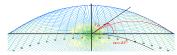
Assignments for Physics 5103 - Reading in Classical Mechanics with a BANG! and Lectures Assignment 5 - due Thur Oct. 6 - Mainly Chapters 9 - 12. "Families of orbits and their contacting envelopes."



The atoms of NIST or volcanoes of Io

1. Suppose one of the volcanoes on Jupter's moon *Io* detonates in a constant gravity- $g(m \cdot s^{-2})$ vacuum sending equivelocity $\pm v_0(m \cdot s^{-1})$ fragments off at initial elevation angles $\alpha = 0^\circ$, 15°, 30°, ..., 75°, and 90° with the latter one going straight up to an altitude of $y=h_0=1$ -unit in the attached graph and falling straight down.

- (a.) That one distance unit has what *mks*-value in terms of $g(m \cdot s^{-2})$ and $v_0(m \cdot s^{-1})$? $h_0 =$ _____().
- (b.) Derive the parabolic time-coordinates x(t) =______, y(t) =______ in terms of $g(m \cdot s^{-2})$ and v_0 $(m \cdot s^{-1})$ and elevation angle α .
- (c.) Derive the parabolic focus-locus coordinates $x_{foc} =$ ______, $y_{foc} =$ ______ in terms of $g(m \cdot s^{-2})$ and $v_0(m \cdot s^{-1}$ and elevation angle α) for $h_0 = l$ and construct its curve on graph. (This curve has aspects of Thales geometry (subtended angle of circle diameter) that relate to trajectories. If you can show these below.)
- (d.) Derive the parabolic directrix coordinate y_{dir} in terms of $h_0 = 1$ and elevation angle α and construct this directrix line on graph for the cases $\alpha = 0^{\circ} 90^{\circ}$ listed above.
- (e.) Give general parabolic trajectory curve function y(x) =______ in terms of $g(m \cdot s^{-2})$ and v_0 $(m \cdot s^{-1})$ and α for $h_0 = 1$. For the cases $\alpha = 0^\circ$, 30° , 45° , and 90° construct enough of their curve points and tangents to accurately represent them on the graph.
- (f.) Locate the envelope contact points for the cases $\alpha = 0^\circ$, 30° , 45° , and 90° and construct enough of the envelope points and tangents to accurately represent the envelope on the graph. If a contact point lies off the graph indicate where. Deduce $y_{envelope}(x) =$ ______ in terms of $h_0 = 1$.
- (g.) Each parabola trajectory has kite-like structure. (Recall Fig. 9.4.) So does the envelope. Draw and relate.
- (h.) Do any of the α -trajectories have the same shape as the envelope? If so, tell which one.
- 2. Now consider time behavior implicit in problem 1. In a "snapshot" of each moment, volcano fragments lie on "blast-front" curve. A geometric time unit T_l is the time for the $\alpha = 90^\circ$ fragment to reach its peak.
 - (a.) That one time unit has what *mks*-value in terms of $g(m \cdot s^{-2})$ and $v_0(m \cdot s^{-1})$? $T_1 = ($).
 - (b.) Give a brief explanation addressing why this "snapshot" curve or locus has to be (whichever): a parabola? straight line? circle? ellipse? (Check one and explain choice on graph.)
 - (c.) Derive and/or construct the "blast-front" curve for the case $\alpha = 90^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_1 units. $T_{90^{\circ}} =$ _____ Find polar angle of contact normal.
 - (d.) Derive and/or construct the "blast-front" curve for the case $\alpha = 45^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_1 units. $T_{45^{\circ}} =$ _____ Find polar angle of contact normal.
 - (e.) Derive and/or construct the "blast-front" curve for the case $\alpha = 30^{\circ}$ at the moment when that fragment first contacts volcano envelope. Give time in T_1 units. $T_{30^{\circ}} =$ _____ Find polar angle of contact normal.
- 3. Suppose fragments continue falling into a tunnel through moon-*Io* that has radius $R_{Io}=0.5 \cdot 10^6 h_0$. Estimate radius of tunnel at widest point if it just big enough to let all fragments orbit without hitting its walls. $R_{tunnel}=(h_0)$ Note: For this problem the gravity is not uniform constant $g=9.8ms^{-2}$ except near surface. (Ellipse geometry.)