{\phi} = 0 - \frac{r}{r} \]

Coriolis acceleration with \(\dot{\phi} > 0\) and \(\ddot{r} < 0\)
\[\ddot{\phi} = -2 \frac{\dot{r}\dot{\phi}}{r} \]
(makes \(\ddot{\phi}\) positive)

\[\ddot{r} < 0 \]
Inward flow to pressure Low
...makes wind turn to the right

Effect on Northern Hemisphere local weather
Cyclonic flow around lows

\(L\)
Northern hemisphere rotation
\(\ddot{\phi} > 0\)
Rewriting GCC Lagrange equations:

\[\dot{p}_r = \frac{dp_r}{dt} = M \dot{r} \]

Centrifugal (center-fleeing) force equals total

\[= M r \dot{\phi}^2 - \frac{\partial U}{\partial r} \]

Centripetal (center-pulling) force

Field-free (U=0)

\[\ddot{r} = r \dot{\phi}^2 \]

Effect on Northern Hemisphere local weather

\[\text{Cool North winds follow storms} \]

\[\text{Warm South winds precede storms} \]

\[\text{Inward flow to pressure Low} \]

\[\text{...makes wind turn to the right} \]

\[\text{Coriolis acceleration with} \ \dot{\phi} > 0 \ \text{and} \ \dot{r} < 0 \]

\[\dot{\phi} = -2 \frac{\dot{r} \phi}{r} \]

\[\text{(makes} \ \dot{\phi} \ \text{positive)} \]

\[\text{Effect on} \]

\[\text{Northern Hemisphere} \]

\[\text{local weather} \]

\[\text{Cyclonic flow around lows} \]
Rewriting GCC Lagrange equations:

\[\dot{p}_r = \frac{dp_r}{dt} = M \ddot{r} \]

Centrifugal (center-fleeing) force equals total
Centripetal (center-pulling) force

\[= M r \dot{\phi}^2 - \frac{\partial U}{\partial r} \]

Conventional forms

radial force: \[M \ddot{r} = M r \dot{\phi}^2 - \frac{\partial U}{\partial r} \]

Field-free (U=0)

radial acceleration: \[\ddot{r} = r \ddot{\phi}^2 \]

Angular momentum \(p_\phi \) is conserved if potential \(U \) has no explicit \(\phi \)-dependence

\[\dot{p}_\phi = \frac{dp_\phi}{dt} = 2 Mr \dot{\phi} + M r^2 \ddot{\phi} \]

Torque relates to two distinct parts:

- Coriolis and angular acceleration
- Angular momentum \(p_\phi \) is conserved if potential \(U \) has no explicit \(\phi \)-dependence

\[= 0 - \frac{\partial U}{\partial \phi} \]

\[= 2 Mr \dot{\phi} + M r^2 \ddot{\phi} - \frac{\partial U}{\partial \phi} \]

Centrifugal (center-fleeing) force equals total
Centripetal (center-pulling) force

\[\ddot{r} = r \ddot{\phi}^2 \]

Effect on Northern Hemisphere local weather

- Cyclonic flow around lows
- Warm South winds precede storms
- Cool North winds follow storms

Deep quantum rule:
Flow tries to mimic the external rotation (least relative \(v \))