Self-Study Problems with solutions Set 16 - Classical Mechanics 5103 Involves Unit 5 Ch. 1-4 and Units 6 Ch. 1-6. Try to do exercises first before looking at solutions

Exercise 5.2.1 Circular firing squad: More Thales geometry problems

- (a) What power-law PE(s) $V(r) = kr^n$ give circular paths ITF? For each relate *k*,*n*, and initial values (*r*,*v*) at I.
- (b) What power-law PE(s) $V(r) = kr^n$ give circular paths IT^C? For each relate k,n, and initial values (r,v) at I.
- (c) For each discuss time behavior of *C*-*pt* polar angle ϕ and *I*-*pt* polar angle θ . Which orbit radii sweep equal-area-in-equal-time (as Kepler would have it)?

Exercise 5.2.2 Repulsive oscillation

Derive formulas for the orbital path of a mass *m* in an isotropic repulsive quadratic potential $V(\rho) = -\frac{1}{2}k\rho^2$ (*k*>0). Discuss analytic or geometric properties of the resulting orbits.

Exercise 5.2.3 Attractive oscillation

Verify oscillator equation of time in (5.2.11). Verify turning point formulas in terms of orbit radii *a* and *b*.

Exercise 5.2.4 Coulomb approach-avoidance

Derive an equation of time for (a) attractive Coulomb potential (k < 0) (b) repulsive potential (k > 0)

$$V(\rho) = -\frac{k}{\rho}$$

Exercise 5.2.5 Dyin' Ion

Suppose an atom of mass *m* is orbits a heavy atom of mass $M \ge m$ (Assume *M* fixed) which is polarized so there is an attractive constant-dipole-like potential $V(r) = -A/r^2$ between the two particles.

(a) Derive the constant-momentum- p_{ϕ} effective radial potential form for the system.

- (b) Solve and discuss the orbital path $r(\phi)$ for select values of A and p_{ϕ} . (Start with the A=0 solution.)
- (c) The solutions may be related to projections of geodesics on a cone in Exercise5.2.6 (Discuss).

Exercise 5.2.6 Space Bowling

Suppose a giant metal cone of polar half angle Θ is set up next to the space station for space bowling. (They have little else to do.) The polar angle is small enough that if the bowler misses the apex by a little bit, the ball orbits around and returns toward the bowler. (*See 2nd figure above.*) What value(s) of angle Θ allow this? What if instead, NASA prefers ceiling-return, that is, along lines near azimuth of 180° from the bowler?

Exercise 5.3.1. Rutherford Coulomb

Use geometry to derive the equation of the Rutherford scattering caustic (contacting envelope) as a function of alpha particle mass m, Coulomb constant k and beam energy E. Include a description or construction of the contact point of a general trajectory with its envelope. Is the contact point ever a closest approach to F?

(a) How many *eV* of energy are needed to get an α^{+4} particle onto the Au^{+79} nuclear surface at r = 1 fm?

(b) Does the minimum radius of curvature of envelope for (a) equal *lfm*? If not, what? And, so what?

Exercise 5.3.4. Two burns

Space shuttle is in circular orbit of radius R₀ and in two burns moves to circular orbit of radius nR₀.

(a) Describe or sketch (for n=2 and 3) the quickest way to do this.

(b) Find energy and angular momentum of each stage in terms of original energy E_0 and momentum μ_o .

Exercise 5.3.6. Optimum range angle

For plane trajectories in uniform gravity a $\alpha = 45^{\circ}$ launch angle gives maximum range. Also, there is no maximum range (given by effective longitude angle ρ) for a given angle if you have enough v₀. For ballistic missiles traveling in space (or for war on the moon) all is different.

(a) Use geometry to derive the maximum range longitude angle ρ along the Earth's surface as a function of the launch elevation angle α above the horizon neglecting Earth spin. (First, why is ρ so limited?)

(b) Use geometry to derive launch angle α which throws a missile to a given range ρ with *minimum* energy. Compare result with that of part (a).